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Degrees of Freedom of 2-user and 3-user Rank-Deficient MIMO

Interference Channels

Sundar R. Krishnamurthy and Syed A. Jafar
Electrical Engineering and Computer Science

University of California Irvine

Abstract

We study the degrees of freedom (DoF) of 2-user and 3-user multiple input multiple output
(MIMO) interference channels with rank deficient channel matrices. Only achievable DoF results
and trivial outer bounds were previously available for these problems, restricted to symmetric
settings. For the 2-user rank deficient MIMO interference channel we prove the optimality
of previously known achievable DoF in the symmetric case and generalize the result to fully
asymmetric settings. For the 3-user rank deficient MIMO interference channel, we improve the
achievable DoF and provide a tight outer bound to establish optimality. Linear precoding based
achievable schemes are found to be DoF optimal in both cases.

1 Introduction

Rank deficiency of channel matrices is an important aspect of MIMO wireless systems. Poor
scattering and presence of single or very few direct paths are some reasons for rank deficiency in
wireless channels. While the implications of rank deficient channel matrices are well understood
for the single user point to point setting, much less is known for MIMO interference networks. In
particular, the interplay between the number of signal dimensions (degrees of freedom) available
through interference management schemes and channel rank-deficiencies is largely unexplored.

For full rank channels, the DoF of the 2-user MIMO interference channel are characterized in [2],
and those of the 3-user MIMO interference channel are characterized in [1]. A study of the DoF of
rank-deficient channels is initiated in [3] by Chae et al., who present an achievable scheme for the
K user rank deficient MIMO channels. However, in the absence of outer bounds, the optimality of
the achieved DoF is neither established, nor conjectured. Further, Chae et al. consider only the
symmetric setting where all transmitters have M nodes, all receivers have N nodes and all channels
are of rank D. In this paper, our focus is on optimal DoF results of 2-user and 3-user rank deficient
channels with less restrictive symmetry assumptions.

For 2-user rank deficient channels, Chae et al. present an achievable scheme specifically for
the symmetric (M,N,D) setting, which achieves min(2D,M + N −D) total DoF. In this paper,
we show that this DoF is optimal using a genie-based outer bound and also present an achievable
scheme and outer bound for the generic setting with arbitrary number of transmitter and receiver
antennas and arbitrary channel ranks. For 3-user rank-deficient channels, our results show that
the achievable DoF result of [3] is not optimal even for the symmetric (M,M,D) channel. While
Chae et al. achieve DoF equal to min(D,max(2M−D

3 , DL
L+1)) per user, where L = bMD c, we present

an improved achievable scheme and a tight information theoretic outer bound, establishing the
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DoF value of min(D, M2 ) per user for same (M,M,D) channel. We also characterize the DoF of
less symmetric settings where direct and cross channels have different ranks. Symbol or spatial
extensions can be considered when the achievable DoF per user is not an integer.

Notation: When dealing with Hk(k+1) and Hk(k−1), indexing is interpreted in a circular wrap-around
manner, modulo the number of users. We use the notation o(x) to represent any function f(x)

such that limx→∞
f(x)
x = 0. (x)+ indicates max(0, x).

2 Two User Interference Channel

Consider the (M1, N1;D11, D21), (M2, N2;D22, D12) rank-deficient MIMO interference channel where
transmitter T1 has a message for receiver R1 only and transmitter T2 has a message for receiver R2

only. Rank of channel matrix Hji is denoted by Dji. This interference channel is characterized by
the following input-output relations:

Y1 = H11X1 +H12X2 +W1

Y2 = H22X2 +H21X1 +W2

where H11, H22 are the direct channel matrices of size N1 ×M1 and N2 ×M2 , respectively and
H12, H21 are the cross (interfering) channel matrices of size N1 ×M2 and N2 ×M1, respectively.
X1;X2 are the M1, M2 dimensional input vectors, Y1;Y2 are the N1, N2 dimensional output vectors,
and W1;W2 are the N1, N2 dimensional additive white gaussian noise (AWGN) vectors, respectively.
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Figure 1: 2-user rank deficient interference channel

We assume that the channels are generic. A generic rank-deficient matrix of size M ×M with
rank D, can be seen without loss of generality, as a product of two full rank matrices of size M ×D
and D ×M . Coefficients of these two matrices are generic, e.g., chosen i.i.d. from a continuous
distribution and their absolute values are bounded between a nonzero minimum value and a finite
maximum value.
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2.1 Achievability: Inner Bound on DoF

Lemma 1 For the (M1, N1;D11, D21), (M2, N2;D22, D12) rank deficient interference channel, fol-
lowing total degrees of freedom are achievable.

ηs(K2) ≥ min{D11 +D22,M1 +N2 −D21,M2 +N1 −D12} (1)

Proof: Since the proof is similar to that of the 2-user full rank interference channel [2], we do not
repeat all the details. Fig 2 illustrates the proof setting with an example where M1 = 5, M2 = 4,
N1 = 4, N2 = 4, D11 = 3, D22 = 3, D12 = 2 and D21 = 4, where a total of 5 DoF are achieved.

Step 1: We consider SVD of the interference channels H12 = U1Λ12V
†

1 and H21 = U2Λ21V
†

2 . Λ12

and Λ21 are diagonal matrices with singular values of H12, H21 respectively on the main diagonal
and zeros elsewhere. Using the standard MIMO SVD diagonalization approach as in [2], we absorb
the unitary matrices into the corresponding input and output vectors as:

Y ′1 = H ′11X
′
1 + Λ12X

′
2 +W ′1

Y ′2 = H ′22X
′
2 + Λ21X

′
1 +W ′2

where Y ′1 = U †1Y1, Y ′2 = U †2Y2, X ′1 = V †2 X1, X ′2 = V †1 X2, W ′1 = U †1W1, W ′2 = U †2W2, H ′11 = U †1H11V2

and H ′22 = U †2H22V1. Since first D12 columns of Λ12 have nonzero values on the diagonal and

other columns are zeros, only X
(2)′

1 , X
(2)′

2 , ..., X
(2)′

D12
present interference from T2 at R1. Similarly

only X
(2)′

1 , X
(2)′

2 , ..., X
(2)′

D21
present interference from T1 at R2. Bold channels in Fig 2 represent

interference links after diagonalization, and there are 2 parallel paths from T2 to R1 and 4 parallel
paths from T1 to R2.

N1-D11=1

N1=4D11=3

M1-D11=2

M1=5

D12-(N1-D11)=1

M2+N1-D11-D12=3

M2=4

D21-(M1-D11)=2

M1+N2-D11-D21=2

N2=4

min(M1+N2-D11-D21, M2+N1-D11-D12, D22)=2

D12 = 2

D21 = 4

D22 = 3

T1

T2

R1

R2

Figure 2: Achievability for 2-user Rank deficient channel

Step 2: At transmitter T1, inputs X
(1)′

1 , X
(1)′

2 , ..., X
(1)′

M1−D11
are set to zero, i.e., we do not transmit
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on these inputs. This leaves D11 available inputs, X
(1)′

M1−D11+1, ...., X
(1)′

M1
at T1. In Fig 2, 2 transmit

antennas have inputs set to zero (white circles) and remaining 3 dark circles indicate the available
inputs at T1.

Step 3: At receiver R1, D11=3 is the dimension of desired signal received from T1. Hence we

consider only outputs Y
(1)′

1 , Y
(1)′

2 , ..., Y
(1)′

D11
and discard remaining outputs Y

(1)′

D11+1, ...., Y
(1)′

N1
marked

in white circles. Receiver R1 sees D12 dimensional interference from T2, and since N1−D11 outputs
are already discarded at receiver, transmitter T2 need to avoid transmitting in (D12− (N1−D11))+

inputs. In Fig 2, one output is discarded at receiver R1, hence transmitter T2 does not transmit on
the remaining 1 dimension that could contribute to interference. After discarding some inputs, T2

transmits its message using M2 − (D11 +D12 −N1)+ inputs.
Step 4: Discarding (D12 − (N1 −D11))+ inputs at T2 ensures that at receiver R1, interference

is eliminated and it can decode the message from transmitter T1 to achieve D11 DoF.
Step 5: Receiver R2 receives interference from transmitter T1 over channel of rankD21. In step 2,

M1−D11 inputs have been set to zero, hence remaining (D21−(M1−D11))+ inputs cause interference
at R2. In order to eliminate interference from T1, receiver R2 discards (D21−(M1−D11))+ outputs.
Therefore, R2 receives signal from T2 only on its N2 − (D11 + D21 −M1)+ remaining outputs. In
Fig. 2, transmitter T1 sets 2 of its inputs to zero, and receiver R2 discards remaining 2 outputs.
R2 decodes its signal using remaining 2 outputs.

Step 6: From step 3, we haveM2−(D11+D12−N1)+ inputs available at T2 so that no interference
is caused at R1. From step 5, we have N2 − (D11 + D21 −M1)+ outputs available at R2 that are
interference-free. Channel between T2 and R2 is of rank D22. Hence communication between T2

and R2 takes place with DoF of min(M2 − (D11 +D12 −N1)+, N2 − (D11 +D21 −M1)+, D22).
Combining Steps 4 and 6, we have established achievability of D11 + min(M2 − (D11 + D12 −

N1)+, N2−(D11 +D21−M1)+, D22) total DoF for 2-user channel. This expression can be evaluated
to be equal to min{D11 +D22,M1 +N2 −D21,M2 +N1 −D12}. Setting inputs or outputs to zero
is equivalent to perfoming zero-forcing at transmitter or receiver.

2.2 Converse: Outer Bound on DoF

For the (M1, N1;D11, D21), (M2, N2;D22, D12) 2-user rank-deficient MIMO interference channel,
the following is the outer bound on total degrees of freedom.

Lemma 2
ηs(K2) ≤ min{D11 +D22,M1 +N2 −D21,M2 +N1 −D12}

Proof: Trivial outer bound on total DoF of D11 +D22 is known for this channel. Following converse
proof is similar to that of full rank channels (refer Theorem 1 in [2]), and so, we only present a
proof sketch for rank-deficient channels.

For sum capacity of this channel to be bounded above by 2 constituent MAC channels, each
receiver must be able to decode messages from both transmitters. For this, receiver must have ac-
cess to the full interference signal space, i.e., it does not get zero-forced at the transmitters. Noise
can then be reduced at a receiver, say R1, if needed, so that it sees a better channel than receiver
R2, and message intended for receiver R2 becomes decodable at receiver R1.

In the 2-user rank-deficient MIMO interference channel, receiver R1 can access only a D12

dimensional signal space of transmitter T2 in its M2 dimensional space. This implies, T2 can zero-
force part of its signal to R1 and R1 cannot decode message from T2 by reducing noise. Hence only
through additional antennas at R1 can it access full signal space of T2. Additional receiver antennas

4



cannot hurt, so the converse argument is not violated. To this end, we add M2 −D12 antennas at
R1. Since channel coefficients corresponding to new antennas are drawn i.i.d. from a continuous
distribution, interference channel between T2 and R1, now a matrix of size (N1 +M2−D12)×M2,
will be full rank. Noise at R1 can be reduced to decode message from T2. Similarly, additional
antennas are added at receiver R2, so that it can access full signal space of transmitter T1. Inter-
ference channel between T1 and R2, a matrix of size (N2 +M1 −D21)×M1, is full rank. Noise at
R2 can be reduced to decode message from T1.

Now, we argue that the sum capacity is bounded above by corresponding MAC channels
(M1,M2, N1 + M2 − D12) and (M1,M2, N2 + M1 − D21) with modified additive noise. Since
(N2 + M1 − D21) ≥ M1 and (N1 + M2 − D12) ≥ M2, it can be seen that Theorem 1 in [2] holds
true for above argument with N1 modified as N1 +M2 −D12 and N2 modified as N2 +M1 −D21.
R1 can decode its message and subtract from its received signal vector, and we assume a genie
provides X1 to R2, so that R2 can subtract out interference from T1. While initial output vectors
Y1 and Y2 are of size (N1 + M2 − D12) × 1 and (N2 + M1 − D21) × 1 respectively, after noise
reduction and SVD operations, output vectors Y1new and Y2new are both of size M2×1. With these
changes, R1 and R2 would be able to decode both messages. Hence, total DoF is upper-bounded
as ηs(K2) ≤ min(D11 +D22, N2 +M1 −D21) and ηs(K2) ≤ min(D11 +D22, N1 +M2 −D12). This
is because DoF expressions of 2 rank-deficient MAC channels would have sum of channel ranks
instead of that of number of transmit antennas. Combining these 2 bounds, we get the converse
result of Lemma 2.

Theorem 1 For (M1, N1;D11, D21), (M2, N2;D22, D12) 2-user rank deficient interference channel,
total DoF is

ηs(K2) = min{D11 +D22,M1 +N2 −D21,M2 +N1 −D12}

Proof of Theorem 1 follows from Lemma 1 and 2.

Reciprocity holds true for rank deficient channels similar to full rank channels, i.e., DoF is
unaffected if M1 and M2 are switched with N1 and N2 respectively.

For the symmetric special case, i.e., the (M,N,D) MIMO interference channel where each
transmitter has M antennas, each receiver has N antennas and all channel matrices are of rank D,
optimal DoF can be calculated as ηs(K2) = min(M +N −D, 2D). This is same as the achievable
DoF value established by Chae et al. [3], now proved to be optimal.

3 Three User Interference Channel

Consider the 3-user rank-deficient MIMO interference channel, as in Fig 3, wherein all direct channel
matrices Hkk are of rank D0, cross channel matrices Hk(k+1) are of rank D1 and cross channel
matrices Hk(k−1) are of rank D2. In this section, we use nullspace to refer to the right nullspace
unless otherwise explicitly mentioned.

3.1 Achievability: Inner Bound on DoF

Lemma 3 For the 3-user rank-deficient MIMO interference channel, following degrees of freedom
are achievable per user.

η(K3) ≥ min{D0,M − min(M,D1+D2)
2 } (2)
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Figure 3: Three user rank-deficient MIMO interference channel

Proof: Achievability proof for 3-user rank deficient interference channel is first presented for cases
where direct channels are full rank. Later, achievability with rank deficient direct channels is dis-
cussed. We categorize beamforming vectors used at each transmitter k = 1, 2, 3, to 4 types:

VZa
k - Zero-forcing vectors in nullspace of H(k−1)k, maximum number of vectors chosen can be

M −D1. Vectors used at transmitter k will not cause interference at receiver k − 1.
VZb

k - Zero-forcing vectors in nullspace of H(k+1)k, maximum number of vectors chosen can be
M −D2. Vectors used at transmitter k will not cause interference at receiver k + 1.

VZc
k - Zero-forcing vectors in common nullspace of H(k−1)k and H(k+1)k (overlapping dimen-

sions in 2 nullspaces). Maximum number of vectors chosen can be M − D1 − D2 since M − D1

and M −D2 dimensional generic nullspaces overlap in a M −D1 −D2 dimensional space at each
transmitter. Vectors chosen in these overlapping dimensions do not cause interference at either of
the 2 unintended receivers.

VA
k - Alignment vectors that align signal at a receiver in the span of interference from other

unintended transmitter. Maximum number of vectors chosen can be D1 + D2 −M since D1 and
D2 dimensional generic interference subspaces overlap in D1 +D2 −M dimensional space at each
receiver.

Different cardinalities are chosen for these 4 types of beamforming vectors to form the trans-
mit beamforming matrix. The beamforming matrix at each transmitter is then of the form
Vk = [V Za

k V Zb
k V Zc

k V A
k ]. We now discuss achievability by analyzing the beamforming vector

cardinalities listed in Table I and by using linear dimension counting arguments.

Table I: Achievable DoF in 3-user channel for different D1, D2 with D0 = M

Case D1 +D2 |VZa
k |+ |VZb

k | |VZc
k | |VA

k | dim(Int) dim(Des) Total

1 0 < D1 +D2 ≤M D1+D2
2

M−(D1+
D2)

0 D1+D2
2

M−D1+D2
2

M

2 M < D1 +D2 ≤ 3M
2

M
2

0 0 M
2

M
2

M

3 3M
2

< D1+D2 ≤ 2M 2M−D1−D2 0 D1+D2− 3M
2

M
2

M
2

M

Using Table I, we first analyze the setting in which direct channels are full rank and cross chan-
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nels are rank deficient. First 2 cases correspond to zero-forcing based achievability schemes, and
last case involves interference alignment. For convenience, only sum cardinality of the chosen zero-
forcing vectors V Za

k and V Zb
k is specified, i.e., |V Za

k |+ |V Zb
k |. This is because each of these vectors

chosen at a transmitter helps in cancelling interference at one receiver but causes interference at
another receiver. Since we have 2 unintended transmitters causing interference, these zero-forcing
vectors can be treated in same manner. dim(Desired) and dim(Interference) are the number of
desired and interference signal dimensions seen at each receiver respectively. Then we have,

dim(Desired) = |V Za
k |+ |V Zb

k |+ |V Zc
k |+ |V A

k |
dim(Interference) = |V Za

k |+ |V Zb
k |+ |V A

k |

While the first relation is trivial, the second one can be explained as follows: V Zc
k at transmitter

k do not cause interference at both unintended receivers. Therefore dim(Interference) does not
contain that term. Further, both zero-forcing (using non-overlapping nullspace) and interference
alignment are similar in the sense that, vector chosen for zero-forcing one receiver causes interference
at other receiver, and vector chosen for aligning interference at one receiver causes interference at
another. Hence at each receiver, dim(Interference) is the sum of the number of zero-forcing vectors
(using non-overlapping nullspace) and the number of Interference alignment vectors.

D                          DM-D -D M-D                         M-DD + D  -M

M > D1+D2 M <= D1+D2

Overlapping Nullspaces 
at transmitter - Only zero-forcing possible.

Overlapping Interference 
at receiver - Alignment possible.

M-D D

1 21 2

2 2

M-D
1 D

1

1 21 2

Figure 4: M -dimensional signal space in 3-user channel

For the first case of Table I, |V A
k | = 0 since interference alignment is not possible (D1+D2 ≤M).

|V Zc
k | is chosen to be the maximum possible overlapping nullspace dimensions. Remaining vectors

are chosen from the non-overlapping nullspace and chosen number of vectors |V Za
k | + |V Zb

k | <
D1 +D2, maximum number of non-overlapping nullspace dimensions. At each receiver, interference
occupies |V Za

k |+ |V Zb
k | dimensions.

For the second and third cases, |V Zc
k | = 0 since there are no overlapping nullspace dimensions

at the transmitters (D1 +D2 > M). For case 2, though alignment is possible, beamforming matrix
can be formed with the zero-forcing vectors only, i.e., |V Za

k | + |V Zb
k | can be chosen as M

2 . This is
because M

2 ≤ 2M −D1 −D2, dimensions in the nullspaces of H(k−1)k and H(k+1)k.
Case 3 involves both zero forcing and interference alignment. At transmitter k ∈ {1, 2, 3},

M − D1 symbols are sent along the M − D1 dimensional null space of the channel to receiver
k − 1 and M − D2 symbols are sent along the M − D2 dimensional null space of the channel to
receiver k+ 1. This is performed by choosing columns of a full rank linear transformation Tk to be
beamforming vectors V Za

k of size M −D1 and V Zb
k of size M −D2.

H(k−1)kV
Za
k = 0, H(k+1)kV

Zb
k = 0 k ∈ {1, 2, 3}
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Tk =

 0
V Za
k ID1+D2−M V Zb

k

0

 k ∈ {1, 2, 3}

The remaining D1 + D2 −M dimensional space at the transmitter will be used to send the
remaining M/2− (M −D1)− (M −D2) = D1 +D2−3M/2 symbols that participate in interference
alignment. To this end, random entries could be chosen for M × (D1 +D2 −M) submatrix of Tk.
We choose square identity matrix of dimension D1 +D2−M with M −D1 rows of zeros above and
M −D2 rows of zeros below.

Receiver k sees M−D1 dimensional interference from transmitter k−1 and M−D2 dimensional
interference from transmitter k+1. These (M−D1)+(M−D2) interference symbols are zero-forced
by projecting the M dimensional received space into the M − (M −D1)− (M −D2) dimensional
space that is orthogonal to the interference symbols. This is performed using a full rank linear
transformation Rk of size (D1 +D2 −M)×M at receiver k.

Rk[Hk(k−1)V
Za
k−1 Hk(k+1)V

Zb
k+1] = 0, k ∈ {1, 2, 3}

M-D1

M-D2

D1 +D2-M

M-D1

M-D2

D1 +D2-M

M-D1

M-D2

D1 +D2-M

M-D1

M-D2

D1 +D2-M

M-D1

M-D2

D1 +D2-M

M-D1

M-D2

D1 +D2-M

D0

D0

D0

D2

D1

D2

D1

D2

D1

D1 +D2-M D1 +D2-M

D1 +D2-M D1 +D2-M

D1 +D2-M D1 +D2-M

Zero
forcing

Channel H'ji - RjHjiTiChannel - Hji

Figure 5: Alignment in 3-user interference channel

With this, residual interference at receiver k due to zero-forcing beamforming vectors chosen
at all transmitters would be zero-forced at the receiver. For the remaining symbols, i.e., for the
remaining interference alignment problem, the zero forcing operations at the transmitters and
receivers, described thus far leave us with a 3 user MIMO interference channel with D1 +D2 −M
input dimensions at each transmitter and D1 + D2 −M dimensions at each receiver, with below
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channel matrices. This is illustrated in Fig 5.

H̄kj = RkHkjTj

We have constructed H̄ ′ji by considering D1+D2−M columns of matrix H̄ji after excluding first
M−D1 and last M−D2 columns. Since D1 +D2−M is not larger than D1, D2, these channels are
full rank, generic channels over which the eigenvectors-based interference alignment solution of [4]
can be directly applied to send the remaining D1 +D2 − 3M/2 symbols (Note that 2 channel uses
are needed for the aligned symbols if M is an odd number, each corresponding to a new set of zero-
forcing symbols). Thus, the effective receiver sees a D1 +D2−M dimensional generic space within
which D1+D2−3M/2 aligned interference dimensions and (M−D1)+(M−D2)+(D1+D2−3M/2)
desired dimensions are resolved.

The beamforming matrix constructed V̄k would have (M −D1) + (M −D2) columns from the
identity matrix, shown on left and right ends in example below. Remaining columns of V̄k would be
eigen-vector based solution of dimension D1 +D2−M and rows of zeros above and below. Suppose
M = 6 and D1 = D2 = 5, V̄k constructed with 2 zero-forcing vectors and 1 alignment vector would
be of following form

V̄k =



1 0 0
0 vak1 0
0 vak2 0
0 vak3 0
0 vak4 0
0 0 1


wherein V̄ A

k = [vak1 v
a
k2 v

a
k3 v

a
k4]T is the interference alignment vector constructed as in [4], which is

then extended with M −D1 rows of zeros above and M −D2 rows of zeros below to form V A
k . The

resultant beamforming matrix Vk used at transmitter k is then

Vk = TkV̄k = [V Za
k V A

k V Zb
k ]

Linear transformations at all transmitters and receivers Tk, Rk are full rank matrices based on
construction described. It can be noted that matrices V̄k and Vk are full rank since columns are
linearly independent due to orthogonal construction of V̄k. Note that desired channels are not used
in the design of precoding vectors, which maintains their generic character and thereby the linear
independence of desired signal vectors from the interference. We also note that a similar layered
precoding approach is presented in [5] as well.

When direct channels are rank deficient, no more than D0 vectors can be used for beamforming.
For all values of D0 such that dM ≤ D0 < M , same DoF can be obtained as in Table I by choosing
specified number of beamforming vectors. When D0 < dM , we send only D0 beamforming vectors
corresponding to all 3 cases, choosing first the zero-forcing vectors and then the alignment vectors
as needed. In all cases, dim(Interference)+dim(Desired)≤ M since both desired and interference
dimensions reduce with these changes.

Combining DoF results, achievability of min(D0,M − min(M,D1+D2)
2 ) DoF per user has been

proved.

3.2 Converse: Outer Bound on DoF

For the 3-user rank deficient interference channel, following is the outer bound on the degrees of
freedom per user.
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Lemma 4

η(K3) ≤ min{D0,M −
min(M,D1 +D2)

2
} (3)

Proof: Proofs are described separately for two cases: D1 +D2 > M and D1 +D2 ≤M
4a: Outer bound when D1 +D2 > M :

Change of Basis:
Step 1: For each receiver, a linear transformation Rk is designed such that the first M − D2

antennas of receiver k do not hear transmitter k−1 (left nullspace of Hk(k−1)) and the last M −D1

antennas of receiver k do not hear transmitter k + 1 (left nullspace of Hk(k+1)). This is possible
since rank(Hk(k+1))=D1 and rank(Hk(k−1))=D2.

Step 2: In M-dimensional space at transmitter k, there is a D1-dimensional subspace orthogonal
to M −D1 receiver antennas (k− 1)a and D2-dimensional subspace orthogonal to M −D2 receiver
antennas (k + 1)c. These two subspaces overlap in I = D1 + D2 −M dimensions within the M-
dimensional space seen by the transmitter, and these I columns are chosen for matrix Tk at the
transmitter. Other columns of Tk are chosen such that the first M −D2 antennas of transmitter
k are not heard by receiver k + 1 (right nullspace of Hk(k−1)) and the last M − D1 antennas of
transmitter k are not heard by receiver k − 1 (right nullspace of Hk(k+1))

Step 3: Remaining D1 + D2 − M rows for receiver Rk are chosen so that they are linearly
independent of other rows. Resulting network connectivity is shown in Fig 6.

|X1a| = M −D2 ◦
|X1b| = D1 +D2 −M > 0 ◦

|X1c| = M −D1 ◦

◦ S1a(X2a) |S1a| = M −D2

◦ S1b(X2a, X2b, X3b, X3c) |S1b| = D1 +D2 −M > 0
◦ S1c(X3c) |S1c| = M −D1

|X2a| = M −D2 ◦
|X2b| = D1 +D2 −M > 0 ◦

|X2c| = M −D1 ◦

◦ S2a(X3a) |S2a| = M −D2

◦ S2b(X3a, X3b, X1b, X1c) |S2b| = D1 +D2 −M > 0
◦ S2c(X1c) |S2c| = M −D1

|X3a| = M −D2 ◦
|X3b| = D1 +D2 −M > 0 ◦

|X3c| = M −D1 ◦

◦ S3a(X1a) |S3a| = M −D2

◦ S3b(X1a, X1b, X2b, X2c) |S3b| = D1 +D2 −M > 0
◦ S3c(X2c) |S3c| = M −D1

Figure 6: Basis change for 3-user channel: D1 +D2 > M

Outer bound proof:
Desired signal is assumed to be decodable and can be removed. Genie information to be given

to receiver 1 should include 2M − (D1 +D2) dimensions - Xn
2c, X

n
3a which are not heard by receiver

1. Receiver 1 has M equations with D1 + D2 unknowns. Hence only if genie information includes
another D1 +D2−M dimensions, then at receiver 1, there will be M equations resolvable using M
unknowns.

Hence a genie provides G1 = {Xn
2b, X

n
2c, X

n
3a} to receiver 1. Number of dimensions available to

10



receiver 1 is M+|G1| = 2M . With 2M dimensions, receiver 1 will be able to resolve both interfering
signals and can decode all three messages.

nRΣ ≤ Mn log ρ+ h(Xn
2b, X

n
2c, X

n
3a|Ȳ n

1 ) + n o(log ρ) + o(n) (4)

≤ Mn log ρ+ h(Xn
3a|Ȳ n

1 ) + h(Xn
2b|Ȳ n

1 ) + h(Xn
2c|Ȳ n

1 , X
n
2b, X

n
3a) + n o(log ρ) + o(n) (5)

≤ Mn log ρ+ h(Xn
3a) + h(Xn

2b|Xn
2a) + h(Xn

2c|Xn
2a, X

n
2b) + n o(log ρ) + o(n) (6)

= Mn log ρ+ h(Xn
3a) + nR2 − h(Xn

2a) + n o(log ρ) + o(n) (7)

where (4) follows from Fano’s inequality and Lemma 3 in [1]. (5) follows from applying the
chain rule. (6) follows since dropping condition terms cannot decrease differential entropy. Thus,
we only keep Sn

1a as the condition term which is Xn
2a. (7) is obtained because from the observations

of (Xn
2a, X

n
2b, X

n
2c) we can decode W2 subject to the noise distortion. By advancing user indices, we

have:

3nR ≤Mn log ρ+ nR+ n o(log ρ) + o(n) (8)

which implies that d ≤ M
2 . Since D0 is a known outer bound, we get η(K3) ≤ min(D0,

M
2 ).

4b: Outer bound when D1 +D2 ≤M :

Change of Basis:

Step 1: For each receiver, a linear transformation Rk is designed such that the first D1 antennas
of Receiver k do not hear transmitter k − 1 (left nullspace of Hk(k−1)) and the last D2 antennas
of Receiver k do not hear transmitter k + 1 (left nullspace of Hk(k+1)). This is possible since
rank(Hk(k+1))=D1 and rank(Hk(k−1))=D2.

Step 2: In M-dimensional space at transmitter k, there is a M − D1 dimensional subspace
orthogonal to D1 receiver antennas (k− 1)a and another M −D2 dimensional subspace orthogonal
to D2 receiver antennas (k + 1)c. These two subspaces have I = M − (D1 + D2) dimensional
intersection at the transmitter, wherein I columns are chosen for matrix Tk. Then, we choose other
columns of Tk such that D1 antennas of transmitter k are not heard by receiver k+1 (right nullspace
of Hk(k−1)) and D2 antennas of transmitter k are not heard by receiver k − 1 (right nullspace of
Hk(k+1))

Step 3: We consider only D1 +D2 antennas at each receiver, remaining antennas are discarded
since no signal is received. Resulting network connectivity is shown in Fig 7.

Outer bound proof:
Desired signal is assumed to be decodable and can be removed. Genie information to be given

to receiver 1 should include 2M − (D1 + D2) dimensions - Xn
2b, X

n
2c, X

n
3a, X

n
3b which are not heard

by receiver 1. Receiver 1 has M equations with D1 +D2 unknowns. Since D1 +D2 < M , choosing
signal from only D1 +D2 antennas would result in D1 +D2 equations becoming resolvable.

Hence a genie provides G1 = {Xn
2b, X

n
2c, X

n
3a, X

n
3b} to receiver 1. Since receiver 1 considers only

D1 + D2 antennas, number of dimensions available to receiver 1 is D1 + D2 + |G1| = 2M . With
2M dimensions, receiver 1 will be able to resolve both interfering signals and can decode all three

11



|X1a| = D1 ◦
|X1b| = M − (D1 +D2) ≥ 0 ◦

|X1c| = D2 ◦

◦ S1a(X2a) |S1a| = D1

◦ S1b() |S1b| = M − (D1 +D2) ≥ 0
◦ S1c(X3c) |S1c| = D2

|X2a| = D1 ◦
|X2b| = M − (D1 +D2) ≥ 0 ◦

|X2c| = D2 ◦

◦ S2a(X3a) |S2a| = D1

◦ S2b() |S2b| = M − (D1 +D2) ≥ 0
◦ S2c(X1c) |S2c| = D2

|X3a| = D1 ◦
|X3b| = M − (D1 +D2) ≥ 0 ◦

|X3c| = D2 ◦

◦ S3a(X1a) |S3a| = D1

◦ S3b() |S3b| = M − (D1 +D2) ≥ 0
◦ S3c(X2c) |S3c| = D2

Figure 7: Basis change for 3-user channel: D1 +D2 ≤M

messages.

nRΣ ≤ Mn log ρ+ h(Xn
2b, X

n
2c, X

n
3a, X

n
3b|Ȳ n

1 ) + no(log ρ) + o(n) (9)

≤ Mn log ρ+ h(Xn
3a|Ȳ n

1 ) + h(Xn
3b|Ȳ n

1 ) + h(Xn
2b, X

n
2c|Ȳ n

1 , X
n
3a, X

n
3b) + no(log ρ) + o(n)(10)

≤ Mn log ρ+ h(Xn
3a) + h(Xn

3b) + h(Xn
2b, X

n
2c|Xn

2a) + no(log ρ) + o(n) (11)

= Mn log ρ+ h(Xn
3a) + h(Xn

3b) + nR2 − h(Xn
2a) + no(log ρ) + o(n) (12)

≤ Mn log ρ+ h(Xn
3a) + (M − (D1 +D2))n log ρ+ nR2 − h(Xn

2a) + no(log ρ) + o(n)(13)

where (9) follows from Fano’s inequality and Lemma 3 in [1]. (10) follows from applying the chain
rule. (11) follows since dropping condition terms cannot decrease differential entropy. Thus, we
only keep Sn

1a as the condition term which is Xn
2a. (12) is obtained because from the observations

of (Xn
2a, X

n
2b, X

n
2c) we can decode W2 subject to the noise distortion, (13) follows since the entropy

of Xn
3b is constrained by M − (D1 +D2) antennas. By advancing user indices:

3nR ≤ (2M − (D1 +D2))n log ρ+ nR+ no(log ρ) + o(n)

which implies that d ≤ 2M−(D1+D2)
2 . Since D0 is known outer bound, we get η(K3) ≤ min(D0,M−

D1+D2
2 ). Result of Lemma 4 follows from converse results of cases 4a and 4b.

Theorem 2 For the 3-user rank deficient interference channel considered, optimal DoF value per
user is

η(K3) = min{D0,M −
min(M,D1 +D2)

2
} (14)

Proof follows from Lemma 3 and 4.
In optimal DoF expressions of both 2-user and 3-user channels, direct channel rank and cross

channel rank appear in separate terms in above DoF expression. Intuitively, this is because rank
deficiency of direct channels only limits the ability to fill the interference-free space while that of
cross channels impact the extent to which interference cancellation or alignment can be performed.
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Figure 8: DoF Comparison

Also, from Theorem 2:
When all direct channels are full rank M, and all cross channels are of rank D, optimal DoF is

max(M2 ,M −D)
When all direct channels are of rank D, and all cross channels are of rank D (or M), optimal

DoF is min(D, M2 ) which is better (when D > M
2 , as shown in Fig 8) than (M,M,D) result of Chae

et al. in [3], i.e., min(D,max(2M−D
3 , DL

L+1)) where L = bMD c.

4 Conclusions

Optimal degrees of freedom results are presented for 2- and 3-user rank deficient interference chan-
nels with different channel ranks. For three-user interference channel, achievability was shown using
Interference Alignment based on linear beamforming and zero-forcing. Information theoretic outer
bound proof was described proving that achievable DoF is also tight. Impact of direct and cross
channel rank deficiency were investigated. These results would be helpful in finding optimal DoF
results for K-user rank deficient interference channels, which are being studied.
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