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Abstract
Motivation: Low-copy repeats (LCRs) or segmental duplications are long segments of duplicated DNA that cover > 5% of the human genome.
Existing tools for variant calling using short reads exhibit low accuracy in LCRs due to ambiguity in read mapping and extensive copy number var-
iation. Variants in more than 150 genes overlapping LCRs are associated with risk for human diseases.

Methods: We describe a short-read variant calling method, ParascopyVC, that performs variant calling jointly across all repeat copies and utilizes
reads independent of mapping quality in LCRs. To identify candidate variants, ParascopyVC aggregates reads mapped to different repeat copies
and performs polyploid variant calling. Subsequently, paralogous sequence variants that can differentiate repeat copies are identified using popu-
lation data and used for estimating the genotype of variants for each repeat copy.

Results: On simulated whole-genome sequence data, ParascopyVC achieved higher precision (0.997) and recall (0.807) than three state-of-the-
art variant callers (best precision¼0.956 for DeepVariant and best recall¼0.738 for GATK) in 167 LCR regions. Benchmarking of ParascopyVC
using the genome-in-a-bottle high-confidence variant calls for HG002 genome showed that it achieved a very high precision of 0.991 and a high
recall of 0.909 across LCR regions, significantly better than FreeBayes (precision¼0.954 and recall¼0.822), GATK (precision¼0.888 and recall-
¼0.873) and DeepVariant (precision¼0.983 and recall¼0.861). ParascopyVC demonstrated a consistently higher accuracy (mean F1 ¼ 0.947)
than other callers (best F1 ¼ 0.908) across seven human genomes.

Availability and implementation: ParascopyVC is implemented in Python and is freely available at https://github.com/tprodanov/ParascopyVC.

1 Introduction

Advances in DNA sequencing technologies have transformed
the ability to sequence genomes, particularly human genomes.
Accurate variant calling is of crucial importance for virtually all
applications of high-throughput DNA sequencing including
disease genetics and cancer. Small variants such as single nucle-
otide variants (SNVs) and short indels represent the most abun-
dant type of variants in human genomes and a number of
methods (e.g. Samtools, FreeBayes, GATK) have been devel-
oped to call such variants from DNA sequence data (DePristo
et al. 2011; Li 2011; Garrison and Marth 2012; Kim et al.
2018; Poplin et al. 2018a). Most of these methods leverage sta-
tistical techniques to discriminate true genetic variants from
artifacts due to errors in reads and exhibit high accuracy in
unique regions of the human genome that are callable using
short reads. The Genome-in-a-Bottle Consortium (GIAB) has
developed benchmark sets for small variants across seven
genomes that are useful for benchmarking and optimizing vari-
ant calling methods (Zook et al. 2014, 2016, 2019).

However, a significant portion of the human genome is re-
petitive (Treangen and Salzberg, 2011) and remains challeng-
ing for variant calling using short read sequencing. In
particular, segmental duplications—also known as low-copy
repeats—that have been estimated to cover �5% of the hu-
man genome (Bailey et al. 2002), are problematic for variant

calling due to ambiguity in read mapping (Koboldt 2020).
Recent analysis of segmental duplications in a complete hu-
man genome (T2T-CHM13) has revealed that such repeats
cover an estimated 7% of the genome (Vollger et al. 2022).
Short reads derived from such regions align to multiple loca-
tions and are assigned low mapping quality scores by map-
ping tools (Li and Durbin 2009; Li 2018). Such reads are
typically discarded during variant calling to avoid false-
positive variant calls (DePristo et al. 2011; Garrison and
Marth 2012) resulting in low sensitivity. Until recently, the
GIAB benchmark calls excluded most of these low-copy re-
peat (LCR) regions due to the difficulty in accurate variant
calling. As a result, the SNV concordance of two state-of-the-
art variant callers was observed to be 99.7% within GIAB
high-confidence regions compared to 76.5% outside (Krusche
et al. 2019).

LCRs overlap hundreds of protein-coding genes (Bailey
et al. 2002) in the human genome. A recent analysis of se-
quence homology for coding regions in the human genome
identified 7691 exons in 1168 genes, which have partial or
complete sequence homology (> 98%) to one or more loci
(Mandelker et al. 2016). Copy number and sequence variants
in 193 of these 1168 genes are associated with rare
Mendelian disorders, inherited cancers and complex diseases.
Therefore, improving the accuracy of variant calling in LCRs
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has great clinical importance. One well-studied example of a
disease-associated gene that overlaps a LCR is the SMN1
gene—mutations in this gene cause spinal muscular atrophy,
a severe childhood disease. SMN1 is entirely duplicated and
has close to 99.9% sequence similarity with its homologous
gene SMN2 (Lefebvre et al. 1995). Furthermore, SMN1/2 is
prone to frequent copy number changes which further compli-
cates the task of small variant calling (Chen et al. 2020;
Lopez-Lopez et al. 2020).

Sequence differences between the different repeat copies of
an LCR are commonly referred to as paralogous sequence var-
iants (PSVs). PSVs represent the only source of information to
differentiate between repeat copies of a LCR and read mappers
implicitly use PSVs to map reads in LCRs. However, not all
PSVs represent fixed differences between repeat copies and
many correspond to common variants (Sudmant et al. 2010;
Mueller et al. 2013). For example, the reference human genome
sequence for the SMN1 gene differs from SMN2 gene at 24
positions across 28 kb of DNA sequence (sequence similarity
> 0:999), but only 8 of these 24 positions correspond to fixed
differences in human populations (Chen et al. 2020). A similar
phenomenon has been observed for another disease-associated
gene, PMS2, that frequently exchanges DNA sequence with its
nearby pseudogene, PMS2CL, making it difficult to distinguish
between the two repeat copies (Clendenning et al. 2006; Gould
et al. 2018). Using polymorphic PSVs for mapping reads in
LCRs can result in incorrect read mapping and reduce the accu-
racy of variant calling. We have recently developed a probabil-
istic method for estimating the paralog-specific copy number of
genes at LCRs that also estimates the reference allele frequen-
cies at PSVs (Prodanov and Bansal 2022) using population
data. Our analysis of 2500 genomes from the 1000 Genomes
Project (1000 Genomes Project Consortium et al. 2015)
showed that the frequency of PSVs that represent fixed or al-
most fixed differences between repeat copies varies widely
across LCR loci and also across populations at the same locus
(Prodanov and Bansal 2022).

All state-of-the-art variant calling methods are designed to
analyze genomic regions individually and discard or down-
weight reads with low mapping quality. In LCRs, a significant
fraction of reads can be mapped to the incorrect location or
have zero mapping quality. Therefore, variant calling on each
repeat copy individually cannot achieve high precision and re-
call. For high accuracy, joint analysis of reads mapped to all
homologous repeat copies is necessary. This strategy has
proven to be successful in estimating copy number with high
accuracy at LCR loci (Sudmant et al. 2010; Prodanov and
Bansal 2022). Several approaches that re-map reads to a sin-
gle copy of the repeat (and mask out other copies before read
mapping) and perform variant calling with higher ploidy
(Cummings et al. 2017; Gould et al. 2018; Boisson et al.
2019; Ebbert et al. 2019) have been developed to enable the
detection of disease mutations in duplicated genes. Although
this approach increases sensitivity for variant detection, it is
challenging to estimate the genotypes for each variant across
the different repeat copies.

In this article, we describe a multilocus variant calling
method, ParascopyVC, that addresses three challenges associ-
ated with variant calling in LCRs: (i) ambiguity in read map-
ping, (ii) presence of PSVs that are polymorphic, and (iii)
presence of copy number changes. ParascopyVC combines
two methodological innovations: (i) aggregating reads
mapped to different repeat copies to enable highly sensitive

detection of variant sites and (ii) identification of informative
PSVs that can differentiate repeat copies for paralog-specific
genotyping at variant sites. For variant discovery, it leverages
an existing variant calling tool, FreeBayes, to jointly analyze
all reads mapped to the different repeat copies. ParascopyVC
uses paralog-specific copy number estimated from WGS reads
using Parascopy (Prodanov and Bansal 2022) to model the
ploidy of paralog-specific genotypes. We benchmarked
ParascopyVC using simulated data and whole-genome WGS
data for seven human individuals, for which high-quality vari-
ant call sets in LCRs were recently published by the GIAB
consortium. Our results demonstrate that ParascopyVC sig-
nificantly outperforms state-of-the-art variant callers both in
precision and recall in LCR regions.

2 Materials and methods

We consider a LCR region L with a total of n repeat copies
(including the region L) in the reference genome. The input
data are a set of WGS reads mapped to the reference genome
(assumed to be diploid for our method). Let R denote the sub-
set of reads that overlap any of the repeat copies of L. The
goal of small variant calling is to identify positions in the
regions of interest (the repeat copies) that differ from the ref-
erence and to estimate the most probable genotype for each
variant. Standard variant calling tools analyze each repeat
copy separately and identify variants by examining reads
aligned to the reference genome. However, in LCRs, many
reads are mapped ambiguously (multiple identical alignment
possibilities) or even mapped to an incorrect repeat copy. This
results in a large number of both false negative and false posi-
tive variant calls. To solve this problem, ParascopyVC jointly
analyzes reads mapped to all repeat copies for variant discov-
ery and genotyping.

2.1 Definitions

We introduce a set of terms and notations that will be useful
for the description of ParascopyVC. Since we consider variants
jointly across all repeat copies, a variant is characterized by an
n-tuple of genomic positions (one for each repeat copy) and an
allele set A. These “paralogous positions” can be identified us-
ing multiple sequence alignment of the reference sequence for
the repeat copies (Prodanov and Bansal 2022). In the reference
genome, variant v exhibits allele a�vi on ith repeat copy of the
duplication. If the variant v is a PSV, then a�vi 6¼ a�vj for some i,
j. For a PSV v, fvi 2 ð0;1Þ is the frequency of the reference allele
a�vi in the population on the ith repeat copy.

Paralog-specific copy number of a sample s is a tuple

ðcsiÞni¼1; csi 2 N�0. Each element of the tuple csi stands for the
number of times the ith repeat copy appears in the genomic se-

quence of the sample. Aggregate copy number ĉs ¼
Pn
i¼1

csi is the

sum of paralog-specific copy numbers across all repeat copies.
In certain cases, paralog-specific copy number values are not
available for all repeat copies. In such cases, we call variants on
extended repeat copies (see Supplementary Methods 2.1 for
details).

Aggregate genotype ĝvs of a variant v in the sample s is a
multiset of ĉs alleles—such genotype collects variant alleles
across all repeat copies without any specific order and can
contain the same allele many times. A paralog-specific geno-
type gvs is a tuple of n allele multisets, where the ith multiset
contains csi alleles. Paralog-specific genotype of a variant
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refers to the n-tuple of genotypes for the variant across the n
repeat copies. We will use multiplicity function lðz;ZÞ to de-
note the number of occurrences of an element z in the multiset
Z.

As an example, consider a two-copy LCR and a sample s
with aggregate copy number ĉs ¼ 5 and paralog-specific copy
number cs ¼ ð3; 2Þ. One possible aggregate genotype of a var-
iant v with two alleles Av ¼ fG;Tg would be ĝvs ¼
G=G=G=T=T and one possible paralog-specific genotype
would be gvs ¼ ðG=T=T; G=GÞ. Each paralog-specific geno-
type is associated with a single aggregate genotype, obtained
by combining all multisets gvsi. A paralog-specific genotype
gvs is reference-compatible, if, for all i, multiset gvsi contains
only the reference allele a�vi; in other words, if lða�vi; gvsiÞ ¼ csi.

2.2 Algorithm

We assume that PSVs have been identified in advance using
multiple sequence alignment of the reference sequences for the
repeat copies. We also assume that paralog-specific and ag-
gregate copy numbers for the repeat copies are known for the
sample. Our previously developed copy number estimation
tool, Parascopy (Prodanov and Bansal 2022), identifies PSVs;
estimates allele frequencies f for each PSV; and calculates
paralog-specific copy number using WGS data. For a region L
with n copies, variant calling using ParascopyVC proceeds in
three steps.

The first step is the identification of candidate variant
sites with high sensitivity using “aggregate variant calling”.
For this, we re-map reads from all repeat copies to a single
copy (L) and use polyploid variant calling—with ploidy
equal to the aggregate copy number—to call variants. Note
that this re-mapping is done locally and does not involve
global re-mapping of reads. This process is illustrated in
Fig. 1a for a two-copy duplication. This enables the use of
all reads, regardless of mapping quality, for sensitive
variant detection.

Second, we “identify informative PSVs”—PSVs whose
paralog-specific genotypes are identical to the reference for
the sample. For each variant v 2 V, we estimate the most
likely aggregate genotype ĝvs using the aggregated reads
independent of other variants. For PSVs, we calculate
paralog-specific genotype probabilities based on the aggregate
genotype likelihoods and by using reference allele frequencies
fv in order to calculate paralog-specific genotype priors. PSVs
with reference-compatible paralog genotypes are marked as
informative. In the example shown in Fig. 1b, PSV w1 is infor-
mative (paralog-specific genotype ¼ ðT=T;C=CÞ, same as
reference), while PSV w2 is not.

The third and final step in ParascopyVC is “paralog-spe-
cific genotyping” of all variants using informative PSVs and
paired reads that overlap both informative PSVs and var-
iants. For variant v1 in Fig. 1b, the most-likely aggregate
genotype is A=A=A=G. Hence, there are two possible
paralog-specific genotypes: ðA=A; A=GÞ and ðA=G; A=AÞ
for this variant. Since there are reads that overlap both PSV
w1 and variant v1 have the alleles G and T at the two sites
respectively, we can estimate the paralog-specific genotypes
for v1 to be ðA=G;A=AÞ. Note that paralog-specific geno-
types cannot be estimated for variants that are not covered
by reads that also overlap informative PSVs, e.g. variant v3

in Fig. 1b.

Next, we describe the mathematical details of the three
steps of the algorithm.

2.3 Step 1: aggregate variant calling

During its first stage, the copy number estimation method
Parascopy (Prodanov and Bansal 2022) identifies regions ho-
mologous to L using a pre-computed homology table and re-
maps reads from them back to L. Our variant calling method,
ParascopyVC, uses this same approach to re-map reads and
then runs an existing variant calling tool FreeBayes (Garrison
and Marth 2012) on the pooled reads with ploidy ĉs. We
modify the resulting set of aggregate variants by removing all
variants with low quality (< 1), and by extending the set to
include all PSVs. For each variant v, we calculate the allelic
read depth Xsv across the variant alleles Av in the pooled
reads Rsv overlapping the variant. The aggregate genotype
probabilities are calculated using Xsv and the multinomial dis-
tribution (MN) as follows:

PðXvs j ĝvsÞ ¼ PMNðXvs; pða1; ĝvsÞ; . . . ; pðajAvj; ĝvsÞÞ; (1)

where pða; ĝÞ ¼ ðjrj � jaj � 1Þ �maxf� � ĉs; lða; ĝÞgP
a02Av
ðjrj � ja0j � 1Þ �maxf� � ĉs; lða0; ĝÞg

(2)

and where � is the error rate, Av is the full set of alleles, jrj is
mean read length, jaj is the allele length, and l is the multiplic-
ity function. The calculations are consistent with the

Figure 1. Illustration of multilocus variant calling approach in LCRs. The

figure shows a two-copy LCR with repeat copies A (blue) and B (yellow).

(a) The reads initially aligned to Copy B are remapped to Copy A for

aggregate variant calling and three variants (v1; v2, and v3) are identified.

(b) Reference sequences of copies A and B differ at two PSVs (w1 and

w2). Using population reference allele frequencies and aggregate

genotype information, the PSV w1 is determined to be informative while

w2 is not. Reads that overlap variant v1 and the informative PSV w1

indicate that the G allele of variant v1 is present on copy A (paralog-

specific genotype for v1 ¼ ðA=G;A=AÞ). Paralog-specific genotype for

variant v3 is not inferred due to the lack of an informative PSV.
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polyploid genotype likelihood calculations used in FreeBayes
(Garrison and Marth 2012). Finally, we use Bayes’ theorem
to get the aggregate genotype probability:

Pðĝvs jXvsÞ ¼
pðĝvsÞ � PðXvs j ĝvsÞP

ĝ 02Ĝvs
pðĝ0Þ � PðXvs j ĝ0Þ

: (3)

Note that the set of aggregate genotypes Ĝvs depends on
the set of alleles Av and aggregate copy number ĉs.
Additionally, we select equal aggregate genotype priors
pðĝÞ ¼ 1=jĜvsj. In order to improve genotyping accuracy, al-
lele observations with base qualities less than 10 and all par-
tial allele observations are discarded.

2.4 Step 2: identify informative PSVs

For PSVs, the prior probability of paralog-specific genotypes
can be obtained using the PSV reference allele frequencies f:

Pðgvs; fvÞ ¼
Yn

i¼1

f
lða�vi;gvsiÞ
vi � ð1� fviÞcsi�lða�vi;gvsiÞ: (4)

In other words, the prior of the paralog-specific genotype g
is a product of either fvi or ð1� fviÞ depending on the match
between the genotype alleles and the reference alleles of the
PSV v.

For each PSV, we calculate the probability of paralog-
specific genotype gvs based on the PSV allele frequencies fv

and the probability of its associate aggregate genotype ĝvs:

Pðgvs jXvs; fvÞ ¼ Pðĝvs jXvsÞ � Pðgvs j ĝvsÞ

¼ Pðĝvs jXvsÞ �
Pðgvs; fvÞP

g02GðĝvsÞ Pðg
0; fvÞ

: (5)

where GðĝÞ is the full set of paralog-specific genotypes associ-
ated with the aggregate genotype ĝ.

We say that the PSV v is informative for a sample s if the
most likely paralog-specific genotype for sample s has high
posterior probability (� 0:99 by default) and is reference-
compatible. Such PSVs can be used to differentiate reads origi-
nating from different repeat copies with high confidence.

Filtering out noninformative PSVs:
The estimation of paralog-specific genotypes for PSVs does

not utilize information from read-pairs that cover more than
one PSV since this greatly increases the computational com-
plexity of the likelihood calculations. As a result, read-pairs
that cover multiple informative PSVs can sometimes conflict
with the reference genotype for a pair of informative PSVs.
Such conflicts indicate that one of the two PSVs is not infor-
mative. For each pair of informative PSVs covered by at least
three reads, we tabulate the read-allele counts for the pair and
use a one-tailed Binomial test (p ¼ 2�� �2 and P value thresh-
old of 10�3) to identify conflicting PSVs.

Next, we construct an undirected graph on the set of infor-
mative PSVs with edges between conflicting PSVs. Then we
aim to keep a subset of informative PSVs such that the
remaining graph contains no edges and

P~f v is maximal,
where ~f v ¼ minn

i¼1fvi—the minimal frequency f of the PSV v
across all repeat copies. This problem is equivalent to an NP-
complete weighted maximum clique problem (Karp 1972).
Therefore, we employ the following greedy heuristic: until the
graph is edgeless, we iteratively remove the PSV v that has the
maximal number of edges multiplied by ð1� ~f vÞ

1=2.

2.5 Step 3: estimate paralog-specific genotypes

For new variants, we infer paralog-specific genotypes using
read-pairs that overlap the variant and an informative PSV
(or, possibly, a nonduplicated region of the genome). For
each read-pair r, we determine the set of possible read loca-
tions (see Supplementary Methods 2.2) across all repeat cop-
ies, and then estimate read-pair location probabilities prðiÞ
using the informative PSVs (denoted by Wr) covered by the
read pair r. Here, prðiÞ is the probability that location i is the
true origin of read-pair r. Suppose a PSV v has allele avi on
the ith repeat copy, then we assign Pðavi j rÞ to either 1� � or
� (error rate) depending upon whether the read sequence
matches or does not match the allele avi, respectively.
Location priors are estimated based on the paralog-specific
copy numbers csi, which results in the following formula for
prðiÞ:

prðiÞ ¼
csi

Q
v2Wr

Pðavi j rÞPn
j¼1

csj

Q
v2Wr

Pðavj j rÞ
: (6)

If a PSV v 2Wr is missing from one of the repeat copies j
because the copy is shorter than others, we penalize location
probability prðjÞ by setting Pðavj j rÞ to a small number (�2 by
default).

Finally, paralog-specific genotype probabilities are calcu-
lated according to the read-pair location probabilities prðiÞ
and the read–variant allele observations. Suppose the
read-pair r has sequence ar aligned to the variant v, then
we can describe the probability of read-pair r according to the
paralog-specific genotype gvs:

P rjgvsð Þ¼
Xn

i¼1

prðiÞ
csi

��
1��Þ�lðar;gvsiÞþ� � ½csi�lðar;gvsiÞ�

�
: (7)

Additionally, we can evaluate the probability of each geno-
type gvs given the set of read pairs Rvs that cover the variant v:

Pðgvs jRvsÞ ¼
pðgvsÞ �

Q
r2Rvs

Pðr j gvsÞP
g pðgÞ �

Q
r2Rvs

Pðr j gÞ : (8)

Paralog-specific genotype probabilities Pðgvs jRvsÞ are later
converted into genotype and variant qualities (see
Supplementary Methods 2.3). Paralog-specific genotype pri-
ors for PSVs are described in Equation (4). For novel non-PSV
variants, we define priors pðgvsÞ in the following way:

pðgvsÞ ¼
Yn

i¼1

1� n if lða�v; gvsiÞ ¼ csi;
n if lða�v; gvsiÞ 6¼ csi:

�
(9)

In other words, each repeat copy genotype gvsi is penalized
by the mutation rate n (default: 10�3) if nonreference allele is
present, and where homozygous and heterozygous genotypes
are penalized equally.

To reduce the number of false positive variants due to
strand-bias in sequencing data (Garrison and Marth 2012),
we apply Fisher’s exact test (FET) to the 2� 2 table corre-
sponding to the reads counts for the reference and nonrefer-
ence alleles on the two DNA strands. Variants with a FET P
value less than .01 are filtered out.
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2.6 Simulated and real WGS datasets

To benchmark the accuracy of ParascopyVC, we generated
two simulated WGS datasets, one with and the other without
polymorphic PSVs, which we denote as SIM-Poly and SIM-
Fixed, respectively. We did not simulate changes in copy num-
ber since variant callers such as DeepVariant (Poplin et al.
2018a)—which we used for benchmarking—only support vari-
ant calling in diploid genomes. In case of the SIM-Fixed data-
set, we simulated a diploid genome by adding artificial
sequence variants every one kilobase on average (80% substitu-
tions, 10% insertions, and 10% deletions; 61.5% heterozygous
variants). Rates of different variant types were selected to be
similar to the variant rates in the GIAB high-confidence variant
calls for the HG002 individual (Zook et al. 2014, 2016, 2019).
All simulated variants overlapping PSVs were discarded.

For the SIM-Poly dataset—designed to assess the accuracy
of variant calling in the presence of polymorphic PSVs—we
simulated WGS reads from a diploid genome with variants
that overlapped PSVs. Polymorphic PSVs were simulated
according to PSV reference allele frequencies (f) in the 503
European ancestry samples from the 1000 Genomes Project
(1 kGP) (1000 Genomes Project Consortium et al. 2015), cal-
culated by Parascopy v1.7 (Prodanov and Bansal 2022).
Next, we combined the resulting variant set with the SIM-
Fixed variant set to obtain 2:75 � 106 variants. Finally, for
both datasets we used ART Illumina (Huang et al. 2012) read
simulator tool v2016-06-05 to generate two diploid paired-
end datasets for chromosomes 1–22 with 150 bp reads, 30�
coverage and mean fragment size¼ 500 bp. We then used
BWA-MEM v0.7.17 (Li and Durbin 2009; Li 2013) to map
the simulated reads to the GRCh38 reference genome.

In addition to the simulated WGS datasets, we utilized
high-confidence variant call sets for seven human genomes
(HG001–HG007) constructed by the GIAB Consortium
(Zook et al. 2014, 2016, 2019). The latest version (v4.2.1) of
these variant calls leverage long-read sequence datasets to en-
able accurate variant calls in repetitive regions of the genome
that include a large number of LCRs (Wagner et al. 2022).
For each individual genome, we analyzed Illumina WGS data
that is also made available by the GIAB. The WGS datasets
for HG005, HG006, and HG007 genomes had very high cov-
erage (� 100�) and were sub-sampled using samtools v1.14
(Danecek et al. 2021) to obtain �30� sequence coverage. We
mapped all WGS datasets to the GRCh38 reference genome
using BWA-MEM v0.7.17. PacBio HiFi WGS data for
HG002 (30-fold coverage, mapped to GRCh38) was also
obtained from the GIAB.

2.7 Variant calling benchmarking

In order to evaluate variant calling, we utilized a set of 167 LCR
loci that we previously compiled for copy number analysis
(Prodanov and Bansal 2022). These LCR loci were selected
from a genome-wide analysis and each locus in this set overlaps
at least one protein-coding gene. Across all repeat copies, the
167 loci span 10.95 Mb of DNA sequence and overlap 380
protein-coding genes. Three variant calling tools—FreeBayes
v1.3.5 (Garrison and Marth 2012), GATK HaplotypeCaller
v4.2.2 (Poplin et al. 2018b), and DeepVariant v1.4 (Poplin
et al. 2018a)—were used for comparison with ParascopyVC.
For the HG002 genome, we additionally benchmarked variant
calling accuracy on all LCR regions from chromosomes 15, 16,
and 17.

We calculated precision and recall using RTG tools
v3.12.1 (Cleary et al. 2014, 2015). To compare precision
and recall values across different callers, we selected a single
variant quality threshold for each caller separately that maxi-
mized its average accuracy across seven benchmarking WGS
datasets (HG001–HG007). In LCR loci, small precision
improvements are achieved at a cost of large decrease in re-
call; consequently, the best average F1 score was obtained at
very low-quality thresholds for the three existing variant call-
ers (	 2, corresponding to virtually no filtering). Therefore,
we selected optimal variant quality thresholds based on the
F0:5 score, which favors precision over recall. These criteria
produced reasonable quality thresholds of 6, 33, 5, and 21 for
GATK, FreeBayes, DeepVariant, and ParascopyVC, respec-
tively. These thresholds were used for comparing precision-
recall of different methods across all evaluations.

For ParascopyVC, we calculated aggregate and paralog-
specific copy number profiles using Parascopy v1.7 (Prodanov
and Bansal 2022) for each dataset (both simulated and real)
prior to variant calling. For each dataset, we selected a set of
paralog-specific regions that overlap the high-confidence
benchmarking regions for the dataset. Additionally, we filtered
out LCRs, for which paralog-specific copy number was not es-
timated by Parascopy (such as LCRs with five or more copies);
and excluded LCRs, for which paralog-specific copy number
was different than 2. For each sample, benchmarking was lim-
ited to the same regions across all variant calling methods.

For running ParascopyVC on the SIM-Fixed dataset, we
used PSV allele frequencies equal to 0.9999 to model the fact
that PSVs were not polymorphic. For the SIM-Poly dataset,
we used PSV allele frequencies obtained from the European
ancestry samples in the 1000 Genomes project (Prodanov and
Bansal 2022). For the HG001–HG004 and HG005–HG007
datasets, we used PSV allele frequencies obtained from
European and East-Asian ancestry samples, respectively. This
was consistent with the reported ancestry of these individuals
(HG001 is of European ancestry, HG002–HG004 represents
an Ashkenazim trio, and HG005–HG007 represent a Han
Chinese trio).

To compare the runtime and memory usage for different
methods, we called variants for a single individual across 167
duplicated loci. ParascopyVC uses multiple threads to analyze
disjoint duplicated loci, so we tabulated run-time using 1 and
16 threads. Similarly, GATK and DeepVariant allow to use
multiple threads. FreeBayes uses only one thread, although it
can be externally parallelized over independent loci.

3 Results
3.1 Accuracy of variant calling on simulated data

For the SIM-Fixed dataset (no polymorphic PSVs), the bench-
marking regions covered 9.9 Mb of DNA sequence and in-
cluded 9254 ground truth variants. On this dataset,
FreeBayes, GATK, and ParascopyVC had very high precision
(0.997) and similar recall (0.835, 0.886, and 0.872, respec-
tively) (see Fig. 2a). This was not surprising since standard
variant calling methods rely on accurately mapped reads and
in the absence of polymorphic PSVs and copy number varia-
tion, read mapping is reliable. DeepVariant had slightly lower
precision (0.995) and recall (0.815) values.

On the SIM-Poly dataset (18 997 baseline variants) that in-
cluded polymorphic PSVs, the accuracy of state-of-the-art
variant callers was drastically lower than for the SIM-Fixed
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dataset. GATK, FreeBayes, and DeepVariant had low preci-
sion (0.832, 0.920, and 0.956, respectively) and recall (0.738,
0.684, and 0.706) (see Fig. 2b). ParascopyVC significantly
outperformed all methods and achieved high recall (0.807)
and very high precision (0.997).

Since ParascopyVC uses population reference allele fre-
quencies of PSVs for variant calling, the choice of population
can potentially impact the accuracy of variant calling. To as-
sess this, we ran ParascopyVC using PSV allele frequencies de-
rived from the East Asian population in the 1000 Genomes
Project. ParascopyVC’s accuracy was slightly lower (dashed
yellow line in Fig. 2b) than the accuracy using European allele
frequencies but was significantly better than all other
methods.

3.2 Accuracy of variant calling on the HG002

genome

The GIAB has compiled high-confidence variant call sets for
seven human individuals by careful aggregation of variant
call sets derived from numerous variant calling tools and mul-
tiple sequencing technologies (Zook et al. 2014, 2016, 2019).
The HG002 genome is the most studied of the seven GIAB
datasets and therefore, we first benchmarked our method on
this genome. The overlap between the GIAB high-confidence
benchmarking regions for the HG002 genome and the 167
LCR loci covered 7.35 Mb of DNA sequence. After excluded
regions where Parascopy estimated nonreference paralog-
specific copy number (0.39 Mb) or was unable to estimate
paralog-specific copy number (0.70 Mb), the benchmarking
regions covered 6.26 Mb of DNA sequence and contained
7985 ground truth variants.

Comparison of the variant calling accuracy for the four
methods (Fig. 3a and Supplementary Table S1) showed that
Freebayes and GATK (F1 scores of 0.883 and 0.880 respec-
tively) had much lower precision and recall values than
DeepVariant and ParascopyVC. ParascopyVC correctly called
7255 variants (recall¼ 0.909) and incorrectly called only 65
variants (precision¼ 0.991), resulting in a very high F1 score
of 0.948. In comparison, DeepVariant could achieve high pre-
cision (0.983) but had lower recall (0.861) than
ParascopyVC, achieving F1 score of 0.918. For comparison,
we also evaluated the accuracy of DeepVariant calls on 30�
long-read HiFi WGS data for the HG002 genome. The HiFi

calls had very high precision (0.9985, 12 false positives) and
recall (0.991, 73 false negatives).

Comparison of the accuracy for SNVs and short indels sep-
arately showed that ParascopyVC achieved the best precision
(0.995) and best recall (0.914) among all methods for SNVs
(Table 1). ParascopyVC’s SNV F1 score was 0.953 while the
next best F1 score (0.919) was achieved by DeepVariant. For
indels, DeepVariant had higher precision (0.978) compared to
ParascopyVC (0.972) while both methods had the same
recall.

Next, we evaluated the accuracy of variant calling in LCR
regions stratified by sequence similarity. For this, we split the
LCR regions into four groups (sequence similarity in the
range 0.97–0.98, 0.98–0.99, 0.99–0.995, and 0.995–1.0).
The comparison of precision-recall for the different methods
showed that ParascopyVC’s accuracy, was greater for LCR
regions with higher sequence similarity relative to other
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Figure 2. Precision and recall of variant calling for four variant callers

(GATK, FreeBayes, DeepVariant, and ParascopyVC) on two simulated

WGS datasets. Variant quality thresholds used for comparing precision/

recall are marked with circles on each curve. (a) Simulated dataset SIM-

Fixed (all PSVs are nonpolymorphic). (b) Simulated dataset SIM-Poly

(some PSVs are polymorphic). The solid (dashed) yellow line shows the

precision–recall curve for ParascopyVC using PSV allele frequencies from

the European (East Asian) population.
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Figure 3. Precision and recall of variant calling using four callers (GATK,

FreeBayes, DeepVariant, ParascopyVC) on the HG002 benchmark

dataset. For each caller, circles denote the quality thresholds that

maximize the average accuracy across seven human genomes. (a)

Precision–recall values across all LCR regions. (b) Precision–recall values

across LCR regions split into four groups based on sequence similarity

(0.97–0.98, 0.98–0.99, 0.99–0.995, and 0.995–1.0).

Table 1. Variant calling accuracy for single-nucleotide variants (SNVs) and

insertions or deletions (indels) on the HG002 benchmarking WGS dataset.

Variants Method FP FN Precision Recall F1

SNPs GATK 821 920 0.887 0.875 0.881
FreeBayes 276 1263 0.954 0.828 0.887
DeepVariant 104 1017 0.984 0.862 0.919
ParascopyVC 31 634 0.995 0.914 0.953

Indels GATK 62 95 0.895 0.848 0.871
FreeBayes 33 147 0.950 0.765 0.848
DeepVariant 12 90 0.978 0.856 0.913
ParascopyVC 34 90 0.972 0.856 0.911

The table shows the number of false positive (FP) and negative (FN) variant
calls, precision, recall, and F1 scores for 7361 baseline SNPs and 624
baseline indels. Best value in each subtable is printed in bold.
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methods (Fig. 3b). Compared to the other three variant call-
ers, ParascopyVC maintained high precision across LCR
regions with different sequence similarity. The HG002 high-
confidence variant calls included 1016 variants in LCR
regions with � 99% sequence similarity. In these regions,
ParascopyVC had a very high precision (0.991) and high re-
call (0.792). DeepVariant’s recall (0.651) and precision
(0.959) in these regions were lower compared to its overall re-
call (0.861) and precision (0.983). The high recall for
ParascopyVC in LCR regions with very high sequence similar-
ity is likely because it utilizes all reads (even with a mapping
quality of zero) for variant discovery and genotyping.

To assess the accuracy of ParascopyVC in noncoding
LCRs, we performed variant calling in all LCR regions from
chromosomes 15, 16, and 17. The benchmarking regions cov-
ered 5.85 Mb of DNA sequence and included 6724 high-
confidence variants. The relative performance of the different
variant callers was similar to that observed in the 167 coding
LCRs. ParascopyVC had the best overall precision (0.982)
and recall (0.864), DeepVariant achieved similar precision
(0.975) but lower recall (0.805) while GATK and Freebayes
had much lower accuracy than DeepVariant and
ParascopyVC (see Supplementary Table S2).

3.3 Benchmarking variant calling on additional

human genomes

We benchmarked ParascopyVC on the six additional human
genomes for which the GIAB consortium has generated high-
confidence variant calls. Benchmarking regions across all
seven GIAB variant call sets (HG001–HG007) covered be-
tween 6.26 Mb and 6.46 Mb of LCR regions and contained
between 7.8 and 9.5 thousand variants (Supplementary Table
S1). The precision-recall curves for the six genomes (Fig. 4)
were very similar to that for the HG002 genome and showed
that ParascopyVC had consistently higher precision and recall
than both GATK and Freebayes. The average precision for
ParascopyVC across the seven genomes was 0.987 compared
to 0.876, 0.941, and 0.983 for GATK, Freebayes, and
DeepVariant, respectively (Supplementary Table S1).

Although the precision for DeepVariant was comparable to
that for ParascopyVC, the average recall for DeepVariant
(0.844) was much lower than that for ParascopyVC (0.911).

3.4 Run time and memory usage

On a single individual (HG002) and 167 duplicated loci,
FreeBayes called variants in 04:41 (mm: ss) and used approxi-
mately 0.5 Gb memory. GATK HaplotypeCaller consumed
10 Gb memory and called variants in 10:21 (1 thread) or
08:57 (16 threads). DeepVariant had similar performance:
3 Gb memory usage and a run-time of 13:09 (1 thread) or
3:25 (16 threads). ParascopyVC required 7 Gb memory and
called variants in 80:28 (1 thread) or 16:36 (16 threads). In
contrast to existing variant calling tools which run diploid
variant calling for human genomes, ParascopyVC performs
polyploid variant calling using FreeBayes. Polyploid variant
calling and genotyping requires more calculations than dip-
loid variant calling since the number of possible genotypes for
a variant site is combinatorial in the ploidy and number of
alleles. Consequently, ParascopyVC requires more time com-
pared to other methods.

4 Discussion

In this article, we have described a new computational
method specifically designed for variant calling in LCRs using
WGS data. We have demonstrated—using both simulated
and real WGS datasets—that this approach significantly
improves accuracy of variant calling in LCRs in human
genomes. Compared to existing variant callers that call var-
iants in each copy of LCRs separately, ParascopyVC jointly
analyzes reads mapped to all repeat copies to first identify
candidate variants. Although several methods have previously
utilized a similar strategy of aggregating read information for
variant calling in LCRs (Kerzendorfer et al. 2015; Ebbert
et al. 2019), ParascopyVC implements an end-to-end variant
calling approach that starts from aligned reads (BAM/CRAM
files) as input and output variant calls (VCF files). A key fea-
ture of ParascopyVC is that it does not assume correctness of
the reference genome at PSVs for variant calling. Instead, it
leverages population-based reference allele frequencies and
read-level information at PSVs to identify those PSVs that can
be used to distinguish repeat copies.

Benchmarking of multiple variant callers in LCR regions
showed that DeepVariant had higher precision than both
GATK and FreeBayes. DeepVariant is a neural network based
variant caller that has been trained using GIAB benchmark
calls for human genomes. As per the DeepVariant github
FAQ, DeepVariant has potentially learned to filter out false
positives in LCRs based on signatures such as excessive read
depth, allele bias, or clustering of variants. Nevertheless,
ParascopyVC obtains significantly higher recall than
DeepVariant while achieving similar precision indicating that
direct modeling of LCRs enables high precision and recall.

ParascopyVC has been developed to complement existing
variant calling tools in LCR regions and not replace them.
Indeed, it leverages an existing variant caller, FreeBayes, for
variant discovery. Currently, it uses a simple constant error-
rate based model for calculating genotype likelihoods for
indels. This reduces the indel calling precision, particularly in
low-complexity sequences with high indel error rate. The
indel calling precision can be improved by leveraging error
models or annotations from existing variant callers.
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Figure 4. Precision and recall of variant calling using four callers (GATK,

FreeBayes, DeepVariant, ParascopyVC) in LCR regions across six human

genomes. For each caller, circles denote the quality thresholds that

maximize the average accuracy across seven genomes (including HG002).
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ParascopyVC leverages population reference allele frequen-
cies for PSVs for variant calling. As a result, it does not call
variants in regions for which these frequencies are not
available. In such regions, variant calling using existing state-
of-the-art tools is likely to have low accuracy since a large
fraction of PSVs are polymorphic. Our previous analysis of
167 LCR loci (Prodanov and Bansal 2022) using 1000
Genomes WGS data has shown that PSV frequencies cannot
be estimated for 10–15% of loci. In the future, as long read
sequencing data and high-quality genome assemblies become
available for a large number of human genomes (Wang et al.
2022), these can potentially be used to obtain PSV reference
allele frequencies for such loci and improve the accuracy of
variant calling.

ParascopyVC uses estimates of paralog-specific copy number
as input and can call variants in the presence of copy number
variants. However, we did not evaluate its accuracy in the pres-
ence of copy number changes in this article. Benchmarking var-
iant calling in the presence of copy number variants is
challenging with short reads since it requires accurate estimates
of copy number in addition to accurate variant calls. We plan
to explore this in future work.
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