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The hallmark of deterministic chaos is that it creates information—the rate being given by the 
Kolmogorov–Sinai metric entropy. Since its introduction half a century ago, the metric entropy has been 
used as a unitary quantity to measure a system’s intrinsic unpredictability. Here, we show that it naturally 
decomposes into two structurally meaningful components: A portion of the created information—the 
ephemeral information—is forgotten and a portion—the bound information—is remembered. The bound 
information is a new kind of intrinsic computation that differs fundamentally from information creation: 
it measures the rate of active information storage. We show that it can be directly and accurately 
calculated via symbolic dynamics, revealing a hitherto unknown richness in how dynamical systems 
compute.

© 2014 Elsevier B.V. All rights reserved.
The world is replete with systems that generate information—
information that is then encoded in a variety of ways: Erratic 
ant behavior eventually leads to intricate, structured colony nests 
[1,2]; thermally fluctuating magnetic spins form complex domain 
structures [3]; music weaves theme, form, and melody with sur-
prise and innovation [4]. We now appreciate that the underlying 
dynamics in such systems is frequently deterministic chaos [5,6]. 
In others, the underlying dynamics appears to be fundamentally 
stochastic [7]. For continuous-state systems, at least, one oper-
ational distinction between deterministic chaos and stochasticity 
is found in whether or not information generation diverges with 
measurement resolution [8]. This result calls back to Kolmogorov’s 
original use [9] of Shannon’s mathematical theory of communi-
cation [10] to measure a system’s rate of information generation 
in terms of the metric entropy. Since that time, metric entropy 
has been understood as a unitary quantity. Whether determinis-
tic or stochastic, it is a system’s degree of unpredictability. Here, 
we show that this is far too simple a picture—one that obscures 
much.

To ground this claim, consider two systems. The first, a fair 
coin: Each flip is independent of the others, leading to a simple 
uncorrelated randomness. As a result, no statistical fluctuation is 
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predictively informative. For the second system consider a stock 
traded via a financial market: While its price is unpredictable, the 
direction and magnitude of fluctuations can hint at its future be-
havior. (This, at least, is the guiding assumption of the now-global 
financial engineering industry.) We make this distinction rigorous 
here, dividing a system’s information generation into a component 
that is relevant to temporal structure and a component divorced 
from it. We show that the structural component captures the sys-
tem’s internal information processing and, therefore, is of practical 
interest when harnessing the chaotic nature of physical systems to 
build novel machines and devices [11]. We first introduce the new 
measures, describe how to interpret and calculate them, and then 
apply them via a generating partition to analyze several dynamical 
systems—the Logistic, Tent, and Lozi maps—revealing a previously 
hidden form of active information storage.

We observe these systems via an optimal measuring instru-
ment—called a generating partition—that encodes all of their be-
haviors in a stationary process: A distribution Pr(. . . , X−2, X−1, X0,

X1, X2, . . .) over a bi-infinite sequence of random variables with 
shift-invariant statistics. A contiguous block of observations Xt:t+�

begins at index t and extends for length �. (The index is inclu-
sive on the left and exclusive on the right.) If an index is infinite, 
we leave it blank. So, a process is compactly denoted Pr(X:). Our 
analysis splits X: into three segments: the present X0, a single 
observation; the past X:0, everything prior; and future X1: , every-
thing that follows.
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Fig. 1. A process’s I-diagram showing how the past X:0, present X0, and future 
X1: partition each other into seven distinct information atoms. We focus only on 
the four regions contained in the present information H[X0] (blue circle). That is, 
the present decomposes into three components: ρμ (horizontal lines), rμ (verti-
cal lines), and bμ (diagonal crosshatching). The redundant information ρμ overlaps 
with the past H[X:0]; the ephemeral information rμ falls outside both the past and 
the future H[X1:]. The bound information bμ is that part of H[X0] which is in the 
future yet not in the past. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

The information-theoretic relationships between these three 
random variable segments are graphically expressed in a Venn-like 
diagram, known as an I-diagram [12]; see Fig. 1. The rate hμ of 
information generation is the amount of new information in an 
observation X0 given all the prior observations X:0:

hμ = H[X0|X:0], (1)

where H[Y |Z ] denotes the Shannon conditional entropy of random 
variable Y given variable Z . This quantity arises in various contexts 
and goes by many names: e.g., the Shannon entropy rate and the 
Kolmogorov–Sinai metric entropy, mentioned above [8]. The com-
plement of the entropy rate is the predicted information ρμ:

ρμ = I[X:0 : X0], (2)

where I[Y : Z ] denotes the mutual information between random 
variables Y and Z [12]. Hence, ρμ is the information in the 
present that can be predicted from prior observations. Together, we 
have a decomposition of the information contained in the present: 
H[X0] = hμ + ρμ .

A simple application of the entropy chain rule [12] to Eq. (1)
leads us to a different view:

hμ = I[X0 : X1:|X:0] + H[X0|X:0, X1:]
= bμ + rμ. (3)

This introduces two new information measures:

bμ = I[X0 : X1:|X:0] and (4)

rμ = H[X0|X:0, X1:]. (5)

That is, created information (hμ) decomposes into two parts: in-
formation (bμ) shared by the present and the future but not in the 
past and information (rμ) in the present but in neither the past 
nor the future.

The rμ component was first studied by Verdú and Weiss-
man [13] as the erasure entropy (their H−) to measure informa-
tion loss in erasure channels. To emphasize that it is information 
existing only in a single moment—created and then immediately 
forgotten—we refer to rμ as the ephemeral information. The sec-
ond component bμ we call the bound information since it is in-
formation created in the present that the system stores and that 
goes on to affect the future.1 It was first studied as a measure 

1 Our terminology avoids the misleading use of the phrase “predictive informa-
tion” for bμ . The latter is not the amount of information needed to predict the 
future. Rather, it is part of the predictable information—that portion of the future 
which can be predicted.
of “interestingness” in computational musicology by Abdallah and 
Plumbley [14]. For a more complete analysis of this decomposi-
tion, as well as computation methods and related measures, see 
Ref. [15].

Isolating the information H[X0] contained in the present and 
identifying its components provides the partitioning illustrated 
in Fig. 1. This is a particularly intuitive way of thinking about 
the information contained in an observation. While some behav-
ior (ρμ) can be predicted, the rest (hμ = bμ + rμ) cannot. Of that 
which cannot be predicted, some (bμ) plays a role in the future 
behavior and some (rμ) does not. As such, this is a natural decom-
position of a time series; one that results in a semantic dissection 
of the entropy rate.

By way of an example, consider a few simple processes and 
how their present information decomposes into these three com-
ponents. A periodic process of alternating 0s and 1s
(. . .01010101 . . .) has H[X0] = 1 bit since 0s and 1s occur equally 
often. Given a prior observation, one can accurately predict ex-
actly which symbol will occur next and so H[X0] = ρμ = 1 bit, 
while rμ = bμ = 0 bits. On the other extreme is a fair coin flip. 
Again, each outcome is equally likely and so H[X0] = 1 bit. How-
ever, each flip is independent of all others and so H[X0] = rμ = 1
bit, while ρμ = bμ = 0 bits.

Between these two extrema lie interesting processes: those 
with stochastic structure. Processes expressing a fixed template, like 
the periodic process above, contain a finite amount of information. 
Those with stochastic structure, however, constantly generate in-
formation and store it in the form of patterns. Being neither purely 
predictable nor independently random, these patterns are captured 
by bμ . The more intricate the organization, the larger bμ . More 
to the point, generating these patterns requires intrinsic computa-
tion in a system—information creation, storage, and transformation 
[16]. We propose bμ as a simple method of discovering this type 
of physical computation: Where there are intricate patterns, there 
is sophisticated processing.

How useful is the proposed decomposition and its measures? 
To answer this we analyze several discrete-time chaotic dynam-
ical systems—the Logistic and Tent maps of the interval and the 
Lozi map of the plane—uncovering a number of novel properties 
embedded in these familiar and oft-studied systems. As an inde-
pendent calibration for the measures, we employ Pesin’s theorem 
[17]: hμ is the sum of the positive Lyapunov characteristic expo-
nents (LCEs). The maps here have at most one positive LCE λ, so 
hμ = max{0, λ}. The symbols s0, s1, s2, . . . , sN for each process we 
analyze come from a generating partition. We produce a long sam-
ple of N ≈ 1010 symbols, extracting subsequence statistics via a 
sliding window.2 Each window consists of a past, present, and fu-
ture symbol sequence and we estimate rμ and bμ using truncated 
forms of Eqs. (4) and (5).

Consider first the Logistic map, perhaps one of the most studied 
chaotic systems:

xn+1 = axn(1 − xn), (6)

where a ∈ [0, 4] is the control parameter and the initial condition 
is x0 ∈ [0, 1]. Its generating partition is defined by:

sn =
{

0 if xn < 1
2 ,

1 if xn ≥ 1
2 .

(7)

2 Window width is adaptively chosen in inverse proportion to the LCE. When 
the latter is low we use a longer window than when the system is fully chaotic. 
The minimum window width of L = 31 and adaptive widths were chosen so that 
numerical estimates varied by less than 0.01% when the width is incremented.
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Fig. 2. Logistic map information anatomy as a function of control parameter a: 
Bound information bμ is the lower (green shaded) component; ephemeral infor-
mation rμ is the upper (blue shaded) component. Entropy rate is the top (blue) 
line: hμ = bμ + rμ . As reference to the dynamical behavior, the map’s bifurcation 
diagram is displayed in the background.

Fig. 2 shows the resulting measures as a function of control a, with 
the map’s bifurcation diagram displayed in the background for ref-
erence.

The first point of interest is that the system’s information gen-
eration is, in fact, a mixture of ephemeral (rμ) and bound (bμ) 
informations at nearly all chaotic (hμ > 0) parameter values. The 
second is that the division into the two components varies in a 
nontrivial way as a function of the control parameter a. Moreover, 
the boundary between the two appears nondifferentiable. At first 
blush, this is not surprising given that their sum hμ (= λ) is known 
to be nondifferentiable. Finally, bμ vanishes nontrivially only at pa-
rameters that coincide with the merging of the chaotic bands (e.g., 
a = 4.0, 3.67857 . . . , 3.59257 . . . , . . .). Thus, the information gener-
ated by the Logistic map at these parameters is entirely forgotten.

Is the complex and nondifferentiable boundary between rμ
and bμ simply a consequence of the entropy rate’s complicated 
behavior or due a dynamical mechanism distinct from information 
creation? We answer this by analyzing the Tent map:

xn+1 = a

2

(
1 − 2

∣∣∣∣xn − 1

2

∣∣∣∣
)

, (8)

where a ∈ [0, 2] is the control parameter. The generating parti-
tion for the Tent map is the same as for the Logistic map. Since 
the Tent map is piecewise linear, its Lyapunov exponent is simply 
λ = log2 a and, by Pesin’s theorem, so is the information gener-
ation hμ = log2 a; a rather smooth parameter dependence. As a 
result, the intricate structures exhibited in the Tent map’s bifurca-
tion diagram cannot be resolved by studying solely the behavior of 
the Lyapunov exponent (or hμ) itself. Fig. 3 demonstrates that, de-
spite the entropy rate’s simple logarithmic dependence on control, 
its decomposition hμ = bμ + rμ is not a smooth function of a. To 
emphasize, in sharp contrast with hμ ’s simplicity, rμ and bμ again 
appear nondifferentiable—a complexity masked by the smooth hμ . 
Thus, the two informational components capture a property in the 
chaotic system’s behavior that is both quantitatively and qualita-
tively new. As with the Logistic map, we once again find that the 
bound information vanishes and that all of the information the 
Tent map generates is forgotten (hμ = rμ) at parameters corre-

sponding to merging of chaotic bands (a = 21/2k
, k = 0, 1, 2, . . .). In 

the Supplementary material we show how to calculate bμ and rμ
in closed form for the Tent map at Misiurewicz parameters.
Fig. 3. Tent map information anatomy: Although hμ = bμ + rμ is a smooth function 
of control—hμ = log2 a—the decomposition into bound and ephemeral informations 
is not. Graphics layout as in previous figure.

Fig. 4. Lozi map information anatomy: (Left) hμ as a function of controls a and b. 
(Right) bμ similarly. bμ is maximized on the upper-right and lower-right edges of 
the a–b region that supports an attractor near the origin.

To explore how these measures apply more generally, we ex-
tend information anatomy to two dimensions by analyzing the Lozi 
map:

xn+1 = 1 − a|xn| + yn

yn+1 = bxn. (9)

The map exhibits an attractor near the origin within a diamond-
shaped parameter region inside (a, b) ∈ [1, 2] × [−0.9, 0.9]. Note 
that when b = 0 the map becomes isomorphic to the Tent map. 
The generating partition is given by:

sn =
{

0 if xn < 0,

1 if xn ≥ 0.
(10)

Fig. 4 shows hμ (left) and bμ (right) in the attracting parameter 
region. Mirroring the Tent map, the Lozi map’s entropy rate varies 
smoothly over the attractor region, whereas bμ varies in a more 
complicated manner. There are swaths of low bμ corresponding to 
“fuzzy” mergings of chaotic bands. Notably, while the maximal hμ

occurs along the line b = 0, maximal bμ occurs far from b = 0. 
Hence, large hμ does not necessarily imply large bound informa-
tion bμ .

To sum up, we showed that a process’s information creation 
rate decomposes, via a chain rule, into two structurally meaning-
ful components. The components, the ephemeral information rμ
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and the bound information bμ , provide direct insights into a sys-
tem’s behavior without detailed modeling or appealing to domain-
specific knowledge. That is to say, they are relatively easily defined 
measures that can be straightforwardly estimated. More to the 
point, however, bμ is a strong indicator of intrinsic computation. 
While related to information generation, we demonstrated that it 
captures a different kind of informational processing—a mechanism 
that actively stores information.

Concretely, decomposing information creation in the symbolic 
dynamics of the Logistic, Tent, and Lozi systems delineated the to-
pography of their intrinsic-computation landscape. Awareness of 
this rich (and previously hidden) landscape will lead to improved 
engineering of natural systems as substrates for information pro-
cessing [11]. And, it will lead to an expanded understanding of 
evolved information processing systems, such as the linguistic pro-
cesses comprising human natural languages. A sequel will develop 
the decomposition further, including a geometric interpretation of 
active information storage that parallels the geometric view of in-
formation creation expressed in the Lyapunov exponents.
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Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.physleta.2014.05.014.
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