UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Planning and Implementation Errors In Algorithm Design

Permalink
https://escholarship.org/uc/item/3g96c5ph
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 10(0)

Authors

Gray, Wayne D.
Corbett, Albert T.
Lehn, Kurt Van

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3g96c5ph
https://escholarship.org
http://www.cdlib.org/

PLANNING AND IMPLEMENTATION ERRORS IN ALGORITHM DESIGN

Wayne D. Gray, Albert T. Corbett, & Kurt Van Lehn
U. S. Army Research Institute Carnegie-Mellon University
Introduction

This study examines the algorithm design process for 59 LISP programmers who tackle a
classic artificial intelligence search problem for the first time. Programmers were asked to code a
single function called descendent, that was of average length and that performs a depth-first search
over an hierarchy. This was a fairly difficult task. In this paper, we outline a set of basic planning
steps for designing this algorithm and examine variations in the 59 solutions that reflect
divergences at different steps.

Various aspects of algorithm and software design have been studied before and this study owes
much to those efforts (for example, 1, 3, 8, 10, and 14). Especially relevant are those studies that
have emphasized "bugs"” (9, 12, 13).

The current study looks for evidence of plan or implementation failures (bugs) at each step
in the design process. Plan failures are indicated by the use of plans inappropriate to the current
problem (5) and are a type of negative transfer (7). Implementation failures result from the failure
to correctly translate a plan into the programming language (11).

The Study.

The Programmers.

Fifty-nine students were drawn from four LISP courses and one course on cognitive science.
All students used the same introductory LISP textbook (2) and completed at least those lessons in
the LISP Tutor (4) that covered the functions and basic control structures required in this study. At
the time of the study, no student had attended lectures or read the textbook chapter on search
techniques.

The Problem Specification

Programmers were asked to write a depth-first search! function that took two arguments and
determined whether the second argument was a descendent of the first. If so, the function returned
"t," otherwise "nil." The problem statement was accompanied by the hierarchy in Figure 1.
Given this example, (descendent 'Bill 'Frank) should return ¢, while (descendent 'Bill
'Joe) should return nil.

Two important constraints were imposed upon the task. First, programmers were not given
any information about how hierarchies were represented in LISP. Their only means for searching
hierarchies was an expansion function (called expand) that accepted one node and returned a list
of the node's immediate descendents. For example, from Figure 1 (expand 'Bill) would return
(Julia Mike). Second, programmers were to write an iterative function with no recursive
function calls. (More specifically, they were required to use a let/loop construction rather than
do, to further standardize the goal state).

Finally, the problem description recommended that a local variable be used to save the list of
nodes that was generated by the expansion function until they could be checked. The following
function definition satisfies these constraints:

1A depth-first search of a tree moves down whenever possible to get the next node,
and only moves back up and over when it is not possible to move down. A depth-first
search of the tree in Figure 1 might check the nodes in the following order: Harry,
Jane, Joe, Diane, Bill, Julia, Frank, Anne, Susan, Mike.

594



Gray, Corbett, & VanLehn

(defun descendent (ancestor target)
(let ((queue (list ancestor)))
(loop
(cond ((null queue) (return nil))
((equal (car queue) target) (return t)))
(setq queue (append (expand (car queue)) (cdr queue))))))

In this function, queue holds a list of nodes that have been accessed and need to be checked.
Each time through the loop queue is tested. If it is empty, the search has failed and the function
returns nil. If it is not empty, the first node in queue is compared to the target and if they match
the function returns ¢£. Otherwise, the first node is removed from queue while its immediate
descendents are added to the list. In the case of Figure 1, if queue held the list (Jane Bill) and
the first node Jane was tested and rejected, then on the next cycle gueue would hold (Joe Diane
Bill).

D

Figure 1
Example Hlerarchy given to programmers coding "descendent.”

Algorithm Design

At first glance, the solution consists of a simple two step cycle:2 1. Get the Next Node,
2. Test the Node. The second step is easy to implement, but the gef the next node step is
quite difficult. If programmers were given a function that takes a node and simply returns the
appropriate next node to test, then this problem becomes trivial. Instead, the function, expand,
accepts one node and returns a list of all the descendents of that node.

expand imposes a constraint on the solution that is not an intrinsic part of a depth-first search
over a tree. The function returns a list on each cycle rather than directly accessing individual nodes
in the tree. This expansion function constraint leads most directly to an algorithm that is essentally
recursive. If we label the algorithm CHECK-LIST, we can represent its recursive structure as
the sequence of operations shown in Figure 2.

2There are, in fact, additional issues the student must address before completing the
design. For example, each cycle must also contain a test to see if the network is
exhausted.

595



Gray, Corbett, & VanLehn

$| return t

yes
Is the first
node the
target?
no
Apply Apply
CHECK-LIST to CHECK-LIST to
descendents of tail of current
first node list
Figure 2

Simplified Recursive Solution

The corresponding LISP function might be coded as follows:

(defun descendent (given target)
(check-list (list given) target))

(defun check-list (current-list target)
(cond ((oull current-list) nil)
((equal (car current-list) target) t)
(t (or (check-list (expand (car current-list)) target)
(check-list (cdr current-list) target)))))

This solution conforms to a type of recursion, car-cdr recursion, with which the programmers
were familiar. The iterative constraint blocked this solution, of course, and sets up the most
demanding aspect of the planning process.

Students are required to discover an iterative solution which is isomorphic to this recursive
concept. That isomorphic iterative algorithm can be specified as shown in Figure 3. This
specification gives rise to the definition of descendent presented earlier.

While the results of the iterative solution are isomorphic to the recursive solution, there is an
important conceptual difference. The recursive solution does not require building a new list
structure, the iterative solution does. In Figure 2, the recursive function, CHECK-LIST, is
applied to both the existing list structure and the list structure returned by expand. In contrast, the
iterative solution requires building a new list on each iteration. As shown in Figure 3, on each
cycle, two different operations are performed upon the list and the results of these two operations
are combined into a new list. (For this reason the iterative solution will be referred to as the list-
building algorithm.)

This characterization of the iterative solution suggests three steps in the design process that may
cause difficulties and lead to bugs in the students' code: (1) the transition from thinking in terms of
individual nodes to thinking in terms of expansion lists, (2) the recognition that a depth-first search
requires a solution analogous to car-cdr recursion, and (3) the recognition that, unlike the
recursive solution, the iterative algorithm requires that a new list be built on each cycle.

596



Gray, Corbett, & VanLehn

Is the first

‘_. node the »| return t

target? A

v ]

Get descendents
of the first node

.

Delete first node
from current
list

.

Add descendents
@—| of first node to
beginning of
current list

Figure 3
Simplified Iterative Solution

Simulating the algorithm.

A subset of 23 programmers were asked to perform a paper and pencil simulation of the
function prior to coding it. They were asked to simulate the function call (descendent "Harry
'Frank), by writing down the initial value of the variable gueue and then, for each iterative cycle,
writing the node that would be checked, the immediate descendents of the node, and the new value
of queue. Thus, for one cycle, the to-be-checked node is Jane, its immediate descendents are
(Joe Diane) and the new value of queue is (Joe Diane Bill). Programmers were given
feedback to ensure that they simulated the function correctly. Programmers who were guided
directly through the iterative solution would not be expected to conform to the standard algorithm
design sequence proposed in the earlier section.

Procedure

Programmers were asked to talk-aloud while coding the function, that is, to report what they
were thinking as they worked (6). At the beginning of the session, each programmer was given
practice in talking aloud and then read an abridged version of the search chapter from their LISP
textbook that described hierarchies, depth-first search, and expansion functions. This abridged
version did not discuss how to implement a search function.

After reading the text, the programmer was given the problem description and asked to write
down the order in which the nodes should be checked, to ensure that s/he understood the concept
of a depth-first search. Then the programmer simulated the function if s/he were one of the 23
programmers in the simulation condition. Finally, the programmer coded the function on a
computer terminal while talking aloud. The programmers worked on the function until either (1)
they were satisfied with their solution or (2) gave up on it or (3) one hour elapsed. Programmers
were not able to test their function in the course of coding it.

597



Gray, Corbett, & VanLehn

Results and Discussion.

This was a relatively difficult task. Of the 59 programmers, only 3 wrote functions that would
work with no modifications. Thirty-five solutions contained only minor implementation3 and/or
planning errors, 17 contained major planning errors, but only 4 were completely uninterpretable.
Viewed to emphasize the positive, 55 of the 59 programmers wrote functions that contained an
interpretable control structure that in principle would have searched some or all of the tree. The
interesting question, however, is not how many programmers coded the function correctly, but
what the final code reveals about difficulties in planning and implementation.

Table 1
Comparison of Algorithm Use by Type of Training
simulation control totals
list-builders 19 18 37
other 1 15 16
totals 20 33 53

Fifty-three of the 59 solutions were rated as trying to solve the correct problem.# Of these 53,
38 apparently worked through the planning process successfully. (Of these, 37 programmers
generated solutions that are consistent with the list-building solution described above and one
designed a unique solution consistent with the problem statement.) The simulation manipulation
reveals whether the basic difficulty is in generating the plan or implementing it. Of the 20
programmers who simulated an example of the list-building algorithm, 19 (95%) generated code
that conformed to the algorithm. Only 18 of 33 (55%) programmers in the control condition
conformed to the list-building algorithm. The results are shown in Table 1. A chi-sq test showed
these differences to be significant (Chi-sq [1, n=53] = 7.85) (p < .05), indicating that the
simulation trained programmers used the list-building algorithm more often then would be expected
and suggesting that when a solution deviated from the algorithm it was largely because of difficulty
in generating the plan, rather than an implementation failure.

Planning Steps: Node Testing.

As described above, the node test is easy to plan and implement and all but one solution
contained a test that compared the nodes in the tree to the second argument. However, there is an
interesting difference among the 53 programmers who wrote interpretable code. Rather than
testing a single node on each cycle, (using equal), 14 of the programmers compared the target to a
whole list of nodes (using member).

3Implementation errors include both syntactic and semantic errors. Examples of
minor syntactic errors include misplace or missing parentheses, or inappropriate
use of quotes. Examples of minor semantic errors include substituting a similar, but
inappropriate LISP function for the correct one (such as using cons for append in
the update) or initializing the local variable to a node (a LISP atom) when it should
have been initialized to a list containing the node.

4We could make no sense of 4 solutions, so these were eliminated from further
consideration. Likewise, we have not included two unique, but non-depth-first
search algorithms. These exclusions leave 20 programmers with simulation training
and 33 without for a total of 53.

598



Gray, Corbett, & VanLehn

We hypothesize that the choice member versus equal represents a planning, not an
implementation, bug. Our programmers were very familiar with both member and equal. At the
implementation level it seems unlikely that one would be mistaken for the other. In contrast, the
use of member may represent the transfer of a very natural perceptual strategy. If we were to
physically retrieve a list of descendents (especially a short list), it would be nearly impossible not
to scan the entire retrieved list and determine if the target is on the list. We hypothesize that the use
of member is evidence that this naive plan has substituted for the node test plan required by the
problem specification.

Planning Steps: Getting New Nodes.

The nature of the expansion function imposes constraints on the algorithm for getting new
nodes. In particular, it imposes a list structure on the planning process and gives rise most
naturally to a recursive solution. The ban on recursive function calls constrains the programmer to
transform the recursive solution into an iterative solution that builds a list.

There is some evidence that a few programmers had difficulties with superimposing a list
structure on the tree diagram. Specifically, 6 programmers generated solutions in which a local
variable was processed in some contexts as if it stored a single node and in other contexts as if it
stored a list. The remaining 47 programmers did not appear to have this difficulty.

Thirty-seven programmers employed the list-building iterative solution in generating new
nodes. One programmer employed LISP property lists to generate a hierarchical structure that
directly paralleled the diagrammatic tree structure and used these properties to structure the search
process. This solution is fascinating since it diverges widely from the standard plan and hints at
the actual size of the algorithm space. It will not be considered further, precisely because it does
not cast light on the difficulties of the list-building plan. The final two categories represent
fundamentally flawed variations of the list-building plan.

The first variation, coded by seven of the programmers, is a depth-first/dead-end search of
the tree. In this algorithm, the first element in queue is searched and expanded in each cycle.
However, the remainder of queue is discarded and queuwue is set equal to the expansion, as in the
following LISP expression which would be substituted for the final line of the list-building
solution:

(setq queue (expand (car queue))).

This solution searches down one branch of the tree (if the target is not found along the way) and
then terminates. In the case of Figure 1, the nodes Harry, Jane, and Joe would be checked.

The second variation, coded by 7 different programmers, might be called a fwo-step
algorithm. In this algorithm, gueue is initialized to the expansion of the first argument. Then in
every cycle the first element in queue is expanded, that expansion is tested (with a member test),
and the element is removed from queue. The following code, which would be substituted for the
final two lines of the list-building solution, characterizes this algorithm:

(cond ((member target (expand (car queue))) (return t)))
(setq queue (cdr queune))

This solution will search the top two levels of the tree. At least some of the 7 programmers
recognized that the solution was inadequate and tried to extend it with baroque yet futile additions,
for example, by incorporating an inner loop to reach down another ply in the tree.

These categories are interesting in that the failure is closely linked to different aspects of the
plan described earlier. The depth-first/dead-end solution may represent a failure to fully
formulate the recursive plan. That is, this solution checks and expands the first node in the queue
in each cycle, much as each call to a recursively defined function would, but completely fails to
process the tail of the list, in effect omitting the cdr component of the car-cdr recursion.

The two-step approach, on the other hand, seems to be based on a fully specified recursive
solution that is not correctly translated into an iterative solution. In this solution, the processing of

599



Gray, Corbett, & VanLehn

the tail of the list is structurally correct, as is the expansion of the car. However, the requirement
to build a new list on each iteration is not recognized. This solution may directly reflect the
programming experience of the programmers. All students learned how to code equivalent rail
recursive and list iteration functions, and this component of the algorithm is coded correctly. On
the other hand, while students also encountered car-cdr recursive functions, this experiment was
their first experience in generating equivalent iterative functions.

Conclusion

This report is necessarily brief and by omitting discussion of various issues concerning both
systematic and non-systematic deviations may not fully convey the degree of variability obtained
across solutions in this experiment. Moreover, there remain response patterns that are difficult to
evaluate simply on the basis of the final code. For example, some programmers test whether a
node has descendents before adchng the descendents to the queue although, given the definition of
the function append, this step is unnecessary. Itis unclear from examining the solutions whether
this is a plan bug imported from naive notions of hierarchical search (see also 5), or an
implementation bug tacked on because of uncertainty about how append works. The long term
goal of this research is to develop a more detailed model of the algorithm design process, on the
basis of keystroke data and tapes of the coding sessions.

Nevertheless, granting the wide degree of coding variability obtained in this study, it is
possible to discern categories of errors that reflect not just implementation failures, but failures in
predictable steps in the algorithm design process

References

1. Adelson, B., & Soloway, E. (1987). A model of software design. In M. Chi, R. Glaser, and
M. Farr (Eds.), The nature of expertise. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Corbett, A. T., & Reiser, B. J. (1987). Essential LISP. Reading, MA:
Addison-Wesley Publishing Company, Inc.

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program in LISP.

Cognitive Science, 8, 87-129.

Anderson, J. R, & Reiser, B. J. (1985, April). The LISP tutor. Byte, pp.159-175.

Bonar, J., & Soloway, E. (1985). Pre-programming knowledge: A major source of
misconceptions in novice programmers. Human-Computer Interaction, 1.

Ericsson, K. A., & Simon, H. A. (1985). Protocol analysis: Verbal reports as data.
Cambridge, MA: MIT Press.

Gray, W. D., & Orasanu, J. (1987). Transfer of cognitive skills. In S. Cormier and J.
Hagman (Eds.), Transfer of learning. Orlando, FL: Academic Press.

Jeffries, R., Turner, A. A, Polson, P. G, & Atwood, M. E. (1981). The processes involved
in designing software. In J. R. Anderson (Ed.), Cognitive skills and their
acquisition. Hillsdale, NJ: Erlbaum.

9. Johnson, W. L., & Soloway, E. (1984). Intention-based diagnosis of programming errors.
Proceedings of the 1984 Conference of the AAAI, 162-168.

10. Kant, E. (1985). Understanding and automating algorithm design. IEEE Transactions
on Software Engineering, 11, 1361-1374.

11. Moran, T. P. (1983). Getting into a system: External-internal task mapping analysis. In
Proceedings of the ACM SIGCHI Conference on Human Factors in Computer
Systems. Boston, MA.

12. Soloway, E. (1985). From problems to programs via plans: The content and structure of
knowledge for introductory LISP programming. Journal of Educational Computing
Research, 1, 157-172.

13. Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping constructs:
An empirical study. Communications of the ACM, 26, 853-860.

14. Steier, D. M., & Kant, E. (1985). The roles of execution and analysis in algorithm design.
IEEE Transactions on Software Engineering, 11, 1375-1386.

N LA W N

600



	cogsci_1988_594-600



