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Gene Transfer in Leptolyngbya sp. Strain BL0902, a
Cyanobacterium Suitable for Production of Biomass and
Bioproducts
Arnaud Taton, Ewa Lis¤a, Dawn M. Adin, Guogang Dong¤b, Scott Cookson¤c, Steve A. Kay, Susan S.

Golden, James W. Golden*

Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America

Abstract

Current cyanobacterial model organisms were not selected for their growth traits or potential for the production of
renewable biomass, biofuels, or other products. The cyanobacterium strain BL0902 emerged from a search for strains with
superior growth traits. Morphology and 16S rRNA sequence placed strain BL0902 in the genus Leptolyngbya. Leptolyngbya
sp. strain BL0902 (hereafter Leptolyngbya BL0902) showed robust growth at temperatures from 22uC to 40uC and tolerated
up to 0.5 M NaCl, 32 mM urea, high pH, and high solar irradiance. Its growth rate under outdoor conditions rivaled
Arthrospira (‘‘pirulina’’ strains. Leptolyngbya BL0902 accumulated higher lipid content and a higher proportion of
monounsaturated fatty acids than Arthrospira strains. In addition to these desirable qualities, Leptolyngbya BL0902 is
amenable to genetic engineering that is reliable, efficient, and stable. We demonstrated conjugal transfer from Escherichia
coli of a plasmid based on RSF1010 and expression of spectinomycin/streptomycin resistance and yemGFP reporter
transgenes. Conjugation efficiency was investigated in biparental and triparental matings with and without a
‘‘elper’’plasmid that carries DNA methyltransferase genes, and with two different conjugal plasmids. We also showed
that Leptolyngbya BL0902 is amenable to transposon mutagenesis with a Tn5 derivative. To facilitate genetic manipulation
of Leptolyngbya BL0902, a conjugal plasmid vector was engineered to carry a trc promoter upstream of a Gateway
recombination cassette. These growth properties and genetic tools position Leptolyngbya BL0902 as a model cyanobacterial
production strain.
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Introduction

Great interest is being focused on photosynthetic microorgan-

isms for their ability to convert solar energy and CO2 into fuels

and other bioproducts. Cyanobacteria provide an excellent

platform for the production of renewable biofuels and other

products [1,2]. Cyanobacterial carbohydrate and lipid metabolism

has been studied by several laboratories but much remains to be

understood [3–5]. Cyanobacteria typically accumulate glycogen

and polyhydroxyalkanoates rather than lipids as stored energy, but

their photosynthetic membranes are rich with glycolipids and they

naturally produce hydrocarbons [4,6], the major constituents of

gasoline, diesel, and jet fuel [7].

Cyanobacteria have been a major component of our biosphere

for over 2.5 billion years [8]. Architects of our atmosphere, these

photosynthetic organisms still play an essential role in biogeo-

chemical transformations, particularly in the oceans where they

may account for more than 50% of phytoplankton biomass and

primary production [9]. With a wide range of metabolic

capabilities and few nutritional demands, cyanobacteria live in

diverse environmental conditions [8]. Some fix nitrogen, reducing

the need for nitrogen fertilizer and the associated production of

nitrous oxide, a major greenhouse gas [10,11]. Most species

tolerate high pH and some tolerate high salt concentration,

conditions that help to control contaminants and predators in

outdoor ponds. Certain cyanobacteria produce a mucilaginous

envelope for protection against predators and desiccation.

Regulation of photosynthetic antenna complexes called phycobili-

somes allow cyanobacteria to adapt to changes in light quality and

to extremely low light levels [12], and extracellular and

intracellular screening pigments protect them against high light

or UV radiation [13]. Cyanobacteria usually have higher growth

rates than other phytoplankton under low light [14]. In addition to

their physiological and ecological variety, cyanobacteria are also
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diverse in terms of morphology, including multicellular filamen-

tous species that may bioflocculate or float to the surface of a pond

for easier harvesting. These characteristics reflect their genetic

diversity and make them good sources for gene mining.

As prokaryotic, gram-negative bacteria, cyanobacteria are easy

to manipulate genetically. Extensive genetic tools have been

developed for a variety of different species. DNA can be

introduced into cyanobacteria by transformation, conjugation,

and electroporation and then propagated in the strain if carried on

a replicating plasmid or if integrated into the host chromosome

[15,16]. However, genetic approaches have been developed for

only a limited number of model strains used to investigate

fundamental processes such as photosynthesis, nitrogen fixation,

and circadian rhythmicity [16–18]. Productivity, particularly

outside of the highly regulated environment of the laboratory,

and the ability to grow in a wide range of ecological conditions

were not determining factors in the selection of these strains for

laboratory studies.

Research featuring genetically engineered cyanobacteria for the

production of liquid biofuels including ethanol [19], isobutyralde-

hyde and isobutanol [20], and free fatty acids [21] has recently

flourished. Although using cyanobacteria as cell factories has

become more common, studies are still carried out with standard

laboratory model organisms rather than with potential production

strains. For their desirable growth qualities, much consideration

has been given to strains of the genus Arthrospira (‘‘pirulina’’, which

are grown at industrial scale mostly as a nutritional supplement.

However, several attempts to transform Arthrospira strains have had

only limited success [22,23], and to our knowledge there is no

reliable genetic system for the stable transformation of Arthrospira

spp.

We have identified and characterized the cyanobacterial strain

Leptolyngbya sp. strain BL0902 (hereafter Leptolyngbya BL0902),

which emerged from a screen of cyanobacterial strains for superior

growth traits, and show that it is amenable to genetic

manipulation. Leptolyngbya BL0902 has good growth characteristics

when compared to two common outdoor production strains of the

genus Arthrospira. We show that Leptolyngbya BL0902 can receive

and maintain conjugal shuttle vectors, express an antibiotic

resistance gene and a yemGFP reporter gene, and be subjected to

transposon-tagging mutagenesis.

Results

Morphological description and identification
Leptolyngbya BL0902 is a filamentous cyanobacterium without

heterocysts, akinetes, or true or false branching; filaments are

composed of single trichomes (chains of cells) that are straight to

wavy and lack conspicuous motility. Trichomes are cylindrical and

usually unsheathed, but a very thin hyaline sheath might be

observed at trichome breakage; necridic cells are absent.

Trichomes are slightly constricted at the cross-walls; cells are 1.3

to 3.3 times longer than wide with an average size of 1.4260.15

(1.12 – 1.66) mm wide, 3.1160.57 (2.09 – 4.18) mm long; and end

cells are rounded. The cytoplasm is homogeneous with a few

granules but no gas vesicles (Fig. 1).

Molecular identification based on 16S rRNA gene and ITS
Based on 16S rRNA data, Leptolyngbya BL0902 may be

considered novel. The top hit identified by BLAST was Spirulina

laxissima SAG 256.80 with 97.8% identity (Table 1) and to which

no detailed morphological description is associated, leaving the

possibility of misidentification. The uniqueness of Leptolyngbya

BL0902 was verified by the Internal Transcribed Spacer (ITS)

between the 16S and 23S rRNA genes, which shared only 89%

identity with the first hit identified by BLAST (Table 2).

Nevertheless, Leptolyngbya BL0902 belongs to a relatively tight

cluster of thin oscillatorians (Fig. 2), mostly assigned to the genus

Leptolyngbya, including the strains OBB30S02, UTEX 2910,

ANT.ACE.1, ANT.ACE.V6.1, 0BB19S12, MXI, 0BB24S04,

PCC 7104 (formerly identified as belonging to the LPP group B

[24]), UTEX 2910, 0BB32S02, and Kovacik 1999/1. Based on

morphological features, ‘‘scillatoria neglecta’’IAM M-82 corresponds

more likely to an unknown species of the genus Leptolyngbya

Anagnostidis & Komárek 1988 (R. Rippka, personal communica-

tion). No morphological descriptions of Spirulina laxissima SAG

256.80, Phormidium sp. 195-A12, Phormidium sp. MBIC10025,

Phormidium sp. SAG 61.90, or Oscillatoria sp. [AJ133106] are

available. The different taxonomic assignments might be related to

either the use of other taxonomic systems or misidentifications.

Characterization of growth traits
Growth traits including ranges of tolerance for temperature,

salinity, pH, light, and urea were determined for Leptolyngbya

BL0902 and two strains of Arthrospira, A. platensis BL0909, and A.

maxima CS-328 (Table 3) as well as 40 other strains (data not

shown). A. platensis BL0909 had a strict requirement for

bicarbonate addition and was unable to grow in BG-11 medium

that did not contain bicarbonate. Leptolyngbya BL0902 was more

versatile with respect to growth media and grew well in both BG-

11 and Zarrouk media. All three strains grew well in the 22–40uC
temperature range and tolerated up to 0.5 M NaCl, high pH up to

11, and high solar irradiance. Unlike A. maxima, Leptolyngbya

BL0902 was able to tolerate urea at 32 mM, which is commonly

used in algal outdoor growth ponds for control of rotifer and

amoebae predators.

Growth rate and productivity measurements
The doubling time of Leptolyngbya BL0902 was measured and

compared to Arthrospira strains under laboratory and outdoor

growth conditions (Table 4). Leptolyngbya BL0902 grew faster than

both Arthrospira species under laboratory conditions. In outdoor

open-pond conditions, Leptolyngbya sp. BL0902 outperformed A.

maxima CS-328 and had productivity on par with A. platensis

BL0909. Importantly, Leptolyngbya BL0902 showed good culture

stability during 3 months of continuous growth in 1-acre

cultivation ponds during the summer 2009 season (Fig. 1e).

Additionally, Leptolyngbya BL0902 formed long filaments that could

be harvested with a vibrating screen similarly to Arthrospira spp.

(Fig. 1f).

Heterotrophic growth
We tested Leptolyngbya BL0902 for heterotrophic growth with

glycerol and 8 different sugars: glucose, fructose, sucrose, lactose,

galactose, arabinose, maltose, and mannose. To prevent growth of

potential contaminants, we used a genetically engineered Lepto-

lyngbya BL0902 strain expressing the aadA gene and supplemented

the media with Sp and Sm to a final concentration of 2 mg/ml for

each of those antibiotics. The engineered Leptolyngbya BL0902 was

incubated in the presence of glycerol and each of the 8 sugars at

10 mM final concentration, kept in complete darkness for over 3

weeks or incubated in the light in the presence of the

photosynthesis inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-di-

methylurea) at 10 mM final concentration. In both conditions,

none of the 8 sugars or glycerol supported growth of Leptolyngbya

BL0902, demonstrating that Leptolyngbya BL0902 cannot grow

heterotrophically or photoheterotrophically under these condi-

tions. However, in the presence of glucose, fructose, or sucrose,

Gene Transfer in Leptolyngbya BL0902
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survival of Leptolyngbya BL0902 was improved in the tested

conditions.

Cellular composition and fatty acid profile
The composition of major cellular components (protein,

carbohydrate, fat, ash, fiber, moisture, and fatty acid methyl ester

[FAME]) was determined for A. maxima CS-328 and Leptolyngbya

BL0902 (Table 5). Calculated as ash-free dry weight, Leptolyngbya

BL0902 produced 28.8% FAME compared to 15.6% for A.

maxima CS-328. Fatty acid profiles are shown in Figure 3. A.

platensis BL0909 and A. maxima CS-328 both contained high levels

of tri-unsaturated fatty acids, whereas Leptolyngbya BL0902

contained a higher proportion of monounsaturated fatty acids.

Antibiotic sensitivity
The antibiotic sensitivity of Leptolyngbya BL0902 was evaluated

for nine antibiotics in BG-11 liquid culture media and on

nitrocellulose filters on BG-11 agar plates, which mimics

conditions used for genetic conjugations (Table 6). Leptolyngbya

BL0902 was sensitive to low concentrations of Sp, Sm, Em, and

Cm and moderate concentrations of Nm. Leptolyngbya BL0902 was

somewhat resistant to Km, Gm, and G418 at commonly used

concentrations; therefore, these antibiotics could be used to

prevent growth of other organisms in laboratory settings. These

data provide a panel of antibiotics that could be used as selective

markers in genetic manipulations with Leptolyngbya BL0902.

Conjugal transfer and maintenance of RSF1010-based
plasmids

Conjugation from E. coli donor cells has been used to introduce

DNA into a wide variety of cyanobacteria, and broad-host-range

plasmids derived from RSF1010 have been shown to replicate in

many strains [18]. To determine whether these methods could be

used with Leptolyngbya BL0902, we performed biparental matings

with Leptolyngbya BL0902 and a conjugal E. coli donor strain

(AM4338) that contained the cargo plasmid pRL1383a, the

conjugal plasmid pRL443, and the helper plasmid pRL623.

Transconjugant colonies became apparent on selective mating

plates after about one week and showed robust growth after transfer

to fresh selective plates. Control conjugations without the cargo

plasmid never showed any antibiotic resistant colonies.

The ability to genetically modify Leptolyngbya BL0902 was further

demonstrated by the heterologous expression of the yemGFP gene.

The recombinant plasmid pAM4413 carrying the yemGFP gene was

electroporated into AM1359, and the resulting strain was

conjugated with Leptolyngbya BL0902. After one week, isolated

transconjugant colonies were restreaked on fresh selective plates,

and isolated colonies were then patched to fresh selective plates.

Liquid cultures were grown in selective BG-11 medium. Expression

of yemGFP was observed by fluorescence microscopy (Fig. 4).

Our initial conjugation experiments were performed with donor

strains carrying the helper plasmid pRL623, which carries 3 methylase

genes. The methylase genes are required for efficient conjugation into

Anabaena recipient strains [25]. To assess the necessity of these genes for

Leptolyngbya BL0902 conjugation, we determined the efficiency of

conjugal transfers in biparental and triparental matings with and

without the helper plasmid pRL623 and with two different conjugal

plasmids: pRL443 and pRK2013 (Table 7). The conjugation protocol

was modified as described in the methods to yield more reproducible

data for transconjugant colony forming units (CFUs).

Approximately 3% of potential colony-forming units were

transformed by conjugal transfer in bi- or tri-parental matings,

which was increased about two-fold when a methylase-expressing

helper plasmid was included (Table 7). We did not observe

significant differences between bi-parental and tri-parental matings

or between the conjugal plasmids pRL443 and pRK2013 (Table 7).

Transposon mutagenesis
To determine if transposon mutagenesis could be used as a

genetic tool with Leptolyngbya BL0902, biparental matings were

carried out with the E. coli strain AM4353, which harbors the Spr

Figure 1. Photomicrographs of wild-type Leptolyngbya BL0902 (a, b, c, and d), and its growth in a microalgae farm in Imperial
Valley, California (e and f). Bright field (a and b), differential interference contrast (c), and phase contrast microscopy (d). 1-acre paddle-wheel
raceway microalgae pond (e) and filamentous cyanobacteria collected with a vibrating screen (f). Scale bars, 5 mm.
doi:10.1371/journal.pone.0030901.g001

Gene Transfer in Leptolyngbya BL0902
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Smr Emr Tn5-692 transposon on the suicide plasmid pRL692, as

well as helper and conjugal plasmids (Table 8). Hundreds of Spr

Smr transconjugant colonies were obtained on mating plates after

incubation for a week, and selected Spr Smr colonies grew

normally on fresh Sp+Sm BG-11 plates and in liquid medium.

However, no colonies grew on medium containing Em at

concentrations as low as 1.25 mg/ml. BL0902 is very sensitive to

Em, and the Tn5-692 Emr gene may not be expressed in

Leptolyngbya BL0902. A repetition of the transposon-tagging

experiment produced similar results.

The integration of the Tn5-692 transposon into the Leptolyngbya

BL0902 chromosome was confirmed by a set of PCR assays

Table 1. BLAST results obtained by querying the 16S rRNA gene of Leptolyngbya BL0902 with GenBank, and geographical and
ecological origins of the hits.

Descriptiona Accession
Query
coverage Score E-value

%
identity Origin of the strain or clone Reference

Spirulina laxissima
strain SAG 256.80

DQ393278 100% 2257 0 97.8 Lake Nakuru, natron lake, Kenya -

Uncultured bacterium
clone DP10.3.11

FJ612370 100% 2239 0 97.3 Dongping Lake, China -

Uncultured bacterium
clone GBI-83

GQ441263 100% 2167 0 96.4 Marine microbial mats from a sandy
intertidal beach, Schiermonnikoog,
The Netherlands (53.48 N 6.13 E’’

-

Leptolyngbya sp. strain
0BB30S02

AJ639892 100% 2161 0 96.5 Bubano Basin, Imola, Italy [60]

Pseudanabaenaceae
cyanobacterium DPG1-KK5

EF654067 100% 2161 0 96.4 [61]

Phormidium sp.
strain 195-A12

EU282429 100% 2159 0 96.7 Siberian permafrost, borehole 1/95, 2.4–
2.45 m, Kolyma Lowland, Siberia, Russia

-

Uncultured bacterium
clone GBII-87

GQ441350 100% 2158 0 96.6 Marine microbial mats from a sandy
intertidal beach, Schiermonnikoog,
The Netherlands (53.48 N 6.13 E’’

-

Leptolyngbya antarctica
ANT.ACE.1

AY493588 100% 2152 0 96.4 Ace lake, Vestfolds hills, Antarctica [62]

Uncultured cyanobacterium
clone R8-R56

DQ181691 100% 2146 0 96.3 Lake Rauer 8, Rauer Island, Antarctica [63]

Phormidium sp. strain
MBIC10025

AB183566 95% 2145 0 97.3 Pacific Ocean, 27.03N-141.54E -

Leptolyngbya sp. strain
0BB19S12

AJ639895 100% 2145 0 96.3 Bubano Basin, Imola, Italy [60]

Leptolyngbya sp.
strain MX1

GQ848193 100% 2134 0 96.1 Lake Taihu, Shangai, China -

Leptolyngbya sp. strain
PCC 7104

AB039012 100% 2128 0 96.1 Rock at shoreline, Montauk Point,
Long Island, New York, U.S.A

[24]

Leptolyngbya sp.
strain 0BB24S04

AJ639893 100% 2128 0 96 Bubano Basin, Imola, Italy [60]

Phormidium sp.
strain SAG 61.90

EU624415 100% 2128 0 95.9 River Meuse near Tihange,
Belgium

[61]

Uncultured cyanobacterium
clone A132

DQ181668 100% 2124 0 96 Ace lake, Vestfolds hills,
Antarctica

[63]

Leptolyngbya nodulosa
UTEX 2910

EF122600 100% 2117 0 95.7 South China Sea [64]

Uncultured Leptolyngbya
sp. clone EHFS1_S05b

EU071483 100% 2117 0 95.7 ESTEC HYDRA facility -

Uncultured cyanobacterium
clone AS-45-2

FJ866611 100% 2117 0 95.7 Submerged sinkhole -

Leptolyngbya sp.
strain 0BB32S02

AJ639894 100% 2111 0 95.7 Bubano Basin, Imola, Italy [60]

Oscillatoria neglecta
IAM M-82

AB003168 100% 2100 0 95.9 [65]

Oscillatoria sp. AJ133106 100% 2091 0 95.4 Lake Loosdrecht, The Netherlands -

Leptolyngbya sp.
Kovacik 1999/1

GQ495618 100% 2074 0 95.9 Biofilm from interior wall, Cartusian
Monastery Ruins, National Park Slovak
Paradise, Klastorisko, Slovakia

-

aRedundant closely related clones originating from the same place were removed.
doi:10.1371/journal.pone.0030901.t001
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carried out on three putative transconjugant clones. The clones

were grown in BG-11 liquid culture, which resulted in the loss of

all viable donor E. coli cells. The absence of E. coli was confirmed

by a lack of colony formation when transconjugant cyanobacterial

samples were inoculated on BG-11 plates supplemented with

0.04% (wt/vol) glucose and 5% (vol/vol) LB broth and incubated

in the dark at 30uC, or on LB plates incubated at 37uC. Two pairs

of primers were used for the PCR assays. The primer pair

pRL692-6976F/7350R (Table 9) amplifies a 421-bp fragment

within the origin of transfer (OriT) of the plasmid backbone from

position 6953 to position 7373 of pRL692. The primer pair

pRL692-2118F/2418R amplifies a 347-bp fragment within the

transposon Tn5-692 from position 2095 to position 2441 of

pRL692. The OriT primer pair produced PCR products in the

positive-control samples only (Fig. 5, lanes 4 and 5), indicating the

absence of the suicide plasmid in any of the three transconjugants

and confirming the loss of all E. coli cells. The Tn5-692 primer pair

produced PCR products from all three transconjugant strains and

the positive controls, but not from WT Leptolyngbya BL0902. These

data show that the Tn5-692 transposon can be used for transposon

tagging in Leptolyngbya BL0902.

Construction and testing of the pAM4418 expression
vector

To facilitate the ability to introduce and express genes or

noncoding and antisense RNAs in Leptolyngbya BL0902 and other

cyanobacterial strains, we constructed plasmid pAM4418 based on

the conjugal vector pRL1383a (Fig. 6). pAM4418 contains an E.

coli lacIq gene and the inducible trc promoter upstream of a

Gateway recombination cassette. Genes of interest that are cloned

in a pENTR vector can be introduced into pAM4418 by an LR

recombination reaction. We monitored the expression of yemGFP

as fluorescence emission intensity in Leptolyngbya BL0902 harboring

pAM4418-yemGFP for two days following induction with IPTG.

The reporter was constitutively expressed at moderately high

levels, but there was no significant increase in yemGFP

fluorescence intensity with IPTG addition at final concentrations

ranging from 0.1 to 10 mM. We conclude that the trc promoter

functions well in Leptolyngbya BL0902, but that either the lacIq gene

is not expressed or the LacI protein fails to repress expression from

the trc promoter on pAM4418.

Discussion

Leptolyngbya BL0902 provides a new experimental model for

cyanobacterial research that is focused on the goal of outdoor

commercial production. Its growth traits related to harvestability,

temperature range, and tolerance of high salt, pH, and light,

paired with facile genetic manipulation, make Leptolyngbya BL0902

a potential commercial production platform strain. Leptolyngbya

BL0902 growth rates in the laboratory and in outdoor ponds were

similar to those of Arthrospira spp. that are currently grown at

commercial scales, and large-scale outdoor pond cultures showed

Table 2. BLAST results obtained by querying the ITS of Leptolyngbya BL0902 with GenBank, and geographical and ecological
origins of the hits.

Descriptiona Accession
Query
coverage Score E value Identity Origin of the strain or clone Referenceb

Uncultured cyanobacterium
isolate DGGE band #38

AY827768 96% 650 0 89% Lake Klinckenberg, The Netherlands [66]

Oscillatoria sp. strain
CCMEE 416

AM398957 87% 477 3.00E-131 82% Marble point, Antarctica [67]

Leptolyngbya antarctica
ANT.ACEV6.1

AY493632 87% 464 2.00E-127 82% Lake Ace, Vestfold Hills, Antarctica [62]

Uncultured Antarctic
cyanobacterium clone
TM2FOCH9

EU852532 87% 462 6.00E-127 81% Forlidas Pond, Forlidas Valley,
Transantarctic Mountains, Antarctica

-

Leptolyngbya antarctica
TM1FOS73

EU852528 87% 461 2.00E-126 81% Forlidas Pond, Forlidas Valley,
Transantarctic Mountains, Antarctica

-

Leptolyngbya antarctica
ANT.ACE.1

AY493633 87% 461 2.00E-126 81% Lake Ace, Vestfold Hills, Antarctica [62]

Uncultured cyanobacterium
clone R8-R60

DQ181762 87% 461 2.00E-126 81% Lake Rauer 8, Rauer Island, Antarctica [63]

Uncultured cyanobacterium
clone AS-45-2

FJ866611 94% 448 1.00E-122 81% Submerged sinkhole ecosystem -

Oscillatoriales cyanobacterium
2Dp86E

GU265558 87% 444 2.00E-121 80% Hosted by Dynamena pumila L. [68]

Uncultured Antarctic
cyanobacterium
clone S334-8

EU032374 87% 443 6.00E-121 82% Dry Valleys, Antarctica [69]

Pseudanabaenaceae
cyanobacterium
DPG1-KK5

EF654067 87% 437 2.00E-119 81% [61]

Phormidium sp.
strain AA

AM398947 87% 437 2.00E-119 81% Desert crust, on sand dunes,
Nizzara, Israel

[67]

aRedundant closely related clones originating from the same place were removed.
bA hyphen ‘‘’’indicates sequences not published in a research article.
doi:10.1371/journal.pone.0030901.t002
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Figure 2. Phylogenetic tree inferred from 16S rRNA gene sequences (E. coli positions 110–1440) by maximum likelihood
(Likelihood = 258560.000282); branch support values are indicated at the node. Clusters observed using at least 3 construction methods
were collapsed or indicated with a black spot at the node. The E. coli sequence was used as out-group. The evolutionary distance between two
sequences is obtained by adding the lengths of the horizontal branches connecting them and using the scale bars (0.1 mutation per position). The
box in the upper right corner displays a subtree comprising sequences not included in the main figure and that share more than 95% similarity with
Leptolyngbya BL0902.
doi:10.1371/journal.pone.0030901.g002
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excellent stability during 3 months of growth in the summer of

2009. This is noteworthy because 13 out of 15 tested strains failed

attempts to scale up to 1-acre growth ponds (unpublished

observations).

Morphology and molecular data (16S rRNA and ITS gene

sequences) place Leptolyngbya BL0902 as a novel isolate of this

genus, within a cluster of thin oscillatorians isolated from a variety

of biotopes and locations, which suggests a high resilience and

competitiveness in a range of environmental conditions. The

Leptolyngbya genus is heterogeneous and polyphyletic with a high

genotypic diversity hidden behind a simple morphology. Speci-

mens have been reported from hypersaline, marine, and

freshwater habitats ranging from Antarctic lakes to hot springs.

Most would have originally been identified as species of Lyngbya

Agardh 1824, Phormidium Kutzing 1843, Plectonema Thuret 1875, or

Oscillatoria Vaucher 1803, and were grouped under the name LPP

[24,26]. This group was later revised to form a new genus,

Leptolyngbya [27].

Leptolyngbya BL0902 accumulated higher FAME content and a

higher proportion of mono-unsaturated fatty acids, preferable for a

biodiesel feedstock, than two strains of Arthrospira spp.; the latter

have high levels of tri-unsaturated fatty acids, preferable for

nutritional applications but not desirable for fuel applications due

to low oxidative stability. FAME recovery by a proprietary direct

conversion process (Inventure Chemical, Inc.) for Leptolyngbya

BL0902 and other cyanobacterial strains was significantly higher

than has been reported by standard Bligh-Dyer extraction for

cyanobacterial strains [28]. Further improvement of the Leptolyng-

bya BL0902 fatty acid profile may be achieved by overexpressing

the native or a heterologous D-9 acyl-lipid desaturase to increase

the proportion of monounsaturated fatty acids.

Microalgal industrial production strains will need to be

genetically manipulable. At least thirty-three different strains of

cyanobacteria have been transformed, and a variety of genetic

tools have become available since the unicellular cyanobacterium

S. elongatus PCC 7942 (formerly Anacystis nidulans R2) was

transformed four decades ago [18,29]. While transformation and

electroporation are used for some strains, including a few naturally

transformable cyanobacteria [16], conjugation, first shown in

Anabaena sp. strain PCC 7120 [30], is generally the most successful

and efficient method for gene transfer into cyanobacteria [31].

Conjugal plasmids derived from the related IncPa plasmids RP4

and RK2 [32], including pRL443 and pRK2013, have been used

to mediate transfer of engineered cargo plasmids into several

strains [16]. We demonstrated that broad host range plasmid

vectors based on RSF1010 can be efficiently transferred to and

stably maintained in Leptolyngbya BL0902. Previous studies have

found that pRK2013 and its Kms derivative pRK2073 promote

increased conjugal transfer efficiencies in 3 strains of Chroococci-

diopsis species and Nostoc punctiforme ATCC 29133 [33,34], but

pRL443 and pRK2013 performed similarly in our study.

The presence of the helper plasmid pRL623, which carries

three restriction methylase genes and is necessary to overcome

restriction barriers in Anabaena sp. strain PCC 7120 [25], increased

conjugation efficiency in Leptolyngbya BL0902 by only two-fold.

Restriction systems usually result in order-of-magnitude differenc-

es in conjugation efficiencies, but our results indicated little

protective role for the methyltransferases carried by pRL623.

Therefore, restriction systems do not appear to pose a significant

barrier to genetic manipulation of Leptolyngbya BL0902, and the

conjugation efficiency with or without a helper plasmid is on par

with the efficiency reported for Anabaena sp. strain PCC 7120 [25].

Triparental and biparental matings involving the same set of

plasmids performed similarly. Triparental matings, in which the

conjugal and mobilizable cargo plasmids are not in the same cell at

Table 3. Growth traits of A. maxima, A. platensis, and Leptolyngbya BL0902.

Strain

Temperature

6C) NaCl (M) pH
Light intensity mmol photons
m22 s21) Urea (mM)

10 22 30 40 0a 0.1 0.25 0.5 1 Stda 8 9 10 11 15 125 250 500 0a 8 16.7 32

Arthrospira maxima
CS-328

2 + + + + + + + 2 + + + + + + + + + + 2 2 2

Arthrospira platensis
BL0909

2 + + + + + + + 2 nd nd nd nd nd + + + +/2 nd nd nd nd

Leptolyngbya L0902 2 + + + + + + + 2 + + + + + +/2 + + + + + + +

aStd, corresponds to BG-11 medium.
+, robust growth; +/2, some growth; 2, no significant growth; nd, not determined due to inability of strain BL0909 to grow in BG-11 medium.
doi:10.1371/journal.pone.0030901.t003

Table 4. Doubling time under laboratory conditions and
productivity measurements in outdoor ponds.

Strain Doubling time (h)
Productivity (g m22

day21)

A. maxima S-328 32 20

A. platensis L0909 24 20–30

Leptolyngbya L0902 23 20–25

doi:10.1371/journal.pone.0030901.t004

Table 5. Cellular composition and FAME content as
measured by Inventure Chemical.

A. maxima CS-328 Leptolyngbya BL0902

moisture 11.8 8.1

protein 55.5 35.4

fat 6.8 5.3

fiber 2.2 3. 7

carbohydrates 9.2 13.3

ash 17.3 34.3

FAME %a (Inventure) 12.9 18.9

aFAME/total dry weight.
doi:10.1371/journal.pone.0030901.t005
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the start of mating [35] allow the use of plasmids from the same

incompatibility group or that carry the same selectable markers.

Transposon mutagenesis is a powerful tool for gene discovery.

As in the heterocystous and unicellular cyanobacterial strains

Anabaena variabilis ATCC 29413 and S. elongatus [36], Tn5-692 is

capable of transposition in Leptolyngbya BL0902. The high

frequency of stable antibiotic-resistant colonies indicate that

transposon mutagenesis will be a useful method for identifying

new genes in Leptolyngbya BL0902 that are involved in traits related

to large-scale growth, such as growth rate in open ponds and

resistance to predators and pathogens. Gene discovery in

Leptolyngbya BL0902 will be enhanced by the availability of a

complete genome sequence, which is underway. Application of

these genetic tools can lead to rapid strain modifications for

improved growth properties, and the production of biomass and

desired molecules such as renewable biofuels. Leptolyngbya species

are not generally known to produce toxins, however there is a

report of a toxin-related gene in a marine Leptolyngbya strain [37].

Identification and targeted inactivation of toxin genes would be

another obvious goal for engineered strain improvement. Our

work also provides a basis for developing gene transfer methods

and genetic engineering tools for new strains of cyanobacteria that

possess desirable characteristics for growth in a variety of different

conditions and geographic locations.

Materials and Methods

Ethics Statement
This research involved field studies of algal strains grown in

outdoor ponds at Carbon Capture Corporation’ Algae Research

Center in Imperial Valley, California, which was leased by

Biolight Harvesting, Inc. during the field studies described in this

work. No specific permits were required for the described field

studies, which were performed at a leased commercial facility, and

which did not involve endangered or protected species.

Strain isolation
Plasmids and strains related to this work are listed in Table 8.

Leptolyngbya BL0902 was isolated from an open pond at the Carbon

Capture Corporation Algae Research Center in Imperial Valley,

CA. A sample of the pond water was serially diluted and incubated

in 96 well plates at 30uC under 100-mmol photons m22 s21

constant light in BG-11 or Zarrouk medium. Unialgal wells were

subcultured and, following visual examination, the best-growing

non-redundant cultures were chosen as representatives of the

strains present in the open ponds. Leptolyngbya BL0902 was one of

the isolates. An axenic culture of Leptolyngbya BL0902 was obtained

by picking isolated and ‘‘lean’’filaments under a dissecting

microscope and repeatedly streaking on agar-solidified BG-11

and BG-11 supplemented with 0.04% (wt/vol) glucose and 5%

(vol/vol) LB (Lennox broth) (BG-11 Omni medium) followed by

repeated serial dilution of the culture in liquid BG-11. To verify

that the strain was axenic, cloned isolates were inoculated into 4

different solid and liquid media: (1) BG-11 Omni medium, (2) BG-

Table 6. Antibiotic sensitivity of Leptolyngbya BL0902.

Antibiotic

61 final
concentration
(mg/ml) Serial dilutions of the antibiotic

61/4 61/2 61 62 64

Liquid Plate Liquid Plate Liquid Plate Liquid Plate Liquid Plate

Chloramphenicol (Cm) 7.5 2 2 2 2 2 2 2 - 2 2

Erythromycin (Em) 20 2 2 2 2 2 2 2 2 2 2

G418 10 nd + + + nd +/2 nd +/2 nd 2

Gentamicin (Gm) 2 + + + + 2 +/2 2 +/2 2 2

Kanamycin (Km) 5 + + + + + + +/2 +/2 2 2

Neomycin (Nm) 25 2 +/2 2 +/2 2 2 2 2 2 2

Spectinomycin (Sm) 2 2 nd 2 nd 2 nd 2 nd 2 nd

Streptomycin (Sp) 2 2 nd 2 nd 2 nd 2 nd 2 nd

Sp+Sm 2 each 2 2 2 2 2 2 2 2 2 2

+, robust growth; +/2, some growth; 2, no significant growth; nd, not determined; 61 final concentration corresponds to an antibiotic concentration commonly used
for model strains Anabaena sp. PCC 7120 and Synechococcus elongatus PCC 7942.
doi:10.1371/journal.pone.0030901.t006

Figure 3. Fatty acid profiles of A. maxima CS-328, Leptolyngbya
BL0902, and A. platensis BL0909.
doi:10.1371/journal.pone.0030901.g003
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11 supplemented with 0.01% (wt/vol) glucose, yeast extract

(Difco), and Bacto-Peptone (Difco), (3) Gram-negative broth

(GNB) medium (Difco), and (4) LB. Solid and liquid cultures

were incubated at room temperature, 30uC, and 37uC in the dark.

If no growth of heterotrophic bacteria was observed under any of

the conditions after incubation for 1 month, the cultures were

judged axenic. The isolates were also checked for contamination

by differential interference contrast (DIC) and fluorescence

microscopy after being stained with DAPI (49,6-diamidino-2-

phenylindole) at 10 mg ml21. Strains were stored at 280uC in

medium supplemented with 8% DMSO.

Microscopy, morphological description, and
identification

Bright field, DIC, and phase contrast photomicroscopy were

carried out with a Zeiss Axioskop microscope equipped with Plan-

Neofluar 40x/0.75 and 100x/1.30 objectives and a SPOT RT3

25.4 2 Mp Slider camera. DIC and fluorescence microscopy were

carried out and images were captured on a Delta Vision (Applied

Precision, Inc.) microscope system composed of an Olympus IX71

inverted microscope equipped with an Olympus UPlanSApo

1006/1.40 objective and a CoolSNAP HQ2/ICX285 camera.

Tetramethylrhodamine isothiocyanate (TRITC) filters (S555/25

Figure 4. Photomicrographs of wild-type Leptolyngbya BL0902 (a, b, and c) and a strain of Leptolyngbya BL0902 harboring
pAM4418-yemGFP expressing the yemGFP gene (d, e, and f). (a, d) Differential interference contrast (DIC); (b, e) DIC and green fluorescence; (c,
f) Chlorophyll (red) and green fluorescence. Scale bar, 10 mm.
doi:10.1371/journal.pone.0030901.g004

Table 7. Comparison of conjugal transfer efficiencies in Leptolyngbya BL0902 mating experiments.

Exp. E. coli cargo strain E. coli conjugal strain Mating type Efficiency (Colonies/CFU)*

1 AM4413 (pAM4413), Spr Smr AM4416 (pRK2013), Kmr Triparental 0.03160.011

2 AM4413 (pAM4413), Spr Smr AM4415 (pRL443), Apr Tcr Triparental 0.02960.011

3 AM4417 (pAM4413, pRL623), Cmr Spr Smr AM4416 (pRK2013), Kmr Triparental 0.06360.020

4 AM4417 (pAM4413, pRL623), Cmr Spr Smr AM4415 (pRL443), Apr Tcr Triparental 0.06360.005

5 AM4414 (pAM4413, pRL623, pRL443), Cmr

Spr Smr Apr Tcr
Biparental, positive control 0.06060.026

6 pAM4413 (pAM4413), Spr Smr Biparental, negative control 0.00060.000

*Mean6S.D. (N = 3).
doi:10.1371/journal.pone.0030901.t007
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Table 8. Plasmids and strains.

Strain or plasmid Derivation and/or relevant characteristic Source or reference

Plasmids

pAM2255 Expression vector carrying a trc (IPTG inducible) promoter, Apr H. Iwasaki, [70]

pAM4413 pRL1383a vector carrying the yemGFP open reading frame downstream of trc
constitutive promoter, Spr Smr

This study

pAM4418 Conjugal destination vector pRL1383a carrying an IPTG inducible trc promoter upstream
of a Gateway recombination cassette, Spr Smr Cmr

This study

pAM4418-yemGFP Expression plasmid resulting from a Gateway LR recombination reaction of
pENTR-SD-yemGFP and pAM4418, Spr Smr

This study

pDEST_M3 Gateway destination vector optimized for Synechococcus elongatus PCC 7942 and carries
lacIq and trc promoter upstream of a recombination cassette. Apr Kmr Cmr

This study

pENTR-SD/D-TOPO Gateway entry vector with Shine-Dalgarno sequence; Kmr Invitrogen

pENTR-SD-yemGFP pENTR-SD/D-TOPO carrying the yemGFP open reading frame, Kmr This study

pEXP_1ax-yemGFP Expression vector carrying yemGFP downstream of an IPTG inducible promoter, Spr Smr Cmr This study

pJS151 Expression plasmid containing yemGFP, a GFP allele with F64L, S65T, and A206K mutations
and that has been codon-optimized for expression in yeast. The first two mutations
correspond to mut1GFP [71], and the third mutation interferes with GFP dimerization [72]

J. Hasty

pRK2013 Conjugal plasmid, derivative of RK2, Kmr J. Meeks, [34,53]

pRL443 Conjugal plasmid, Kms derivative of RP4, Apr Tcr [25]

pRL623 Helper plasmid carrying MobColK and methylase genes M.AvaI, M.Eco47II, M.EcoT22I, Cmr [25]

pRL692 Transposon mutagenesis plasmid carrying the mobile element Tn5-692 that
contains a pMB1 oriV, Spr Smr Emr

(GenBank Accession
No. AF424805) [36]

pRL1383a Mobilizable, broad host range plasmid derived from RSF1010, Spr Smr (GenBank Accession
No. AF403426) [54]

E. coli strains

DH5a Cloning host Gibco BRL

DH10B Cloning host Gibco BRL

One Shot ccdB SurvivalTM

(T1R)
Cloning host Invitrogen

One Shot TOP10 Cloning host Invitrogen

AM1358 DH10B harboring pRL623, Cmr [52]

AM1359 DH10B harboring pRL623 and pRL443, Cmr Apr Tcr [73]

AM4338 AM1359 harboring pRL1383a, Cmr Apr Tcr Spr Smr This study

AM4353 AM1359 harboring pRL692, Cmr Apr Tcr Spr Smr Emr This study

AM4389 DH10B harboring pENTR-SD-yemGFP, Kmr This study

AM4413 DH10B harboring pAM4413, Spr Smr This study

AM4414 AM1359 harboring pAM4413, Cmr Apr Tcr Spr Smr This study

AM4415 DH10B harboring pRL443, Apr Tcr This study

AM4416 DH10B harboring pRK2013, Kmr This study

AM4417 AM1358 harboring pAM4413, Cmr Spr Smr This study

AM4503 One Shot ccdB SurvivalTM harboring pDEST_M3, Kmr Apr Cmr This study

AM4517 DH5a harboring pAM4418-yemGFP, Spr Smr This study

Cyanobacterial strains

BL0902 Wild type This study

BL0909 Wild type This study

CS-328 Wild type D. Bryant

PCC 7120 Wild type Laboratory collection

PCC 7942 (AMC006) Wild type Laboratory collection

doi:10.1371/journal.pone.0030901.t008
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excitation and S630/60 emission) were used to image autofluo-

rescence of photosynthetic pigments, and GFP filters (S484/16

excitation and S515/30 emission) were used to image GFP

fluorescence. Image acquisition, deconvolution, and analysis (cell

measurements) were performed using Resolve3D softWoRx-

Acquire (Version 4.0.0) and Adobe Photoshop CS4.

Morphological description and identification were based on the

taxonomic work of Komárek and Anagnostidis [38].

Molecular identification
PCR amplification of the 16S rRNA gene plus the internal

transcribed spacer (ITS) between the 16S rRNA gene and the 23S

rRNA gene was carried out from an isolated colony of Leptolyngbya

BL0902 using the primer pair 16S27F/23S30R as described

previously [39]. Sequencing was carried out by GENEWIZ (La

Jolla, CA, USA) using the primers: 16S27F, 16S378F, 16S1490R,

and 23S30R [39]. Base calling and sequence assemblies were

made using the software package Phred/Phrap and Consed [40–

42].

The 16S rRNA gene sequence (E. coli positions: 101–1449) and

the ITS of Leptolyngbya BL0902 were initially analyzed by similarity

search using the basic local alignment search tool (BLAST)

software. The 16S rRNA gene sequence of Leptolyngbya BL0902

was added to the database of the ARB software package [43] and

aligned with the reference alignment ‘ILVA SSU Ref 100’[44].

For further analyses, 328 sequences covering the E. coli positions

110–1440 were chosen with the software mothur [45] as one

representative sequence per OTU (operational taxonomic unit),

which was defined as a group of sequences sharing at least 97.5%

identity. Ambiguously aligned positions were deleted from the

alignment using Gblocks 0.91b [46] with settings that allowed the

most relaxed selection of blocks. Phylogenetic trees were

constructed using four methods: (1) The Maximum Likelihood

of PHYML [47] using a SH-like branch support and based on a

GTR+I+G model using 4 categories of substitution rate; the

GTR+I+G model was determined to be the most appropriate to

our dataset according to the Perl script MrAIC (version 1.4.3,

Evolutionary Biology Centre, Uppsala University, Sweden

[http://www.abc.se/̃nylander/mraic/mraic.html]); the propor-

tion of invariant sites and gamma distribution parameter were

estimated by PHYML from the dataset. (2) The Wagner

parsimony of DNAPARS as implemented in PHYLIP 3.69 [48]

with the jumble option set to 10 and global rearrangements that

involved the construction of 4800 trees. (3) The Bayesian Markov

Chain Monte Carlo method as implemented in BEAST [49] based

on a GTR+I+G model using 4 categories of substitution rate

(ChainLength = 1.106, LogEvery = 100). (4) The Neighbour join-

ing method on a Jukes and Cantor distances matrix as

implemented in PHYLIP with a bootstrap analysis involving the

construction of 1000 trees. Related sequences sharing more than

95% similarity with Leptolyngbya BL0902 not included in the above-

mentioned selection were incorporated in Figure 2 as a subtree

(boxed) built according to the first method afore mentioned.

Characterization of growth traits
Ranges of tolerances for temperature, salinity, pH, light

intensity, and urea concentration were determined for Leptolyngbya

BL0902 and compared with 40 other cyanobacterial strains (data

not shown) including two strains of Arthrospira, A. platensis BL0909

and A. maxima CS-328. Traits were assessed in 6- or 24-well plates

containing liquid BG-11 or BG-11 supplemented with 20 mM

NaHCO3 for Arthrospira spp. Unless temperature or light intensity

was being investigated, cultures were maintained at 30uC under

continuous light with an intensity of 125 mmol photons m22 s21 as

measured with a QSL-100 Quantum light meter (Biospherical

Instruments, Inc.). The temperature effect on growth was

evaluated at 10uC, 22uC, 30uC, and 40uC, and the effect of light

intensity was evaluated at 15, 125, 250, and 500 mmol photons

m22 s21. To assess growth at various NaCl concentrations, BG-11

medium containing 20 mM HEPES (pH 8.0) was adjusted to final

concentrations of 0.1, 0.25, 0.5, 1, and 2 M NaCl. The influence

of pH on growth was investigated with culture media adjusted to

pH 8.0 with 10 mM HEPES, pH 9.0 and 10.0 with 10 mM

CHES, and pH 11.0 with 10 mM CAPS. Unbuffered BG-11

(pH,7.5) was used as a control. Tolerance to urea was determined

by addition of urea to final concentrations of 8, 16.7, 32, 64, and

100 mM. All experiments included control BG-11 samples.

Cultures were incubated for 2 weeks except for growth at 10uC,

for which plates were incubated for up to one month. Growth was

determined by visual assessment.

The doubling time of Leptolyngbya BL0902 was measured and

compared to A. platensis BL0909 and A. maxima CS-328 under both

laboratory and outdoor growth conditions. Laboratory cultures

were grown in 100 ml Zarrouk medium in 250 ml flasks on orbital

shakers illuminated with 100 mmol photons m22 s21 in 12:12 h

light:dark and 35:25uC temperature cycles. Optical densities at

750 nm were used to determine doubling times. Leptolyngbya

BL0902 cultures were also grown in outdoor raceway ponds of an

algae farm located in the Imperial Valley, CA, USA for more than

3 months continuously during the summer of 2009. The biggest

ponds were about 1.2 acres and 15 cm deep, with a paddle wheel-

driven flow speed of about 9 m/min (Fig. 1e). Daily average air

Figure 5. PCR assays showing integration of the Tn5-692
transposon into the chromosome of Leptolyngbya BL0902.
(lanes 1, 2, 3) Transconjugant Leptolyngbya BL0902 clones, (lane 4) E.
coli strain AM4353 harboring pRL692, (lane 5) pRL692 DNA, (lane 6) WT
Leptolyngbya BL0902, (lane 7) no template DNA, (lane M) 100-bp ladder
size marker. Primer pairs used to amplify the plasmid backbone (left)
and the Tn5-692 transposon (right) are shown at the bottom.
doi:10.1371/journal.pone.0030901.g005

Table 9. Primers.

Primer name Sequence

lacIq_F (EcoRI) 59-GAGTCAAGAATTCGTGGTGAATGTGAAACC-39

pRL692-2118F 59-TACCGATACAACTACTGGTGAGGA-39

pRL692-2418R 59TATCTCAGCGATCTGTCTATTTCG-39

pRL692-6976F 59-GTACTTACAGCTCGAAGTGCCTCT-39

pRL692-7350R 59-CTATCAAGGTGTACTGCCTTCCAG-39

rrnB_R (AvrII) 59-AAATAACCTAGGGAGTTTGTAGAAACGCAAAAAG-39

yemGFP_F 59-CACCATGTCTAAAGGTGAAGAATTATTCACTG-39

yemGFP_R 59-TTATTTGTACAATTCATCCATACCAT-39

doi:10.1371/journal.pone.0030901.t009
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temperatures in the Imperial Valley during the summer of 2009

(June 1 - September 30) were between 25.6uC and 40.8uC, with

the lowest and highest temperatures being 16.6uC and 46.6uC,

respectively. During this period, there was between 12 and 14 h of

daylight with no significant precipitation and little to no cloud

cover. Cyanobacterial filaments were harvested using a sloped

50 mm vibrating screen (Fig. 1f). The slurry from the screen was

rinsed with fresh water, dewatered using the vibrating screen, and

then spread on a cement slab to dry for two days.

Heterotrophic growth
Leptolyngbya BL0902 was tested for heterotrophic growth with

glycerol and 8 different sugars: glucose, fructose, sucrose, lactose,

galactose, arabinose, maltose, and mannose. To suppress growth

of bacterial contaminants, these experiments were performed with

a Leptolyngbya BL0902 strain containing pRL1383a, and 2 mg/ml

each of spectinomycin and streptomycin were added to the growth

media. The strain was incubated in the presence of glycerol or

each of the 8 sugars at 10 mM final concentration and either kept

in complete darkness for over 3 weeks or incubated in the light in

the presence of the photosynthesis inhibitor DCMU (3-(3,4-

dichlorophenyl)-1,1-dimethylurea) at 10 mM final concentration.

Cellular composition and fatty acid profile
Proportions of the major cellular components including protein,

carbohydrate, fat, ash, fiber, and moisture were determined by

New Jersey Feed Lab. Inventure Chemical determined the

percentage of fatty acid methyl ester (FAME) using 100 g dried

samples collected from an outdoor open pond.

To determine fatty acid profiles, lipids were isolated from cell

pellets using a modified Bligh-Dyer extraction [50] followed by

transesterification with sodium methoxide, and GC-MS analysis.

Samples (5 ml) of an exponentially growing culture (OD750 ,0.8)

were collected by centrifugation and resuspended in 0.8 ml of

H2O. 3 ml CHCl3:MeOH (1:2) was added and the vials were

vortexed for 1 min. After 1 h incubation at 60uC, 1 ml of CHCl3
was added and the vials were vortexed for 1 min. Then, 1 ml of

H2O was added, the vials were vortexed for 1 min and briefly

centrifuged. The lower layer was recovered into a fresh vial and

solvent was removed under a stream of nitrogen. 1 ml of 0.5 M

sodium methoxide in MeOH was used to resuspend the dried

crude lipid and the reaction was incubated for 30 min at room

temperature. The reaction was quenched with 1 ml of H2O and

the resulting methyl esters were recovered into 2 ml of hexane by

vortexing for 1 min. The hexane layer was clarified by

Figure 6. Map of the engineered shuttle plasmid pAM4418 carrying trpA terminator, lacIq promoter and gene, terminator from the
E. coli lpp gene, trc promoter, Gateway recombination cassette, T2 terminator from rrnB, and backbone of pRL1383a. Map drawn with
SeqBuilder (Lasergene 8, DNASTAR).
doi:10.1371/journal.pone.0030901.g006
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centrifugation and sampled for GCMS analysis. The extracts were

analyzed on an Agilent 6890N GC equipped with a DB-FFAP

column (30 m length, 0.25 mm ID, and 0.50 mm film thickness)

coupled to a 5973 inert mass selective detector (Agilent

Technologies, Inc.). Helium was used as the carrier gas with a

flow rate of 1.2 ml/min, and 1 ml was injected into the column

with a 50:1 split ratio. The column temperature was held at 100uC
for 5 min and then ramped at 10uC/min to 250uC and held for

10 min. The total run time was 30 min. Identification of the fatty

acids was based on retention times and fragmentation patterns of

standards.

Antibiotic sensitivity evaluation
The antibiotic sensitivity of Leptolyngbya BL0902 was evaluated

against a panel of antibiotics in BG-11 liquid culture media and on

25 mm nitrocellulose filters laid on BG-11 agar. The tested

antibiotic concentrations were J, K, 1, 2, and 4 times the

concentrations commonly used in our laboratory for the selection

of recombinant cyanobacterial strains: 5 mg/ml kanamycin (Km),

2 mg/ml gentamicin (Gm), 20 mg/ml erythromycin (Em), 7.5 mg/

ml chloramphenicol (Cm), 25 mg/ml neomycin (Nm), and 10 mg/

ml G418. 2 mg/ml each of streptomycin (Sp) and spectinomycin

(Sm) were used together for Spr/Smr strains to limit the

appearance of spontaneous resistant mutants.

Mating and conjugal transfer of plasmid DNA
Transformations of Leptolyngbya BL0902 through biparental and

triparental conjugations followed published protocols [25,51,52]

with minor modifications. Our standard biparental matings

involved the cyanobacterial strain Leptolyngbya BL0902 and an E.

coli strain (DH10B) that harbored the following three plasmids: (i)

the conjugal plasmid pRL443, an Apr Tcr Kms derivative of RP4

[51], or pRK2013, a Kmr plasmid containing the transfer genes of

RK2 cloned onto a ColE1 replicon [34,53], (ii) the ‘‘elper’’plasmid

pRL623, which carries the gene for MobColK and methylase genes

encoding M.AvaI, M.Eco47II, whose product methylates AvaII

sites, and M.EcoT22I, an isoschizomer of M.AvaIII [25], and (iii)

the cargo plasmid pRL1383a, pAM4413, or pRL692. Plasmid

pRL1383a (GenBank Accession No. AF403426) is a Spr Smr

derivative of RSF1010 [54] and pRL692 (GenBank Accession

No. AF424805) carries the Spr/Smr and Emr mobile element

Tn5-692 [36]. Triparental matings involved the strain BL0902

and two E. coli strains: a cargo strain carrying the cargo plasmid

with or without a helper plasmid and a conjugal strain carrying a

conjugal plasmid.

E. coli strains were grown in 3 ml LB with the appropriate

antibiotic(s) and incubated at 37uC overnight. Cells were harvested

from 2 ml of each E. coli culture by centrifugation and resuspended

in 2 ml fresh LB. This step was repeated twice to wash the cells.

After the third centrifugation, the cells were resuspended in 200 ml

BG-11. Five milliliters of a growing Leptolyngbya BL0902 culture

were harvested by centrifugation at low speed (4000 6 g) and

resuspended in 1 ml BG-11. The filaments were then fragmented

in a water bath sonicator for 5 to 15 min so that more than half of

the filaments were shorter than 5 cells. Fragmentation of filaments

is not essential for efficient conjugation but is required for

quantitative experiments. The cyanobacterial cells were collected

by centrifugation for 2 min and resuspended in 1 ml BG-11. The

cargo strain, the conjugal strain (for triparental mating), and

Leptolyngbya BL0902 were combined, pelleted by centrifugation,

and finally resuspended in 200 ml BG-11. The conjugation

mixture was incubated for about 1 h in low light at 30uC;

however this incubation step may be unnecessary and is possibly

even detrimental to conjugation efficiency. The cells were

collected by centrifugation, resuspended with a small volume of

BG-11, and then spread on sterile nitrocellulose filters laid on

BG211+5% (vol/vol) LB agar plates (mating plates). The mating

plates were incubated without antibiotic selection for 18 to 24 h in

low light at 30uC, and then the filters were transferred to BG-11

agar with 2 mg/ml each Sp and Sm. After incubation for 6 to 8

days, isolated transconjugant colonies were patched on fresh

selective BG-11 plates. Finally, cyanobacterial cells scraped from

grown patches were transferred to 100 ml of selective liquid BG-

11 in 250 ml flasks and grown at 27–30uC and 100 mmol photons

m22 s21.

For experiments to test conjugation efficiency the protocol was

modified slightly to allow better reproducibility for comparisons

between experiments. The E. coli strains were grown overnight in

3 ml LB containing appropriate antibiotic(s), and 2 ml of culture

were transferred to 25 or 50 ml LB plus antibiotic(s) and grown for

a few hours to an OD600 of 0.6 to 0.8. Each culture was then

diluted to an OD600 of 0.6, and for each mating, 2 ml samples

were washed twice with LB medium and resuspended in 0.2 ml

BG-11. For triparental matings, 2 ml of each of the two E. coli

strains were combined before resuspension in 0.2 ml BG-11. For

the recipient cells, a 100 ml BG-11 culture of Leptolyngbya BL0902

was grown to an OD750 of 0.7. Four aliquots of the culture

(approximately 25 ml each) were transferred to 50 ml conical

centrifugation tubes, and the filaments were fragmented by

sonication using a needle probe with ten 5-second pulses separated

by 5-second pauses at a power setting of 20%, which resulted in

short filaments of which about half were 3 or fewer cells in length.

The fragmented filaments were collected by centrifugation at 4000

6 g for 10 min and resuspended in 20 ml BG-11. Each mating

contained 1 ml of Leptolyngbya BL0902 concentrated cells and

0.2 ml of concentrated E. coli cells. For each mating, 7.5 and 30 ml

of the conjugation mixture, corresponding to about 36106 and

16107 short filaments (estimated microscopically with a hemocy-

tometer), respectively, were adjusted to 150 ml with BG-11, and

the cells were evenly spread on 90 mm nitrocellulose filters lying

on mating plates using about 2 g of sterilized glass beads (2 to

4 mm diameter). To determine the total number of CFU in each

conjugation mixture, 1 ml was serially diluted to 1024 and 1025,

and 150 ml of each dilution, corresponding to about 66102 and

66103 short filaments per ml, respectively, was plated and grown

in parallel with the conjugation experiments.

Construction of recombinant plasmids based on the
pRL1383a backbone

The pRL1383a backbone includes the following modules:

multiple cloning site, SP6 promoter from pBAC108L (GenBank

U51114), aadA promoter and gene conferring Spr Smr, rrnC

terminator from Lorist6 (GenBank X98450), origin of replication,

mob genes, rep genes, trpA terminator from Lorist6 (GenBank

X98450), and T7 promoter from pBAC108L (GenBank U51114).

To construct pAM4413, a PCR fragment that included a lacIq

gene with an S289L mutation (pAM2255) and a trc promoter with

an R80I mutation (pAM2255), a yemGFP (yeast-enhanced

monomeric green fluorescent protein) gene with F64L, S65T,

and A206K mutations, and a rrnB transcriptional terminator

(pAM2255) was amplified from the pEXP_1ax-yemGFP plasmid

with the primers laclq_F and rrnB_R (Table 9) carrying the

restriction sites EcoRI and AvrII, respectively. The PCR fragment

was gel purified and ligated into pRL1383a to replace the

fragment between the EcoRI and AvrII restriction sites.

The destination vector pAM4418 was constructed by ligation of

a pDEST_M3 fragment and pRL1383a. The pDEST_M3

fragment included the following modules: trpA terminator [55],
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lacIq promoter with 235 to +1 region replaced by the conII

synthetic promoter [56], lacIq gene (synthetic ORF codon

optimized for Synechococcus elongatus PCC 7492), Ipp transcriptional

terminator [57], trc promoter (ends defined by the overlap between

pTrcHis2-A for the 59 end and pAM2255 for the 39 end), Gateway

cassette reading frame A comprising cat (chloramphenicol

resistance) and ccdB (DNA gyrase toxin [58]) genes flanked by

attR1 and attR2 recombination sites (Invitrogen), and the rrnB T2

terminator [59]. The pDEST_M3 fragment was isolated with

NaeI and HindIII, treated with the T4 polymerase to generate

blunt ends, and gel purified by electrophoresis. pRL1383a was

linearized with HincII and dephosphorylated with CIP to prevent

self-ligation. The ligation was transformed into One Shot ccdB

Survival T1 Phage-Resistant (T1R) chemically competent E. coli

(Invitrogen).

To construct pAM4418-based expression plasmids, the gene of

interest needs to be amplified by PCR using a forward primer

carrying a CACC motif at the 59 end. The resulting PCR product

then can be cloned into a pENTR-SD/D-TOPO vector

(Invitrogen) and subsequently used in an LR recombination

reaction (Gateway Technology, Invitrogen) with the pAM4418

vector. To test the pAM4418 vector, the yemGFP gene was

amplified by PCR from pJS151 using the primer pair yemGFP_F/

yemGFP_R and cloned as described above to make the plasmid

pAM4418-yemGFP.

GenElute HP Plasmid Miniprep Kits (Sigma-Aldrich) were used

for isolation of plasmid DNA from E. coli strains. Plasmids were

digested with restriction endonucleases from New England

BioLabs or other suppliers in buffers recommended by the

suppliers. All plasmid constructs were first screened by restriction

analyses, and one positive clone was confirmed by DNA

sequencing. Sequences were deposited in GenBank under the

following accession numbers: JN376076-JN376080.

IPTG induction of the trc promoter in pAM4418-yemGFP
Leptolyngbya BL0902 wild type and derivatives harboring the

plasmid pAM4418-yemGFP or only pAM4418 were grown in

BG-11 liquid medium, diluted to an OD750 of 0.15, and grown as

25 ml samples in 125 ml flasks on a shaker under standard

conditions. After two days, the cultures were supplemented with

IPTG to final concentrations of 0.1, 0.2, 0.5, 1, 2, 5, and 10 mM

for pAM4418-yemGFP and 1 mM for the control strains. The

emission intensities of yemGFP from samples of the cultures were

measured with a Tecan Infinite(R) M200 plate reader (TECAN)

after induction for 0, 1.5, 3, 6, 12, 21, 24, 27, and 48 h. The

excitation wavelength was set at 488 nm, and the emission was

measured at 518 nm.
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27. Anagnostidis K, Komárek J (1988) Modern approach to the classification system
of cyanophytes. 3 - Oscillatoriales. Arch Hydrobiol, Suppl 80 50–53: 327–472.

28. Sheng J, Vannela R, Rittmann BE (2011) Evaluation of methods to extract and

quantify lipids from Synechocystis PCC 6803. Bioresour Technol 102: 1697–1703.

29. Shestakov S, Khyen N (1970) Evidence for genetic transformation in blue-green
alga Anacystis nidulans. Mol Gen Genet 107: 372–375.

30. Wolk CP, Vonshak A, Kehoe P, Elhai J (1984) Construction of shuttle vectors

capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous
cyanobacteria. Proc Natl Acad Sci U S A 81: 1561–1565.

31. Tsinoremas NF, Kutach AK, Strayer CA, Golden SS (1994) Efficient gene

transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies

conjugation and chromosomal recombination. J Bacteriol 176: 6764–6768.

Gene Transfer in Leptolyngbya BL0902

PLoS ONE | www.plosone.org 14 January 2012 | Volume 7 | Issue 1 | e30901



32. Thomas CM, Smith CA (1987) Incompatibility group P plasmids: genetics,

evolution, and use in genetic manipulation. Annu Rev Microbiol 41: 77–101.

33. Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the

desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol 183:
2298–2305.

34. Cohen MF, Wallis JG, Campbell EL, Meeks JC (1994) Transposon mutagenesis
of Nostoc sp. strain ATCC 29133, a filamentous cyanobacterium with multiple

cellular differentiation alternatives. Microbiology 140: 3233–3240.

35. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA

cloning system for gram-negative bacteria: construction of a gene bank of
Rhizobium meliloti. Proc Natl Acad Sci U S A 77: 7347–7351.

36. Koksharova OA, Wolk CP (2002) A novel gene that bears a DnaJ motif

influences cyanobacterial cell division. J Bacteriol 184: 5524–5528.

37. Frazao B, Martins R, Vasconcelos V (2010) Are known cyanotoxins involved in

the toxicity of picoplanktonic and filamentous North Atlantic marine
cyanobacteria? Mar Drugs 8: 1908–1919.
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