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Analysis and Design of Event-triggered Control Algorithms

using Hybrid Systems Tools

Jun Chai, Pedro Casau, and Ricardo G. Sanfelice

Abstract— This paper proposes a general framework for an-
alyzing continuous-time systems controlled by event-triggered
algorithms. Closed-loop systems resulting from using both
static and dynamic output (or state) feedback laws that are
implemented via asynchronous event-triggered techniques are
modeled as hybrid systems given in terms of hybrid inclusions
and studied using recently developed tools for robust stabil-
ity. Properties of the proposed models, including stability of
compact sets, robustness, and Zeno behavior of solutions are
addressed. The framework and results are illustrated in several
event-triggered strategies available in the literature.

I. INTRODUCTION

Event-triggered control reduces the need to continu-

ously or periodically update the control input by triggering

such events only when necessary. Such control strategies

can be employed when a continuous-time controller for

a continuous-time plant is already available, which is an

emulation-based approach, or they can be directly designed

by analyzing the closed-loop system that would result from

using such a strategy. A wide range of contributions pursuing

both types of design methods are available in the literature.

Without attempting to cover such a vast and rapidly growing

literature, for the case of nonlinear continuous-time systems

with static-state feedback laws, an event-triggered strategy

is proposed in [1] for scheduling tasks in embedded pro-

cessors. For linear systems with dynamic output feedback,

the stability and L∞-performance of event-triggered control

strategies are studied in [2]. The survey paper [3] col-

lects many more event-triggered control strategies, classifies

them into different categories, such as event-triggered and

self-triggered, and highlights key properties they guarantee.

Moreover, the recent application of event-triggered control

to a plethora of different problems, such as the stabilization

of control affine systems [4], [5] attitude control [6] and

quadrotor stabilization [7] further highlight the importance

of the development of analysis and synthesis tools for event-

based control systems.
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Due to the impulsive nature of event-triggered control

strategies, it is natural to analyze and design such strategies

using tools for hybrid dynamical systems. In this paper

(Section III), we propose a rather general formulation of

event-triggered control for continuous-time systems within

the hybrid inclusions framework developed in [8]. In such

a framework, differential and difference inclusions with

constraints are used to describe the continuous and discrete

behavior of the closed-loop system resulting from employing

an event-triggered control law. The proposed formulation

captures closed-loop systems resulting from using both static

and dynamic output (or state) asynchronous event-triggered

feedback laws. It allows for local events triggered by part of

the state components [9], [10], which may involve memory

states storing the most recent controller and output values.

While the hybrid inclusions framework in [8] has been

used in a few instances for the analysis and design of

event-triggered control algorithms [3], [11], [12], a complete

treatment of general event-triggered control strategies using

the tools in [8] has not yet been pursued, and as shown

in this article, leads to insightful results. More precisely, in

Section IV-A, we provide relaxed Lyapunov-based sufficient

conditions for asymptotic stability and convergence of a

given set applying tools from [8]. These conditions do not

require a decrease in the Lyapunov function both during

flows and jumps, but rather allow increases that can be

compensated by decrease. Moreover, assuming the objects

defining the closed-loop system satisfy the conditions that

lead to sequential compactness of solutions, we point out

that asymptotic stability of a compact set is robust to

small perturbations (Section IV-B). In addition, conditions

guaranteeing that solutions exists for arbitrarily long (hybrid)

time are provided in Section IV-C. Very importantly, as it

is typically desired that event-triggering control algorithms

assure that the time in between consecutive events – typically

called the inter-event time – is (uniformly) lower bounded by

a positive constant for each solution, necessary and sufficient

conditions for such a property to hold for the resulting well-

posed systems are provided in Section IV-D, both through

design and as a temporal regularization (Sections IV-E &

IV-F). Through an example we show that the existence of a

Zeno solution at the attractor of interest could lead to Zeno

solutions nearby it when vanishing noise is present.

Notation: Given a vector x, |x| denotes the 2-norm of x.

The distance from point x to a closed set K is denoted by

|x|K = inf
ξ∈K

|x− ξ|. Given a set-valued mapping M : Rm ⇒

R
n, we denote the domain of M as domM = {x ∈ R

m :
M(x) 6= ∅}, and given a set K ⊂ R

n, the set M(K) :=



{M(x) : x ∈ K} ⊂ R
n denotes all points that result from

evaluating M on the set K . The boundary points of a closed

set K is denoted by ∂K; the interior points of a set K is

denoted by int K . Given r ∈ R and V : Rn → R, V −1(r) =
{x ∈ R

n : V (x) = r} denotes the r-level set of V . The

closed unit ball around the origin in R
n is denoted as B.

The closure of the convex hull of a set K is denoted by

coK .

II. PRELIMINARIES ON HYBRID SYSTEMS

A hybrid system H, or more precisely, a hybrid closed-

loop system in our setting, can be written as

H

{
ż ∈ F (z) z ∈ C

z+ ∈ G(z) z ∈ D,
(1)

where C,F,D, and G represent the flow set, the flow map,

the jump set, and the jump map, respectively. Solutions to

(1) have continuous and/or discrete behavior depending on

the system data (C,F,D,G). Following [8], besides the

usual time variable t ∈ R≥0, we consider the number of

jumps, j ∈ N := {0, 1, 2, ...}, as an independent variable.

Thus, hybrid time is parametrized by (t, j). The domain

of a solution to H is given by a hybrid time domain. A

hybrid time domain is defined as a subset E of R≥0 × N

that, for each (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) can

be written as ∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ . A solution to the hybrid

system (1) is given by a hybrid arc φ satisfying the dynamics

of (1). A hybrid arc φ is a function on a hybrid time domain

that, for each j ∈ N, t 7→ φ(t, j) is absolutely continuous

on the interval Ij := {t : (t, j) ∈ domφ }. In addition, we

classify the solutions to hybrid system as follows.

Definition 2.1: A solution φ to (1) is

• nontrivial if domφ has at least two points;

• complete if domφ is unbounded;

• precompact if it is complete and bounded;

• Zeno if it is complete and sup{t : (t, j) ∈ domφ} < ∞;

• maximal if there does not exist another pair φ′ such that

φ is a truncation of φ′ to some proper subset of domφ′.

The set SH and SH(K) collect all maximal solutions to the

hybrid system H and all maximal solutions with φ(0, 0) ∈
K , respectively. �

The following regularity conditions on the system data for

a hybrid system H will be needed in the forthcoming results.

They guarantee robustness of stability of compact sets with

respect to perturbations; see [8, Chapter 6] for details.

Definition 2.2: (hybrid basic conditions) A hybrid system

H with state z ∈ R
n is said to satisfy the hybrid basic

conditions if its data (C,F,D,G) is such that

(A1) C and D are closed sets;

(A2) F : R
n ⇒ R

n is outer semicontinuous (osc),

nonempty and locally bounded, and F (z) is nonempty and

convex for all z ∈ C;

(A3) G : Rn ⇒ R
n is osc, nonempty and locally bounded,

and G(z) for all z ∈ D. �

III. GENERAL FORMULATION

In this paper, using hybrid inclusions introduced in [8], we

model the closed-loop system obtained from a continuous-

time plant controlled by a dynamic controller implemented

via event-triggered mechanisms (ETMs). The plant has state

xp ∈ Xp ⊂ R
np , input u ∈ U ⊂ R

nu , output y ∈ Y ⊂ R
ny ,

and is given by

ẋp ∈ Fp(xp, u), y ∈ Hp(xp). (2)

The dynamic controller has state xc ∈ Xc ⊂ R
nc and is

given by ẋc ∈ Fc(xc, y), u ∈ Hc(xc, y). (3)

which is reduced to u ∈ Hc(y) in the static case. The set-

valued maps Fp : Xp × U ⇒ Xp and Fc : Xc × Y ⇒ Xc

describe the continuous dynamics for the plant and the con-

troller, respectively, while the set-valued maps Hp : Xp ⇒ Y
and Hc : Xc×Y ⇒ U assign values for u and y, respectively.

Defining the state x = (xp, xc), the closed-loop system

(without ETM in the loop) is given by

ẋ ∈

{
ζ ∈

[
Fp(xp, u)
Fc(xc, y)

]
:

[
y
u

]
∈

[
Hp(xp)
Hc(xc, y)

]}
.

Now, we introduce a model for the closed-loop system

of the plant in (2) controlled by (3) implemented via event-

triggered strategies. When ETMs are in the loop, the closed-

loop system has the structure shown in Figure 1. Similar to

sample-and-hold systems, the plant and the controller operate

with sampled versions of the output y and the input u,

denoted ŷ ∈ Y and û ∈ U , respectively. An auxiliary state

χ ∈ X ⊂ R
nχ is introduced to capture possible dynamics

added for defining ETMs. The state χ may not be involved

in the plant or the controller but rather play a significant role

in triggering events [13], [14].

ETMy

û y

ETMu

u ŷ
Controller

ẋc ∈ Fc(xc, ŷ),
u ∈ Hc(xc, ŷ)

Plant
ẋp ∈ Fp(xp, û),
y ∈ Hp(xp)

Fig. 1: Closed-loop system with ETM in the loop.

At corresponding triggering events, the most recent values

of the output y from the plant and the input u are assigned

to ŷ and û, respectively. Moreover, χ is updated via the

difference inclusion χ+ ∈ Gχ(xp, xc, ŷ, û, χ). In between

two events, (xp, xc) evolves according to Fp and Fc, while

ŷ and û are governed by

˙̂y ∈ F̂y(xp, xc, ŷ, û, χ), ˙̂u ∈ F̂u(xp, xc, ŷ, û, χ).

When simply “zero-order hold” is employed for ŷ and û, we

have F̂y ≡ 0 and F̂u ≡ 0. Also in between two events, the

auxiliary state χ has dynamics χ̇ ∈ Fχ(xp, xc, ŷ, û, χ).
We also consider local triggering events (LTE), which trig-

ger updates in individual components of the output memory

state and the input memory state. In particular, the presence

of each individual LTE permits selective updates of the

components of ŷ and û. To this end, the vectors y and ŷ
are partitioned into Ny subcomponents; while u and û are

partitioned into Nu subcomponents, i.e.,



y = (y1, y2, ..., yNy
), ŷ = (ŷ1, ŷ2, ..., ŷNy

),

u = (u1, u2, ..., uNu
), û = (û1, û2, ..., ûNu

).

With iy ∈ {1, 2, ..., Ny} and iu ∈ {1, 2, ..., Nu}, we define

triggering event functions as γy
iy

: Ξ → R
my and γu

iu
: Ξ →

R
mu with the argument for these event functions given as

ξ := (y, u, ŷ, û, χ) ∈ Ξ with Ξ := Y × U × Y × U × X .

When γy
iy
(ξ) = 0, only the iy−th component of ŷ is updated

according to the local output, i.e., ŷ+iy = yiy and ŷ+k = ŷk for

every k ∈ {1, 2, ..., Ny}, k 6= iy . Similarly, when γu
iu
(ξ) = 0,

only the iu−th component of û is updated according to the

local input, i.e., û+
iu

= uiu and û+
k = ûk for every k ∈

{1, 2, ..., Nu}, k 6= iu.
Due to the impulsive nature of ETM, we propose to model

the closed-loop system as a hybrid system given in (1). We

assume that when γy
iy
(ξ) ≥ 0 (or γu

iu
(ξ) ≥ 0) the update of

each corresponding component yiy (or yiy , respectively) is

triggered.1 Defining the state

z = (xp, xc, ŷ, û, χ) ∈ Z := Xp ×Xc × Y × U ×X,
the closed-loop system resulting from the mechanism de-

scribed above has a jump set given by

D := Dy ∪Du, (4)

where Dy :=
Ny⋃
iy=1

Dy
iy
, Du :=

Nu⋃
iu=1

Du
iu
, Dy

iy
:= {z ∈ Z :

γy
iy
(ξ) ≥ 0, y ∈ Hp(xp), u ∈ Hc(xc, ŷ)} and Du

iu
:= {z ∈

Z : γu
iu
(ξ) ≥ 0, y ∈ Hp(xp), u ∈ Hc(xc, ŷ)}. The flow set

is given by

C := Cy ∩Cu, (5)

where Cy :=
Ny⋂
iy=1

Cy
iy
, Cu :=

Nu⋂
iu=1

Cu
iu
, Cy

iy
:= {z ∈ Z :

γy
iy
(ξ) ≤ 0, y ∈ Hp(xp), u ∈ Hc(xc, ŷ)} and Cu

iu
:= {z ∈

Z : γu
iu
(ξ) ≤ 0, y ∈ Hp(xp), u ∈ Hc(xc, ŷ)}. Without much

loss of generality, we assume that C ∪D = Z . Observe that

when each γu
iu

and γu
iu

is defined for every ξ ∈ Ξ, by (5),

(4) and the construction of maps Hp and Hc, C ∪ D = Z
holds. Then, for each z ∈ C, the flow map is given by

F (z) := (Fp(xp, û), Fc(xc, ŷ), F̂y(z), F̂u(z), Fχ(z)) (6)

The jump map captures the dynamics at events. The memory

states ŷ, û are updated via local reset functions. More pre-

cisely, for every iy ∈ {1, 2, ..., Ny} and iu ∈ {1, 2, ..., Nu},

we define

gyiy (y, ŷ) :=

{
(ŷ1, ...,ŷiy−1,yiy ,ŷiy+1, ...,ŷNy

) if z ∈ Dy
iy

∅ otherwise,

guiu(u, û) :=

{
(û1, ...,ûiu−1,uiu ,ûiu+1, ...,ûNu

) if z ∈ Du
iu

∅ otherwise.

Hence, the union of these reset functions captures the LTE

dynamics. At triggering events, the state x remains unal-

tered, the auxiliary state χ resets according to Gχ, and the

components of states ŷ and û are either kept the same or

are updated according to the local reset functions. Then, the

jump map is given by

1Note that two independent sets of event functions are considered in this
model to allow ŷ and û to be updated via asynchronous events. However,
this general case can be simplified by setting γ

y
iy
(ξ) = γu

iu
(ξ), Ny = Nu

and iu = iy for every ξ ∈ Ξ.

G(z) :=









x
Ny⋃
iy=1

gyiy (y, ŷ)

Nu⋃
iu=1

guiu(u, û)

Gχ(z)




:

[
y
u

]
∈

[
Hp(xp)
Hc(xc, ŷ)

]






. (7)

Therefore, the closed-loop system resulting from event-

triggered control is given by (1). Next, we provide conditions

guaranteeing H to satisfy the hybrid basic conditions.

Lemma 3.1: The closed-loop hybrid system H in (1) sat-

isfies the hybrid basic conditions in Definition 2.2 if

(A1’) The set C and D given in (5) and (4) are closed;

(A2’) The maps Fp, Fc, F̂y, F̂u and Fχ are osc, nonempty,

and locally bounded relative to the respective sets of

definition, and convex valued;

(A3’) The maps Hp, Hc, and Gχ are osc, nonempty, and

locally bounded.

Remark 3.2: When Hp and Hc satisfy (A3’), item (A1’)

in Lemma 3.1 is guaranteed if Z is closed and for each

iy ∈ {1, 2, ..., Ny} and iu ∈ {1, 2, ..., Nu}, γy
iy

and γu
iu

are

continuous.

Next, we show event-triggered controlled systems in the

literature that fit in the framework (1) with data (4)-(7).

Example 3.3: (ETM for output-feedback in [2]) An ETM

is designed for a continuous-time LTI plant given by2

ẋp = Apxp +Bpu, y = Cpxp

which is controlled by a dynamic controller given by

ẋc = Acxc +Bcy, u = Ccxc +Dcy,

where matrices Ap, Bp, Cp, Ac, Bc, Cc, Dc have appropriate

size. The ETM introduced in [2] leads to Ny = Nu = 1 and

γy(ξ) = γu(ξ) = min{|y − ŷ|2 − σy|y|2 − εy, |u − û|2 −
σu|u|

2 − εu} with ξ = (y, u, ŷ, û), where σy , σu, εy, εu are

constants to be designed. With z = (xp, xc, ŷ, û) ∈ Z :=
R

np ×R
nc ×R

ny ×R
nu , the closed-loop system is given by

H

{
ż = F (z) := (Apxp +Bpû, Acxc +Bpŷ) z ∈ C,

z+ = G(z) := (xp, xc, Cpxp, Ccxc +Dcŷ) z ∈ D,

where the flow set C and jump set D are given as in

(5) and (4), respectively. Note that the formulation in (1)

could be exploited to extend the ETM in [2] to the case of

asynchronous events for input and output. △

The following examples illustrate (1) for the state-

feedback case with y = xp and ŷ = x̂p.

Example 3.4: (ETM for state-feedback in [14]) A frame-

work is proposed for nonlinear continuous-time plants ẋp =
Fp(xp, u) controlled by the dynamic state-feedback con-

troller ẋc = Fc(xc, xp), u = Hc(xc, xp) that is implemented

via ETMs. Such a model in [14] leads to Ny = Nu =
1, state z = (xp, xc, x̂p, û, χ) ∈ R

np × R
nc × R

ny ×
R

nu × R
nχ , and the closed-loop system modeled as (1)

with data defined as follows. For each z ∈ C, flow map

is given by F (z) := (Fp(xp, eu +Hc(xp, xc)), Fc(xc, exp
+

xp), F̂y(z), F̂u(z), Fχ(z)) and the jump map is given by

2The unknown disturbances w in [2] are ignored. See Section IV-B for
robustness analysis.



G(z) := (xp, xc, xp, Hc(xp, xc), Gχ(z)), where eu = û−u
and exp

= x̂p−xp. However, the flow set C and jump set D
in [14] are only provided specifically for each of the ETMs

in the five given examples, among which, all can be written

in form (5) and (4); in particular, see Example 3.5 for the

strategy in [14, Section V.C]. △

According to [14, Section V.C], the ETM developed for

systems with static state-feedbacks in [1] can be adapted to

the framework in [14]. Thus, it also fits (1).

Example 3.5: (ETM for ISS static state-feedback in [1])

For a real-time scheduling problem, [1] develops an ETM

for the continuous-time system ẋp = Fp(xp, u) controlled

by a static state-feedback controller u = Hc(xp). The

controller is assumed to render the closed-loop system ẋp =
Fp(xp, Hc(xp + e)) Input-to-State Stable (ISS) with respect

to e, namely, it is assumed that there exists a smooth function

Ṽ : Rnp → R≥0 and α, α, α, γ ∈ K∞ such that

α(|xp|) ≤ Ṽ (xp) ≤ α(|xp|) (8a)

〈∇Ṽ (xp), Fp(xp, Hc(xp + e))〉 ≤ −α(|xp|) + γ(|e|)

for each (x, e) ∈ R
np ×R

np . The ETM memorizes xp from

the most recent event; hence, e = x̂p −xp. Such ETM leads

to (1) with Ny = Nu = 1 and the event-functions given as

γy(xp, x̂p) = γu(xp, x̂p) = γ(|x̂p − xp|) − σα(|xp|) where

σ ∈ (0, 1). With z = (xp, x̂p) ∈ R
np × R

np , the resulting

system is given by

H

{
ż = F (z) = (Fp(xp, Hc(x̂p)), 0) z ∈ C

z+ = G(z) = (xp, xp) z ∈ D.
(9)

where D and C are given as in (4) and (5), respectively. △

IV. PROPERTIES OF GENERAL FORMULATION

In this section, we study the properties of the closed-loop

system H with ETMs modeled as (1).

A. Stability and Convergence Analysis

The results in [8] for certifying asymptotic stability for

general hybrid systems can be employed to design the ETMs

in the closed-loop system H in (1). In [8, Chapter 3], uniform

pre-asymptotic stability of a set is defined as the property

that, in particular, solutions starting close to A stay close to

it, and maximal solutions that are complete converge to it,

uniformly in hybrid time over compact sets; see [8, Definition

3.6]. In [8, Chapter 7], an invariance principle to locate the

ω-limit set of maximal and complete solutions is given. The

following theorem conveniently summarizes these results.

Theorem 4.1: Let H be the hybrid system with data

(C,F,D,G) given by (5), (6), (4), and (7), respectively,

and let A be closed. Suppose that there exists a continuous

function V that is Lipschitz continuous on an open set

containing C such that

α1(|z|A) ≤ V (z) ≤ α2(|z|A) ∀z ∈ Z (10a)

V o(z; f) ≤ α3,c(z) ∀z ∈ C, f ∈ F (z) (10b)

V (g)− V (z) ≤ α3,d(z) ∀z ∈ D, g ∈ G(z) (10c)

for some α1, α2 ∈ K∞, α3,c : C → R, α3,d : D → R, where

V o(z; f) denotes Clarke’s generalized derivative (see [15]).

Then, the following hold:

a) If α3,c(z) = λcV (z) and α3,d(z) = (exp(λd) − 1)V (z)
with λc, λd ∈ R and there exists M,γ > 0 such that,

for each solution φ to H, (t, j) ∈ domφ =⇒ λct +
λdj ≤ M − γ(t + j) then A is uniformly globally pre-

asymptotically stable;

b) If H satisfies the hybrid basic conditions, α3,c is a neg-

ative definite function relative to A and α3,d(z) ≤ 0 for

each z ∈ D, then the set A is stable and each precompact

solution to H approaches the largest weakly invariant

subset3 of V −1(r) ∩ ((A∩C)∪ (α−1
3,d(0)∩G(α−1

3,d(0))))
for some r ∈ V (Z);

c) If H satisfies the hybrid basic conditions, α3,d is a

negative definite function relative to A and α3,c(z) ≤ 0
for each z ∈ C, then the set A is stable and each

precompact solution to H approaches the largest weakly

invariant subset of V −1(r)∩(α−1
3,c(0)∪(A∩D)) for some

r ∈ V (Z);

d) If H satisfies the hybrid basic conditions, α3,d(z) ≤ 0
for each z ∈ D and α3,c(z) ≤ 0 for each z ∈ C, then

the set A is stable and each precompact solution to H
approaches the largest weakly invariant subset of

V −1(r) ∩ (α−1
3,c(0) ∪ (α−1

3,d(0) ∩G(α−1
3,d(0))))

for some r ∈ V (Z).

Furthermore, if H is such that C and F satisfy (A1) and (A2)

in Definition 2.2 then the above statements hold with (10b)

replaced by

V o(z; f) ≤ α3,c(z) ∀z ∈ C, f ∈ F (z) ∩ TC(z). (11)

Remark 4.2: A local version of Theorem 4.1 also holds by

restricting the system to the set of interest. Item a) provides

good flexibility in the search for a Lyapunov function as,

in particular, covers the case where V grows during flows

(λc > 0) but decreases at jumps (λd < 0), which seems

natural in event-trigger control as the control input is only

updated at events, likely leading to a decrease of V , while

in between events V may grow continuously. In addition,

item a) covers [14, Theorem 1], which, since assumes that H
satisfies the hybrid basic conditions, (11) can be used instead

of (10b). Furthermore, Theorem 4.1 pertains to stability and

convergence only. The issue of completeness, lower bound

on the inter-event times, and robustness are addressed in the

next sections.

Next, we revisit Example 3.5 to illustrate the use of

Theorem 4.1.

Example 4.3: (Example 3.5 revisited) In this example,

Theorem 4.1 is applied to show pre-asymptotic stability of

A := {(xp, x̂p) ∈ R
np × R

np : xp = 0} for (9). Consider

V (z) = Ṽ (xp) for every z = (xp, x̂p) ∈ R
np × R

np .

Condition (10a) follows from assumption (8a). Then, (10b)

holds with α3,c(z) = −(1− σ)α(|xp|) for each z ∈ C. The

inequality in (10c) holds with α3,d(z) = 0 for each z ∈ D
because V is constant during jumps. Hence, it follows from

Theorem 4.1.b) that the set A is globally pre-asymptotically

stable since α−1
3,d(0) ∩G(α−1

3,d(0)) ⊂ A. △

3See [8, Definition 6.19].



B. Robustness Analysis

When the closed-loop system given as in (1) satisfies the

properties in Lemma 3.1, H is nominally well-posed [8, Defi-

nition 6.2]. Moreover, given a compact set that is (uniformly)

pre-asymptotically stable for such H, the stability property

is robust to small perturbations. In particular, perturbations

on y, u, and the plant dynamics leads to

ẋ ∈

{
ζ∈

[
Fp(xp, u+ du) + dp

Fc(xc, y + dy)

]
:

[
y
u

]
∈

[
Hp(xp)

Hc(xc, y + dy)

]}
,

where dy, du correspond to the noise and dp captures un-

modeled dynamics. Hence, with d̃1 := (0, 0, dy, du, 0) ∈ Z ,

d̃2 := (dp, 0, 0, 0, 0), the closed-loop system H given as in

(1) with such perturbations, which is denoted by H̃, has state

z = (xp, xc, ŷ, û, χ) and dynamics4

H̃

{
ż ∈ F (z + d̃1) + d̃2 z + d̃1 ∈ C

z+ ∈ G(z + d̃1) z + d̃1 ∈ D.

The following result establishes that stability is robust to

small measurement noise and unmodeled dynamics.

Theorem 4.4: Suppose H satisfies the hybrid basic con-

ditions and there exists a compact set A ⊂ Z that is pre-

asymptotically stable for H with basin of pre-attraction Bp
A.5

Then, there exists β ∈ KL such that, for each ε > 0 and

each compact set K ⊂ Bp
A, there exists δ > 0 such that

for any two measurable functions d̃1, d̃2 : R≥0 7→ δB, every

solution φ̃ ∈ SH̃
(K) satisfies

|φ̃(t, j)|A ≤ β(|φ̃(0, 0)|A, t+ j) + ε ∀(t, j) ∈ dom φ̃.

C. Completeness of Maximal Solutions

Conditions to guarantee completeness of every maximal

solution to (1) are proposed next using [8, Proposition 6.10].

Proposition 4.5: Suppose the hybrid system H in (1) with

system data given as in (4)-(7) satisfies the hybrid basic

conditions. Then, there exists a nontrivial solution to H from

every initial point in C ∪D = Z if

(VC’) For every z ∈ {z ∈ Z : γu
iu
(ξ) < 0, γy

iy
(ξ) < 0,

iu ∈ {1, 2, ..., Nu}, iy ∈ {1, 2, ..., Ny}, y ∈ Hp(xp), u ∈
Hc(xc, ŷ)}, F (z) ∩ TC(z) 6= ∅.

Moreover, every φ ∈ SH is complete if

(b’) case (b) in [8, Proposition 6.10] does not hold for every

φ ∈ SH;

(c’) Gχ(D) ⊂ X .

Remark 4.6: When Z = R
n, the set C \D is open. Since

for every z ∈ int (C \D), F (z) ⊂ TC(z) = R
n, condition

(VC’) holds trivially. In principle, condition (b’) is a solution-

dependent property, which can be guaranteed when either C
is compact or F is bounded on C. All maximal solutions

to the closed-loop in (9) in Example 3.5 are complete when

Fp(xp, Hc(x̂p)) is locally Lipschitz.

D. Lower Bound on Inter-Event Times by Design

In this section, we present conditions on the system data

to guarantee a uniform positive lower bound on inter-event

4Perturbations on C and D, in particular, in the ETM, is also allowed.
5See [8, Definition 7.3].

time for all solutions to (1). By guaranteeing such a bound,

the jumps do not happen arbitrarily close in time. Moreover,

the proposed conditions ensure a lower bound on the time

between events for systems with small perturbations, for

which we impose the hybrid basic conditions on the system

of interest. As the following example shows, when such a

lower bound is not guaranteed, a “vanishing” perturbation

leads to Zeno solutions.

Example 4.7: (Example 3.5 revised) Consider the ETM

presented in [1] applied to a dynamical system with state

xp ∈ R given by ẋp = Fp(xp, u) := u, u = Hc(xp) =
−xp. Then, the closed-loop system is given as in (9) with

z = (xp, x̂p), F (z) := [−xp 0]⊤ and G(z) := [xp xp]
⊤.

According to [1], we pick triggering event γu(xp, x̂p) =
γy(xp, x̂p) = |x̂p − xp| − σ|xp| with σ ∈ (0, 1). Suppose u
is effected by a disturbance du. Then, the resulting perturbed

system has flow map defined as F̃ (z) := [−xp + du 0]⊤ for

every z ∈ C := {z ∈ R
2 : |x̂p − xp| − σ|xp| ≤ 0}, the jump

map remains the same as in (9), and the jump set is given

as z ∈ D := {z ∈ R
2 : |x̂p − xp| − σ|xp| ≥ 0}.
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Fig. 2: Simulation of closed-loop system in Example 3.5 with

vanishing perturbation du on u.

Figure 2 illustrates solution to the system under influence

of the vanishing perturbation du = −x̂p|x̂p|b−1 with σ =
b = 1/2 and initial conditions x̂p(0, 0) = xp(0, 0) = 1. The

resulting solution induces Zeno behavior with accumulation

point in the time domain given by tf ≈ 1.22.6 △

By construction of (1), jumps are triggered by either “event

type y,” i.e., γy
iy
(ξ) = 0 with iy ∈ {1, 2, ..., Ny}, or “event

type u,” i.e., γu
iu
(ξ) = 0 with iu ∈ {1, 2, ..., Nu}. Since these

events are asynchronous, it suffices to guarantee a uniform

positive lower bound for each type of event. To this end,

for a given solution φ ∈ SH, let E be the set of all points

in domφ at which a jump occurs (J := supj domφ can

be finite or infinite). Moreover, we denote the collection of

points in domφ at which a jump is triggered by “event type

y” as Ey , while Eu denotes the collection of points in domφ
at which a jump is triggered by “event type u.” Note that

Eu∪Ey = E. Then, given a solution φ ∈ SH, the minimum

inter-event time for “event type y” is given by

∆ty = inf{t′′−t′:(t′, j′),(t′′, j′′) ∈ Ey, j
′<j′′}. (12)

Similarly, the minimum inter-event time for “event type u”

is given by

∆tu = inf{t′′−t′:(t′, j′),(t′′, j′′) ∈ Eu, j
′<j′′}. (13)

6Code at github.com/HybridSystemsLab/EventTriggerScalarZeno



Following [16, Lemma 2.7], we provide a necessary and

sufficient condition for the existence of a positive uniform

lower bound on inter-event time.

Proposition 4.8: (positive lower bound on inter-event

times) Suppose H satisfies the hybrid basic conditions and

that every φ ∈ SH is precompact. Then, for every φ ∈ SH

1) there exists λy > 0 such that ∆ty given as in (12)

satisfies ∆ty ≥ λy iff Dy ∩G(Dy) = ∅;
2) there exists λu > 0 such that ∆tu given as in (13)

satisfies ∆tu ≥ λu iff Du ∩G(Du) = ∅;

Note that some assumptions on system data and solutions

in Proposition 4.8 are not “necessary” in the sense that

without these assumptions,7 the necessary and sufficient

condition for the existence of the lower bound is still valid.

We impose these conditions because they guarantee nominal

well-posedness, which, as seen in Section IV-B, is crucial in

the robustness and stability analysis for hybrid systems.

E. Lower Bound on Inter-Event Time via Temporal Regular-

ization

The conditions in Proposition 4.8 guarantee a lower

bound on inter-event times. When those conditions are not

enforced at the design stage, the closed-loop system may

have Zeno solutions from initial conditions in A or from

nearby it. A way to guarantee such a lower bound is to

temporally regularize the closed-loop system by adding a

timer to each ETM with dynamics that allow events to occur

only after a particular positive amount of time has elapsed

after every respective event. To this end, let τ be a timer

with positive threshold T ∈ [0, T ∗), where T ∗ is a fixed

positive parameter.8 The augmented version of the closed-

loop system H = (C,F,D,G) in (1) is denoted H̃, has state

z̃ = (z, τ) ∈ Z × R≥0, and dynamics

˙̃z ∈ F (z)× ρ(τ) z̃ ∈ (C × R≥0) ∪ (Z × [0, T ])

z̃+ ∈ G(z)× {0} z̃ ∈ D × [T,∞)

where ρ is designed to have τ converge to [0, T ∗]. A partic-

ular choice is ρ(τ) = 1 for each τ ∈ [0, T ∗), ρ(τ) = [0, 1]
for τ = T ∗, and ρ(τ) = −τ + T ∗ for each τ > T ∗. Note

that when T = 0 the z component of H̃ matches that of H.

We have the following result.

Theorem 4.9: Suppose the set A is compact and pre-

asymptotically stable for the closed-loop system H in (1)

with basin of pre-attraction Bp
A. Then, the set A × [0, T ∗]

has the following semiglobal practical (in the parameter T )

stability property: there exists a class-KL function β̃ such

that for each compact set Kz ×Kτ ⊂ Bp
A × R≥0 and each

ε > 0 there exists T ∈ (0, T ∗) such that for each T ∈ (0, T ],
every solution φ̃ to H̃ with φ̃(0, 0) ∈ Kz ×Kτ satisfies

|φ̃(t, j)|A×[0,T∗] ≤ β̃(|φ̃(0, 0)|A×[0,T∗],t+ j) + ε

∀(t, j) ∈ dom φ̃.
F. Zeno Stability

Though not recommended due to the reasons illustrated

in Example 4.7, if Zeno solutions from A are acceptable,

7The convexity of F (x) required by (A2) in Definition 2.2 is one such
assumption.

8The threshold could be function of the augmented state.

one might be interested in determining if solutions starting

nearby A are also Zeno. [17, Proposition 4.5] provides a set

of conditions for Zeno solutions to exist from nearby A.

V. CONCLUSION

A general framework is proposed to model the closed-

loop system resulting from event-triggered control of a

continuous-time system as hybrid systems. Multiple existing

event-triggered strategies fit the proposed model. Recent

developed tools for hybrid systems are applied to analyze its

stability, convergence, and robustness properties. Moreover,

conditions are proposed to check completeness of maximal

solutions, more importantly, to guarantee a uniform positive

lower bound on inter-event times. The Zeno behavior of

solutions can be also avoided by constructively designing

a temporal regularization of the proposed model.
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