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Abstract

An Efficient, Tolerance-Based Algorithm for the Truncated SVD

by

Michael Yeh

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

The truncated singular value decomposition (TSVD) is an important low-rank matrix ap-
proximation technique used in data science, machine learning, numerical linear algebra, and
many other scientific fields. However, it is quite expensive for large matrices when only a
very low-rank approximation is needed. Existing algorithms for TSVD typically assume the
user knows the proper rank to use, but in practice, they may not know this rank before-
hand. Thus, it is important to have versions of these algorithms that depend on a tolerance
parameter, allowing the user to directly control the approximation error. We develop one
such algorithm that runs quickly for matrices with rapidly decaying singular values, pro-
vide approximation error bounds that are within a constant factor away from optimal, and
demonstrate its utility with matrices from a variety of applications.
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Chapter 1

Introduction and Background

1.1 Low-rank matrix approximation

Low-rank matrix approximation is an important dimensionality reduction technique used in
data science and machine learning. It is becoming increasingly important as some appli-
cations require larger and larger data that traditional methods cannot adequately handle.
Typically, low-rank methods approximate a given matrix as a product of several smaller
matrices and thus can be used to reduce memory costs and time needed to train models.

One of the most important low-rank matrix approximations is the truncated singular
value decomposition (TSVD). Let A be an m× n real matrix and A = UΣV T its SVD. The
rank-k TSVD of A is the matrix Ak := UkΣkV

T
k , where Uk and Vk are the first k columns

of U and V , respectively, and Σk is the leading k × k block of Σ. The columns uj and vj of
Uk and Vk are the top k left and right singular vectors of A, respectively, and the diagonal
entries σ1(A) ≥ · · · ≥ σk(A) ≥ 0 of Σk are the top k singular values of A. The importance
of TSVD stems from the following theorem:

Theorem 1 (Eckart-Young [20]).

min
rank(B)≤k

∥A−B∥2 = σk+1(A)

min
rank(B)≤k

∥A−B∥F =

√√√√rank(A)∑
i=k+1

σ2
i (A)

In both cases, the minimum is attained by the rank-k TSVD Ak of A.

In other words, TSVD is, in a sense, the “optimal” low-rank approximation, and this is
the reason it occupies a central position among low-rank approximation algorithms.

One classic use of TSVD in data science and machine learning is principal component
analysis (PCA) [22]. PCA is really just TSVD, but k is determined using a statistical
interpretation. Suppose a dataset consists of m data points in Rn so that each point is
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described by n “features.” PCA aims to find linear combinations of these features which
account for most of the variation in the data. We may arrange the data points into an m×n
matrix A, each row corresponding to one point. We also assume that the features have been
centered so that each column of A has mean 0. Then ATA is the covariance matrix for the
n features, and we can ask in which direction the data vary the most, i.e. find a unit vector
v that maximizes vTATAv. By replacing A with its SVD, we see that the first right singular
vector v1 of A maximizes vTATAv. We can then ask for the direction in which the data vary
the second most. To ensure that this direction is independent from v1, we require that it
be orthogonal to v1. Using the SVD again, we find that this direction is the second right
singular vector v2 of A. Continuing this process, we get v3, v4, etc.

When do we stop? Since the vi are independent, the variance of the data in the first k
directions is just

k∑
i=1

vTi A
TAvi =

k∑
i=1

σi(A)
2.

Typically, k is chosen so that this variance is a large percentage of the total variance, i.e.

Σk
i=1σi(A)

2∑n
i=1 σi(A)2

≥ 1− ε,

where ε is small. For example, if the user wishes to capture 99% of the total variance, then
we set ε = 0.01. Once we find k, the final approximation that PCA yields is then the rank-k
TSVD Ak of A.

A general application of TSVD is in compressing data. For instance, storing an m × n
image directly requires O(mn) space, while storing its rank-k TSVD requires O((m + n)k)
space, which is much smaller when k ≪ min{m,n}. Similarly, training data for machine
learning algorithms can be compressed in this way to speed-up training times. Turk and
Pentland [42] used TSVD to extract important facial features from a database of facial images
(essentially, the “principal components” of a face) and applied this to facial recognition.
Deerwester et al. [13] used TSVD to extract semantic information from a collection of
documents, a technique known as latent semantic analysis. Given such a collection, they
first construct a t× d term-document matrix A, where each row of A corresponds to a word
and each column of A to a document. The entry Aij is then the number of times that word i
appears in document j and may be weighted as well. They then compute the rank-k TSVD
of A for a suitable number k; in their paper, they use k ≈ 100. The singular vectors then
allow them to measure the semantic similarity of different terms and documents and also
retrieve documents that are conceptually related to a queried set of terms.

Besides TSVD, there are a host of other low-rank approximation techniques based on
other types of factorizations. A notable one that is popular in data analysis is the CUR
decomposition [35], which computes an approximation of the form A ≈ CUR. Here, C
and R contain actual columns and rows, respectively, of A, and usually U = C†AR†. This
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decomposition was inspired by the SVD and was designed to address two of its flaws. Since
C and R are actual columns and rows of A (and therefore correspond to actual data points
and features), the factorization CUR is more easily interpreted than U and V from the SVD
of A. Moreover, the CUR decomposition preserves the sparsity of the original matrix. If A
is sparse, then so are C and R, while U and V in general will not be. In [35], Mahoney and
Drineas apply this decomposition to analyze term-document matrices and DNA microarray
data.

Low-rank approximation has also been used to simplify machine learning models. For
instance, Xue, Li, and Gong [46] substantially reduce the size of a large neural network
used for speech recognition by approximating its weight matrices with two smaller matrices
constructed using TSVD. Despite this substantial reduction in model size, they manage to
maintain a level of accuracy similar to that of the original model. Another example is the
Nyström method in kernel learning [43]. Kernel-based methods involve an n× n symmetric
positive-semidefinite matrix G, where n is the number of training samples, and cost O(n3)
time to train. By replacing G with a rank-k approximation, this training time can be
reduced to O(k2n). Williams and Seeger [43] construct their approximation by randomly
selecting k columns from G to form an n× k matrix C and get the resulting approximation
G ≈ CW−1CT , where W is the “intersection” of C and CT in G. They train two classifiers
with their method and show empirically there is no significant loss in accuracy.

Besides data science and machine learning, low-rank approximation is also used in nu-
merical linear algebra. One classic use case is solving rank-deficient least squares problems:
given an m×n matrix A that is possibly rank-deficient and a vector b ∈ Rm, we wish to solve
minx∈Rn ∥Ax − b∥2. If A is rank-deficient or close to rank-deficient, the solution x will be
sensitive to small perturbations in the data A and b. To regularize the solution, a modified
version of the problem is solved instead, with A replaced by a low-rank approximation to A.

The LAPACK [3] routine xGELSY solves rank-deficient least squares problems in this
way, where a user-supplied parameter RCOND determines the rank of A. The first part
of this routine computes the pivoted QR factorization of A = QRΠT and estimates the
condition number of each leading block R(1 : i, 1 : i), i = 1, 2, . . . . The rank k of A is then
the largest i for which the estimated condition number of R(1 : i, 1 : i) does not exceed
1/RCOND, and the low-rank approximation is obtained by setting R(k + 1 : m, k + 1 : n)
to 0.

Another approach to solving rank-deficient least squares problems uses TSVD [14]. In
floating-point arithmetic, the smallest singular values of a rank-deficient matrix usually will
not be exactly 0, but rather O(εmach∥A∥2), where εmach is machine epsilon. Since these
singular values are on the order of the round-off error, we may justifiably set these equal
to 0 to obtain a low-rank approximation of A and then solve the least squares problem.
More generally, errors in the entries of A may arise not only from round-off error, but also
from sources such as measurement error and noise. If the user has some bound tol on the
amount of error in A, then they may set any singular values smaller than tol to 0 since this
perturbation is no larger than the inherent uncertainty in A. Thus, A is replaced with its
rank-k TSVD Ak, where k satisfies σk(A) ≥ tol > σk+1(A).
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1.2 Low-rank approximation algorithms

Rank-revealing QR

Low-rank approximations can be constructed from so-called rank-revealing factorizations.
Perhaps one of the simplest examples of such a factorization is QR with column pivoting
(QRCP) [6]. Consider a matrix A ∈ Rm×n. At the ith stage of QRCP, we have

AΠ = QR = Q

(
R11 R12

0 R22

)
, (1.1)

where Π is a permutation matrix, Q is orthogonal, and R11 ∈ Ri×i is upper triangular. We
then find j∗ = argmaxj=i+1,...,n ∥R22(i + 1 : m, j)∥2, swap columns j∗ and i + 1 of R, and
apply a Householder reflection to R to zero out R(i + 2 : m, i + 1). We continue until R is
upper triangular. This pivoting strategy is greedy in that at each step, it finds the column
that will make det(R11) as large as possible.

Now, suppose in exact arithmetic that A has rank k. One important property for the
above pivot selection scheme is that |rii| ≥ ∥R(i : m, j)∥2 for j = i + 1, . . . , n. From this,
it follows that the trailing block R(k + 1 : m, k + 1 : n) of R will be 0. Thus, we obtain a
compact representation of A by keeping the first k columns of Q and the first k rows of R.

However, in floating point arithmetic, the situation is more complicated. In general, a
rank-deficient matrix will not have singular values exactly zero. Rather, they will generally
be on the order of εmach∥A∥2, where εmach is machine epsilon. In this case, we would hope
that the norm of the trailing block will be O(εmach∥A∥2) so that we could again obtain a
compact representation of A, this time with an error on the order of the round-off error.

More generally, suppose there is a large relative gap between σk(A) and σk+1(A). Par-
tition R as in Equation 1.1 so that R11 is k × k. By Theorem 1, ∥R22∥2 ≥ σk+1(A), and
we also know that σk(R11) ≤ σk(A) by the Cauchy Interlacing Theorem. Thus, if we have
∥R22∥2 ≈ σk+1(A) and σk(R11) ≈ σk(A), then the R factor will have revealed the gap
between σk(A) and σk+1(A) and thus the (numerical) rank of A. Chan first considered rank-
revealing QR factorizations in [8]. Gu and Eisenstat [26] formally define a rank-revealing
QR factorization to be one which satisfies

σk(R11) ≥
σk(A)

p(k, n)
and ∥R22∥2 ≤ p(k, n)σk+1(A),

where p(k, n) is bounded by some low-degree polynomial in k and n. Luckily, for most
matrices that arise in practical applications, QRCP does indeed reveal the rank in this way.

However, there are some pathological cases where QRCP fails. A well-known example is
the n× n Kahan matrix [32]:

K := K(c, s, n) =


1 0 · · · 0

0 s
. . .

...
...

. . . . . . 0
0 · · · 0 sn−1



1 −c · · · −c

0 1
. . .

...
...

. . . . . . −c
0 · · · 0 1

 , c2 + s2 = 1.
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Kahan shows thatK requires no pivoting, so it remains unchanged after QRCP. Furthermore,
he shows that

Knn

σn(K)
= O

(
(1 + c)n−1

)
.

Thus, QRCP can fail to reveal the rank ofK by an arbitrarily large factor if we take k = n−1.
To address this failure, Gu and Eisenstat [26] propose extra column swaps. Given f ≥ 1,

we swap one of the first k columns of R with one of its last n−k columns to increase det(R11)
by a factor of at least f until no such swap exists. This algorithm can be performed in O((m+
n logf n)n

2) flops. The resulting R factor satisfies properties stronger than those of a rank-

reveal QR factorization. They show that there are functions q1(k, n) ≤
√

1 + f 2k(n− k)
and q2(k, n) ≤ f such that for 1 ≤ i ≤ k and 1 ≤ j ≤ n− k:

σi(R11) ≥
σi(A)

q1(k, n)
, σj(R22) ≤ q1(k, n)σk+j(A), and

∣∣(R−1
11 R12)ij

∣∣ ≤ q2(k, n).

Thus, not only is the rank of A revealed, but the singular values of the leading and trailing
blocks R11 and R22 are accurate up to a small polynomial factor.

Randomized QR with column pivoting

As we have seen, QRCP is used frequently in rank-revealing algorithms and low-rank matrix
approximation. However, the communication costs of pivoting make it considerably more
expensive than unpivoted QR. Duersch and Gu [19] developed randomized QR with column
pivoting (RQRCP) to reduce these communication costs while maintaining a similar pivot
quality as QRCP. Rather than using the columns of the original matrix A to make pivot
decisions, they draw a random Gaussian matrix Ω of size l ×m, where l ≪ m, and instead
use the columns of the compressed matrix ΩA. The reduction in column size from m to l
leads to a significant improvement in performance, nearing that of unpivoted QR.

Spectrum-revealing QR

Another type of RRQR algorithm called spectrum-revealing QR (SRQR) was proposed by
Xiao, Gu, and Langou in [45]. It satisfies stronger rank-revealing properties than RRQR in
that for matrices with rapidly decaying singular values, the singular values of the approxi-
mation are accurate up to a nontrivial number of digits.

To achieve a good approximation, we “oversample” the target rank k by first computing
a rank-ℓ (ℓ ≥ k) truncated QR factorization R̃, and then computing the rank-k truncated
SVD of R̃. Thus, consider an ℓ-step partial QR factorization (QRCP or RQRCP) of A where
ℓ ≥ k:

AΠ = Q

(
R11 R12

0 R22

)
, R11 ∈ Rℓ×ℓ
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Define

R̃ :=
(
R11 R12

)
, R̂ :=

(
R11 a
0 α

)
,

where R̂ is the leading (ℓ+ 1)× (ℓ+ 1) block of R after performing the next step of QRCP
or RQRCP. Xiao et al. show that for 1 ≤ j ≤ k,

σj(R̃) ≥ σj(A)√
1 +

(
∥R22∥2
σk(R̃)

)2 and σj(R̃) ≥ σj(A)√
1 +

(
1 +

∥R22∥22
σ2
k(R̃)

)
∥R22∥22
σ2
j (A)

,

and the truncation error satisfies

∥AΠ−Q

(
R̃k

0

)
∥2 ≤ σk+1(A)

√
1 +

(
∥R22∥2
σk+1(A)

)2

,

where R̃k is the rank-k TSVD of R̃. These inequalities show that we can get a good ap-
proximation if ∥R22∥2 ≈ σℓ+1(A) and A has rapidly decaying singular values. Thus the goal
of SRQR is to find a column permutation that ensures ∥R22∥2 = O(σℓ+1(A)). Accordingly,
SRQR is based on the Hybrid-II(ℓ) RRQR algorithm of Chandrasekaran and Ipsen [9]. This
latter algorithm finds a permutation Π that approximately solves minΠ ∥R22∥2; on exit it
guarantees that ∥R22∥2 ≤ σℓ+1(A)

√
(ℓ+ 1)(n− ℓ).

For any matrix X, let ∥X∥1,2 denote the largest column 2-norm of X, and further define
the following quantities:

g1 :=
∥R22∥1,2

|α|
, g2 := |α| ∥R̂−T∥1,2,

τ := g1g2
∥R22∥2
∥R22∥1,2

∥R̂−T∥−1
1,2

σℓ+1(A)
, τ̄ := g1g2

∥R22∥2
∥R22∥1,2

∥R−T
11 ∥−1

1,2

σk(R̃)

Xiao et al. show that the singular values of the truncated matrix R̃ satisfy

σj(R̃) ≥ σj(A)√
1 + min

(
τ̄ 2, τ 2(1 + τ̄ 2)

(
σℓ+1(A)

σj(A)

)2) , 1 ≤ j ≤ k,

and the truncation error satisfies

∥AΠ−Q

(
R̃k

0

)
∥2 ≤ σk+1(A)

√
1 + τ 2

(
σℓ+1(A)

σk+1(A)

)2

.
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Thus, the singular values and truncation error will be accurate up to a small relative error
provided τ and τ̄ are not too large and the singular values of A decay quickly. The authors
prove that τ and τ̄ are bounded by g1g2 times a dimension dependent constant:

τ ≤ g1g2
√
(ℓ+ 1)(n− ℓ), τ̄ ≤ g1g2

√
ℓ(n− ℓ),

but note that in practice, the two ratios in τ and τ̄ are modest in size. They further prove
that for RQRCP,

g1 ≤
√

1 + ε

1− ε
and g2 ≤

√
2(1 + ε)

1− ε

(
1 +

√
1 + ε

1− ε

)ℓ−1

.

where ε is typically ≪ 1. Thus the only potentially large factor in τ and τ̄ is g2, which
could be exponentially large. So, we would like to perform extra column swaps to control
the size of g2. The authors use a user-selected threshold g > 1 to achieve this, terminating
the algorithm once g2 < g. The way in which extra column swaps are performed in SRQR is
similar to Hybrid-II(ℓ), but with some randomization added to make it more efficient. In [9],
the authors show that Hybrid-II(ℓ) eventually stops, which is equivalent to having g2 = 1.
Thus, SRQR does indeed terminate eventually, but may terminate earlier than Hybrid-II if
g is large enough. Xiao et al. show that, compared to QRCP, SRQR is much faster and
provides a higher quality low-rank approximation.

The QLP decomposition

The basis of our next spectrum-revealing algorithm is the QLP decomposition [40]. Let A
be an m × n matrix. Perform QRCP on A to obtain AΠ = QR and then perform QRCP
on RT to get RTΠ1 = PLT , where L is lower triangular. Putting these together yields
A = QΠ1LP

TΠT . This is the pivoted QLP decomposition of A. Stewart observed that the
diagonal entries lii of L closely track the singular values of A.

To partially explain this behavior, consider extending the QLP decomposition into an
iterative procedure. Compute the QR factorization A = Q0R0. Then for i = 1, 2, . . . , we
get Qi and Ri by computing the QR factorization RT

i−1 = QiRi. Huckaby and Chan [29]
show that this iterative procedure corresponds to performing QR iteration on RT

0R0 and so,
the Ri converge to a diagonal matrix whose diagonal elements are the singular values of R0

(which are the same as those of A) in descending order.
They also perform some analysis on the convergence rate of the singular values of L11

and L22, which are the leading k × k and trailing (n − k) × (n − k) diagonal blocks of L,
respectively, when there is a large gap between σk(A) and σk+1(A), and conclude that when
σk+1(A)/σk(A) is small, the convergence is quite fast, thus partially explaining the accuracy
of the QLP decomposition. Because of this quick convergence, we might expect stronger
rank-revealing properties than RRQR or SRQR and a more accurate low-rank approximation
by truncating the trailing block L22 of L rather than the trailing block R22 of R. Indeed,
this observation leads to the following algorithm, flip-flop QR.
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Flip-flop spectrum-revealing QR

Following SRQR, Feng et al. [23] proposed a spectrum-revealing algorithm based on the
QLP decomposition called flip-flop QR (FFQR). For a matrix A and integers k ≤ ℓ, FFQR
produces an approximation to the rank-k TSVD Ak in O(mnl) time whose accuracy depends
on the ratio σℓ+1(A)/σk+1(A). Thus, if A has rapidly decaying singular values, FFQR will
be close to TSVD.

FFQR is computed as follows. Let A be an m× n matrix (m ≥ n) and k ≤ ℓ. Perform ℓ
steps of RQRCP to get the factorization

AΠ = QR = Q

(
R11 R12

0 R22

)
,

where Π is an n×n permutation matrix, Q is an m×m orthogonal matrix, R is m×n, and
R11 is an ℓ× ℓ upper triangular matrix.

The next phase of FFQR involves performing extra SRQR column swaps on R and using
Givens rotations to restore its upper trapezoidal form. Then, perform ℓ steps of QR on RT

to get

RT = PLT =
(
P1 P2

)(L11 0
L21 L22

)T

,

where P is an n × n orthogonal matrix, P1 is its leading ℓ columns, L is an m × n matrix,
and L11 is ℓ× ℓ lower triangular. Putting the above together yields

A = QRΠT = Q

(
L11 0
L21 L22

)
P TΠT .

Observe that unlike the QLP factorization described above, where we pivot when factoring
A and RT , in FFQR we pivot only when factoring A. This is because QRCP on RT would
require us to know all the columns of RT , not just the first ℓ. Thus, by not pivoting in the
second factorization, we can save some computational cost without sacrificing approximation

quality. Now, discard L22 and approximate
(
LT
11 LT

21

)T
with its rank-k TSVD ÛkΣ̂kV̂

T
k :

Q

(
L11 0
L21 L22

)
P TΠT ≈ Q

(
L11

L21

)
P T
1 Π

T

≈ Q(ÛkΣ̂kV̂
T
k )P T

1 Π
T

Setting Ũk := QÛk, Σ̃k := Σ̂k, Ṽk := ΠP1V̂k gives the rank-k approximation A ≈ ŨkΣ̃kṼ
T
k .

In [23], the authors prove the following bounds for FFQR that are analogous to the
ones for SRQR. The most important difference is the presence of fourth powers rather
than second powers. Given ε > 0 and g > 1, there are matrix-dependent quantities
g1 ≤

√
(1 + ε)/(1− ε), g2 ≤ g, τ ≤ g1g2

√
(ℓ+ 1)(n− ℓ), and τ̂ ≤ g1g2

√
ℓ(n− ℓ) such
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that for 1 ≤ j ≤ k,

σj(Σ̃k) ≥
σj(A)

4

√
1 + min

(
2τ̂ 4, τ 4(2 + 4τ̂ 4)

(
σℓ+1(A)

σj(A)

)4) (1.2)

and

∥A− ŨkΣ̃kṼ
T
k ∥2 ≤ σk+1(A)

4

√
1 + 2τ 4

(
σℓ+1(A)

σk+1(A)

)4

. (1.3)

The quantities g1, g2, τ , and τ̂ are defined the same as in SRQR above.
Because of the fourth power on the ratio σℓ+1(A)/σk+1(A), FFQR produces a remarkably

accurate approximation to TSVD when the singular values of A decay rapidly and ℓ is chosen
to be sufficiently large. It is due to this property that we have chosen to use FFQR as the
basis for our algorithm.

Randomized methods

Much of the recent work done on low-rank matrix approximations combines traditional meth-
ods with randomization to obtain faster performance while maintaining good approximation
quality.

Early randomized algorithms typically built low-rank matrix approximations by randomly
sampling columns and/or rows from the original matrix. One of the simplest examples of
such algorithms is the LinearTimeSVD algorithm of Drineas, Mahoney, and Kannan [16],
shown in Algorithm 1. For a matrix X, we let X(i) and X(i) denote the ith column and ith
row of X, respectively.

Algorithm 1 LinearTimeSVD

Input: A ∈ Rm×n, integers c and k (1 ≤ k ≤ c ≤ n), probability distribution {pi}ni=1

Output: orthogonal Hk ∈ Rm×k, numbers σt(C), 1 ≤ t ≤ k

1: Select c columns (with indices it, 1 ≤ t ≤ c) with replacement from A where A(i) is
picked with probability pi.

2: Form the matrix C ∈ Rm×c, where C(t) = A(it)/
√
cpit .

3: Form CTC and compute its SVD
∑c

t=1 σ
2
t (C)yt(yt)T .

4: Compute ht = Cyt/σt(C) for 1 ≤ t ≤ k.

5: Return Hk, where H
(t)
k = ht, and σt(C), 1 ≤ t ≤ k.

Observe that the ht are just the left singular vectors of C. They are computed implicitly
because performing SVD on CTC is cheaper than on C. For a suitable probability distribu-
tion {pi}ni=1, we can think of C as a set of representative columns of A that approximate the
column space of A well. Hence, the ht are good approximations to the left singular vectors
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of A and the σt(C) good approximations to A’s singular values. Writing the projection of A
onto Hk as

HkH
T
k A = HkΣk(A

THkΣ
−1
k )T ,

where Σk = diag(σ1(C), . . . σk(C)), as in [34] exhibits an approximate rank-k TSVD of A.
For the distribution

pi =
∥A(i)∥2F
∥A∥2F

,

Drineas et al. [16] prove that

∥A−HkHkA∥2ξ ≤ ∥A− Ak∥2ξ + ε∥A∥2ξ (1.4)

with high probability if c ≥ O(1/ε2) for ξ = 2 or c ≥ O(k/ε2) for ξ = F . But, note that if
∥A∥ξ ≫ ∥A− Ak∥ξ, then this bound is unsatisfactory.

In [17], Drineas, Mahoney, and Muthukrishnan improve on the additive-error bound 1.4
by using a more complicated probability distribution {pi}ni=1 and sampling more columns.
More specifically, they consider the distribution

pi =
∥(Vk)(i)∥2

k
, 1 ≤ i ≤ n, (1.5)

where the columns of Vk are the top k right singular vectors of A. The quantities ∥(Vk)(i)∥2
are the leverage scores for A and are related to the notion of coherence [7]. Intuitively,
columns with high leverage contain the most information about the column space of A and
should be included in C to obtain a good approximation. Thus, columns with high leverage
should be selected with higher probability. They show that if pi is defined by 1.5 and
c = O(k2 log(1/δ)/ε2), then the best approximation error over O(log(1/δ)) trials satisfies

∥A− CC†A∥F ≤ (1 + ε)∥A− Ak∥F

with probability at least 1 − δ. One issue with this method is that computing the proba-
bilities 1.5 is expensive as it requires computing a partial SVD of A. Some work has been
done to compute good approximations to these probabilities quickly. See for instance [18].
Deshpande and Vempala further improve on these algorithms by using a different sampling
strategy and sampling only r := O(kε−1 + k log k) columns from A to construct a rank-k
approximation Ãk satisfying the relative error bound

∥A− Ãk∥2F ≤ (1 + ε)∥A− Ak∥2F .

Furthermore, Ãk can be computed in O(nnz(A)r + (m+ n)r2) time.
The best randomized algorithms typically use random projections instead of randomly

sampling columns and/or rows of the original matrix. As Sarlós [39] argues, random pro-
jections often result in higher quality approximations in some applications; moreover, the
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projections generally can be constructed independently of the data while sampling-based
algorithms usually need a data-dependent sampling distribution to obtain good results. The
key property needed for a good random projection is that it should approximately preserve
the geometry of the data when projecting it to a lower-dimensional space. Such projections
are referred to as “low-distortion embeddings” or “sketches.”

Johnson and Lindenstrauss [31][2] proved the following lemma that formalizes the idea
of a low-distortion embedding:

Lemma 1. Let 0 < ε < 1, and x1, . . . , xn ∈ Rm n points in Rm. If k = O(ε−2 log n) and Φ
is
√
m/k times a k ×m random orthogonal matrix, then with constant probability,

(1− ε)∥xi − xj∥2 ≤ ∥Φxi − Φxj∥2 ≤ (1 + ε)∥xi − xj∥2, 1 ≤ i, j ≤ n.

Thus, we can embed n points into Rk and approximately preserve their pairwise distances
provided that k is sufficiently large. However, construction of Φ would require a QR factor-
ization, for instance, which costs O(mk2) time to compute, and O(mk) time to apply to a
vector.

To make low-distortion embeddings viable for practical use, we need to find embeddings
that can be generated and applied quickly. Indyk and Motwani [30][39] made the important
discovery that one could get the same low-distortion guarantee by taking Φ to be 1/

√
k times

a k × m matrix whose entries are i.i.d. standard normal. This Φ can be generated much
more cheaply than a random orthogonal matrix, and moreover has the attractive property
that it can be parallelized. Achlioptas [1] proposed an even simpler projection matrix that
has the same guarantee. It is a suitable multiple of a matrix whose entries are drawn from
a simple distribution over {−1, 0, 1}.

In [2], Ailon and Chazelle proposed a so-called fast Johnson-Lindenstrauss transform.
It is constructed as Φ = PHD. Here, D is an m × m diagonal matrix where dii takes on
the values ±1 each with probability 1/2. H is an m × m Walsh-Hadamard matrix scaled
by m−1/2 so that it is orthogonal. In Ailon and Chazelle’s original paper, P was a k × m
sampling matrix where pij takes on the value 0 with probability 1−q and otherwise is drawn
from a N(0, q−1) distribution, where

q = min

(
Θ

(
log2 n

m

)
, 1

)
and k = O(ε−2 log n). In more recent work [4][5], P is

√
m/k times a matrix whose rows are

drawn randomly uniformly (with or without replacement) from the m×m identity matrix,
and so Φ is referred to as a subsampled randomized Hadamard transform (SRHT). P can
be thought of as projecting a vector in Rm by randomly selecting k of its coordinates and
then rescaling. The sparsity of P and D, and the fact that the Walsh-Hadamard transform
(or more generally any FFT-like transform) can be computed in O(m logm) time make this
faster much than the usual JLT, which requires dense matrix multiplication.

One of the fastest embeddings was proposed by Clarkson and Woodruff in [10]. The basic
building block for these embeddings, which they refer to as generalized sparse embeddings,
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are random matrices called sparse embedding matrices. Given t and n (t ≤ n), a t×n sparse
embedding matrix is constructed as the product ΦD. Each column of the t × n matrix Φ
has exactly one non-zero entry equal to 1, which is selected uniformly at random, and D is
a diagonal matrix each of whose diagonal entries is 1 or −1 with equal probability. Then a
generalized sparse embedding matrix S has the form

S =


B(1)

B(2)

. . .

B(q)

P,

where each B(i) consists of a number of sparse embedding matrices that are stacked on
top of each other, and P is a certain permutation matrix. The construction involves some
more details about the sizes of each B(i) and their number, and how P is constructed,
but we will not discuss that here. The main observation is that applying S is very fast
due its extreme sparsity. They prove that for a given δ > 0, if we construct a t × m
generalized sparse embedding matrix S, where t = O(rε−4 log(r/εδ)(r + log(1/εδ))), then
(1 − ε)∥y∥2 ≤ ∥Sy∥ ≤ (1 + ε)∥y∥2 for all y in the column space of A with probability at
least 1− δ. Moreover, SA can be computed in O(nnz(A)ε−1 log(r/δ)) time. They apply this
embedding to regression, leverage score estimation, and low-rank matrix approximation, the
latter of which we discuss briefly below.

Next, we discuss projection-based randomized low-rank approximation algorithms. Sarlós
[39] shows that if A ∈ Rm×n, 0 < ε ≤ 1, S ∈ Rr×n is a JLT with i.i.d. Bernoulli entries (that
take on values ±1), and r = Θ(k/ε+ k log k) then

∥A− πAST ,k(A)∥F ≤ (1 + ε)∥A− Ak∥F
with probability at least 1/2, where πAST ,k is the rank-k truncated SVD of the projection of
A onto the range of AST . The singular vectors of πAST ,k(A) can be computed in O(nnz(A)r+
(m+n)r2) time. This algorithm requires only two passes over the data, unlike the sampling-
based algorithm by Deshpande and Vempala [15] which requires Θ(k log k).

We can break down the computation of the low-rank approximation πAST ,k(A) into several
steps. We will see that later randomized SVD algorithms typically follow a similar pattern.
We can think of ST as spanning an r-dimensional random space in Rn so that AST roughly
approximates the subspace spanned by the top r left singular vectors of A. Next, we project
A onto the subspace spanned by AST . The easiest way to do this is to find an orthogonal
basis for this subspace by computing the QR factorization AS = QR and then forming the
projection QQTA. Finally, we compute the rank-k truncated SVD of QQTA by computing
the rank-k TSVD ŨkΣ̃kṼ

T
k of QTA and then setting Uk := QŨk, Σk := Σ̃k, and Vk := Ṽk,

giving us the low-rank approximation πAST ,k(A) = UkΣkV
T
k .

Rokhlin, Szlam, and Tygert [38] improve on Sarlós’s algorithm by including a few power
iterations to make the singular values of A decay more quickly and hence increase the accu-
racy of the final approximation. In their paper, they consider A to be a short, fat matrix.
We would like to think of A as a tall, skinny matrix, so we apply their algorithm to our AT .
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Suppose A ∈ Rm×n, m ≥ n and l and k are integers such that k < l ≤ n− k. Generate
Ω ∈ Rn×l and form the m× l matrix Y = A(ATA)iΩ. Compute the rank-k truncated SVD
of Y , and let Q ∈ Rm×k be the matrix containing the top k left singular vectors of Y . Form
Z = QTA ∈ Rk×n and compute its SVD Z = ŨΣ̃Ṽ T . Finally, set U := QŨ , Σ := Σ̃,
and V := Ṽ . Rokhlin et al. show that the approximate SVD resulting from this algorithm
satisfies

∥A− UΣV T∥2 ≤ Cn1/(4i+2)σk+1(A)

with high probability, where C = C(k, l) is a constant that does not depend on A. While
n1/(4i+2) → 1 as i → ∞, there is still the constant C left that is somewhat unsatisfactory.

We can summarize these two algorithms with the following prototype for SVD via ran-
domized subspace iteration:

Algorithm 2 SVD via randomized subspace iteration [25]

Input: a matrix A ∈ Rm×n, target rank k, integer l ≥ k, small exponent i
Output: approximate rank-k truncated SVD UkΣkV

T
k

1: Generate a random matrix Ω ∈ Rn×l (need not be Gaussian)
2: Form Y = (AAT )iAΩ
3: Compute orthonormal basis Q for the range of Y
4: Form B = QTA
5: Compute rank-k truncated SVD ÛkΣ̂kV̂

T
k of B

6: Return Uk := QÛk, Σk := Σ̂k, Vk = V̂k

Halko, Martinsson, and Tropp [27] perform a more refined analysis for this randomized
subspace iteration algorithm for the SVD. One can combine the results of Theorem 9.2 and
Corollary 10.9 in [27] to obtain the following bound:

Theorem 1. Let k ≥ 2 be the target rank, p ≥ 4 an oversampling parameter such that
k + p ≤ min{m,n}, and q ≥ 0 an integer. Draw an n× (k + p) standard Gaussian matrix.
Set Z := (AAT )qAΩ and PZ the projection operator onto Z. Then with failure probability at
most 6e−p,

∥(I − PZ)A∥2 ≤

(1 + 17

√
1 +

k

p

)
σ2q+1
k+1 (A) +

8
√
k + p

p+ 1

(∑
j>k

σ4q+2
j (A)

)1/2
1/(2q+1)

≤

(
1 + 17

√
1 +

k

p
+

8
√
k + p

p+ 1

)1/(2q+1)

σk+1(A).

They also directly prove bounds on the approximation error in expectation, differing only
in the value of the constant. However, the moral of the story is the same: as the number of
power iterations q → ∞, the approximation error approaches its optimal value of σk+1(A) as
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we would expect. The oversampling parameter p is quite small, so PZA has rank k + p ≈ k.
As mentioned in [27], using this analysis to further get a bound on ∥A − (PZA)k∥2, where
(PZA)k is the best rank-k approximation to PZA would add an extra σk+1(A) term to the
right hand side.

Gu [25] presents a novel error analysis of this algorithm that shows that matrices with
rapidly decaying singular values can be approximated very accurately with randomized sub-
space iteration. The setup is similar to the one above. Let A ∈ Rm×n, m ≥ n, 0 < k ≤ l < n,
q a nonnegative integer, and Ω ∈ Rn×l a standard Gaussian matrix. Form Y = (AAT )qAΩ,
compute the QR factorization of Y = QR. (However, this way of computing an orthonormal
basis for the range of Y could be numerically unstable for large enough q. In a proper imple-
mentation, we should compute Q in a more stable way, but since we are mainly interested in
the analysis, we will not worry about that here.) Under this setting, Gu proves the following
bounds:

Theorem 2. Let 0 ≤ p ≤ l − k, Bk the rank-k truncated SVD of B := QTA (so QBk is a
rank-k approximation to A), and 0 < ∆ ≪ 1. Define

C∆ =
e
√
l

p+ 1

(
2

∆

)1/(p+1)
(√

n− l − p+
√
l +

√
2 log

2

∆

)
.

Then for j = 1, . . . , k,

σj(QBk) ≥
σj(A)√

1 + C2
∆

(
σl−p+1(A)

σj(A)

)4q+2

and

∥(I −QQT )A∥2 ≤ ∥A−QBk∥2 ≤

√
σ2
k+1(A) + kC2

∆σ
2
l−p+1(A)

(
σl−p+1(A)

σk(A)

)4q

.

Thus, we see that if the spectrum of A decays rapidly, then the ratio σl−p+1/σk will
be small, giving a very accurate approximation. And as in the bounds above, more power
iterations lead to quicker convergence of the singular values and truncation error to their
optimal values.

Clarkson and Woodruff [10] propose an interesting low-rank approximation algorithm
that is based on regression rather than subspace iteration. Given A ∈ Rn×n, the solution to
the regression problem

min
rank(X)=k

∥AX − A∥F

is just X = A†
kAk since AA†

kAk = Ak. We will give the basic idea behind the algorithm. In
[10], the authors consider an approximation to this problem, namely

min
rank(X)=k

∥(ART )X − A∥F , (1.6)
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where R is a certain embedding matrix. They show that the value of (1.6) is nearly op-
timal, bounded above (1 + ε)∥A − Ak∥F . They then consider the equivalent problem
minrank(X)=k ∥UX − A∥F , where U is an orthonormal column basis for ART , and find an
approximate solution (again within a factor of 1 + ε of optimal) by solving

min
rank(X)=k

∥SUX − SA∥F , (1.7)

where S is another certain embedding matrix. Letting X̃ denote the solution to (1.7), we
have

∥UX̃ − A∥F ≤ (1 + ε) min
rank(X)=k

∥UX − A∥F ≤ (1 + ε)2∥A− Ak∥F .

So, all we need to do is find a formula for X̃. Referring back to (1.7), we can compute
X̃ essentially by finding the best rank-k approximation of the projection of SA onto SU .
Compute the SVD of SU = ŨΣ̃Ṽ T , compute the projection ŨTSA of SA onto SU , find
its best rank-k approximation (ŨTSA)k, and then pull this back to the domain of SU to
get X̃ = Ṽ Σ̃†(ŨTSA)k. Our final approximation of A is therefore UX̃, from which an
approximate truncated SVD LDW T can be computed. Moreover, they show that LDW T

can be computed quickly, in O(nnz(A)) + Õ(nk2ε−4 + k3ε−5), which is faster than previous
methods.

Lastly, we would like to briefly mention an iterative randomized SVD algorithm. In
[37], the authors present a randomized algorithm based on the blocked Lanczos algorithm
to compute an approximate TSVD. This algorithm uses a random starting matrix Π with
standard normal entries to build the Krylov subspace of A. For a matrix A, rank k, and
tolerance ε, the algorithm produces a matrix Z whose columns approximate the top k left
singular vectors of A and such that ∥A − ZZTA∥ξ ≤ (1 + ε)∥A − Ak∥ξ for ξ = 2, F . They
also provide an extra guarantee that∣∣uT

i AA
Tui − zTi AA

T zi
∣∣ ≤ εσ2

k+1, 1 ≤ i ≤ k.

In other words, the columns of Z are good approximations to the left singular vectors of A.
This algorithm is especially suited to sparse matrices, which can be multiplied quickly.

1.3 The fixed-precision problem

Low-rank approximation methods can generally be divided into two types: fixed-rank meth-
ods and fixed-precision methods. Fixed-rank methods assume the user provides a target
rank k and will then produce a matrix B of rank k so that ∥A−B∥ is small. Most research
has focused on the fixed-rank problem, and indeed, all of the low-rank approximation algo-
rithms mentioned above solve this problem. However, in practice, the user may not know
ahead of time what the target rank should be. Instead, they may know how accurate of



CHAPTER 1. INTRODUCTION AND BACKGROUND 16

an approximation they need, and this is where fixed-precision methods are necessary. For a
given matrix A and approximation error ε > 0, fixed-precision methods output a low-rank
matrix B so that ∥A − B∥ < ε. PCA can be recast as a fixed-precision problem. In the
PCA example from Section 1.1 above, we want to find a B so that ∥A− B∥2F < ε∥A∥2F . In
the same section, the solution of rank-deficient least squares problems via TSVD can also
be recast as a fixed-precision problem: find a low-rank B so that ∥A−B∥2 < tol.

Fixed-precision methods

Most recent research has focused on the fixed-rank problem, however there is some work
that addresses the fixed-precision problem. Typically, fixed-precision algorithms use a ver-
sion of a fixed-rank algorithm that builds the approximation incrementally, stopping when
the approximation error is sufficiently small. The crux of the matter is finding a cheap
and accurate way to estimate this approximation error after each iteration. And as with
recent fixed-rank methods, recent fixed-precision methods typically employ randomization
to improve run time.

Martinsson and Voronin [36] proposed a fixed-precision algorithm which, for a given
matrix A and error ε, outputs two matrices Q and B so that Q is column-orthogonal,
B = QTA, and ∥A−QB∥ < ε. This algorithm is prototypical for fixed-precision algorithms.
The full algorithm is presented in Algorithm 3.

Algorithm 3 The randQB b algorithm for the fixed-precision problem [36]

Input: an m× n matrix A; desired accuracy tolerance ε; block size b
Output: Q, B such that ∥A−QB∥ < ε

1: for i = 1, 2, 3, . . . do
2: Ωi = randn(n, b)
3: Qi = orth(AΩi)
4: Qi = orth(Qi −

∑i−1
j=1QjQ

T
j Qi)

5: Bi = QT
i A

6: A = A−QiBi

7: if ∥A∥ < ε then stop

At iteration i, we have constructed [Q1, . . . , Qi−1] and [B1; . . . ;Bi−1], and A holds the
residual A0 −QB, where A0 denotes the original input matrix. To extend Q, the idea is to
approximate the part of A0 that has not yet been captured by evaluating A on a random
Gaussian test matrix Ωi. We then find an orthonormal basis Qi for the part of AΩi that
is orthogonal to the current basis Q, update A, and stop if the approximation error (the
norm of the residual) is small enough. Martinsson and Voronin suggest using the Frobenius
norm because it is cheap to compute and say that using norms that are more expensive to
compute may require modifications to the algorithm.

As noted by Yu et al. [47], the computation of the approximation error ∥A∥ in line 3.7
can be expensive, especially for very large matrices. They note that for algorithms using the
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Frobenius norm, the following theorem (or some variant thereof) may be used to cheaply
update the approximation error at each iteration:

Theorem 2 ([47]). Let Q(i) := [Q1, Q2, . . . , Qi] be a column orthogonal matrix, Bj := QT
j A,

and B(i) := QT
(i)A, then

∥A−Q(i)Q
T
(i)A∥2F = ∥A∥2F −

i∑
j=1

∥Bj∥2F .

Thus, after computing new basis vectors (the columns of Qi), the approximation error
∥A − Q(i)B(i)∥2F can be computed simply by subtracting ∥Bi∥2F from the previous error
∥A − Q(i−1)B(i−1)∥2F . This is cheaper as Bi is typically much smaller than A. Yu et al.’s
randQB EI algorithm is similar to Algorithm 3, but uses the error update formula in Theorem
2 and optionally can include a few power iterations to improve accuracy. We will compare
our algorithm to randQB EI and use Yu et al.’s Matlab implementation.

Hallman [28] proposes an algorithm that produces a low-rank approximation of the form
UBV T , where U and V are column-orthogonal and B is block bidiagonal, using a blocked
version of the Golub-Kahan bidiagonalization procedure [24]. At the kth iteration, we have
column-orthogonal matrices U(k−1) = [U1, . . . , Uk−1] and V(k) = [V1, . . . , Vk] and a block
bidiagonal matrix

Bk−1 =


R1 L2

R2
. . .
. . . Lk−1

Rk−1 Lk

 .

The algorithm then computes column-orthogonal matrices Uk and Vk+1 to extend U(k−1) and
V(k), respectively, and also new blocks Rk and Lk+1. Hallman notes that Theorem 2 implies
that

∥A− U(k)BkV
T
(k+1)∥2F = ∥A∥2F − ∥Bk∥2F

= ∥A∥2F − ∥Bk−1∥2F − ∥Rk∥2F − ∥Lk+1∥2F
= ∥A− U(k−1)Bk−1V

T
(k)∥2F − ∥Rk∥2F − ∥Lk+1∥2F .

So as before, the approximation error can be updated after each iteration simply by sub-
tracting ∥Rk∥2F and ∥Lk+1∥2F .

Zhang and Mascagni [48] propose a fixed-precision algorithm based on the LU factoriza-
tion, randomization, and power iteration that also uses this type of Frobenius norm update
formula. The goal is to construct a column-orthogonal matrix V so that ∥A − AV V T∥F is
less than a user-prescribed accuracy level. At each iteration, we have V(i−1) = [V1, . . . , Vi−1]
and extend it with new basis vectors Vi. Then using Theorem 2 and transposition, the new
approximation error ∥A− AV(i)(V(i))

T∥2F = ∥A− AV(i−1)(V(i−1))
T∥2F − ∥AVi∥2F .
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Most fixed-precision algorithms work with the Frobenius norm presumably because it is
quite cheap to compute compared to the 2-norm. However, Algorithm 4 by Halko et al. [27]
is an example of a fixed-precision algorithm based on the 2-norm. They use the following
result from [44] to estimate the approximation error:

Theorem 3 ([44]). Let B be a real matrix, r a positive integer, and α > 1 a real number.
Draw an independent family {ω(i) : i = 1, 2, . . . , r} of standard Gaussian vectors. Then

∥B∥2 ≤ α

√
2

π
max
1≤i≤r

∥Bω(i)∥2

except with probability α−r.

Algorithm 4 Adaptive randomized range finder [27]

1: Input: an m× n matrix A; desired accuracy tolerance ε; integer r
2: Output: column orthogonal Q such that ∥A − QQTA∥2 ≤ ε with probability at least

1−min{m,n}10−r.
3: Draw standard Gaussian vectors ω(1), . . . , ω(r) of length n.
4: y(i) = Aω(i) for 1 ≤ i ≤ r
5: j = 0.
6: Q(0) = [ ]
7: while max{∥y(j+1)∥2, . . . , ∥y(j+r)∥2} > ε/(10

√
2/π) do

8: j = j + 1
9: y(j) = (I −Q(j−1)(Q(j−1))T )y(j)

10: q(j) = y(j)/∥y(j)∥2
11: Q(j) = [Q(j−1), q(j)]
12: Draw a standard Gaussian vector ω(j+r) of length n.
13: y(j+r) = (I −Q(j)(Q(j))T )Aω(j+r)

14: y(i) = y(i) − q(j)(q(j))Ty(i) for j + 1 ≤ i ≤ j + r − 1

15: Q = Q(j)

The approximation to A is constructed essentially by drawing a sequence of independent
standard Gaussian vectors ω(1), ω(2), . . . and applying a version of Gram-Schimdt to the
sequence Aω(1), Aω(2), . . . . At step j, we have constructed orthonormal vectors q(1), . . . , q(j−1)

from Aω(1), . . . , Aω(j−1) and orthogonalized the next r vectors Aω(j), . . . , Aω(j+r−1) against
them to get y(j), . . . , y(j+r−1), i.e.

y(i) = (I −Q(j−1)(Q(j−1))T )Aω(i), j ≤ i ≤ j + r − 1.

Since y(j) is already orthogonal to all of the q(i), we can construct q(j) simply by normalizing
y(j) to have length 1. Next, orthogonalize all the y(i) against q(j), and construct y(j+r) by
orthogonalizing Aω(j+r) against all the q(i). Observe that at this point,

y(i) = (I −Q(j)(Q(j))T )Aω(i) = (A−Q(j)(Q(j))TA)ω(i), j + 1 ≤ i ≤ j + r



CHAPTER 1. INTRODUCTION AND BACKGROUND 19

Thus, as Halko et al. say, we get our norm estimation for free! Using Theorem 3, we
conclude that if maxj+1≤i≤j+r ∥y(i)∥2 ≤ ε/(10

√
2/π), then ∥A − Q(j)(Q(j))TA∥2 ≤ ε with

high probability.
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Chapter 2

A Fast, Approximate TSVD
Algorithm

In this section, we introduce our algorithm. We will work with matrices with more rows than
columns. For matrices with more columns than rows, apply the algorithm to the transpose.

2.1 Our work

Given the importance of TSVD, we propose a fixed-precision algorithm that outputs an
approximate TSVD, using the 2-norm error rather than the Frobenius norm error. For
matrices with rapidly decaying singular values, the algorithm runs in O(mnℓ) time, where
ℓ ≪ min{m,n}, which is faster than the O(mn2) needed to compute the full SVD and
truncate.

As noted in [37], having a near-optimal approximation error in the Frobenius norm does
not necessarily guarantee a high-quality approximation, especially in data science and ma-
chine learning. They suggest that the 2-norm is intuitively stronger and often yields better-
quality approximations. This is one justification for using the 2-norm rather than the Frobe-
nius norm in our algorithm. They also provide an example showing that even a near-optimal
approximation error in the 2-norm does not by itself guarantee a high-quality approximation.
This motivates them to consider an algorithm which provides stronger guarantees beyond a
near-optimal approximation error.

In this work, we propose an algorithm that, for a matrix A, relative error δ, and singular
value tolerance tol, produces an approximate TSVD Ã satisfying the following properties:

1. The rank k̃ of Ã does not exceed the true rank of A, which is defined to be #{i :
σi(A) ≥ tol}.

2. σj(Ã) ≥ (1− δ)σj(A) for 1 ≤ j ≤ k̃,

3. ∥A− Ã∥2 ≤ (1 + δ)σk̃+1(A), and
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4. ∥A− Ã∥2 ≤ 1+δ
1−δ

ε ≈ (1 + 2δ)tol.

The third property ensures a near-optimal approximation error while the second provides
a stronger guarantee on the quality of the approximation by ensuring that the singular values
are computed with relative error not exceeding δ.

Due to FFQR’s superior approximation quality, our algorithm is based on FFQR. The
main problem then is to determine suitable values of ℓ and k̃ to achieve the properties listed
above. Recall the partial ℓ-step QLP factorization used in FFQR:

A = Q

(
R

(ℓ)
11 R

(ℓ)
12

0 R
(ℓ)
22

)
ΠT = Q

(
L
(ℓ)
11 0

L
(ℓ)
21 L

(ℓ)
22

)
P TΠT , R

(ℓ)
11 , L

(ℓ)
11 ∈ Rℓ×ℓ,

where, for clarity, we have added the superscript (ℓ) to indicate how many steps have been
performed. We will also write

R(ℓ) =

(
R

(ℓ)
11 R

(ℓ)
12

0 R
(ℓ)
22

)
, L(ℓ) =

(
L
(ℓ)
11 0

L
(ℓ)
21 L

(ℓ)
22

)
for the R and L factors, respectively, after ℓ steps of QLP. Here is a high-level overview of
the algorithm. Since we do not know ℓ ahead of time, we will compute the QLP factorization
above a few steps at a time. After performing a few steps, we will check if the approximation
we would get at that point is good enough. If it is, then we have found ℓ, and k̃ will be
chosen so that

σk̃(L
(ℓ)(:, 1 : ℓ)) ≥ tol ≥ σk̃+1(L

(ℓ)(:, 1 : ℓ)).

The following sections will be organized as follows. We will first describe how to perform
QLP incrementally, derive a criterion for finding ℓ, and finally explain how to verify the
criterion.

2.2 Blocked QLP

To compute QLP incrementally, select a block size b and perform b steps of RQRCP to get

AΠ1 = Q1

(
R

[b]
11 R

[b]
12

0 R
[b]
22

)
,

where R
[b]
11 is b × b upper triangular. (Note the superscripts are in brackets so as not to be

confused with the notation in the previous section.) The first b rows of R are essentially

done since subsequent steps of RQRCP will only permute the columns of R
[b]
12. Perform QR

on them (to keep the notation simple, we write this as an LQ factorization):(
R

[b]
11 R

[b]
12

)
=
(
L11 0

)
P T
1 ,
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where L11 is b × b lower triangular, and P1 is orthogonal. We have just computed the first
b rows of L and know the first b diagonal entries. For the next block, continue RQRCP for
another b steps. The permutation matrix Π2 in this block will affect only columns b + 1
through n, leaving the first b columns untouched. Thus, Π2 can be written in block form

as Π2 =

(
Ib 0

0 Π̃2

)
, where Ib is the b × b identity matrix and Π̃2 is an (n − b) × (n − b)

permutation matrix. We now have

AΠ1Π2 = Q2Q1

 R
[b]
11 R

[b]
12Π̃2

0 R
[2b]
11 R

[2b]
12

0 0 R
[2b]
22

 ,

where R
[2b]
11 is b× b upper triangular. Since the first b rows have changed, we must account

for this in the previous LQ:(
R

[b]
11 R

[b]
12Π̃2

)
=
(
R

[b]
11 R

[b]
12

)
Π2 =

(
L11 0

)
P T
1 Π2.

Now apply the matrix ΠT
2 P1 to the newly completed rows(

0 R
[2b]
11 R

[2b]
12

)
and perform LQ on the last n− b columns to get(

0 R
[2b]
11 R

[2b]
12

)
ΠT

2 P1 =
(
L21 L22 0

)
P T
2 ,

where L22 is b× b lower triangular.
The orthogonal matrix P2 affects only the last n−b columns and can therefore be written

in block form as P2 =

(
Ib 0

0 P̃2

)
. Hence,

(
L11 0

)
=
(
L11 0

)
P T
2 and

(
R

[b]
11 R

[b]
12Π̃2

0 R
[2b]
11 R

[2b]
12

)
=

(
L11 0 0
L21 L22 0

)
P T
2 P

T
1 Π2,

showing that we have computed the first 2b rows of L. We can continue this procedure,
computing b rows of L at a time. Once we decide to stop, we finish the remaining rows of L
by applying the orthogonal matrices from all previous LQ factorizations to the last rows of

R. For example, if we wanted to stop after 2 blocks, apply ΠT
2 P1P2 to

(
0 0 R

[2b]
22

)
to get(

0 0 R
[2b]
22

)
ΠT

2 P1P2 =
(
L31 L32 L33

)
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and the partial QLP decomposition

AΠ1Π2 = Q2Q1

 R
[b]
11 R

[b]
12Π̃2

0 R
[2b]
11 R

[2b]
12

0 0 R
[2b]
22


= Q2Q1

L11 0 0
L21 L22 0
L31 L32 L33

P T
2 P

T
1 Π2.

Afterwards, spectrum-revealing swaps can be performed if desired. For each swap and
upper-trapezoidal restoration, some nonzero entries will appear above the diagonal in L.
These are easily eliminated with Givens rotations.

2.3 Determining ℓ

We will now discuss a criterion to determine ℓ. In principle, we could use the bounds 1.2 and
1.3 derived in [23] to do this. We might be able to use the facts that σk+1(A) is the largest
singular value of A less than tol and the diagonal entries of L approximate the singular values
of A well to first estimate σk+1(A) and then choose ℓ so that the ratio σℓ+1(A)/σk+1(A) is
sufficiently small. However, the dimension-dependent bounds for τ and τ̂ are too large for
practical use, so we will use a different bound to determine ℓ.

In [23], the authors prove that σj(A)
4 ≤ σj(Σ̃k)

4 +2∥R(ℓ)
22 ∥42, 1 ≤ j ≤ k. Rearranging this

inequality gives

σj(Σ̃k) ≥ σj(A)
4

√
1− 2

∥R(ℓ)
22 ∥42

σj(A)4
, 1 ≤ j ≤ k.

They also prove the following bound on the truncation error:

∥A− ŨkΣ̃kṼ
T
k ∥2 ≤ σk+1(A)

4

√
1 + 2

∥R(ℓ)
22 ∥42

σk+1(A)4
. (2.1)

These bounds hold even without spectrum-revealing swaps. So, if ∥R(ℓ)
22 ∥2/σk+1(A) is small,

then the leading k singular values of A will be revealed up to a certain number of digits and
ŨkΣ̃kṼ

T
k will be a nearly optimal rank-k approximation. In practice, the above two bounds

are sufficient because ∥R(ℓ)
22 ∥2 = O(σℓ(A)) already, without extra swaps. The earlier bounds

still have theoretical value in that they show the algorithm works well when A has rapidly
decaying singular values.

We have the first-order approximations

4

√
1− 2

∥R(ℓ)
22 ∥42

σj(A)4
≈ 1− 1

2

∥R(ℓ)
22 ∥42

σj(A)4
and

4

√
1 + 2

∥R(ℓ)
22 ∥42

σk+1(A)4
≈ 1 +

1

2

∥R(ℓ)
22 ∥42

σk+1(A)4
.
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Introduce a relative error parameter δ, and say we have

1

2

∥R(ℓ)
22 ∥42

σk+1(A)4
≤ δ.

Then up to first order,

σj(Σ̃k) ≥ σj(A)(1− δ), 1 ≤ j ≤ k, and ∥A− ŨkΣ̃kṼ
T
k ∥2 ≤ σk+1(A)(1 + δ).

This means that ≈ − log10 δ digits of the top k singular values of A and optimal truncation
error have been computed correctly. We can rewrite

1

2

∥R(ℓ)
22 ∥42

σk+1(A)4
≤ δ =⇒ ∥R(ℓ)

22 ∥2 ≤ σk+1(A)
4
√
2δ.

This is the tolerance-based criterion to determine ℓ.
In general, ℓ will depend on the singular value distribution of A. To get a sense of how

big ℓ is compared to k for matrices with decaying singular values, we examine the case when
the singular values decay geometrically.

Theorem 3. Let A be an m×n matrix, and suppose there is a number c such that 0 < c < 1
and σi+1(A) ≤ cσi(A) for all i. Let ε > 0 and g > 1 be user-defined parameters. Suppose we
perform FFQR (with SRQR swaps), choosing ℓ so that

ℓ ≥ k +

1
4
ln(2δ)− ln

(
gn
√

1+ε
1−ε

)
ln c

. (2.2)

Then ∥R(ℓ)
22 ∥2 ≤ σk+1(A)

4
√
2δ. Hence, the smallest ℓ that satisfies the tolerance-based criterion

is at most k +

1
4
ln(2δ)− ln

(
gn
√

1+ε
1−ε

)
ln c

 .

Proof. Rearranging (2.2), and noting that ln c < 0 and σℓ+1(A) ≤ cℓ−kσk+1(A), we get

cℓ−k ≤
4
√
2δ

gn
√

1+ε
1−ε

=⇒ gn

√
1 + ε

1− ε

σℓ+1(A)

σk+1(A)
≤ 4

√
2δ. (2.3)

By the analysis in [45], the SRQR swaps ensure that

∥R(ℓ)
22 ∥2 ≤ g

√
1 + ε

1− ε

√
(ℓ+ 1)(n− ℓ)σℓ+1(A)

≤ gn

√
1 + ε

1− ε
σℓ+1(A). (2.4)

Combining (2.3) and (2.4) gives ∥R(ℓ)
22 ∥2 ≤ σk+1(A)

4
√
2δ.
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Note that ε and g are usually chosen to be small numbers, e.g. ε = 0.5 and g = 2.0 are
typical choices [23]. So, one may treat these two parameters as small constants.

Next, we must figure out a way to cheaply and accurately estimate ∥R(ℓ)
22 ∥2 and σk+1(A).

Estimating ∥R(ℓ)
22 ∥2

To estimate ∥R(ℓ)
22 ∥2, we will consider the more general problem of estimating the 2-norm

of a general matrix X. Since ∥X∥2 is just the first singular value σ1(X) of X, we can use
Stewart’s observation about the QLP decomposition to estimate ∥X∥2. Recall that the QLP
decomposition is computed as follows: perform QRCP on X to get X = QRΠT and then
perform QRCP again on RT to get RT = PLTΠT

1 . According to Stewart’s observation,
|l11| ≈ σ1(X) = ∥X∥2. But, |l11| is just the maximum column norm of RT , or the maximum
row norm of R. Hence, we can estimate ∥X∥2 by performing QRCP on X and then finding
the largest row norm of the R factor.

But Stewart also points out in [40] that we can get a good estimate of ∥X∥2 by finding the
largest row norm among the first few rows of R rather than all of them. This is more efficient
because we do not need to compute R completely, but just a few rows. Letting q denote
the number rows, our estimate of ∥X∥2 is max1≤ι≤q ∥R(ι, :)∥2. For use in the algorithm, we
actually want an upper bound on ∥X∥2, so we will assume that there is some γ ≥ 1 so that
∥X∥2 ≤ γmax1≤ι≤q ∥R(ι, :)∥2. (Note that we always have ∥X∥2 ≥ max1≤ι≤q ∥R(ι, :)∥2.)

Now going back to ∥R(ℓ)
22 ∥2, we see that we need to perform q steps of QRCP on it to

estimate the norm. But observe that if we continue our QRCP factorization of A and perform
the next q steps, then we have automatically performed q steps of QRCP on R

(ℓ)
22 . So, the

easiest way to estimate the norm of R
(ℓ)
22 is to wait until more blocks of QRCP have been

completed for A. However, we are able to estimate ∥R(i)
22∥2 for 0 ≤ i ≤ ℓ− q because after ℓ

steps of QRCP, the first ℓ rows are finished (up to permutation of entries). To sum up, after
c steps of QRCP on A, we have

∥R(i)
22∥2 ≤ γ max

i+1≤ι≤i+q
∥R(c)(ι, :)∥2, 0 ≤ i ≤ c− q.

Note that subsequent steps of QRCP will not affect the norms of the first c rows, so we need
to compute the right hand side only once for each i during the entire algorithm.

Estimating σk+1(A)

Now, we consider how to estimate σk+1(A). In light of Stewart’s observation, we have
ljj ≈ σj(A). However, since we do not pivot when computing L, the diagonal entries of L
will not appear in descending order. Thus, we can get an even better estimate for σj(A) by
using the jth largest diagonal entry of L. Let l(j) denote the j-th largest diagonal entry of
L in magnitude so that

∣∣l(1)∣∣ ≥ ∣∣l(2)∣∣ ≥ · · · ≥
∣∣l(n)∣∣. As with our estimate for ∥R(ℓ)

22 ∥2, we will
assume that there are constants α and β such that α

∣∣l(j)∣∣ ≤ σj(A) ≤ β
∣∣l(j)∣∣, 1 ≤ j ≤ n.
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The values of α and β will be estimated empirically below. A simple way to interpret these
inequalities is that for each diagonal entry ljj, there is a singular value of A in the interval
α |ljj| ≤ x ≤ β |ljj|. Consider {ljj : β |ljj| ≤ tol}. For each ljj in this set, there is a singular
value σi(A) such that

α |ljj| ≤ σi(A) ≤ β |ljj| ≤ tol.

Since σk+1(A) is the largest singular value of A less than or equal to tol, we must have
σi(A) ≤ σk+1(A), which implies α |ljj| ≤ σk+1(A). This yields a lower bound on σk+1(A),
namely max{α |ljj| : β |ljj| ≤ tol}.

However, this estimate requires knowing all the ljj! Unfortunately, we will only know ljj,
1 ≤ j ≤ c, after c steps of QLP, so we have only the suboptimal estimate

sk+1 := max{α |ljj| : β |ljj| ≤ tol and j ≤ c}.

Putting these estimates together gives us the final stopping criterion. Suppose we have
completed c steps of QLP. After performing the next b steps, we first update sk+1 with the
newly computed ljj’s and then check whether

max
i+1≤ι≤i+q

∥R(c+b)(ι, :)∥2 ≤
1

γ
sk+1

4
√
2δ

for some 0 ≤ i ≤ (c+ b)− q. The smallest i for which this inequality holds is ℓ since

∥R(i)
22∥2 ≤ γ max

i+1≤ι≤i+q
∥R(c+b)(ι, :)∥2 ≤ γ

1

γ
sk+1

4
√
2δ ≤ σk+1(A)

4
√
2δ.

The full algorithm is presented below in Algorithm 5.

2.4 A simpler version of Algorithm 5

In this section, we discuss a simpler version of Algorithm 5 that in some sense may be
considered more reliable because it uses a more conservative estimate for ∥R(i)

22∥2.
Recall that given a matrix X, we estimated ∥X∥2 by performing q steps of QRCP and

then obtain the upper bound

∥X∥2 ≤ γ max
1≤ι≤q

∥R(ι, :)∥2. (2.5)

As we mentioned in that same discussion, a better but more expensive estimate is to perform
QRCP completely and then use the upper bound

∥X∥2 ≤ γ max
1≤ι≤n

∥R(ι, :)∥2. (2.6)

For some matrices, using this bound may actually result in faster performance. Consider
running Algorithm 5 on A ∈ Rm×n, m ≥ n. We first perform a partial QLP factorization,
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Algorithm 5 A fast, approximate algorithm for TSVD

Input: A ∈ Rm×n (m ≥ n), tol, δ, α, β, γ, q, b
Output: k̃, Ũk̃, Σ̃k̃, Ṽk̃

1: c = 0, sk+1 = 0
2: while c < n do
3: Do steps c+ 1 to c+ b of RQRCP on A; update Q, R, and Π.
4: Compute rows c+ 1 to c+ b of L; update P .
5: for j = c+ 1 : c+ b do
6: if β |ljj| ≤ tol and α |ljj| ≥ sk+1 then
7: sk+1 = α |ljj|
8: for i = 0 : c+ b− q do
9: if maxi+1≤ι≤i+q ∥R(ι, :)∥2 ≤ 1

γ
sk+1

4
√
2δ then

10: ℓ = i
11: c = c+ b
12: exit while loop

13: c = c+ b

14: Compute rows c+ b+ 1 to m of L.
15: Compute TSVD Ûk̃Σ̂k̃V̂

T
k̃

of L(:, 1 : ℓ), where σk̃(L(:, 1 : ℓ)) ≥ tol ≥ σk̃+1(L(:, 1 : ℓ)).

16: Return Ũk̃ = QÛk̃, Σ̃k̃ = Σ̂k̃, Ṽk̃ = ΠP1V̂k̃

which gives us R and L factors that are m × n. Then we compute the SVD of L(:, 1 : ℓ),
which is m × ℓ. But suppose we use the bound 2.6 instead. Performing QRCP completely
results in a factorization of the form

A = QR =
(
Q1 Q2

)(R(n)
11

0

)
= Q1R

(n)
11 , Q1 ∈ Rm×n, R

(n)
11 ∈ Rn×n. (2.7)

We now compute L by performing QR on (R
(n)
11 )

T , so L is n×n and SVD is now performed on
L(:, 1 : ℓ), which is smaller, with size n× ℓ. In our experiments, we show an example where
the time saved from performing SVD on a smaller L(:, 1 : ℓ) outweighs the time needed to
compute R completely. Another advantage of the bound 2.6 is that the user does not have
to worry about the parameter q anymore.

Referring to Equation 2.7, after we compute R completely, we have the estimate

∥R(i)
22∥2 ≤ γ max

i+1≤ι≤n
∥R(n)

11 (ι, :)∥2, 0 ≤ i ≤ n− 1.

We can compute all of these estimates efficiently with Algorithm 6.
The simpler version of the algorithm is presented below in Algorithm 7. Note that if we

check line 7.10 for all i when we have completed only a small number of steps (c + b ≪ n),
then we might end up with a large ℓ because sk+1 is likely to be much smaller than σk+1(A)
at that point. Thus, we have restricted checking line 7.10 to i ≤ c + b − 1. We will see in
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Algorithm 6 Compute maxi+1≤ι≤n ∥R(n)
11 (ι, :)∥2 for all i

Input: R
(n)
11 ∈ Rn×n from QRCP factorization of A

Output: array nrm est, where nrm est[i] = maxi+1≤ι≤n ∥R(n)
11 (ι, :)∥2

1: Compute row norms of R
(n)
11 and store in row nrm, where row nrm[i] = ∥R(n)

11 (i, :)∥2
2: nrm est[n− 1] = row nrm[n]
3: for i = n− 2 : −1 : 0 do
4: nrm est[i] = max{row nrm[i+ 1], nrm est[i+ 1]}

Algorithm 7 Simplified version of Algorithm 5

Input: A ∈ Rm×n (m ≥ n), tol, δ, α, β, γ, b
Output: k̃, Ũk̃, Σ̃k̃, Ṽk̃

1: Perform RQRCP on A to get A = Q1R
(n)
11 Π

T

2: Compute trailing norm estimates using Algorithm 6.
3: c = 0, sk+1 = 0
4: while c < n do
5: Compute rows c+ 1 to c+ b of L; update P .
6: for j = c+ 1 : c+ b do
7: if β |ljj| ≤ tol and α |ljj| ≥ sk+1 then
8: sk+1 = α |ljj|
9: for i = 0 : c+ b− 1 do
10: if nrm est[i] ≤ 1

γ
sk+1

4
√
2δ then

11: ℓ = i
12: c = c+ b
13: exit while loop

14: c = c+ b

15: Compute rows c+ b+ 1 to m of L.
16: Compute TSVD Ûk̃Σ̂k̃V̂

T
k̃

of L(:, 1 : ℓ), where σk̃(L(:, 1 : ℓ)) ≥ tol ≥ σk̃+1(L(:, 1 : ℓ)).

17: Return Ũk̃ = QÛk̃, Σ̃k̃ = Σ̂k̃, Ṽk̃ = ΠP1V̂k̃

Chapter 3 that generally Algorithm 7 finds a larger ℓ than Algorithm 5 because the former
uses a more conservative estimate of ∥R(i)

22∥2.

2.5 Proof of Properties 1-4

In this section, we prove the properties stated in Section 2.1. We denote the true rank as k,
the rank detected by our algorithm as k̃, and the matrix output by our algorithm Ã. Recall
k is defined by σk+1(A) ≤ tol ≤ σk(A). Recall also that the detected rank k̃ is determined
as follows. We run Blocked QLP until the trailing block of R is small enough and then take
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ℓ such that ∥R(ℓ)
22 ∥2 ≤ σk+1(A)

4
√
2δ. Afterwards, compute the SVD of L1 := L(:, 1 : ℓ) and

define k̃ by σk̃+1(L1) ≤ tol ≤ σk̃(L1).

First, note that k̃ ≤ k. To see this, first observe that k = #{j : σj(A) > tol}. By
the Cauchy Interlacing Theorem, σj(L1) ≤ σj(A), 1 ≤ j ≤ ℓ. Thus we can only shift the
singular values of A downward, which will not increase the size of the above set. This proves
Property 1.

For Property 2, it follows from computations in [23] that σj(A)
4 ≤ σ4

j (L1) + 2∥R(ℓ)
22 ∥42, or

σj(L1) ≥ σj(A)
4

√
1− 2

∥R(ℓ)
22 ∥42

σj(A)4
≈ σj(A)

(
1− 1

2

∥R(ℓ)
22 ∥42

σj(A)4

)
for 1 ≤ j ≤ ℓ. Plugging in ∥R(ℓ)

22 ∥2 ≤ σk+1(A)
4
√
2δ gives σj(L1) ≥ σj(A)(1 − δ) for 1 ≤ j ≤

k + 1 and in particular for 1 ≤ j ≤ k̃. This is Property 2.
For the last two properties, we refer to Inequality (2.1). In the notation for this section,

it reads:

∥A− Ã∥2 ≤ σk̃+1(A)
4

√
1 + 2

∥R(ℓ)
22 ∥42

σk̃+1(A)
4
≈ σk̃+1(A)

(
1 +

1

2

∥R(ℓ)
22 ∥42

σk̃+1(A)
4

)
.

Again, plugging in ∥R(ℓ)
22 ∥2 ≤ σk+1(A)

4
√
2δ and using the fact that k̃ + 1 ≤ k + 1 gives

∥A− Ã∥2 ≤ σk̃+1(A)(1 + δ), which is Property 3.
Finally, from the proof of Property 2 above, we have σk̃+1(L1) ≥ σk̃+1(A)(1 − δ). Thus,

σk̃+1(A) ≤ 1
1−δ

σk̃+1(L1) and ∥A− Ã∥2 ≤ 1+δ
1−δ

σk̃+1(L1) ≤ 1+δ
1−δ

tol, which is Property 4.

Note that k̃ < k only when there are singular values slightly above the tolerance. The
tolerance-based criterion ensures that up to first order σj(L1) ≥ σj(A)(1−δ). So only singular
values satisfying σj(A) ≥ tol ≥ σj(A)(1 − δ) can be perturbed below tol and decrease the
rank.

2.6 Right singular space quality analysis

We include here a brief analysis of the quality of the right singular space produced by FFQR,
which was not done in [23]. This is of interest in applications such as PCA. In [11], Kahan
and Davis give several theorems bounding trigonometric functions of the angle between the
eigenspace of a given Hermitian matrix A and the corresponding eigenspace of a perturbation
A +H of A by a Hermitian matrix H. We will introduce some notation used in the paper
before stating the relevant theorem.

We are mainly interested in the case when A is a real, symmetric matrix. So, let A be
such a matrix and E an orthogonal matrix whose columns are eigenvectors of A. We may
partition E =

(
E0 E1

)
into its first k columns E0 and remaining columns E1. Then

A =
(
E0 E1

)(A0 0
0 A1

)(
ET

0

ET
1

)
.
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Similarly, let F =
(
F0 F1

)
be an orthogonal matrix whose columns are eigenvectors of

A + H, partitioned into its first k columns F0 and remaining columns F1. Then we may
write A+H in either the basis E or the basis F :

A+H =
(
E0 E1

)(A0 +H0 BT

B A1 +H1

)(
ET

0

ET
1

)
=
(
F0 F1

)(Λ0 0
0 Λ1

)(
F T
0

F T
1

)
.

Finally, let Θ0 be the diagonal matrix containing the principal angles between the subspaces
spanned by E0 and F0. Davis and Kahan express their bounds in terms of the residual
R := (A + H)E0 − E0A0 = HE0. Their so-called sin θ theorem is the one we will be most
interested in:

Theorem 4 ([11]). Assume there is an interval [β, α] and a δ > 0 such that the spectrum of
A0 lies entirely in [β, α] while that of Λ1 lies entirely outside of (β−δ, α+δ) (or such that the
spectrum of Λ1 lies entirely in [β, α] while that of A0 lies entirely outside of (β − δ, α + δ)).
Then for every unitary-invariant norm ∥ · ∥, δ∥ sinΘ0∥ ≤ ∥R∥.

To apply the theorem (with ∥ · ∥ = ∥ · ∥2), consider the matrix

LTL =

(
LT
11 LT

21

0 LT
22

)(
L11 0
L21 L22

)
=

(
LT
11L11 + L21L

T
21 LT

21L22

LT
22L21 LT

22L22

)
.

We set

A = LTL, H = −
(

0 LT
21L22

LT
22L21 LT

22L22

)
, A+H =

(
LT
11L11 + LT

21L21 0
0 0

)
.

The columns of E0 are the top k right singular vectors of L, A0 = diag(λ1(A), . . . , λk(A)),
and Λ1 = diag(λk+1(A+H), . . . , λℓ(A+H), 0, . . . , 0). By the Cauchy Interlacing Theorem,
λk+1(A+H) ≤ λk+1(A), so we can pick δ = λk(A)− λk+1(A). Next, we bound ∥R∥2:

∥R∥2 = ∥HE0∥2
≤ ∥H∥2∥E0∥2
= ∥H∥2

=

∥∥∥∥( 0 LT
21L22

LT
22L21 LT

22L22

)∥∥∥∥
2

≤
∥∥∥∥( 0 0

LT
22L21 0

)∥∥∥∥
2

+

∥∥∥∥(0 LT
21L22

0 LT
22L22

)∥∥∥∥
2

=
∥∥LT

22L21

∥∥
2
+

∥∥∥∥(LT
21L22

LT
22L22

)∥∥∥∥
2

≤ ∥LT
22∥2∥L21∥2 +

∥∥∥∥(LT
21

LT
22

)∥∥∥∥
2

∥L22∥2

≤ 2∥R22∥22.
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Finally, we get

∥ sinΘ0∥2 ≤
2∥R22∥22

λk(A)− λk+1(A)
=

2∥R22∥22
σ2
k(L)− σ2

k+1(L)
.

Using spectrum-revealing swaps in FFQR ensures that ∥R22∥2 = O(σℓ+1(L)). Even if there
is a just small relative gap between σk(L) and σk+1(L), we will have σ2

k(L) − σ2
k+1(L) =

O(σ2
k(L)). Thus, ∥ sinΘ0∥2 = O ((σℓ+1(L)/σk(L))

2). So, if the singular values of L decay
quickly and ℓ is sufficiently large, then ∥Θ0∥2 is roughly quadratic in the ratio σℓ+1(L)/σk(L).
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Chapter 3

Numerical Experiments

We use the following test matrices for our experiments:

1. A random 3000 × 3000 matrix with singular values decaying geometrically from 1
down to 10−12. We generate a 3000×3000 matrix with entries from a standard normal
distribution, compute its SVD UΣV T , and replace the diagonal of Σ with the desired
singular value distribution.

2. A 2003 × 2003 matrix (bcsstk13) from the SuiteSparse matrix collection [12]. This
matrix arises from a computational fluid dynamics problem. Its singular values decay
from ≈ 1012 down to ≈ 102.

3. A matrix arising from discretizing an integral equation of the first kind [21]. The matrix
depends on the number of sample points used in the discretization and a parameter κ.
We use 1000 sample points (resulting in a 1000× 1000 matrix) and κ = 0.1.

4. A 19200 × 5322 matrix generated from a video from the UCF-Crime dataset [41].
The original video was a 240 × 320 RGB video consisting of 5322 frames. We resized
the video by half to 120 × 160, converted it to grayscale, flattened each frame into a
19200× 1 column vector, and then stacked these horizontally to form the final matrix.

5. A 5000× 5000 kernel matrix generated from 5000 data points from the MNIST hand-
written digits dataset [33]. We used the kernel function k(x, x′) = e−γ∥x−x′∥2 , where
γ = 1/(median of pairwise distances between data points)2.

The singular values for these matrices are plotted in Fig. 3.1.

3.1 Estimating α, β, and γ

For each matrix A, we tested three singular value estimation schemes. See Table 3.1. For the
first two columns (“Unpivoted”), we ran RQRCP to get AΠ = QR and then QR-factored
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Figure 3.1: Singular value distributions of the test matrices

RT = PL. We recorded the minimum (α) and maximum (β) values of σi(A)/ |lii|. For the
second two (“Sorted”), we recorded the minimum and maximum values of σi(A)/

∣∣l(i)∣∣, where
l(i) is the ith largest diagonal entry of L in magnitude. For the last two columns (“Pivoted”),
we QRCP-factored RTΠ1 = PL and then recorded the minimum and maximum values of
σi(A)/ |lii|.

We observed that the tracking behavior can break down when σi(A) is smaller than
machine precision and thus ignored ratios corresponding to such σi(A) when computing the
minimum and maximum values. Therefore, it is recommended that the tolerance tol be set
at least a small factor above machine epsilon.

“Sorted” and “Pivoted” have similar α and β values, with the latter slightly better overall,
while “Unpivoted” tends to be worse than the other two. Based on the middle two columns,
it seems that α ≈ 0.7 and β ≈ 2 are reasonable values.

We perform a similar experiment to determine the value of γ. Table 3.2 lists γ values for
bound 2.5 for various values of q (first five columns) and bound 2.6 (last column, “all”). We
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Table 3.1: α and β values for the test matrices under the three schemes.

Unpivoted Sorted Pivoted
α β α β α β

Random 0.710 1.39 0.742 1.33 0.745 1.32
bcsstk13 0.523 2.75 0.793 1.17 0.817 1.17
Integral 0.572 1.74 0.770 1.35 0.794 1.33
Video 0.321 2.85 0.838 1.85 0.840 1.58
Kernel 0.635 1.60 0.802 1.32 0.817 1.31

Table 3.2: γ values for the test matrices for bounds 2.5 and 2.6

q
5 10 20 50 100 all

Random 1.69 1.64 1.61 1.61 1.61 1.61
bcsstk13 1.86 1.86 1.86 1.45 1.45 1.45
Integral 5.12 4.88 4.02 2.81 1.78 1.78
Video 10.04 7.20 3.41 2.47 2.47 2.47
Kernel 3.97 3.77 3.37 2.73 2.49 1.91

performed RQRCP on each matrix and then computed

max
0≤i≤n−1

∥R(i)
22∥2

max
i+1≤ι≤i+q

∥R(n)
11 (ι, :)∥2

, q = 5, 10, 20, 50, 100, and max
0≤i≤n−1

∥R(i)
22∥2

max
i+1≤ι≤n

∥R(n)
11 (ι, :)∥2

.

For Algorithm 5, q = 50 (about %1–5 of n for our matrices) and γ = 3.0 seem reasonable
for all the matrices. And for Algorithm 7, looking at the last column, we take γ = 3.0 again.

3.2 Comparison to TSVD and randQB EI

Here we compare the proposed algorithm to TSVD and randQB EI. Tests were coded in
Fortran and run on a laptop with a 2.00 GHz Intel i7-4510U CPU with 16.0 GB of RAM.

First, we compare the proposed algorithm to TSVD. To compute the latter, the LAPACK
routine dgesdd is used to compute the full SVD, which is then truncated based on the
tolerance tol. For the random, bcsstk13, and kernel matrices, tolerances corresponding to
99% explained variance are chosen. For the video matrix, we choose one corresponding to
99.9% explained variance because the first principal component already accounts for 99% of
the variance. These are all Frobenius norm tolerances, and in general it is not so simple to find
the corresponding 2-norm tolerance. But for matrices with geometrically decaying singular
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values, 99% explained variance roughly corresponds to a tolerance of 0.1∥A∥2. The 2-norm of
A can be estimated after the first block of FFQR. For experimental purposes, we computed
the SVD of each matrix to determine the proper 2-norm tolerance. We treat the integral
equation matrix slightly differently, going from a 2-norm tolerance and then determining the
equivalent Frobenius norm tolerance. For the 2-norm tolerance, we use tol ≈ εmach since such
matrices are usually rank-deficient and find that the equivalent Frobenius norm tolerance
roughly corresponds to ≈ (1− εmach)× 100% explained variance.

We set δ = 10−4 for all test matrices because machine learning algorithms typically
only need a few digits of accuracy. But the larger singular values are computed with more
accuracy because the accuracy of the jth singular value is controlled by ∥R22∥2/σj(A), which
is typically much smaller than ∥R22∥2/σk+1(A). Finally, for all matrices, we set α = 0.7,
β = 2.0, γ = 3.0, the number of rows q = 50, and the block size b = 64.

The results for Algorithm 5 are listed in Table 3.3 and for Algorithm 7 in Table 3.4. Both
algorithms detect the rank k correctly for each test matrix and are much faster than dgesdd.
As mentioned earlier, Algorithm 7 is more conservative than Algorithm 5; we can see this
clearly by comparing the values of ℓ. But despite this, Algorithm 7 is faster for the video
matrix since it performs SVD on a smaller matrix.

The column “rel. trunc. err.” contains the relative error in the optimal truncation error∣∣∣∣∣∥A− Ãk̃∥2
σk̃+1(A)

− 1

∣∣∣∣∣ .
Using the notation in Algorithm 5 or 7, write the SVD of L(:, 1 : ℓ) as(

L
(ℓ)
11

L
(ℓ)
21

)
= ÛΣ̂V̂ T = Ûk̃Σ̂k̃V̂

T
k̃
+ Û−

k̃
Σ̂−

k̃
(V̂ −

k̃
)T ,

so Ûk̃Σ̂k̃V̂k̃ corresponds to the top k̃ singular vectors/values and Û−
k̃
Σ̂−

k̃
V̂ −
k̃

to the remaining

n− k̃. The truncation error ∥A− Ãk̃∥2 in exact arithmetic is equal to∥∥∥∥(Û−
k̃
Σ̂−

k̃
(V̂ −

k̃
)T

0

L
(ℓ)
22

)∥∥∥∥
2

=

∥∥∥∥(Û−
k̃
Σ̂−

k̃
(V̂ −

k̃
)T

0

L
(ℓ)
22

)(
V̂ 0
0 I

)∥∥∥∥
2

=

∥∥∥∥(Û−
k̃
Σ̂−

k̃

0

L
(ℓ)
22

)∥∥∥∥
2

.

We compute the truncation error numerically using this last equality rather than forming
Ãk̃ directly. Since our matrices are not well-conditioned, we may not be able to compute the
relative truncation error accurately, but we record the results anyway.

Recall that randQB EI returns matrices Q and B := QTA so that A ≈ QB. The authors
of randQB EI include a power parameter P in their implementation. We set P = 1 as in
their paper and use a block size of 64. In Table 3.5, we list the tolerances used for each
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Table 3.3: Comparison of Algorithm 5 to TSVD.

dgesdd Algorithm 5

Matrix tol k Time(s) ℓ k̃ Time (s) rel. trunc. err. Speed-up
Random 1.00× 10−1 250 14.65 864 250 3.06 2.22× 10−16 4.8×
bcsstk13 1.00× 1011 128 4.38 834 128 1.60 4.44× 10−16 2.7×
Integral 1.00× 10−15 74 0.39 101 74 0.09 2.05× 10−4 4.3×
Video 5.60× 103 36 155.46 2762 36 92.05 4.44× 10−16 1.7×
Kernel 7.68× 101 7 69.36 792 7 6.16 2.78× 10−15 11.3×

Table 3.4: Comparison of Algorithm 7 to TSVD.

dgesdd Algorithm 7

Matrix tol k Time(s) ℓ k̃ Time (s) rel. trunc. err. Speed-up
Random 1.00× 10−1 250 14.65 864 250 3.27 4.44× 10−16 4.5×
bcsstk13 1.00× 1011 128 4.38 834 128 1.62 4.44× 10−16 2.7×
Integral 1.00× 10−15 74 0.39 101 74 0.15 2.05× 10−4 2.6×
Video 5.60× 103 36 155.46 3012 36 74.00 2.88× 10−15 2.1×
Kernel 7.68× 101 7 69.36 1367 7 14.54 2.22× 10−16 4.8×

Table 3.5: Tolerances and detected ranks for randQB EI

E rank(B)

Random
√
0.01∥A∥F 260

bcsstk13
√
0.01∥A∥F 136

Integral
√
10−15∥A∥F 28

Video
√
0.001∥A∥F 40

Kernel
√
0.01∥A∥F 7
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Figure 3.2: Relative singular value errors for the test matrices. Algorithm 5 is the blue line,
randQB EI is the orange one.

matrix as well as the detected rank. As we can see, the algorithm finds nearly the correct
rank for all matrices, except for the integral equation matrix.

Fig. 3.2 plots the relative errors in the approximate singular values produced by Algo-
rithm 5 ∣∣∣∣∣1− σj(Σ̃k̃)

σj(A)

∣∣∣∣∣ , 1 ≤ j ≤ k̃,

for each of the test matrices. These are bounded by δ. As expected, the larger singular
values are computed more accurately. We also plot the relative errors in the singular values
computed by randQB EI, and we see that generally the singular values are not as accurate
as for Algorithm 5.

Next, recall that the principal components for a data matrix are just its right singular
vectors. Since this is of practical interest, the principal angles between the leading right
singular spaces and their approximations produced by Algorithm 5 and randQB EI were
computed and plotted in Fig. 3.3. The angles are all quite small for Algorithm 5, so it
finds high-quality principal components. Our algorithm performs better than randQB EI,
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Figure 3.3: Principal angles between the right singular spaces and their approximations for
the test matrices. Algorithm 5 is the blue line, randQB EI is the orange one.

except on the kernel matrix. We found that setting P = 0 causes the accuracy of randQB EI
to drop below ours. The first few singular values of the kernel matrix are extremely large
compared to the rest; thus, performing even just one power iteration effectively enhances the
accuracy of randQB EI on this matrix.
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