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SUMMARY

Ninety percent of Americans consume less than the estimated average requirements of dietary

vitamin E (vitE). Severe vitE deficiency due to genetic mutations in the tocopherol transfer protein

(TTPA) in humans results in ataxia with vitE deficiency (AVED), with proprioceptive deficits and so-

matosensory degeneration arising from dorsal root ganglia neurons (DRGNs). Single-cell RNA-

sequencing of DRGNswas performed in Ttpa�/�mice, an establishedmodel of AVED. In stark contrast

to expected changes in proprioceptive neurons, Ttpa�/� DRGNs showed marked upregulation of

voltage-gated Ca2+ and K+ channels in mechanosensitive, tyrosine-hydroxylase positive (TH+)

DRGNs. The ensuing significant conductance changes resulted in reduced excitability in mechanosen-

sitive Ttpa�/� DRGNs. A highly supplemented vitE diet (600 mg dl-a-tocopheryl acetate/kg diet)

prevented the cellular and molecular alterations and improved mechanosensation. VitE deficiency

profoundly alters the molecular signature and functional properties of mechanosensitive TH+

DRGN, representing an intriguing shift of the prevailing paradigm from proprioception to mechanical

sensation.

INTRODUCTION

A mere 10% of the adult American population consume the estimated average requirements (EARs) of

vitamin E (vitE) (�15 mg/day a-tocopherol [a-TOH]) (Fulgoni et al., 2011; Institute of Medicine, 2000; Maras

et al., 2004). Severe vitE deficiency stemming from liver diseases, extensive intestinal resections, and the

inherited disease of vitE deficiency termed ‘‘ataxia with vitE deficiency’’ (AVED) result in profound ataxia

(Muller, 2010). Prevailing functions of vitE have been ascribed to the maintenance of typical neurologic

structure and function. Despite identification of vitE as an essential food nutrient (Brigelius-Flohe and

Traber, 1999), the molecular, cellular, and functional mechanisms of vitE remain debated. There is exten-

sive evidence supporting the role of vitE, specifically a-tocopherol (a-TOH), as a lipid-soluble antioxidant

in vitro (Niki, 2014) and in vivo (Choi et al., 2015; McDougall et al., 2017), and this has been suggested to be

the primary functional mechanism of biologic activity (Traber and Atkinson, 2007). Besides this well-estab-

lished role as an inhibitor of lipid peroxidation, other non-antioxidant properties of a-TOH have been iden-

tified, including transcriptional regulation and cell signaling (Azzi, 2018).

AVED results from mutations in the a-tocopherol transfer protein gene (TTPA) (Gotoda et al., 1995; Yo-

kota et al., 1996). Phenotypic variability is due the location of the genetic mutation within TTPA, the

amount of vitE in the daily diet, and the time of initiation and dosage of vitE supplementation (Bellayou

et al., 2009; Di Donato et al., 2010). Most patients demonstrate symptoms of AVED between 4 and 18

years of age (Cavalier et al., 1998; Gotoda et al., 1995; Schuelke, 1993). Patients with AVED exhibit ataxia,

areflexia, decreased fine touch, and vibration discrimination (Gotoda et al., 1995; Schuelke, 1993). Histo-

logic hallmarks of AVED include axonal swellings within the dorsal column medial lemniscus pathway, the

sensory pathway that conveys sensations of fine touch vibration, two-point discrimination, and proprio-

ception from the skin and joints. Of note, lesions in the gracile system of the medulla oblongata are also

features of physiologic neuroaxonal aging across many species (Bridge et al., 2009). Chronic vitE, specif-

ically a-TOH, deficiency slowly accelerates brain lipid peroxidation and results in cognitive impairment in

mice (Fukui et al., 2015) and zebrafish (McDougall et al., 2017). These deficits can be partially restored by

vitE supplementation, in the form of a-TOH. Indeed, early a-TOH supplementation in patients with AVED

may suppress severe disease symptoms by unknown mechanisms (Aparicio et al., 2001).
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Ttpa�/� mice represent an accepted model that recapitulates the phenotype of AVED, with ataxia and his-

tologic lesions, including reduction of myelinated fibers in the gracile fasciculus and chromatolysis of neu-

rons within the nucleus gracilis, as early as 6 months of age (Finno et al., 2018). By 17 months of age, dimin-

ished dendritic branching of Purkinje neurons within the cerebellum is evident (Ulatowski et al., 2014). The

affected somatosensory tracts originate in the dorsal root ganglia (DRG), with apoptosis of DRG neurons

(DRGNs) evident by 12 months of age (Finno et al., 2018). Therefore, it has been suggested that the most

pronounced neurologic deficit in Ttpa�/�mice is loss of proprioception. This proprioceptive loss and asso-

ciated pathology in the spinal cord and cerebellum can be prevented by supplementation of Ttpa�/� mice

at weaning with 17x the amount of dl-a-tocopheryl acetate (600 mg/kg feed) (Finno et al., 2018). These

studies demonstrate that the interaction of genotype, dietary vitE concentration, and time point in post-

natal development are crucial to the development of the neurologic phenotype.

To investigate the underlying mechanisms of functional alterations with vitE deficiency, single-cell RNA-

sequencing (scRNA-seq) was performed within the DRG of Ttpa�/� mice. We hypothesized that the

most profound transcriptional dysregulation with vitE deficiency would occur in large-diameter myelinated

proprioceptive DRGNs. Therefore, we sought to (1) define the transcriptional dysregulation within DRGN

subpopulations in Ttpa�/�mice and (2) identify alterations inmembrane electrical properties within the tar-

geted DRGN subpopulations of Ttpa�/� mice.
RESULTS

Single-Cell RNA-Sequencing Defines Specific DRGN Subpopulations

To determine the molecular mechanisms leading to sensory deficits in vitE-deficient DRGNs, scRNA-seq

was performed on neuronal cells collected from the DRG (between cervical [C1] and lumbar [L6] vertebrae)

of mice in three experimental groups: (1) Ttpa+/+ on a basal vitE diet (vitE+; WT), (2) Ttpa�/� on vitE-defi-

cient diet (DEF), and (3) Ttpa�/� on vitE-supplemented diet (SUPP) at 6 months of age (Table S1; see

Methods for dietary vitE levels). We have previously identified clinicohistologic evidence of the ataxic

phenotype by 6 months of age and completed whole tissue transcriptomic profiling of spinal cord and cer-

ebellum at this time point (Finno et al., 2018). In that study, we identified only minor differences between

Ttpa�/� mice maintained on a basal diet (i.e. 35 mg of dl-a-tocopheryl acetate/kg feed) and Ttpa�/� mice

on a vitE-deficient diet (DEF; <10 mg of dl-a-tocopheryl acetate/kg feed). Instead, a highly supplemented

vitE diet (SUPP; 600 mg of dl-a-tocopheryl acetate/kg feed) was required to prevent the AVED phenotype.

Therefore, in the current study, we focused our comparisons on DEF vs. WT and DEF vs. SUPP mice. Con-

trasts included (1) WT vs. DEF, to determine gene expression changes associated with severe vitE defi-

ciency in DRGNs; (2) SUPP vs. DEF to determine the biologic mechanisms whereby the clinicopathologic

AVED phenotype is prevented; and (3) SUPP vs. WT to identify any remaining dysregulated pathways

following high-dose vitE supplementation in Ttpa�/� mice. As high-dose vitE supplementation does not

restore brain a-TOH to WT concentrations (Finno et al., 2018; Yokota et al., 2001), we postulated that

any gene dysregulation within the SUPP vs. WT group may provide insight into this phenomenon.

ScRNA-seq was performed on an average of 3,614 G 470 DRGN from two replicate mice per group, with a

total of 382 million (M) reads generated (17,862G 2,625 reads/cell). Approximately 66.5% of reads mapped

to the murine transcriptome, similar to previous reports (Usoskin et al., 2015), and an average of 1,788 G

283 genes detected per cell, with no difference between experimental groups (Figure S1).

Unsupervised single-cell transcriptome profiling identified 14 initial subpopulations in all mice, using gene

profiles as previously reported (Figures 1A and S2A) (Usoskin et al., 2015; Li et al., 2016). Based on further

evaluation of subpopulations 0 and 2, both clusters appeared to contain peptidergic neurons and were,

therefore, merged into cluster 0.2 (Figure S2B). The top transcripts in each subpopulation are provided

in Table S2. A t-distributed stochastic neighbor embedding (t-SNE) plot identified a small number of

neuronal cells that could not be classified based on previously reported gene profiles (Figure S2A). This

cluster was labeled as ‘‘Unassigned.’’ Each DRG subpopulation set contained differentially expressed

genes characteristic for that cluster. These clusters were classified as PEP1, PEP2, NP1, NP2, NP2-2,

NP3, NF1, NF2, NF3, NF4-5, TH1, and TH2 as previously described (Usoskin et al., 2015) and ‘‘Unassigned’’

for the unassigned cluster (Table S2). There were no significant differences in cell count per neuronal cluster

across experimental groups (p> 0.05 in each subpopulation) (Table S1). A distinct population of microglial

cells based on previously reported markers was not identified (Figure 1A). Although previous studies have

identified outliers or cells with unresolved identity, we further evaluated the ‘‘Unassigned’’ DRGN
iScience 21, 720–735, November 22, 2019 721



Figure 1. An Overall Increase in the Number of Differentially Expressed Transcripts across All DRGN

Subpopulations with a-TOH Deficiency

(A) A t-distributed stochastic neighbor embedding (t-SNE) plot of merged datasets of the six experimental mice to define

neuronal subpopulations clusters. Thirteen clusters were identified based on previously reported gene expression

profiles (Li et al., 2016; Usoskin et al., 2015). The ‘‘NP2-2’’ subgroup contained some genes representative of the NP2

cluster but was distinct from the NP2 cluster and has been previously characterized (Usoskin et al., 2015; Li et al., 2016).

(B) An increasing number of significantly (PFDR<0.05) differentially expressed transcripts (DETs) was identified in each

DRGN subpopulation with increasing contrasts of vitE deficiency (i.e. SUPP vs. DEF > WT vs. DEF > SUPP vs. WT).

(C and D) (C) The two most commonly dysregulated transcripts across DRGN subpopulations were carbonic anhydrase 8

(Car8), which was significantly downregulated in 10/13 DRG clusters with vitE deficiency (SUPP vs. DEF), and (D) the

lineage-specific transcription factor Runx3, which was significantly upregulated in 10/13 DRG clusters with vitE deficiency

(SUPP vs. DEF). p values were adjusted by a false discovery rate of 0.05 and log-transformed. Significance was set at

PFDR<0.05, corresponding to a –log Padjusted>1.3 (red line). NF = neurofilament, NP = non-peptidergic, PEP = peptidergic,

TH = tyrosine hydroxylase, UNKNOWN = unknown cluster, n = 2 mice per group with ~3,600 cells/mouse profiled.
subpopulation using the top 15 transcripts defining this cluster (Figure S2A, Table S2). Two of themost spe-

cific transcripts representing this cluster, forkhead box protein transcription factor 2 (Foxp2) and olfacto-

medin 3 (Olfm3), have been previously identified in DRG, primarily in postnatal mice through P14 (Jia

et al., 2018; Nakaya et al., 2012). However, these transcripts are also present in adult brain (Ferland

et al., 2003; Nakaya et al., 2012; Saunders et al., 2018). Therefore, this subset of neurons most likely repre-

sents the small number of remaining developmental neurons undergoing axonal growth.

An Increasing Number of Dysregulated Transcripts with Increasing vitE Deficiency

Within each neuronal cluster, dysregulated transcripts were identified between WT vs. DEF, SUPP vs. WT,

and SUPP vs. DEF. For each cell subpopulation, at least two-fold dysregulated (i.e. up- or downregulated at

PFDR<0.05) transcripts were identified between vitE treatment groups (i.e. SUPP vs. DEF >> WT vs. DEF >

SUPP vs WT) (Figure 1B, Tables S3 andS4). The greatest degree of dysregulation in the SUPP vs. DEF group

was apparent in the NP1 and TH2 subpopulations (Figure 1B).

Top Dysregulated Transcripts across the Majority of DRG Subpopulations: Car8 and Runx3

WhenWT and SUPP were compared with the DEF groups, carbonic anhydrase 8 (Car8), encoding for a pro-

tein that inhibits inositol trisphosphate receptor 1 (IP3R1) (Zhuang et al., 2015), was significantly (PFDR<0.05)

downregulated in 10/13 DRG clusters (Figure 1C). In particular, Car8 was the top downregulated transcript
722 iScience 21, 720–735, November 22, 2019



Figure 2. Upregulation Intermediate Voltage-Gated Ca2+ and K+ Channels in TH+ DRGNs with vitE Deficiency

Heatmaps, plotted by –logPadjusted, comparing the degree of upregulation for R-type intermediate voltage-gated Ca2+,

Cacna1e, and Ca2+-activated K+ channel beta subunits channels, Kcnmb1 and Kcnmb2, in DRGN subpopulations with

vitE deficiency. Contrast A = SUPP vs. WT, contrast B = WT vs. DEF, contrast C = SUPP vs DEF. Cacna1e= Cav2.3

intermediate voltage-activated Ca2+ channel, Kcnmb = Potassium large conductance calcium-activated channel,

subfamily M, beta.
with vitE deficiency in the four neurofilament subgroups (NF1, NF2, NF3, and NF4/5). Car8 was downregu-

lated in these subgroups even in the SUPP vs. WT contrast (Figure 1C). The lineage-specific transcription

factor Runx3 was significantly (PFDR<0.05) upregulated in 10/13 DRG clusters when comparing WT and

SUPP vs. DEF groups, especially within NP3 and TH2 (Figure 1D). Even within the SUPP vs. WT contrast,

Runx3 remained significantly upregulated in 8/13 DRG subpopulations, including NP3 and TH2 (Figure 1D).

As Car8 is the primary inhibitor of IP3R1 (Hirasawa et al., 2007; Hirota et al., 2003) and transcription of Car8

was significantly downregulated with vitE deficiency, we postulated that IP3R1 signaling might be affected

by the level a-TOH supplementation. In DEF mice, a pronounced decrease in IP3R1 was apparent in TH+

DRGNs, whereas protein levels appeared increased in SUPP mice (Figure S3A). Similarly, Car8 was

increased in TH+ DRGNs in the SUPP group (Figure S3B).

Profound Upregulation of Voltage-Gated Ca2+ and K+ Channels in TH+ DRGNs

Modulation of Ca2+ channel activities mediate changes in neuronal plasticity and, when upregulated, promote

neurodegeneration (Chilton, 2006). Transcripts associated with both ligand-gated and voltage-gated Ca2+ and

K+ channels were evaluated across genotype and vitE diet groups in our scRNA-seq dataset (Table S5). When

comparing SUPP vs. DEF groups, of the voltage-activated Ca2+ channels expressed in DRGNs, intermediate-

voltage Cav2.3 (Cacna1e; TH1 PFDR = 1.51 x 10�8, TH2 PFDR = 1.29 x 10�11) channel was most notably upregu-

lated in TH+ DRGNs (Figure 2A). High-voltage-activated P-type Ca2+ channel, Cacna1a, was not significantly

altered in any DRGN subpopulation, whereas N-type Ca2+ channel, Cacna1b, was only upregulated in the

NP1 DRGN subpopulation of the SUPP vs. DEF groups (PFDR = 0.001) (Table S5). When evaluating K+ channel

transcripts significantly (PFDR< 0.05) upregulated in the SUPP vs. DEF groups, the most commonly affected

DRGN subpopulations for K+ voltage-gated channel transcript upregulation were TH+ (Table S5). In particular,

regulatory subunits of the large-conductance Ca2+-activated channel subfamily M (Kcnmb1; TH1 PFDR = 0.009,

TH2 PFDR = 1.68 x 10�4 andKcnmb2; TH1 PFDR = 0.017, TH2 PFDR = 5.20 x 10�5) were upregulated in TH+DRGNs

(Figure 2B). Although a few of the transcripts encoding voltage-gated K+ channels were upregulated in TH+

DRGNs, most transcripts in this family were upregulated in the non-peptidergic DRGNs (Table S5).

Increase in Cacna1e and Kcnmb2 with vitE Deficiency in TH+ DRG

To confirm that Cav2.3 (Cacna1e) and regulatory subunits Kcnmb1 and Kcnmb2 were indeed upregulated,

we further evaluated mRNA and protein levels of Cacna1e and Kcnmb2. In DEF mice, there was a
iScience 21, 720–735, November 22, 2019 723



Figure 3. Increase in Cacna1e and Kcnmb2 with vitE Deficiency in TH+ DRG

(A–D) Green: Th, Blue: DAPI nuclei, Red: Cacna1e [(A) mRNA, (B) protein] and Kcnmb2 [(C) mRNA, (D) protein]. White box inset magnified in the last column.

Fluorescent immunohistochemistry from 4-month WT, DEF, and SUPP mice, n = 1–2 per group. Scale bars represent 10 mm (TH, Cacna1e, Kcnbm2, and

merge) and 3 mm (enlarged).

(E) Quantification of mRNA using RNAscope for Cacna1e and Kcnmb2. Mean G SD, N = 8 counts per experimental group, one-way ANOVA, or Kruskal-

Wallis. Scale bars represent 10 mm (TH, Cacna1e, Kcnbm2, and merge) and 3 mm (enlarged).

(F) Von Frey assay, demonstrating a significant increase in sensitivity (i.e. lower Dixon’s score) in the SUPP vs. DEF mice. Mean G SD, N = 8–22 per group,

one-way ANOVA, ****p< 0.0001, **p< 0.01, *p< 0.05.
pronounced increase in Cacna1e and Kcnmb2 in TH+ DRGNs at the level of both mRNA (Figures 3A, 3C,

and 3E) and respective proteins (Figures 3B and 3D).
Supplementation with High-Dose a-TOH Increased Mechanical Sensitivity in Ttpa�/� Mice

The von Frey filament assay was performed as previously described (Martinov et al., 2013). SUPP mice had

significantly increased mechanical sensitivity compared with DEF diet (Padjusted = 0.007, Figure 3F).
Altered Excitability of DEF Small-Diameter DRGNs

To understand the etiology and mechanisms of DRG neuronal responses, sensory deficits, and degenera-

tion in AVED as shown in Ttpa�/�mice (Finno et al., 2018; Yokota et al., 2001), we focused on the changes in

membrane electrical properties. First, we focused on identifying small-diameter mechanosensitive DRGNs.

We applied displacement-clamp at DRGN cell-bodies. Using a holding potential of �70 mV, mechanical

displacement of the small-diameter DRGN cell body evoked inward currents (Figure 4A, inset shows traces

from WT DRGN). The mechanically activated (MA) current (IMA) had amplitudes ranging from 75 to 500 pA

(n = 11; Figure 4A). The displacement-response relationships from data fromWT DRGNs were fitted with a

single Boltzmann function with half-maximal activation displacement (X1/2) and slope factor of 1.1G 0.1 mm

and 0.3 G 0.1 mm (n = 11; Figure 4A). Similar data from DEF DRGNs for X1/2 and slope factor were 1.5 G

0.1 mm and 0.4 G 0.1 mm (n = 7). Unpaired ttest comparison shows significant differences in the X1/2 (p =

0.016) but not the slope factor (p = 0.51) between the WT and DEF DRGNs. The rightward shift in the

displacement-response relations in the DEF DRGNs suggest a decrease in mechanical sensitivity.

Three functional classes of neurons were then assessed based on their evoked spike frequency adaptation

kinetics, defined as fast (eliciting 1–2 APs for �0.5-s suprathreshold current injection), medium (4–6 APs),

and slow (>10 APs) adapting neurons. We first compared WT with DEF DRGNs. On average, the input re-

sistances of the three classes of neurons in WT were �2-fold greater than the DEF neurons. Figures 4B and
724 iScience 21, 720–735, November 22, 2019



Figure 4. Membrane Properties of Small-Diameter Dorsal Root Ganglion Neurons (DRGNs) from WT and DEF

Mice

Current-clamp recordings were performed on DRGNs 6-month-old mice. Membrane input resistance (Ri) was determined

by evaluating membrane voltage changes in response to negative and positive current injection. The ohmic relations

were fitted with linear regression and the Ri derived from the slope.

(A) Representative traces of displacement-clamp currents recorded using CsCl/NMG-based pipette solution in response

to ~250-ms mechanical displacement steps of ~0.42 mm to WT small-diameter DRGN (shown as inset). DRGNs were held

at �70 mV. Summary data of displacement-response relationship of mechanically activated (MA) currents (IMA)

represented as the I/Imax or open channel probability (Po) against displacement (X) fitted with single Boltzmann function.

Data from WT DRGNs (shown in black symbols and fitted with sigmoidal curve in black) and the one-half maximum

displacements (X1/2) are 1.1G 0.1 mm and 0.3G 0.1 mm (n = 11). Data from DEF DRGNs (shown in blue symbols and fitted

with sigmoidal curve in blue) and the one-half maximum displacements (X1/2) are 1.5 G 0.1 mm and 0.4 G 0.1 mm (n = 7).

(B) Among the small-diameter neurons, there were three distinct classes: fast, medium, and slow adapting. Exemplary

plots from fast-adapting DRGNs from WT mice (shown in black, mean Ri in MU; 100 G 6; n = 15), and in DEF (shown in

blue, mean Ri in MU; 45 G 5; n = 17: p< 0.0001). The inset is an example of data used to generate the plots. For medium-

adapting neurons the Ri (in MW) were as follows: WT (306 G 23; n = 9) and DEF (162 G 29; n = 11: p = 0.0014). For slow-

adapting neurons the Ri were WT (626 G 47; n = 13) and DEF (395 G 38; n = 11: p = 0.0012).

(C) Brief (~5 ms) stepwise positive current was injected to elicit subthreshold (shown in different color codes) and

threshold depolarization (WT in black and DEF in blue). The threshold currents are indicated. The threshold voltage was

determined, using a dV/dt loop plot (inset, right).

(D and E) Typical voltage response from slow-adapting DRGNs recorded from WT and DEF mice.

(F and G) Action potentials generated using varying pulse durations from fast-adapting DRGNs in WT (F) and DEF (G)

mice.

(H) Plots of the relations between threshold potential and pulse duration inWT (in black) and DEF (in blue) mice. The insets

show the dV/dt versus membrane potential (V) loops used to determine the thresholds.
4C summarize exemplary steady-state input resistances (Ri, in MU), of the WT (black; 100 G 6; n = 15), with

�0.33 nA required to elicit an AP and DEF (blue; 45 G 5; n =17), with �0.73 nA being the AP threshold for

fast-adapting DRGNs. For medium-adapting neurons, the Ri were WT (306 G 23; n = 9) and DEF (162 G

29, = 11), and for slow-adapting neurons the Ri were WT (626 G 47; n = 13) and DEF (395 G 38; n = 11).

The intrinsic membrane properties of the small-diameter DRGNs suggested that membrane excitability

was reduced in DEF mice. In agreement with this assertion, DEF slow-adapting DRGNs showed profound
iScience 21, 720–735, November 22, 2019 725



attenuation in spike activity in response to current injection compared with WT DRGNs (Figures 4D and4E).

AP thresholds for fast-adapting DRGNs were determined by calculating dV/dt, as illustrated in Figure 4C

(right panel), and the sensitivity of neurons were tested using the indicated pulse duration. For WT DRGNs,

with increasing pulse duration, the threshold voltage amplitude declined in a monotonic fashion. However,

for DEF DRGNs, the threshold voltage had a biphasic response relative to pulse duration (Figures 4F–4H).

Increased K+ and Ca2+ Density in DEF Small-Diameter DRGNs

The underlying conductances responsible for the reduced Ri and membrane excitability in the small-diameter

Ttpa�/�DRGNs were examined in the voltage-clamp configuration. Ca2+ and K+ currents were isolated under

conditions where other ion channel conductances were suppressed. The rationale for focusing on these Ca2+

andK+ conductances stemmed from the scRNAseq analyses (Figures 2 and 3).Whole-cell voltage-clampof the

small-diameter mechanosensitive DRGNs showed outward K+ currents with transient and sustained compo-

nents in both WT (Figure 5A, upper panel, black) and DEF (Figure 5A, lower panel, blue) mice in response to

varying voltage steps (�110 to 40 mV) from a holding potential of �90 mV in 10-mV increments. The differ-

ence-current traces plotted in dashed lines (inset) provide the profile of the enhanced outward K+ current in

the DEFDRGNs. This difference in currents consisted ofmainly a sustained outward current. The total outward

K+ current density plotted as a function of voltage showed significant differences in current densities elicited at

�30 to 40mVstepvoltages comparingdatabetweenWTandDEFmice (n=17; p<0.05, Figure 5B). Toexamine

Ca2+ currents, we suppressed outward K+ currents, by substituting pipette and bath K+ with NMDG+ and Cs+

(see Methods). Inward Na+ current contamination of Ca2+ currents was suppressed using TTX (1 mM) and by

partial substitution of bathNa+ with NMDG. Ca2+ currents were activated using�90 and�40mV holding volt-

ages, and varying step voltages were applied from�120 to 40 mV. Ca2+ currents in DRGN consist of multiple

components: low- and high-voltage-activated currents (Boland and Dingledine, 1990; Wu and Pan, 2004). The

difference-current derived by subtracting current traces generated from �40 mV and that at �90 mV holding

potentials yielded mainly the transient and low-voltage activated components (Figures 5C and 5D). Summary

data from current-voltage relations show that the high-voltage-activated Ca2+ currents were enhanced in

DEF DRGNs (Figure 5E). As shown in the inset and illustrated in the current-voltage, rSNX-482 (500 nM), a

Cav2.3 (R-type) current-specific blocker (Xie et al., 2016), suppressed a component of the Ca2+ current. Addi-

tionally, in three recordings from DEF DRGNs, in which rSNX-482 was applied in the bath solution, the

enhanced current was attenuated, suggesting the current was conducted by Cav2.3 channels (Catterall

et al., 2005; Xie et al., 2016).

Since high-dose vitE supplementation on DEF DRGN appeared to restore the molecular and cellular hall-

marks of vitE deficiency, we examined the membrane properties of small-diameter DRGNs in SUPP mice.

We examined sensitivity of SUPP DRGNs to mechanical displacements as described in Figure 4A. The

displacement-response relationships from data from SUPP DRGNs were fitted with a single Boltzmann

function (shown in green) with half-maximal activation displacement (X1/2) and slope factor of 1.09 G

0.1 mm and 0.3 G 0.1 mm (n = 6; Figure 6A). We superimposed data from WT (in black) and DEF (in blue)

DRGNs for comparison. A one-way ANOVA was performed to compare the X1/2 and the slope factor in

WT, DEF, and SUPP DRGNs displacement-response curves. There were significant differences at the p<

0.05 level for the three conditions (X1/2 F(2,21) = 6.088, p = 0.008). Post-hoc comparisons using the Tukey

HSD test indicated that data from WT and DEF (p = 0.011) as well as DEF and SUPP (p = 0.024) are signif-

icantly different. There was no significant difference between WT and SUPP. Additionally, there were no

significant differences in the slope factor in the three experimental conditions.

Excitability of SUPP Small-Diameter DRGNs

For SUPP mice, fast-adapting DRGNs had a mean Ri 115G 9 MU (n = 11) (Figure 6B, shown with green sym-

bols and line). The Ri between WT (in black line), DEF (in blue line), and DRGNs (Figure 4B) is replotted for

comparison. There were significant differences at the p< 0.05 level for the three conditions (F(2,40) = 174.7,

p = 0.001). Post-hoc comparisons using the Tukey HSD test indicated that Ri from WT vs. DEF (p = 0.001),

WT vs. SUPP (p = 0.001), and DEF vs. SUPP (p = 0.001) are significantly different. Similar to WT DRGNs, as

the pulse duration was prolonged, the threshold voltage amplitude declined (Figure 6C). However, the

apparent preventative effects of vitE supplementation were not visibly seen in the slow-adapting small-

diameter DRGNs. Compared with WT DRGNs, the slow-adapting neurons in SUPP did not recover fully

despite vitE supplementation (Figure 6D). We examined whole-cell onward K+ currents by applying depo-

larizing voltage steps from�130 to 30mV (DV = 10mV), from a holding potential of�90mV in SUPP DRGNs

(Figure 6E). The steady-state outward K+ currents normalized to individual membrane capacitance (Cm)
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Figure 5. Increased K+ and Ca2+ Current Density in DEF versus WT DRGNs

(A)Whole-cell onward K+ currents were elicited using depolarizing steps from �110 to 40 mV (DV = 10 mV). The tail

currents were at�40 mV. Current traces recorded fromWT and DEF DRGNs are shown in black and blue, respectively. To

obtain a profile of currents that are enhanced in DEF DRGNs, we determined the ‘‘difference currents’’ between DEF and

WT neurons at �70 and 40 mV step voltages (traces are plotted with dashed lines in inset).

(B) Summary of steady-state currents was normalized to individual membrane capacitance (Cm), from 6-month-old WT

mice (shown with black line and symbol) and DEF (shown with gray traces). Data were generated from 14 DRGNs

from each experimental group. The mean current densities (in pA/pF) in WT and DEF DRGNs at 0 mV step voltage were

26.1 G 2.6 and 39.9 G 2.8; n = 14, p = 0.0015.

(C and D) Inward Ca2+ currents recorded from a 12-pF DRGNs in WT (in black) and DEF (in blue) mice from �90 and

�40 mV holding potentials. Currents were generated using voltage steps ranging from �110 to 40 mV. The difference-

current traces (�90 mV) - (�40 mV) are plotted in dashed lines as an inset.

(E) Peak Ca+ current density (I)-voltage (V) relation from data amassed from 12 DRGNs in each group. The current

densities generated from a holding voltage of �40 mV are plotted with WT in black and DEF in blue. The high-voltage

activated component of the Ca2+ current was enhanced in the DEF DRGNs. The peak current density (in pA/pF) for

currents elicited from a holding potential of �40 mV for WT DRGNs was 20.1 G 1.5 (n = 9) and for DEF DRGNs was

30.9G 2.5 (n = 9, p = 0.002). After application of 500 nM rSNX-482 to the DEF DRGNs the peak current density plummeted

to 12.6 G 1.2 (n = 6, p< 0.0001).
(Figure 6F) showed that vitE supplementation is sufficient to restore the outward K+ current (plotted in

green and compared with themean data fromWT [in black] and DEF [in blue]) (see Figure 5B). For example,

the total outward current density elicited at 0 mV in SUPP DRGNs was 24.7G 2.9 pA/pF (n = 11). There were

significant differences at the p< 0.05 level for the three conditions; steady-state K+ current elicited at 0 mV

F(2,36)= 47.6, p = 0.001. Post-hoc comparisons using the Tukey HSD test indicated that WT vs. DEF (p =

0.001) and DEF vs. SUPP (p = 0.001) are significantly different. There is no significant difference between

WT vs. SUPP (p = 0.58). We recorded inward Ca2+ currents from �10-pF DRGNs in SUPP mice using �90

and �40 mV holding voltages. Currents were generated using voltage steps ranging from �120

to 40 mV (Figures 6G and 6H). The current-voltage relations generated at �90 mV and �40 mV holding

voltages are plotted, and the data suggest that vitE supplementation seemingly reversed the enhanced

high-voltage-activated Ca2+ current observed in DEF DRGNs (Figure 6I). Summary data from DEF DRGNs

in Figure 5E (in blue) is replotted for comparison.
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Figure 6. Membrane Properties of Small-Diameter Dorsal Root Ganglion Neurons (DRGNs) from SUPP Mice

(A) Current-clamp recordings were performed on DRGNs 6-month-old mice supplemented with 600 mg dL-alpha-

tocopheryl/kg feed. Data were assessed from DRGNs with capacitance <15 pF. Membrane input resistance (Ri) was

determined by evaluating membrane voltage changes in response to negative and positive current injection.

(B) The ohmic relations were fitted with linear regression and the Ri derived from the slope. SUPP mice fast-adapting

DRGNs had a mean Ri of 115 G 9 MW (n = 11).

(C) Similar to WT DRGNs, as the pulse duration was prolonged, the threshold voltage declined.

(D) Typical voltage response from slow-adapting DRGNs recorded from SUPP mice. Compared with WT DRGNs, the

slow-adapting neurons in SUPP did not recover fully despite vitE supplementation.

(E)Whole-cell onward K+ currents were elicited using depolarizing steps from�130 to 30 mV (DV = 10 mV), from a holding

potential of �90 mV. The tail currents were at �60 mV. Current traces recorded from SUPP DRGNs are shown.

(F) Summary of steady-state currents was normalized to individual membrane capacitance (Cm), from 6-month-old SUPP

mice. Data were generated from 15 DRGNs.

(G and H) Inward Ca2+ currents recorded from a 10-pF DRGNs in SUPP mice from �90 and �40 mV holding potentials.

Currents were generated using voltage steps ranging from �120 to 40 mV.

(I) The current-voltage relations generated at �90 mV and �40 mV holding potential is plotted. The I-V relations of Ca2+

currents from DEF DRGNs from Figure 5E is re-plotted in blue for comparison.
Upregulation of Pro-apoptotic Transcripts with vitE Deficiency

Based on previous studies (Finno et al., 2018), evidence exists for increased apoptosis in the DRGNs with

vitE deficiency by 1 year of age in DEF mice. In both the TH2 (PFDR = 1.13 x 10�4) and NP1 (PFDR = 0.01)

DRGN subpopulations, apoptosis-inducing factor, mitochondrion-associated 3 (Aifm3), was upregulated

with vitE deficiency (WT vs. DEF and SUPP vs. DEF; Figure S4A). Additionally, tumor necrosis factor receptor

superfamily, member 21 (Tnfrsf21), which promotes apoptosis by release of cytochrome c from the mito-

chondria into the cytoplasm, was significantly upregulated in the NP2 (PFDR = 2 x 10�4) and TH2 (PFDR =

0.008) DRGN subpopulations (SUPP vs. DEF; Figure S4A). These results suggest that molecular signatures

of apoptosis, most pronounced in TH+ DRGNs, occur by 6 months of age in DEF mice.

To further investigate the pathways leading to apoptosis of DRGNs with vitE deficiency by 1 year of age

(Finno et al., 2018), and the potential preference for TH+ DRGNs, protein expression of total and cleaved
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caspase 3, caspase 8, and caspase 9 was evaluated with both immunohistochemistry and Western blot an-

alyses in 4-month-old mice. There was no evidence of total caspase 3, caspase 8, or caspase 9 activation

(data not shown). However, a significant (p< 0.01) increase in cleaved caspase 3 and caspase 9, localized

to TH+ DRGNs, was apparent in DEF mice (Figures S4B and S4C). There was no evidence of cleaved cas-

pase 8 activation (Figure S4D).

Additional Transcript and Pathway Dysregulated with vitE Deficiency

In order to determine if the altered gene expression in the DEF DRGN was modulated by the vitE binding

proteins Ttpa (Kono et al., 2013) and tocopherol binding protein (Tap or Sec14l2) (Zingg, 2015), we inter-

rogated these transcripts in our dataset. Ttpa was not expressed in the DRGN dataset. Sec14l2 was ex-

pressed in DRGNs but only differentially expressed between SUPP vs. DEF in the NP1 subpopulation (up-

regulated in DEF group; PFDR = 0.004). Additionally, the scRNA-seq dataset was evaluated for genes

encoding enzymes that have been previously found to directly bind to vitE, including protein kinase C

(Prkca); PH domain and leucine-rich repeat protein phosphatase 2 (Phlpp2); cyclooxygenase-2 (Ptgs2);

and lipoxygenases 5, 12, and 15 (Alox5, Alox12, and Alox15) (Domijan et al., 2014; Zingg, 2015). Ptgs2,

Alox5, Alox12, and Alox15 were not expressed in DRGN and, although Phlpp2 was expressed, there

were no differences between experimental groups in any DRGN subpopulation. Prkca was significantly

downregulated in non-peptidergic DEF DRGN subpopulations (NP1, PFDR = 0.01; NP2, PFDR = 0.001;

and NP3, PFDR = 0.03) and upregulated in TH+ DRGN subpopulations (TH1, PFDR = 0.03 and TH2,

PFDR = 0.002) when comparing SUPP vs. DEF.

With severe vitE deficiency, degenerative axons are identified within the caudal medulla oblongata and spi-

nal cord with AVED (Yokota et al., 2000). Therefore, we interrogated our dataset for dysregulation of tran-

scripts associated with axonal guidance, synaptic plasticity, and myelination. When SUPP were compared

with the DEF groups, upregulation of associated transcripts was identified across DRGN subpopulations,

with most transcripts upregulated in TH2 DRGNs (Table S6). Myelin basic protein (Mbp) was upregulated in

4/13 SUPP vs. DEF DRGNs (Table S4) but was only downregulated in the TH2 subpopulation (PFDR = 0.004).

Because Ca2+ signaling triggers growth cone development during neurodevelopment (Chilton, 2006), tran-

scripts associated with Ca2+ binding were interrogated in our scRNA-seq dataset. Most Ca2+ binding tran-

scripts were most upregulated in TH+ DRGNs with increasing vitE deficiency (Figure S5A, contrast ‘‘C’’).

To further investigate the transcripts expressed among DRGN subtypes and across vitE diet groups,

pathway analyses were performed using Panther Pathway overrepresentation analysis (http://pantherdb.

org/). When WT and SUPP were compared with the DEF groups, the most commonly dysregulated path-

ways were upregulation of both the heterotrimeric G-protein signaling pathways Gia and Gsa (P00026) and

Gqa and Goa (P00027) (Figures S5B andS5C). Significant (PFDR< 0.05) upregulation of these two G-protein

signaling pathways was identified in 9/13 DRG clusters (Table S7, Figure S6). For many of these analyses, G-

protein coupled receptor (GPCR) pathways were also significantly (PFDR< 0.05) overrepresented (Table S7).

To further investigate the potential role of enhanced G-protein signaling with vitE deficiency in specific

DRGN subpopulations, specific somatosensory genes were evaluated, including G-coupled receptors

(GPCRs) and the transient receptor potential vanilloid 1 (Trpv1) channel, as recently reviewed (Yudin and

Rohacs, 2018). Associated transcripts were most significantly upregulated in TH+ expressing neurons in

the SUPP vs. WT contrast (Figure S5D). These results indicate a positive association between G-protein-

coupled receptor transcripts and vitE deficiency, especially in TH+ DRGNs.

Transcripts for GO-Slim biologic processes known to regulate mitochondrial functions were significantly

(PFDR< 0.05) downregulated in TH+ and NP1 DRG subpopulations (Table S7). This discovery prompted

further evaluation of transcripts associated with oxidative phosphorylation. Between 30% and 50% of the

transcript of mitochondrial complex I, NADH:ubiquinone oxidoreductase supernumerary subunits

(NDUF) were significantly downregulated (PFDR< 0.05) in NP1 and TH2 DRG subpopulations with vitE defi-

ciency (Figure S5E, Table S8).

DISCUSSION

Although the antioxidant role of vitE is well established, with evidence to support protection of critical

fatty acids during development of the nervous system (Miller et al., 2012; Lebold et al., 2013), the proposed
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non-antioxidant roles for this vitamin remain unclear (Gohil et al., 2010; Azzi, 2007). Additionally, it remains

unclear why, although all central nervous system tissues are a-TOH deficient in the Ttpa�/� mouse model,

the primary clinicopathologic lesions are localized to sensory tracts. Based on the phenotype associated

with AVED (Gotoda et al., 1995; Yokota et al., 1996) and recapitulated in the Ttpa�/�mouse model (Yokota

et al., 2001; Finno et al., 2018), we expected a profound shift in the transcriptomic profile of the propriocep-

tive DRGN subpopulation. Unexpectedly, we instead identified the most pronounced message alterations

in NP1 and TH+ DRGNs, responsible for mechanosensation. Both NP1 and TH+ DRGNs are small to me-

dium in diameter and unmyelinated, whereas proprioceptive DRGNs are large-diameter myelinated neu-

rons. Intriguingly, both NP1 and TH+ subpopulations of DRGNs arise from the same developmental line-

age for C-fibers, separating into distinct lineages by E16.5–17.5 in the mouse (reviewed in Olson et al.,

2016).

Upregulation of intermediate voltage-gated Ca2+ and K+ channels in SUPP vs. DEF groups (Figure 2)

prioritized the TH+ DRGN subpopulation for further evaluation. Within TH+ DRGNs, Ca2+ dysfunction

with vitE deficiency was implicated by upregulation of the Cav2.3 (Cacna1e) and the Ca2+-activated K+

channel subunit Kcnmb2 (Figure 3). These findings, in combination with decreased IP3R1 (Figure S3A)

and upregulation of Gq-coupled receptor pathways responsible for the formation of inositol 1,4,5

triphosphate (IP3) (Figures S5B and S5C) in DEF mice, indicate that abnormal Ca2+ dynamics in TH+

DRGNs may be central to the etiology of AVED. Additionally, downregulation of Car8 (Figures 1C

and S3B), a major inhibitor of IP3R1 (Hirasawa et al., 2007; Hirota et al., 2003), indicated coordinated

transcriptional changes that could contribute to overactive Ca2+ signaling in TH+ DRGNs. Consistent

with this interpretation was the observation that acute vitE deficiency (4–6 months) reduced membrane

excitability (Figures 4 and 5) and caspase activation (Figure S4), whereas long-term deficiency resulted

in apoptosis of DRGNs (Finno et al., 2018). Supplementation with high-dose a-TOH in DEF mice at

weaning prevented the transcriptomic and biochemical profiles described, partially prevented the elec-

trophysiological abnormalities of TH+ DRGNs, and significantly improved mechanical sensitivity as as-

sessed from the displacement-response curves (Figure 6A) and via the von Frey filament assay (Fig-

ure 3F). As peripheral neuropathy is a clinical feature of AVED (Gotoda et al., 1995; Fogel and

Perlman, 2007), altered Ca2+ signaling within mechanosensitive DRGNs could provide a mechanism

for loss of peripheral sensation.

Collectively, our findings are the first to link TH+ DRGNs with vitE deficiency and AVED. TH+ DRGNs

constitute approximately 10%–15% of all mouse lumbar DRGNs (Brumovsky et al., 2006); are located

in haired skin; and are responsive to brush, pressure, and pinch but not temperature (Li et al., 2016).

In patients with AVED, loss of vibration sense and sensitivity to light touch are the frequently reported

symptoms (Gotoda et al., 1995), as the dorsal column medial lemniscal neuroanatomic tract is targeted

in vitE deficiency (Finno et al., 2018; Yokota et al., 1996). Therefore, we postulate that these symptoms

may be due to impaired excitability and abnormal Ca2+ signaling. Specifically, reduced membrane excit-

ability of mechanosensitive DRGNs could account for the peripheral neuropathy associated with AVED.

Supplemental a-TOH has been demonstrated to improve peripheral neuropathy in AVED patients (Mar-

tinello et al., 1998).

Our findings identify altered Ca2+ signaling in TH+ DRGNs with vitE deficiency, in particular, IP3R1 path-

ways. Upregulation of Ca2+-binding transcripts, the voltage-gated Cav2.3 (Cacna1e) channel, and Ca2+-

activated K+ channel subunit Kcnmb2 are likely mechanistically interrelated alterations that further

contribute to the neuropathology in TH+ DRGNs. First, electrophysiological recordings showed

enhanced K+ and Ca2+ current densities in small-diameter DRGNs isolated from DEF mice. Second, up-

regulation of GPCRs and downregulation of Car8 support a role of altered GPCR/phospholipase C (PLC)/

inositol triphosphate (IP3) signaling in vitE-deficient TH+ DRGNs. Reactive oxygen species can activate

Gq-coupled receptors, catalyzing the conversion of plasma membrane phospholipid phosphatidylinositol

4,5-bisphosphate (PIP2) by PLC to the intracellular secondary molecules IP3 and diacylglycerol (DAG)

(Servitja et al., 2000; Vaarmann et al., 2010). As vitE remains the most potent inhibitor of lipid peroxida-

tion (Choi et al., 2015; McDougall et al., 2017; Niki, 2014), the protection afforded at the plasma mem-

brane may affect GPCR signaling. The decrease in small-diameter DRGN membrane excitability of DEF

mice may, therefore, result from altered Ca2+ signaling in TH+ DRGNs. In keeping with reduced excit-

ability of DEF DRGNs, the rate of change of membrane voltage at the upstroke phase of APs (dV/dt)

was shallow compared with WT neurons (Figure 4C), which may implicate alterations in Na+ current
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magnitude and kinetics (Han et al., 2012). Although there were no significantly dysregulated Na+ channel

transcripts in the TH+ DRGNs (Table S4), posttranslational modifications of Na+ channels may have

occurred. Additionally, we cannot determine from this study if the observed effects on membrane excit-

ability are the result of the observed gene expression changes following vitE deficiency or the insufficient

vitE concentrations in the DRGNs. Experiments requiring the addition of exogenous a-TOH to DRGNs

from DEF mice would be required to determine if membrane excitability can be restored with the addi-

tion of vitE. Despite this inability to definitively determine causality, the clinical relevance of these find-

ings indicate that gene expression and membrane excitability changes within the DRGN may underlie

the peripheral neuropathy observed with AVED.

By 12 months of age, apoptosis within most large- and small-diameter DRGNs is evident in DEF mice (Finno

et al., 2018). Increased TUNEL staining of DRGNs in DEFmice is not observed by 6months of age (unpublished

results). In this study, scRNA-sequencing was performed only on viable cells (see Cell count/viability and RNA

quality assurance). Therefore, within the 6-monthDEFmice examined in this study, increased activity of cleaved

caspase-3 and -9 in DEF TH+ DRGNs is likely a proximal mechanism of promoting apoptosis.

Using whole tissue spinal cord homogenate, we previously identified altered nuclear receptor activation

in DEF mice as they aged from weaning to 6 months (Finno et al., 2018). With sufficient vitE, retinoid

orphan-related receptor alpha (RORA)-targeted transcripts were activated in the spinal cord, whereas

insufficient vitE led to the activation of liver X receptor (LXR)-targeted transcripts. This effect was not

observed in whole-tissue spinal cord when simply comparing groups at 6 months of age (WT vs. DEF

vs. SUPP). Similarly, we did not identify upregulation of most previously investigated (Finno et al.,

2018) RORA-targeted transcripts in the DRGNs between SUPP and DEF groups at 6 months of age in

this current study. Comparison of DRGNs subpopulations in WT, DEF, and SUPP experimental groups

between weaning and 6 months of age requires further investigation to fully elucidate the role for

RORA with vitE deficiency.

Elevations in 7-oxygenated cholesterol products have been previously described in both the Ttpa�/�

(Finno et al., 2018) and atherosclerotic apolipoprotein vitE-deficient mouse models (Rosenblat and Aviram,

2002). Both 7a-hydroxycholesterol and 7-ketocholesterol are inverse agonists for the constitutively active

RORA (Wang et al., 2010). Therefore, we surmise that increased oxysterols suppress constitutive RORA

signaling during vitE deficiency, a hypothesis that has been supported by other studies in both the

Ttpa�/� mouse (Gohil et al., 2003, 2004) and the vitE-deficient horse (Finno et al., 2016). RORA activation

is required for synaptic maintenance (Landis and Sidman, 1978; Sotelo and Changeux, 1974) and the neuro-

protective effect is mediated by the antioxidant proteins glutathione peroxidase 1 and peroxiredoxin 6

(Boukhtouche et al., 2006). Of note, RORA controls the expression of IP3R1 (Gold et al., 2003; Sarachana

and Hu, 2013). Therefore, the underlying molecular mechanism whereby vitE deficiency leads to AVED

may involve differential nuclear receptor activation with age, leading to altered IP3R1 signaling in TH+

DRGNs, in addition to alterations in redox status at the plasma membrane (Figure 7). Alternatively, specific

oxidized polyunsaturated fatty-acid-derived lipid mediators, which are protected by vitE from oxidation

and destruction (Choi et al., 2015; Lebold et al., 2013; Lebold and Traber, 2014; Ulatowski and Manor,

2013), may be involved in this protective mechanism.

Single-cell RNA-seq generated a total of 382 million reads in our study, with an average of 3,614 DRGNs

profiled per mouse (i.e. 7,228 neurons per experimental group). In the pioneer scRNA-seq study of DRG,

pooled lumbar DRG were used to generate 2.76 billion reads across 622 single mouse neurons (Usoskin

et al., 2015). A total of 3,574 G 2,010 distinct genes were identified in each cell (Usoskin et al., 2015), as

compared with our study of 1,788G 283 genes per cell. A subsequent publication used neuron-size-based

hierarchical clustering and high-coverage scRNA-seq of 203 neurons collected from lumbar DRG of five

pooled male mice (10,950 G 1,218 genes per neuron) (Li et al., 2016). Despite the overall lower depth of

sequencing across genes in our study, we were able to identify the previously characterized (Usoskin

et al., 2015) neuronal subpopulations within the DRG. Previous reports (Usoskin et al., 2015; Li et al.,

2016) clustered the unmyelinated TH+ neuronal population into one population. In our dataset, two

distinct TH+ subgroups (TH1 and TH2) were identified across all samples. Despite highly overlapping tran-

scriptional profiles, these subtypes were not closely enough related to merge, unlike the PEP1 subpopu-

lation (i.e. Clusters 0 and 2). The distinct sub-clustering of TH+ subpopulations in our study warrants further

investigation, as the most profound alterations with vitE deficiency in our model occurred primarily in the
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Figure 7. Proposed Mechanism of Action for a-TOH in TH+ DRGN

With adequate a-TOH (left), constitutive activity of the RAR-related orphan receptor alpha (RORA) transcription factor is

maintained, increasing IP3R1 transcription (Gold et al., 2003; Sarachana and Hu, 2013). Although there is evidence that

vitE can affect the plasma membrane structure and bind to signaling enzymes to affect their activity (Zingg, 2015;

Habermehl et al., 2005), we propose in this model that signaling through the PLC/IP3/IP3R1 axis maintains Ca2+

homeostasis. VitE can suppress PLC activity (Domijan et al., 2014) and, by stimulating DAGK (Koya et al., 1997), DAG is

removed and PKC inhibited, providing a protective effect. With a-TOH deficiency (right), cholesterol is oxidized and

resulting oxysterols repress constitutive RORA activity (Wang et al., 2010), leading to decreased IP3R1 transcription. ROS

activate the PLC/IP3/IP3R1 axis (Servitja et al., 2000; Vaarmann et al., 2010); however, without sufficient IP3R1, [Ca
2+]i

cannot increase. Additionally, loss of DAGK stimulation increases DAG and PKC. We propose this leads to the

identified alterations in membrane excitability and activation of apoptotic pathways in DRGNs. BK= big potassium

channel; DAG = diaglycerol; DAGK= diaglycerol kinase; IP3 = inositol triphosphate; IP3R1 = inositol 1,4,5 triphosphate

receptor 1; PIP2 = phosphatidylinositol 4,5-bisphosphate; PKC = protein kinase C; PLC = phospholipase C; RORA= RAR-

related orphan receptor alpha; ROS = reactive oxygen species.
TH2 subpopulation. Our mice were 6 months of age, older than those used in previously reported scRNA-

seq profiling studies in DRG (Li et al., 2016; Usoskin et al., 2015).

The von Frey filament assay is used on glabrous skin, which is innervated by both alpha and beta low-

threshold mechanoreceptors, both not TH+ C-low threshold mechanoreceptors (Li et al., 2011). However,

it has been observed that von Frey filament can activate sensitized non-peptidergic type C nociceptive fi-

bers (i.e. NP1 subpopulations) under certain conditions (Pinto et al., 2019). In our study, the NP1 subpop-

ulation, responsible for neuropathic pain, was also notably implicated with vitE deficiency. VitE has been

demonstrated to act as an analgesic in rodent models of neuropathic pain (Kim et al., 2006), although a

more recent study suggests that vitC is required concurrently (Lu et al., 2011). Foot withdrawal thresholds

in response to mechanical stimuli were used to assess neuropathic pain followed by spinal cord ligation,

with increased thresholds for 6 h after vitE injection (Kim et al., 2006). As neurobehavioral assays through

tactile stimuli cannot reliably differentiate different DRGN activities (Li et al., 2011), we elected to document

electrophysiological dysfunction in TH+-specific mechanosensitive DRGNs with vitE deficiency using

whole-cell membrane recordings specific to small-diameter mechanosensitive DRGNs. However, further

investigation into the role of vitE in NP1 nociceptive DRGNs is warranted.

One of the most notable findings identified in the DEFmouse model is the complete prevention of the clin-

ical and histologic phenotype with high-dose a-TOH supplementation at weaning (Finno et al., 2018; Yo-

kota et al., 2001). To further support these clinical findings, we have now demonstrated complete preven-

tion of the transcriptomic and partial rescue of the electrophysiologic dysfunction within the DRGNs at the

single-cell level. VitE supplementation in Ttpa�/� mice suffices to partially restore K+ and Ca2+ current

properties in small-diameter mechanosensitive DRGNs, but it remains unclear why slow-adapting DRGNs

are impervious to vitE supplementation. Of note, a-TOH concentrations in the brain of these SUPPmice are

still significantly lower than those ofWTmice (Finno et al., 2018; Yokota et al., 2001), indicating that a-TTP in

the brain functions in maintaining local concentration of a-TOH. Despite the lower brain a-TOH concentra-

tions in SUPP mice compared with WT mice, the AVED clinicohistologic phenotype is completely
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prevented. Therefore, a minimum concentration of vitE is likely required at this critical time in postnatal

development. Even more important is the fact that the phenotype is rescuable when vitE is provided at

P21, a time point that is considered the end of postnatal development in the mouse. Therefore, it may

be possible that synaptogenesis and axonal elongation continue into adulthood, thereby requiring suffi-

cient vitE from 1–6 months of age in mice.

Although this study focused on DRGNs, vitE has been demonstrated to have effects in other regions of the

nervous system. Within the hippocampus, a-TOH induced long-term potentiation (Xie and Sastry, 1993),

which is involved in learning and memory (Thompson, 1986). The action of vitE in hippocampal CA1 neu-

rons occurred without a significant alteration in the membrane potential and the input resistance. Rats that

are fed a vitE-deficient diet for three months had impaired long-term potential induction, with a reduction

in post-tetanic potentiation, suggesting that either neurotransmitter release or postsynaptic mechanisms

are involved (Xie and Sastry, 1995). It remains to be determined if the postulated mechanism for the neuro-

protective effect of vitE in the DRG (Figure 7) is applicable to other regions of the nervous system.

In conclusion, we have identified the most profound transcriptomic, biochemical, and electrophysiologic

changes in small-diameter TH+ mechanosensitive DRGNs, rather than the proprioceptive subpopulation,

with vitE deficiency. Increased upregulation of voltage-gated Ca2+ and K+ channels led to AP abbreviation

and reduced membrane excitability in TH+ DRGNs. Concurrently, alterations in IP3R1 expression were identi-

fied, in addition to evidence of apoptosis via caspase-3- and caspase-9-mediated pathways. A highly supple-

mented a-TOH diet rescues the cellular andmolecular alterations and represses the loss of mechanosensation

found in DEFmice. The peripheral neuropathy associated with AVED likely encompasses defects in membrane

properties and Ca2+ signaling inmechanosensitive TH+DRGNs, providing targets for therapeutic intervention.

Limitations of the Study

We cannot determine from this study if the observed effects on membrane excitability are the result of the

observed gene expression changes following vitE deficiency or the insufficient vitE concentrations in the

DRGNs. Experiments requiring the addition of exogenous a-TOH to DRGNs from DEF mice would be

required to determine if membrane excitability can be restored with the addition of vitE.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figures 

 

 
Figure S1, related to Figure 1A: Principal component analysis identified no difference in 

neuronal clustering between experimental groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S2, related to Figure 1A: (A) Classification of DRG subpopulations based on previously 

reported gene expression profiles (Li et al., 2016; Usoskin et al., 2015).  NF=neurofilament, 

NP=non-peptidergic, PEP=peptidergic, TH=tyrosine hydroxylase, UNASSIGNED=unassigned 

cluster, n=2 mice per group with ~3,600 cells/mouse profiled. (b) Cluster dendogram used to 

determine subpopulations. Clusters 0 and 2 were merged into Cluster 0.2 based on shared 

peptidergic neuronal cell markers. (C) A distinct subpopulation of microglia cells, using 

previously identified transcriptional markers, was not identified in this dataset (Li et al., 2016; 

Usoskin et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S3, related to Fig. 1C: Triple-labeling identified decreased (A) IP3R1 (Itpr1) and 

decreased (B) Car8 protein expression in tyrosine hydroxylase positive DRGN with vitE 

deficiency. Red: IP3R1 (Itpr1) (A) or Car8 (B); Green: Th, Blue: DAPI nuclei. Fluorescent 

immunohistochemistry from 4-month WT, DEF, and SUPP mice. 20x=50 m, 40x=20 m, 

60x=20 m  

 

 

 

 

 

 

 



 
Figure S4, related to Fig. 7: Apoptosis of TH+ DRGNs with vitE deficiency. (A) Heat maps, 

plotted by –logPadjusted , comparing the degree of upregulation for apoptotic transcripts in DRGN 

subpopulations with α-TOH deficiency, with the most significantly upregulation in the Th2 

subpopulation. Contrast A= SUPP vs. WT, contrast B= WT vs. DEF, contrast C= SUPP vs. DEF. 

Aifm3=apoptosis-inducing factor, mitochondrion-associated, Tnfrsf21=tumor necrosis factor 

receptor superfamily, member 21. Triple-labeling identified (B) increased cleaved caspase 3, (C) 

increased cleaved caspase 9 and (D) unchanged cleaved caspase 8 in TH+ DRGN with vitE 

deficiency. Green: Th, Blue: DAPI nuclei. Red: (B) Cleaved caspase 3, (C) Cleaved caspase 9 

and (D) cleaved caspase 8. White box inset magnified in last column. Fluorescent 

immunohistochemistry from 4 month WT, DEF, and SUPP mice. Scale bars= 10 m (TH, 

Cleaved Cas3, Cas9, Cas 8 and merge) and 3 m (enlarged; last column). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure S5, related to Fig. 1: Upregulation of Ca2+ binding transcripts and G-protein 

signaling pathways and downregulation of mitochondrial complex I transcripts in TH+ 

DRGNs with vitE deficiency. Heat maps, plotted by –logPadjusted , comparing the degree of 

upregulation for (A) selected Ca2+ binding transcripts in DRGN subpopulations with vitE 

deficiency. Representative Panther Pathway overrepresentation analysis (red=Mus musculus 

database, blue=overrepresented pathways of the SUPP vs WT groups) from the (B) TH1 and (C) 

TH2 subpopulations demonstrating upregulation of G-protein signaling pathways and G-protein 

coupled receptors (GPCRs). These pathways were identified as upregulated in 9/13 DRGN 

subpopulations (additional figures; Figure S6). (D) Heat maps, plotted by –logPadjusted , 

comparing the degree of upregulation for selected G-protein coupled receptor genes and the 

transient receptor potential vallinoid (Trpv1) channel in DRGN subpopulations with vitE 

deficiency. Contrast A= SUPP vs. WT, contrast B= WT vs. DEF , contrast C= SUPP vs. DEF. 

(E) Percent of mitochondrial complex I: NADH:ubiquinone oxidoreductase supernumerary 

subunits (NDUF) downregulated in DRGN subpopulations with α-TOH deficiency. The most 

pronounced downregulation was within the NP1 (34%) and TH2 (47%) subpopulations. 

Cacna1e= Cav2.3 intermediate voltage-activated Ca2+ channel, Cnr1=cannaboinoid receptor 1, 

Efcab1=EF-hand calcium binding domain 1, Grm=metabotropic glutamate receptor 5, 

Hrt1f=5HT receptor 1f, Kcnj3= GIRK1, Kcnmb=Potassium large conductance calcium-activated 

channel, subfamily M, beta, Npy2r=NPY receptor 2, Pvalb=parvalbumin, S100a11=S100 

calcium-binding protein A11, Scgn=secretagogin. 

 

 

 



 

 

 
Figure S6, related to Fig. 1:  Representative Panther Pathway overrepresentation analysis 

results of the SUPP vs DEF groups from the other DRG subpopulations, demonstrating 

upregulation of G-protein signaling pathways in a total of 9/13 DRG subpopulations (TH+ 

subpopulations in Figs 2D,E). 
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Tables S1, S4 and S7 are separate Excel files due to size 

 

 

 

 

 

 

 
 



Table S2, related to Fig. 1: Number/name of top genes defining each dorsal root ganglia (DRG) subpopulation  

DRG subpopulation 

# of genes 

defining each 

subpopulation  

Median # 

of cells 

sequenced  

Top transcripts defining neuronal subgroups 

PEP1 (peptidergic 1)  
139 1098 Calca, Tac1, Kit, Ntrk1, Gal, Adcyap1, Gfra3 

Peptidergic nociception 

PEP2 (peptidergic 2)  
82 141 

Ntrk1, Nefh, Cntnap2, Kit, 

Peptidergic nociception Calca, Fam19a1 

NP1 
92 465 

Mrgprd, Lpar3, Calca, Plxnc1, Scg3, Ctxn3, 

Gfra2 

Non-peptidergic nociception 

NP2 
63 102 

Mrgpra3, Ntrk1, Calca, Plxnc1, Adora2b, 

Cbln1 
  Non-peptidergic nociception 

NP2-2 
25 169 Crip1, Kcnmb1, Calca, Emp3 

Non-peptidergic nociception 

NP3 
187 328 Osmr, Sst, Il31ra, Cysltr2, Nppb, Nts 

Non-peptidergic nociception 

NF1 (neurofilament 1) 

72 113 Necab2, Ntrk2, Cacna1h, Ldhb, Nefh, Htr1d 
Low threshold mechanoreceptors 

NF2 (neurofilament 2)  

168 124 Nefh, Ntrk2, Ntrk3, Calb1, Ldhb, Ret 
Low threshold mechanoreceptors 

NF3 (neurofilament 3)  

59 96 Nefh, Fam19a1, Ntrk3, Ldhb, S100b, Tuba4a 
Low threshold mechanoreceptors 

NF4-5 (neurofilament 4-5) 

 

Proprioception 
196 107 

Pvalb, Cntnap2, Spp1, Nefh, Cntnap2, Nxph1, 

Ldhb 

 

TH1 (tyrosine hydroxylase) 

102 380 Th, Piezo2, Slc17a8, Gfra2, Zfp521 Type C low-threshold 

mechanoreceptors 

TH2 (tyrosine hydroxylase) 

254 317 Th, Piezo2, Slc17a8, Gfra2, Zfp521 Type C low-threshold 

mechanoreceptors 

Unassigned 106 52 N/A 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster# ClusterName #DETs  DOWNREGULATED (Panther) UPREGULATED #DETS DOWNREGULATED (Panther) UPREGULATED #DETs DOWNREGULATED UPREGULATED

0.2 PEP1 228 62 166 65 14 51 465 143 322

1 NP1 463 78 385 154 56 98 1801 795 1006

3 TH1 249 33 216 95 33 62 520 64 456

4 NP3 391 75 316 92 35 57 787 113 674

5 TH2 398 77 321 122 59 63 1138 386 752

6 X 219 15 204 71 33 38 474 101 373

7 PEP2 66 11 55 21 2 19 186 34 152

8 NF2 53 10 43 48 12 36 495 231 264

9 NF4/5 54 3 51 43 9 34 343 88 255

10 NF1 114 14 100 59 12 47 314 63 251

11 NP2 273 7 266 110 42 68 535 62 473

12 NF3 88 15 72 52 7 45 333 107 226

13 Unassigned 192 22 170 100 13 87 424 44 380

Table S3, related to Fig. 1: Number of differentially expressed transcripts (DETs) per DRG subpopulation within each contrast. Experimental groups defined in Transparent Methods

WT vs. DEF SUPP vs. WT SUPP vs. DEF



 

PEP1 PEP2 NP1 NP2 NP2-2 NP3 NF1 NF2 NF3 NF4/5 TH1 TH2 Un

L-type ("Long-lasting") Cacna1c X X X

P-type ("Purkinje") Cacna1a

N-type ("Neural" Cacna1b X

R-type ("Residual") Cacna1e X X X X X X X X X

Cacna1h X X X

Cacna1l X X X X X X X

Itpr1

Itpr3

Ryr2 X X X X X X

Ryr3

Two-pore channel Tpcn1

Cation channels of sperm Pkd2

OraI1

OraI2

OraI3

Kcnmb1 X X

Kcnmb2 X X X X X

Kcnk2 X X X

Kcnk3 X X X X

Kcnk12 X X

Kcnk18 X X X X X

Kncj2 X X X X X X

Kcnj3 X X

Kcnj4 X X X X

Kcna2 X X X

Kcnab1 X X X X

Kcnb2 X X

Kcnc1 X X X X X

Kcnc2 X X X X X X

Kcnc4 X X X X

Kcnd2 X X X X

Kcnd3 X X

Kcnh2 X X X

Kcnq2 X X

Kcnq3 X X X

Kcnq5 X X

Kcns1 X X X

Kcns3 X X X

Kcnv1 X X X X X X

Table S5, related to Fig. 2: Differentially expressed transcripts associated with Ca
2+

 and K
+
 channels that passed PFDR < 0.05 across the DRG subpopulations

K
+ 

voltage-gated channel

 Ligand-gated Ca
2+

 channels

IP3 receptor

Ryanodine receptor

Store-operated channels

Ca
2+

-activated K
+
 channels

K
+ 

two-pore domain subfamily K

K
+ 

voltage-gated channel subfamily 

J (inward rectifying  K
+
 channels)

 Voltage-gated Ca
2+

 channels

Type-type ("Transient")

K
+
 channels



 

PEP1 PEP2 NP1 NP2 NP2-2 NP3 NF1 NF2 NF3 NF4/5 TH1 TH2 Un

Cbln1 X X X X

Cbln2 X X X X X X

Sema4c X X

Sema5a X X X X X

Sema6a X

Sema7a X X X X

Slc17a6 X X

Slc17a7 X X

Slc17a8 X X X X X X

Unc5a X X X X

Unc5b X X X

Unc5c X X X

Unc5d X X X X X

Unc13c X X

Bdnf – neuronal survival 

and differentiation
X X

Btbd3 – directs dendrites 

toward active axon 

terminals

X X

Dpsyl2 - axonal 

guidance
X X

Kif21a – kinesin family 

axonal transport
X X

Ntrk1 –  tyrosine kinase 

receptor involved in 

axonal extension

X X X X X X

Rtn4r – axonal growth 

inhibition
X X

Slit2 – axonal navigation X X X X X X X

Cplx2 – complexin 2 

formation of synaptic 

vesicle clustering

X X

Stxbp6 – syntaxin 

binding protein
X X X X X X

Sv2a – synaptic vesicle 

glycoprotein
X X X X

Sv2b – synaptic vesicle 

glycoprotein
X X X X

Syt3 – synaptotagmin III X X X X

Syt16 – synaptotagmin 

XVI
X X X X

Sytl3 – synaptotagmin-

like III 
X X X X

Mbp – myelin binding 

protein
X X X X

X 

(Down)

Omg – Oligodendrocyte 

myelin glycoprotein
X X X X X

Table S6, related to Fig. 1: Differentially expressed transcripts associated with synaptogeneis, axonal growth and myelination that passed PFDR < 0.05 across the DRG subpopulations

Synaptic vesicle 

Myelination

Cerebellin precursor proteins 

synapse integrity and plasticity

Sema domain– normal brain 

development, axon guidance and cell 

migration

Solute carrier family 17 –uptake of 

glutamate at presynaptic nerve 

terminals

Unc-5 homology A – receptor for 

netrin required for axon guidance

Axonal growth and extension



 

PEP1 PEP2 NP1 NP2 NP2-2 NP3 NF1 NF2 NF3 NF4/5 TH1 TH2 Un

Ndufa9 X X

Ndufa10 X

Ndufa11 X X X

Ndufa12 X X

Ndufa13 X

Ndufab1 X X

Ndufaf2 X

Ndufaf3 X X

Ndufaf6 X

Ndufaf7 X X

Ndufb2 X X

Ndufb3 X

Ndufb4 X

Ndufb6 X X

Ndufb8 X

Ndufb9 X

Ndufb11 X

Ndufc1 X X

Ndufs2 X X

Ndufs3 X X

Ndufs4 X X

Ndufs5 X X

Ndufs6 X

Ndufs7 X X

Ndufs8 X X

Ndufv1 X

Ndufv3 X

Table S8, related to Fig. 1: Differentially expressed transcripts of the mitochondrial complex I:NADH:ubiquinone oxidoreductase supernumary subunits (NDUF)



Transparent Methods 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Carrie J. Finno (cjfinno@ucdavis.edu). 

 

Reagents for scRNA-seq preparation 

Growth medium for primary DRG cell culture consisted of five components that 

included: 500 mL nutrient mixture F-12 with phenol red stored at 4oC (Gibco™ Ham’s F-12 

Nutrient Mix), 5 mL Penicillin/Streptomycin stock (100 U/mL), 5 mL 100X N2 supplement, 10 

mL 50X B-27 supplement, and 50 mL FBS (10% v/v). Stock solution (15% w/v) was prepared 

using 1.5 g of BSA (Sigma-Aldrich, St. Louis, MO) in 10 mL of F-12 medium. The same BSA 

lot number was used for WT, DEF and SUPP groups. The solution was placed in a 37°C water 

bath to dissolve BSA further. The F-12 medium was filter-sterilized (using a 40μm Flowmi™ 

Cell Strainer) and made into a final solution using a 12 mL syringe/filter. The solution was made 

the day of DRG cell processing. Stock solution (12.5 mg/mL; 1.25% w/v) was prepared by 

placing 50 mg collagenase IV in 4 mL F-12 (no phenol red) and was sterilized by a 0.22 µm 

filter. When resecting the DRG cells, 200 μL of collagenase IV (Gibco™ 17104019) was added 

to 1.8 mL HBSS (Hank’s Balanced Salt Solution). 

 

Experimental model and subject details 

Mice 

mailto:cjfinno@ucdavis.edu


Animals were housed and cared for under the University of California Davis (UCD) and 

University of Reno (UNR) standing committee on animal use and care (IACUC) as well as the 

Guide for the Care and Use of Laboratory animals (8th edition, 2011). All procedures performed 

were also approved by the University (UCD and UNR) IACUC. A rederived colony of mixed 

(50% C57BL6 and 50% 129/SvJae) mice heterozygous for the deletion (Ttpa+/-) were crossed 

with C57BL6/J (Ttpa-/-) mice to establish a colony of Ttpa-/- mice. Offspring were genotyped 

using specific primers for Ttpa, and genotypes confirmed by western blot analysis of hepatic 

TTP using an anti-TTP antibody as previously described (Terasawa et al., 2000). 

At weaning, Ttpa+/+ mice were fed a normal diet (35 mg of dl-α-tocopheryl acetate/kg, 

vitE+; WT) while Ttpa-/- mice were fed either an α-TOH-deficient diet (<10 mg of dl-α-

tocopheryl acetate/kg, vitE-; DEF), or α-TOH-supplemented diet (600 mg of dl-α-tocopheryl 

acetate/kg, vitE+++; SUPP) diet. Custom Teklad non-irradiated vacuum-packaged diets were 

ordered through Harlan Laboratories (Madison, WI) and were identical to those previously used 

in this mouse model (Finno et al., 2018, Ulatowski et al., 2014). To prevent oxidation, diets were 

maintained at -20°C and used within six months. Mouse diets were replaced once per week, and 

high-performance liquid chromatography with fluorescence detection used to confirm dietary α-

TOH concentrations was performed as previously described (Finno et al., 2018).   

 

Method Details 

Neurobehavioral assessment 

Examination of mechanical sensation was performed on mice at 6 months of age, when 

the onset of ataxia are first noticeable (Finno et al., 2018). Mice were housed under conditions of 



constant temperature (20°C), light (6:00 am to 6:00 pm), and with access to food and water ad 

libitum. Testing apparatus was cleaned with 70% ethanol to remove animal odors before and 

after each test. Experiments were performed with 8-15 mice per group, consisting of ~50% male 

and 50% female. Each test was performed at one time point, 1-2 days before sacrifice. The von 

Frey filament assay was performed as previously described (Martinov et al., 2013). Mice were 

habituated to the experimental environment for at least 30 minutes. Briefly, von Frey filaments 

of increasing stiffness (0.008-1.4g) were applied on both hind paws planter surface with enough 

pressure to bend the filament, to determine the stimulus intensity threshold stiffness required to 

elicit a paw withdrawal response. A total of six recordings were performed per mouse (initial 

reflex, followed by five “up-down” stimuli). Dixon’s score was calculated as previously 

described (Dixon, 1965). 

 

Dorsal root ganglion neuron (DRGN) isolation 

At 5-6 months of age, one male and one female mouse were sacrificed with pentobarbital 

(>100 mg/kg IP). After euthanasia, the spinal column was removed by making lateral incisions 

on both sides. The spinal cord was then severed at the C1 (cervical) and L6 (lumbar) vertebrae. 

The dorsal portion of the spinal column was removed, exposing the spinal cord. Shortly after, the 

spinal cord was removed to expose the DRG. Dorsal root ganglia were extracted using micro 

dissecting forceps and microscissors. Dorsal root ganglia were placed in a petri-dish containing 

1.8 mL of ice-cold HBSS. The spines of the dorsal root ganglia were trimmed using 

microdissection scissors.  



Following DRG removal, 200 μL of collagenase was added to the HBSS solution 

containing the DRG. The whole DRG were placed in an incubator for 2 hours at 37oC, 5% CO2. 

The DRG were subsequently transferred to a 15 ml conical centrifuge tube and washed twice 

with 10 mL of pre-warmed growth medium to remove any remaining collagenase solution. 

Collagenase is inhibited by cysteine, which is a component of the F-12 nutrient mix. The 570 mL 

stock solution of growth medium contained 500 mL F-12, 5 mL Pen/Strep, 5 mL 100X N2 

supplement, 10 mL 50X B27 supplement, and 50 mL FBS. While in the 15 mL conical tube, 

DRG were triturated to dissociate the DRG into individual cells. Afterward, the volume was 

aspirated and filtered through a 40-μm FlowmiTM Cell Strainer. The cell suspension was slowly 

dripped onto 10 mL 15% BSA (bovine serum albumin), pre-warmed growth medium in a 15 mL 

conical tube and centrifuged at 200 x g for 20 minutes. The BSA stock solution contained 1.5 g 

of BSA dissolved in 10 mL of F-12. The supernatant was aspirated, leaving approximately 20 μL 

covering the cell pellet. In this protocol, nerve growth factor (NGF) was not used in the growth 

medium as NGF alters gene expression (Lindsay and Harmar, 1989). 

 

Cell count/viability and RNA quality assurance  

A hemocytometer was used to determine the viability of the cells stained with trypan 

blue. Once non-neuronal cells were removed using a 10 mL 15% BSA treatment and centrifuged 

at 200 x g, a portion of the cell suspension was aliquoted into a 0.5 mL microcentrifuge tube. 

Despite this treatment, some non-neuronal cells may survive the removal process. Depending on 

the volume of the cell suspension, a 1:1 mixture was made using 0.4% trypan blue solution. The 

mixture was pipetted into the V-shaped groove of the coverslip. The viable and non-viable cells 

in each of the four corner quadrants were multiplied by 104. To obtain the percentage of viable 



cells, the following formula was used: % viable cells= [1.00 - (# of nonviable cell / # of total 

cells)] x 100. Samples were analyzed on an Agilent Bioanalyzer before and after library 

preparation to ensure quality RNA and cDNA was sequenced.  

 

Single-cell RNA-sequencing 

 Barcoded 3' single-cell libraries were prepared from single-cell suspensions using the 

Chromium Single Cell 3' Library and Gel b ead kit v2 (10X Genomics, Pleasanton, California). 

Libraries were pooled and sequenced on an Illumina HiSeq4000 with pair-end 100 bp reads. 

Cellranger v.2.0.1 and bcl2fastq v.2.17.1.14 commands mkfastq and count were used to generate 

fastq files per sample, align to mm10, filter, and perform barcode and UMI counting. Analyses 

were conducted in R, version 3.4.4 (Team, 2018). Normalization, clustering, and calculation of 

TSNE (van der Maaten and Hinton, 2008) coordinates were conducted using Seurat, version 

2.3.0 (Satija et al., 2018). Differential expression analyses between treatments, adjusting for 

sample and sex, were conducted on the filtered and normalized data using limma, version 

3.32.10 (Ritchie et al., 2015). Pathway analyses were performed using Panther Pathway 

overrepresentation analysis (http://pantherdb.org/). 

 

Single-molecule fluorescence in situ hybridization (smFISH) with RNAscope 

Mice were anesthetized with an intraperitoneal injection of ketamine (100 mg/kg) and 

xylazine (10 mg/kg), and were transcardially perfused with diethyl-pyrocarbonate (DEPC)-

treated phosphate buffer saline (PBS) and 4% paraformaldehyde (PFA) to preserve RNA. Dorsal 

root ganglia (DRG) were extracted using micro dissecting forceps and micro-scissors. Dorsal 

http://pantherdb.org/


root ganglia were placed in a petri-dish containing 1.8 mL of ice-cold DEPC-treated PBS. The 

tissues were trimmed using a surgical scalpel blade and were kept in a 4% PFA in DEPC-treated 

solution, overnight on a shaker at 4°C. Samples were sequentially dehydrated in 10%, 20%, and 

30% sucrose solution at 4°C for 1 hr, 2 hr, and overnight, respectively. Samples were transferred 

into optimal cutting temperature (OCT) compound for a minimum of 1 hr at 4°C and then snap 

frozen, using a dry ice-ethanol mixture. Samples were cryo-sectioned to a thickness of 14 μm, 

placed onto Superfrost slides and stored at -80°C until processed. 

 

Probe hybridization and immunofluorescent staining  

Probe hybridization was performed according to the manufacturer’s instructions 

(Advanced Cell Diagnostics, ACD). Sections were immersed in pre-chilled 4% PFA for 15 min 

at 4°C. Sections were then dehydrated at room temperature (RT) in 50%, 70% and twice in 100% 

ethanol for 5 min each and allowed to dry for 1-2 min. Fixation and dehydration were followed 

by hydrogen peroxide reaction for 10 min at RT then, protease digestion, using protease 4 for 30 

min at RT. Slides were incubated with probes in 2 hours at 40°C. To amplify and detect signals, 

sections were treated as follows at 40°C: AMP1 for 30 min, followed by AMP2 for 30 min, 

AMP3 for 15 min, the appropriate HRP channel for 15 min, Opal dye for 30 min, and HRP 

blocker for 15 min. Each of these alternated with a washing step two times for 2 min at RT. 

Probes for Kcnmb2, Kcnq3, Kcnv1 and Cacna1e and controls were obtained from ACD. 

Sequences of the target probes and label probe are proprietary. Detailed information about the 

probe sequences can be obtained by signing a non-disclosure agreement provided by the 

manufacturer. 



For subsequent immunofluorescent staining, slides were treated with 10% blocking 

solution for 30 min at RT, incubated with primary antibody (Tyrosine Hydroxylase, LSbio, 1:500 

dilution), overnight at 4°C, washed with TBS-0.005%Tween20 three times for 5 min each, 

incubated with secondary antibody (Alexa 647, Life Technologies, 1:500) for 2 hours at RT, and 

again washed with TBS-0-005% Tween20 three times for 5 min each. Incubation in DAPI 

solution for 30s at RT was performed to label cell nuclei. Slides were then mounted in 

Fluoromount-G and sealed under a coverslip. 

 

Immunofluorescence 

Following microdissection, the tissue was fixed at 4°C in 4% PFA in PBS and 10% and 

30% sucrose at 4°C overnight, then embedded in OCT for cryo-sectioning in the cryo-mold. 

Sections of 10-µm were washed in PBS, permeabilized in 0.1% Triton X-100 for 10 min, and 

then incubated for 60 min in a blocking solution containing 10% goat serum. The sections were 

incubated with primary antibody overnight at 4°C in a humid-chamber. The rinsed sections were 

then incubated (2 hrs; RT) in a fluorescent dye-conjugated secondary antibody. The following 

primary antibodies were used: rabbit anti KCNQ3 (Abcam, #ab16228), rabbit anti KCNV1 

(Abcam, #ab175548), mouse anti KCNMB2 (Abcam, #ab94598), rabbit anti Cav2.3 (Alomone 

Labs, #ACC-006), mouse anti tyrosine hydroxylase (TH; LSBio, #LS-C338121), rabbit anti TH 

(LSBio, #LS-C354112), rabbit anti cleaved caspase-3, -8 and -9 (Cell Signaling Technology, 

#9664, #8592, and #9509), rabbit anti total caspase-3 and -9 (Abcam, #ab13847, and 

#ab202068). Secondary antibodies were Alexa 488-conjugated affinity-purified goat anti-rabbit 

IgG, Alexa 488-conjugated affinity-purified goat anti-mouse IgG, Cy3-conjugated affinity-



purified goat anti-rabbit IgG, Alexa 555-conjugated affinity-purified goat anti-mouse IgG 

(Invitrogen and Jackson Labs). Images were captured with a Nikon A1 confocal microscope. 

 

Isolation of DRGNs for electrophysiological recordings 

Dorsal root ganglion neurons (DRGNs) were isolated from male and female mice from 

each experimental group. Dissected tissue was removed and placed in a solution containing 

Minimum Essential Medium with Hank’s salt (Invitrogen), 0.2 g/L kynurenic acid, 10 mM 

MgCl2, 2% fetal bovine serum (FBS; v/v), and 6 g/L glucose. Tissues were digested in an 

enzyme mixture containing collagenase type I (1 mg/mL) and DNase (1 mg/mL) at 37 °C for 20 

min. After a series of gentle trituration and centrifugation in 0.45 M sucrose, the cell pellets were 

reconstituted in 900 mL culture media (Neurobasal-A, supplemented with 2% B27 (v/v), 0.5 mM 

L-glutamine, 100 U/mL penicillin; Invitrogen) and filtered through a 50-m cell strainer for cell 

culture. DRGNs were cultured for 24 to 48 hrs. All electrophysiological experiments were 

performed at RT (21-22°C). Reagents were obtained from Sigma-Aldrich (St. Louis, MO) unless 

otherwise noted. A stock solution of rSNX-482 was made and (10 mM) stored at -20oC.  

To identify mechanosensitive DRGNs, small-diameter neurons were identified, and 

mechanical stimulation was achieved using a fire-polished and sylgard-coated glass pipette (tip 

diameter ~1-2 μm), positioned at an angle of ~60° to the DRGN being recorded. Downward 

movement of the probe toward the cell was driven by a piezo-electric crystal micro stage (E660 

LVPZT Controller/Amplifier; Physik Instruments). The probe was typically positioned close to 

the cell body without any visible membrane deformation. We assessed for mechanical sensitivity 

using a series of mechanical steps in ~0.42 µm increments applied every 10 to 20 s, which allowed 



for the full recovery of mechanosensitive currents between steps. Inward mechanically-activated 

(MA) currents were recorded at a holding potential of -70 mV. For voltage-clamp recordings of 

MA currents, patch pipettes had resistance of 2-3 MΩ when filled with an internal solution 

consisting of (in mM): 70 CsCl, 55 NMDGCl, 10 HEPES, 10 EGTA, 1 CaCl2, 1 MgCl2, 5 MgATP, 

and 0.5 Na2GTP (pH adjusted to 7.3 with CsOH). The extracellular solution consisted of (in mM): 

130 NaCl, 3 KCl, 1 MgCl2, 10 HEPES, 2.5 CaCl2, 10 glucose and 2 CsCl (pH was adjusted to 7.3 

using NaOH). 

Data analyses were performed using pClamp8 (Axon Instruments) and Origin software 

(Microcal Software, Northampton, MA) offline. The peak mechanically-activated (MA) current 

(IMA) for each step displacement I(X) was expressed in the form of the probability of channel 

opening (Po of I/Imax) with a Boltzmann equation Po = 1/[1 + ez(X – X
1/2

)/(kT)] to obtain single-

channel gating force, z, and the displacement at 50% open probability (X1/2), and T is 

temperature. 

 

Current-clamp experiments 

Whole-cell membrane potential recordings were performed using an Axopatch 200B 

amplifier (Molecular Devices, San Jose, CA). Membrane potentials were amplified, bandpass 

filtered (2-10 kHz), and digitized at 5-50 kHz using an analog-to-digital converter (Digidata 

1200, Molecular Devices) as described earlier (Levic et al., 2007, Rodriguez-Contreras et al., 

2008). Electrodes (2-3 M) were pulled from borosilicate glass pipettes, and the tips were fire-

polished. Extracellular/bath solution consisted of (in mM) 145 NaCl, 6 KCl, 1 MgCl2, 2 CaCl2, 

10 D-glucose, and 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.3. The 



normal pipette/internal solution contained (in mM) 146 KCl, 1 MgCl2, 0.1 CaCl2, 5 ethylene 

glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) 4 MgATP, 0.4 NaGTP and 10 

HEPES, pH 7.3. The seal resistance was typically 5-10 G. Data analyses were performed using 

the pClamp and Origin software (MicroCal Inc., Northampton, MA). Where appropriate, pooled 

data are presented as means + S.E.  

 

Voltage-clamp experiments 

Whole-cell voltage-clamp recordings were conducted at room temperature (RT) using an 

Axopatch 200B amplifier and filtered at 2kHz through a low-pass Bessel filter. Data were digitized 

at 0.5-1.0 kHz using a Digi-Data analog-to-digital converter. To study Ca2+ currents in DRGNs, 

after ~2 days in culture, the cells were held in a bath solution (in mM; 60 NMGCl, 50 CholineCl, 

10 NaCl, 20 tetraethylammonium chloride (TEACl), 5 4-Aminopyridine (4-AP), CsCl, 5 CaCl2, 

0.5 MgCl2, 10 HEPES and 5 Glucose at pH 7.4). Freshly reconstituted tetrodotoxin (TTX) (final 

concentration, 2M) was added to the bath solution to further suppression Na+ currents. The 

internal solution contained (in mM) 60 Cs-gluconate, 60 mM N-methyl-d-glucamine (NMDG)-Cl, 

2 MgCl2, 0.1 CaCl2, 5 K2ATP, 0.5 GTP-sodium, 5 EGTA, and 10 HEPES, pH 7.35, with CsOH. 

K+ currents were measured using bath solution containing (in mM: 60 NMGCl, 35 

CholineCl, 5 KCl, 10 NaCl, 0.05 CaCl2, 0.5 MgCl2, 10 HEPES and 5 glucose at pH 7.4). Freshly 

reconstituted tetrodotoxin (TTX) (final concentration, 2M) was added to the bath solution to 

suppression Na+ currents. The pipette solution contained (in mM; 140 KCl, 1 MgCl2, 10 HEPES, 

2.5 EGTA, 1 CaCl2, and 4 MgATP, at pH 7.2). Freshly reconstituted tetrodotoxin (TTX) (final 

concentration, 2M) was added to the external solution to suppression Na+ current when 



measuring K+ and Ca2+ currents. Ca2+ currents were also suppressed, but not eliminated using 

50M external Ca2+ 

Borosilicate glass pipettes were pulled using a Sutter P-97 Flaming Brown Micropipette 

Puller (Sutter Instruments) and fire-polished for an optimal pipette resistance (2-3 MΩ). Access 

resistance was compensated further by at least 80%. After achieving a GΩ-seal, gentle suction was 

applied to form a whole-cell configuration. In all cases, liquid junction potentials were measured 

and corrected as described previously (Rodriguez-Contreras and Yamoah, 2001). Currents were 

activated with depolarizing voltage steps from -120 to 40 mV, using a ∆V of 10 mV and holding 

potentials at -40, -60 and -90 mV. All protocols were employed without online leak subtraction. 

 

Quantification and Statistical Analysis 

Statistical analysis  

All data was evaluated for normality using a Shapiro-Wilk test. Parametric data were 

analyzed via a one-way ANOVA compared the three genotype / diet groups followed by a Tukey 

post-hoc test. Non-parametric data were analyzed with a Kruskal-Wallis test followed by Dunn’s 

multiple comparison tests. For quantification of mRNA via RNA-scope, four high-power fields 

were evaluated from n=2-3 mice in each group and number of mRNA TH+ DRGNs quantified. 

For electrophysiologic recordings, n=2-3 pooled mice with 9-15 DRGNs per experimental group 

were recorded. Significance was set at p <0.05.  

 

Data and Software Availability 



The raw and processed data for scRNA-seq individual libraries have been deposited in 

the NCBI Gene Expression Omnibus (GEO) under ID codes (GEO:GSE128276, GSM3670444, 

GSM3670445, GSM3670446, GSM3670447, GSM3670448, GSM3670449).  
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