UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Generating Natural Language Expectations from a Reactive Execution System

Permalink
https://escholarship.org/uc/item/3g02p1x1|
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors
Martin, Charles E.
Firby, R. James

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3g02p1x1
https://escholarship.org
http://www.cdlib.org/

Generating Natural Language Expectations
from a Reactive Execution System

Charles E. Martin and R. James Firby
Department of Computer Science
University of Chicago
1100 East 58th Street
Chicago, IL 60637
martin@cs.uchicago.edu

Objectives

We are developing an integrated system for planning,
language understanding, and learning through advice-
taking (Martin and Firby, 1991). Our work brings to-
gether two reasonably mature pieces of research: the
Reactive Action Package (RAP) execution system of
Firby (1989), and the Direct Memory Access Parser
(pDMAP) of Martin (1991). Specifically, we are refor-
mulating the RAP plan representation and execution
algorithm in terms of the semantic network architec-
ture used by the DMAP system. The result 1s a system
with a uniform knowledge representation and process-
ing algorithm that can both act in the world and pro-
cess natural language. Furthermore, acting and under-
standing use a single process so the system can change
its actions based on language inputs. That forms a
basis for learning new plans and actions by being told.
Although “learning by being told in natural lan-
guage” might strike one as a natural area of research
in machine learning, a look through the proceedings
of the last three Machine Learning Workshops (ML
1988, 1989, and 1990) and Readings in Machine Learn-
ing (Shavlik and Dietterich, 1990) will demonstrate
that there is in fact no current machine learning re-
search in this area. Most research on “advice-taking”
has concentrated on the operationalization of already-
interpreted input; an excellent example is Mostow's
(1983) research. Broadly construed, this notion could
be expanded to include any system that attempts to
improve its decision-making data structures using an
oracle, guided examples, etc. This is not our goal.
Instead, we have two complementary hypotheses:

1. The natural language understanding process can be
greatly simplified by embedding the understander in
another task-oriented system, where “embedding”
refers to the use of idenfical data structures and a
single algorithm for both the task and the natural
language understanding process.

2. The performance of a task-oriented system can be
extended by learning specific local plan modifica-
tions, derived by the overall system on the basis of
high-level “hints” supplied in natural language.

811

In our research, the reactive execution system is the
task-oriented system in which we embed the natural
language understander, and the human expert provides
high-level “hints” that are the basis for extending the
reactive execution system’s performance.

Background

The DMAP system is designed to function within a large
body of existing knowledge. Rather than determine
the meaning of a text, DMAP uses the text to recognize
relevant existing knowledge structures and then modify
them to create specific new instances in memory that
represent what is unique about the given text. New
instances remain in memory to aid in the interpretation
of future texts.

The RAP system is designed to carry out vague goals
by waiting until execution time and then expanding
the goal into primitive actions based on the details of
the situation actually encountered. Possible plan ex-
pansions are stored in a hierarchical library of methods
indexed by the goal they satisfy. The RAP interpreter
selects a method from the library based on existing
context and either instantiates the method as a new set
of goals to achieve or executes the method directly if
it consists of a primitive action. When a method com-
pletes (or fails) the interpreter checks to see whether
the goal was actually satisfied in the world and, if not,
selects and instantiates another method.

In bringing these two systems together we are di-
rected by two “implementation” constraints:

1. There must be a uniform representation for all
knowledge in the system, regardless of whether it is
used for natural language understanding or planning
and execution.

2. There must be a uniform algorithm to operate over

the system’s knowledge, regardless of whether the
system is engaged in natural language understanding
or planning and execution.

The first constraint is hardly new to devotees of KRL
and its many descendants, though the constraint is
honored more often in the breach than in the obser-
vance. The second constraint is more radical; in ef-

mailto:martin@cs.uchicago.edu

fect, it states that language understanding and plan-
ning and execution must be the same process. This
is our hypothesis, with the caveat that differences be-
tween acting and understanding do exist, and they will
manifest themselves in the system’s representation.

The rRAP model of execution provides a single, coher-
ent representation for planning and execution knowl-
edge with a simple interpretation semantics that does
not require the maintainence of complex dependency
structures. The DMAP model of language understand-
ing relies on expectations about language that arise as
a result of moving around in a semantic net. To com-
bine the two, we have reformulated the RAP knowledge
representation in terms of a DMAP-style semantic net-
work that preserves the execution semantics when tra-
versed in accord with the bMAP algorithm. The result
is a single representation and processing algorithm for
both acting on goals and processing natural language.

We have implemented our initial system in the
robot-truck simulator domain described in Firby and
Hanks (1987) and used by the RAP system as described
in Firby (1989). We are currently building initial rep-
resentations for the same RAPs used in that work and
we anticipate working in this domain for some time
to create a large DMAP system and refine our ideas.
Ultimately, we intend to demonstrate these ideas on
the robotic platform being built at the University of
Chicago.

Overview of the system

In keeping with the DMAP approach, the combined sys-
tem expresses interpretation, planning, and execution
as recognition tasks. Intuitively, the idea is that the
system must have something similar to what it sup-
posed to be doing already in its knowledge base. For
natural language understanding, the system must al-
ready know a concept similar to that being commu-
nicated for the text to be understood correctly. For
task execution, the system must already know meth-
ods that will work for the current goal in common cir-
cumstances. Naturally, new elements must be added
to account for the differences between what exists and
what is newly expressed or executed. For interpreta-
tion, these elements represent the content of the com-
munication; for execution, these elements represent the
intention and record of action.

Representation

Representation is in the form of a semantic network,
organized by abstraction and labelled packaging rela-
tionships. This representation was chosen primarily for
the efficiency of the algorithm. Extensions to this ba-
sic framework include the specification of constraints
on the packaging relationships of sub-structures to en-
sure that variable bindings make sense. There is also a
system of indices used by the processing algorithm as
a means of maintaining ordering relationships between
concepts.

812

For example, the following memory units represent
a decomposition of the task of picking an object up
with a robot arm. There two subtasks: moving the
arm to the location of the object and grasping the ob-
ject with the arm. Constraints (the non isa: and
index: forms) assure that variable binding is handled
correctly. The index form indicates that in order to rec-
ognize (or satisfy)' this unit, the two sub-units, task1
and task2 must be recognized in the given sequence,
followed by a recognition of the success condition for
the task. Some of this information (such as the success
condition) is inherited from its abstraction.

(define-unit task
(success state))

(define-unit arm-pickup
(isa: task)
(arm 7arm)
(object ?object)
(success holding (arm 7arm) (object Zobj)))

(define-unit arm-pickup-simple
(isa: arm-pickup)
(taskl arm-move (arm 7arm) (object 7obj))
(task2 arm-grasp (arm 7arm) (object 7obj))
(index: (task1) (task2) (success)))

The following is a more complex task to pick up an
object, which involves first picking up the appropriate
tool for the object and then the object itself. Note the
use of the instr constraint to assure that the ?tool is
appropriate for the 7obj. Notice also that this unit and
the arm-pickup-simple unit both inherit the same
success condition from arm-pickup.

(define-unit arm-pickup-v/tool
(isa: arm-pickup)
(instr instrument (tool 7tool) (object 7obj))
(taskl arm-pickup-simple (arm 7arm) (object 7tool))
(taek2 arm-pickup-simple (arm 7arm) (object ?7obj))
(index: (task1) (task2) (success)))

(define-unit instrument
(tool tool)
(object object))

Algorithm
The basic DMAP algorithm is quite simple:

RECOGNIZE (concept):

!'Processing in the DMAP memory is driven by memory
unit indices. In language understanding, indices represent
expectections for particular words, phrases, and abstract
concepts. Processing thus consists of recognizing words,
phrases, and concepts as they arrive from a text. In ex-
tending DMAP to include execution, indices represent in-
tentions as well as expectations. Processing thus consists
of both recognizing expectations and satisfying intentions.
The algorithm remains the same, but the intuitive nomon-
clature shifts a little. We will use the words recognize
and satisfy interchangably while discussing the processing
algorithm.

If concept is a primitive operation
then apply it and process pending sensor inputs;
else gather indices to recognize concepl,
for each inder in indices,
for each element of the indez,
call RECOGNIZE (element).

Primitive operations can be either sensor expectations
(such as measurements or words) the robot must wait
for or eflector actions that the robot can execute. Ef-
fector actions include movements and active percep-
tion. When a sensor expectation is part of a memory
unit index, recognition of that unit is blocked until
data matching the expectation is generated by a sen-
sor. When an effector action is part of an index, it is
executed immediately and that execution may gener-
ate sensor data.

Successful execution of an effector operation or the
satisfaction of a sensor expectation both result in
the “recognition” of the corresponding <element> of
the <inder>; if all such <elements> have been rec-
ognized, the corresponding <concept> is recognized.
Recognition of a unit causes all other units with the
recognized unit as an index element to specialized the
next element in their index. Specializing a unit in-
volves moving down the isa: hierarchy to find the
most specific memory unit that satisfies existing bind-
ing constraints. Any newly discovered specializations
are instantiated by creating new versions of them in
memory with variables bound according to the con-
straints. Units without indices are always special-
ized when instantiated and that is what moves acti-
vation of arm-pickup to either arm-pickup-simple
or arm-pickup-w/tool depending on the binding of
?o0bj.

When “gathering indices,” all indices associated
with the <concept> and any of its abstractions are
collected. The system attempts to recognize all such
indices through “recursive” calls to REcoGNIZE. If a
complete unit index is recognized at any level of ab-
straction, that unit and all of its subunits are recog-
nized together. That way, goals and concepts can be
recognized when they occur even if no specific method
or expectation set produces the required result.

For more details of the algorithm, see Martin (1990).
For more background on this research, see Martin and

Firby (1991).

Execution Problems and Advice

Consider the following situation: The robot has task
(1) “pick up a rock.” It decomposes this task into
two subtasks: (1A) “release anything currently held in
the arm,” and (1B) “pick up the rock with the arm.”
The latter task is in turn decomposed into the two
subtasks: (1B1) “move the arm to the rock,” and (1B2)
“grasp the rock.” Unfortunately, the grasping action
(1B2) fails when executed because the arm is not well
constructed for picking up rocks.

813

A friendly human wanders by and sees the robot’s
plight. The human instantly sees the problem, and
knows that the grasping action would have succeeded
if the robot had previously attached the shovel tool
to its arm. There is precedent for this in the robot’s
memory; had the original task been to pick up a fuel-
drum, the robot would have decomposed task (2) “pick
up a fuel drum” into (2A) “release anything currently
held in the arm,” and (2B) “pick up the fuel-drum with
the arm.” The decomposition of (2B) would have been
into three tasks: (2B1) “attach refueling tool,” (2B2)
“move the arm to the fuel-drum,” and (2B3) “grasp
the fuel-drum.”

In other words, the general plan for (1B) and (2B),
“pick up <object> with the arm” is able to discrimi-
nate between task decompositions on the basis of the
<object>. This discrimination, of course, is repre-
sented in the vocabulary of plan descriptions. From
the point of view of the robot, what is required to fix
the rock problem is for someone to sit down and re-
program the plan library so that the general plan for
(1B) and (2B) knows about rocks (and their associated
gripper) as well as fuel-drums.

Unfortunately, the human who wanders by is not a
robot programmer! (Perhaps the human builds robot
gripper-tools.) From the point of view of the human,
what is required is for the robot to somehow compre-
hend that this handy shovel tool should be used to
pick up rocks in the same way that the refueling tool
is used to pick up fuel-drums without having to have
it hand-coded into the plan library. What the human
would like to do, of course, 1s to simply say, “use the
shovel.”

Our goal is a system that lets the human do just
that.

The Context of Advice-Taking

There are a number of extra-sentential elements that
are important to understanding “use the shovel” as
useful advice. Chief among these is the fact that the
robot is actively engaged in a specific task which it is
failing to accomplish. This is a crucial piece of infor-
mation; imagine the interpretation of “use the shovel”
when the robot is not having a problem: “for what?”
might well be the most appropriate response. However,
in this case, the clear implication is that the shovel will
be of use for the current task.

This is essentially a statement of the advice-taking
problem our system is designed to address. The re-
mainder of the paper describes the way we have ap-
proached the problem of establishing the situational
context for the interpretation of an utterance, involv-
ing as it does tasks of both interpretation and execu-
tion. The context we will discuss is the internal state
of the robot and not the external state of the world,
except for knowledge that a current action is not suec-
ceeding.

Execution Failures

In our example, an execution failure occurs when the
robot attempts to grasp the rock without the appro-
priate tool.

(define-unit primitive
(isa: task)
(primop $primitive)
(index: (primop) :ok (success)))

(define-unit arm-grasp
(isa: task)
(arm 7arm)
(object ?7object)
(success holding (arm 7arm) (object Zobject))
(primop $arm-grasp (arm 7arm) (object 7object)))

The goal of picking up the rock results in an attempt
to recognize arm-grasp which results in an attempt
to recognize, in sequence, the primitive $arm-grasp,
the :ok message from the effectors stating that the
primitive has been executed correctly, and the success
condition of the task. If the robot hasn’t picked up
the appropriate gripper, the sequence of activity will
approximate the following:

1. The attempt to recognize $arm-grasp succeeds,
since an atfempt at a primitive action always suc-
ceeds.

2. The attempt to recognize :ok fails, since the result
from the primitive action is a notification that the
grasp failed . In this case, the failure occurs because
robot did not have the proper tools for success.

All recognition attempts which fail—whether from
an attempt to recognize an execution sequence or a
natural language utterance—result in the automatic
recognition of a failure structure. This will result in
the specialization of concepts that have the appropriate
failure as an index and the eventual instantiation of a
repair memory unit.

The failure hierarchy parallels every hierarchy
which has indices; that is to say, virtually every hierar-
chy in the system. Every failure has a source, which
1s the structure whose recognition failed. Moreover,
because each recognition task is the result of a “recur-
sive call” to RECOGNIZE, the failure of one such task
implies the failure of its parent and so on, up the chain
of calls. Thus, the failure of the arm-grasp operation
results in the recognition—and hence construction—of
multiple failure structures.

Assume that the specific instances of the active pickup
units involved in our failure are the following:
(instance arm-pickup-simple-1

(isa: arm-pickup-simple)

(arm arm-2)

(object rock-3)

(taskl arm-move-4)

(task2 arm-grasp-5))

(instance arm-grasp-5
(isa: arm-grasp)

814

(arm arm-2)
(object rock-3))

In this case, the failures that are generated and recog-
nized are:

(instance failure-6
(isa: failure)
(source arm-grasp-5))

(instance failure-7
(isa: failure)
(source arm-pickup-simple-1))

Generating Expectations from Failures

The recognition of these failure structures may, as with
any successful recognition, cause the refinement and
activation of further structures. The only structures
that make reference to failures in their indices are
those in the repair hierarchy. When a failure struc-
ture 1s recognized, the DMAP system attempts to refine
the corresponding repair structures. One such can-
didate for refinement is repair-task/advice, given
below:
(define-unit repair

(failure failure))

(define-unit repair-task
(isa: repair)
(failure failure (source task)))

(define-unit repair-task/advice
(isa: repair-task)

(failure failure (source 7old-task (success 7success)
(advice mtrans (info 7new-task (success 7success)))

(attempt 7new-task)
(index: (failure) (advice) (attempt)))

The index to this structure implies that three recog-
nition tasks take place. The first, recognition of the
failure which has happened already, results in creating
a context that includes a constraint defining a commu-
nication event, signified here by mtrans, in which the
content of the communication is a task that shares the
success condition of the original task—that is, a piece
of advice.

This second element of the index is not an action
that can be undertaken by the robot, but instead rep-
resents a prediction that natural language input might
be forthcoming and that it will satisfy the advice con-
straint. In other words, upon the robot’s failure to
execute a task, it will always expect that it may re-
ceive a communication of a task sharing the success
condition of the task that failed. This communication
will be a piece of advice on how to achieve the success
condition another way.

Interpretating Advice

In our example, the advice “use a shovel” is meant
to convey to the robot that the shovel is a tool which
the robot should pick up before trying to pick up rocks.
Note that the “tool-nature” of the shovel is not explicit

in the utterance, nor is the fact that it is to be used for
rocks. The expectations set up by refining failures to
repairs sets up the context necessary for the robot to
understand that the phrase, “use a shovel” implies this
advice. Consider the following memory structures:

(define-unit mtrans
(info mobject))

(define-unit mtrans-task-w/tool
(isa: mtrans)

(info task-w/tool (instr instrument (tool 7tool)))

(index: use the (info instr tool)))

(define-unit task-w/tool
(isa: task)
(instr instrument))

The task to recognize the (advice) of the earlier re-
pair structure results in instantiation of (among other
things) mtrans-task-w/tool and an attempt to rec-
ognize its index. The nature of this index and memory
unit is that the word “shovel” is interpreted as a spec-
ification of the 7tool in the task structure.

Having interpreted “shovel” as a tool, recognition of
the mtrans-task-w/tool is complete which completes
recognition of the advice element in the repair struc-
ture index. The next element is attempt which must
be instantiated as a specialized memory unit with the
following constraints:

1. It must be a task.

2. Its success condition must be that of the original
task.

3. It must have an instr role whose fool is a shovel.

These conditions are satisfied by the
arm-pickup-w/tool structure, so the recognition al-
gorithm creates a specific instance of this structure.

Using Advice

Now that a task has been instantiated for the
attempt element of the index associated with
repair-task/advice, the next step is to recognize it.
This task is an instance of arm-pickup-w/tool, and
will require picking up the tool (the shovel) first, fol-
lowed by picking up the object. Presumeably, this at-
tempt will succeed.

The general recognition algorithm described above
operates by creating specific instances of recognized
memory structures. Many of these are too specific to
be of later use to the system; for example, those that
deal with picking up rock-38. As a consequence of
instantiating these specific structures, however, more
general concepts such as the fact that shovels are use-
ful instruments for picking up rocks are also created.

At this point, not only has the helpful human’s ad-
vice caused the robot to change to a more successful
subtask, the process of interpreting “use a shovel” has
instantiated an instrument relation in memory which
can be used anytime in the future. Specifically, the

815

system has learned that shovels are used for picking
up rocks.

(Note that too-specific memory structures might
as well be garbage-collected, except that determining
which concepts are too specific is not a trivial task. A
consequence of the recognition algorithm is that it will
always use the most specific concept that is relevant
to its inputs, but it is difficult to determine in advance
what that level will be. Since performance does not
degrade if these extra structures remain in memory,
no attempt is made to remove them.)

References

Firby, J. 1989. Adaptive Ezecution in Compler Dy-
namic Worlds. Ph.D. dissertation, Yale University.

Firby, J. and Hanks, S. 1987. The simulator manual.
Technical report YALEU/CSD/RR #1563, Com-
puter Science Department, Yale University.

Laird, J., Rosenbloom, P., and Newell, A. 1986.
Chunking in Soar: The Anatomy of a General Learn-
ing Mechanism. Machine Learning, 1:11-46. Also
collected in Shavlik and Dietterich (1990).

Martin, C. 1990. Direct Memory Access Parsing.
Ph.D. dissertation, Yale University.

ML 1988. Proceedings of the Fifth International Con-
ference on Machine Learning, Ann Arbor, ML

ML 1989. Proceedings of the Sizth International Con-
ference on Machine Learning, Ithaca, NY.

ML 1990. Proceedings of the Fifth International Con-
ference on Machine Learning, Austin, TX.

Mostow, J. 1983. A problem-solver for making advice
operational. Proceedings of AAAI-83, Washington,
D.C., pages 279-283.

Shavlik, J. and Dietterich, T. 1990. Readings in Ma-
chine Learning, Morgan Kaufmann, San Mateo, CA.

	cogsci_1991_811-815

