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Adaptive Pre-specification in Randomized Trials With and 
Without Pair-Matching

Laura B. Balzera,*, Mark J. van der Laanb, Maya L. Petersenb, and the SEARCH 
Collaboration
aDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA

bDivision of Biostatistics, University of California, Berkeley, CA 94110-7358, USA

Abstract

In randomized trials, adjustment for measured covariates during the analysis can reduce variance 

and increase power. To avoid misleading inference, the analysis plan must be pre-specified. 

However, it is often unclear a priori which baseline covariates (if any) should be adjusted for in the 

analysis. Consider, for example, the Sustainable East Africa Research in Community Health 

(SEARCH) trial for HIV prevention and treatment. There are 16 matched pairs of communities 

and many potential adjustment variables, including region, HIV prevalence, male circumcision 

coverage and measures of community-level viral load. In this paper, we propose a rigorous 

procedure to data-adaptively select the adjustment set, which maximizes the efficiency of the 

analysis. Specifically, we use cross-validation to select from a pre-specified library the candidate 

targeted maximum likelihood estimator (TMLE) that minimizes the estimated variance. For further 

gains in precision, we also propose a collaborative procedure for estimating the known exposure 

mechanism. Our small sample simulations demonstrate the promise of the methodology to 

maximize study power, while maintaining nominal confidence interval coverage. We show how 

our procedure can be tailored to the scientific question (intervention effect for the study sample vs. 

for the target population) and study design (pair-matched or not).

Keywords

Causal inference; Covariate selection; Data-adaptive; Pair-matched; Randomized trials; Targeted 
maximum likelihood estimation (TMLE)

1. Introduction

The objective of a randomized trial is to evaluate the effect of an intervention on the 

outcome of interest. In this setting, the difference in the average outcomes among the treated 

units and the average outcomes among the control units provides a simple and unbiased 

estimator of the intervention effect. Adjusting for measured covariates during the analysis 

can substantially reduce the estimator’s variance and thereby increase study power (e.g. [1–

5]). Nonetheless, recommendations on how and when to adjust in randomized trials have 
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been conflicting [6–12]. The advice seems to depend on the study design, the unit of 

randomization, the application and the sample size. As a result, many researchers are left 

wondering how to adjust for baseline covariates, if at all.

Let n be the number of study units (e.g. patients or communities). Consider a trial where the 

treatment is randomly allocated to n/2 units and the remaining units are assigned to the 

control. There is a rich literature on locally efficient estimation in this setting (e.g. [4, 5, 13–

15]). For example, parametric regression can be used to obtain an unbiased and more precise 

estimate of the intervention effect. Briefly, the outcome is regressed on the exposure and 

covariates according to a working model. Following Rosenblum and van der Laan [16], we 

use “working” to emphasize that the regression function need not be and often is not 

correctly specified. This working model can include interaction terms and can be linear or 

non-linear. The estimated coefficients are then used to obtain the predicted outcomes for all 

units under the treatment and the control. The difference or ratio of the average of the 

predicted outcomes provides an estimate of the intervention effect. For observational studies, 

this algorithm is sometimes referred to as the “parametric G-Computation” [17].

For continuous outcomes and linear working models without interaction terms, this 

procedure is known as analysis of covariance (ANCOVA) [2], and the coefficient for the 

exposure is equal to the estimate of the intervention effect. For binary outcomes, Moore and 

van der Laan [5] detailed the potential gains in precision from adjustment via logistic 

regression for estimating the treatment effect on the absolute or relative scale (i.e. risk 

difference, risk ratio or odds ratio). Furthermore, the authors showed that parametric 

maximum likelihood estimation (MLE) was equivalent to targeted maximum likelihood 

estimation (TMLE) in this setting [18, 19]. As a result, the asymptotic properties of the 

TMLE, including double robustness and asymptotic linearity, hold even if the working 

model for outcome regression is misspecified. Furthermore, this approach is locally efficient 

in that the TMLE will achieve the lowest possible variance among a large class of estimators 

if the working model is correctly specified. Rosenblum and van der Laan [16] expanded 

these results for a large class of general linear models. Indeed, the parametric MLE and 

TMLE can be considered special cases of the double robust estimators of Scharfstein et al. 
[20] and semiparametric approaches of Tsiatis et al. [4] and Zhang et al. [13]. For a recent 

and detailed review of these estimation approaches, we refer the reader to Colantuoni and 

Rosenblum [21].

Now consider a pair-matched trial, where the intervention is randomly allocated within the 

n/2 matched pairs. The proposed estimation strategies have been more limited in this setting. 

Indeed, the perceived “analytical limitations” of pair-matched trials have led some 

researchers to shy away from this design [11, 22, 23]. As with a completely randomized 

trial, the unadjusted difference in treatment-specific means provides an unbiased but 

inefficient estimate of the intervention effect. To include covariates in the analysis and to 

potentially increase power, Hayes and Moulton [8] suggested regressing the outcome on the 

covariates (but not on the exposure) and then contrasting the observed versus predicted 

outcomes within matched pairs. Alternatively, TMLE can provide an unbiased and locally 

efficient approach in pair-matched trials [24–26]. Specifically, the algorithm can be 

implemented as if the trial were completely randomized: (1) fit a working model for the 
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mean outcome, given the exposure and covariates, (2) obtain predicted outcomes for all units 

under the treatment and control, and (3) contrast the average of the predicted outcomes on 

the relevant scale. Inference, however, must respect the pair-matching scheme [24–26].

A common challenge to both designs is the selection of covariates for inclusion in the 

analysis. Many variables are measured prior to implementation of the intervention, and it is 

difficult to a priori specify an appropriate working model. For a completely randomized trial, 

covariate adjustment will lead to gains in precision if (i) the covariates are predictive of the 

outcome and (ii) the covariates are imbalanced between treatment groups (e.g. [27]). 

Balance is guaranteed as sample size goes to infinity, but rarely seen in practice. 

Analogously in a pair-matched trial, covariate adjustment will improve precision if there is 

an imbalance on predictive covariates after matching.

Limited sample sizes pose an additional challenge to covariate selection. A recent review of 

randomized clinical trials reported that the median number of participants was 58 with an 

interquartile range of 27–161 [28]. Likewise, a recent review of cluster randomized trials 

reported that the median number of units was 31 with an interquartile range of 13–60 [29]. 

In small trials, adjusting for too many covariates can lead to overfitting and inflated Type I 

error rates (e.g. [15, 25, 27]). Finally, ad hoc selection of the adjustment set leads to 

concerns that researchers will go on a “fishing expedition” to find the covariates resulting in 

the most power and again risking inflation of Type I error rates (e.g. [4, 7, 30]).

In summary, covariate adjustment in randomized trials can provide meaningful 

improvements in precision and thereby statistical power. To avoid misleading statistical 

inference, the working model, including the adjustment variables, must be specified a priori. 
In practice, sample size often limits the size of the adjustment set, and best set is unclear 

before the trial’s conclusion. This results in an important challenge: the need to learn from 

the data to realize precision gains, but to do so in pre-specified and rigorous way to maintain 

valid statistical inference.

In this paper, we apply the principle of empirical efficiency maximization to data-adaptively 

select from a pre-specified library the candidate TMLE, which minimizes variance and 

thereby maximizes the precision of the analysis [14, 31]. We contribute to the existing 

methodology by modifying this strategy for pair-matched trials. To our knowledge, such a 

data-adaptive procedure has not been proposed or implemented for this study design. We 

further contribute to the literature by collaboratively estimating the exposure mechanism for 

additional gains in precision [32, 33]. We also generalize the results for estimation and 

inference to both the population and sample average treatment effects [26, 34]. Our finite 

sample simulations demonstrate the practical performance with limited numbers of 

independent units, as is common in early phase clinical trials and in cluster randomized 

trials. As a motivating example, we discuss the Sustainable East Africa Research in 

Community Health (SEARCH) study, an ongoing cluster randomized trial for HIV 

prevention and treatment (NCT01864603) [35]. The methodology proposed in this article 

will be used in the primary analysis of the SEARCH trial. Full R code is provided in the 

Supplementary Material [36].
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2. Motivating Example and Causal Parameters

SEARCH is a community randomized trial to estimate the effect of immediate and 

streamlined antiretroviral therapy (ART) on HIV incidence as well as other health, economic 

and educational outcomes. The trial is being conducted in 32 rural communities in Uganda 

and Kenya. Extensive baseline characteristics were collected through ethnographic mapping 

and community-wide censuses. Examples include region, occupational mix, measures of 

mobility, HIV prevalence and community-level HIV RNA viral load. A subset of these 

characteristics was used to create the 16 best matched pairs of communities [25]. The 

intervention was then randomized within matched pairs. In treatment communities, HIV 

testing is expanded, and all individuals testing HIV+ are immediately eligible for ART with 

enhanced services for linkage, initiation, and retention in care. In control communities, all 

individuals testing HIV+ are eligible for ART, according to in-country guidelines. The 

primary outcome is the five-year cumulative incidence of HIV and will be measured through 

longitudinal follow-up. The observed data for a given SEARCH community can be denoted

where W represents the vector of baseline covariates, A represents the intervention 

assignment, and Y denotes the outcome. Specifically, W includes region, HIV prevalence, 

male circumcision coverage and community-level HIV RNA viral load; A is a binary 

indicator equalling one if the community was randomized to the treatment and zero if the 

community was randomized to the control; and Y is the estimated five-year cumulative HIV 

incidence.

In this paper, we consider estimation and inference for the population average treatment 

effect (PATE) and the sample average treatment effect (SATE). Let Y(a) denote the outcome 

if possibly contrary-to-fact the unit were assigned intervention-level A = a. The causal 

parameters are functions of the distribution of the full data, comprised of the baseline 

covariates and the counterfactual outcomes of interest: (W, Y(1), Y(0)) [34, 37]. Specifically, 

the PATE is the expected difference in the counterfactual outcomes if all members of the 

population were assigned the intervention and if all members of that population were 

assigned the control:

(1)

where the expectation is over the full data distribution. There is one true value of PATE for 

the target population. For the SEARCH trial, the population effect is the expected difference 

in the counterfactual cumulative incidence of HIV if all communities in the hypothetical 

target population implemented the test-and-treat strategy versus the counterfactual 

cumulative incidence of HIV if all communities in that target population maintained the 

standard of care.

The sample parameter is the average difference in the counterfactual outcomes for the study 

units [34]:
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(2)

were Yi(a) denotes the outcome if possibly contrary-to-fact unit i were assigned 

intervention-level A = a. The SATE is data-adaptive; its true value depends on the n units in 

the sample. The SATE is easily interpretable and arguably the most relevant when the study 

units were not sampled from some super population of interest. For the SEARCH trial, the 

SATE is the average difference in the counterfactual cumulative incidence of HIV under the 

test-and-treat strategy and under the standard of care for the 32 study communities.

3. Targeted Estimation in a Randomized Trial Without Matching

In this section, we ignore the pair-matching scheme in the SEARCH trial and assume the 

observed data consist of n independent, identically distributed (i.i.d.) copies of O = (W,A, Y) 

with some true, but unknown distribution P0, which factorizes as

We do not make any assumptions about the common covariate distribution P0(W) or about 

the common conditional distribution of the outcome, given the intervention and covariates 

P0(Y |A,W). By design, the intervention A is randomized with probability 0.5. Therefore, 

the exposure mechanism is known: P0(A = 1|W) ≡ g0(1|W) = 0.5. The statistical model ℳ, 

describing the set of possible observed data distributions, is semiparametric.

Since the intervention is randomized, we can easily identify the PATE (Eq. 1) from the 

observed data distribution. Our statistical estimand is the difference in the expected outcome 

given the treatment and covariates, and the expected outcome given the control and 

covariates, averaged (standardized) with respect to the covariate distribution in the 

population [17]:

where Q̄0(A,W) ≡ 0(Y |A,W) denotes the true conditional mean outcome, given the 

intervention and covariates. As discussed in the introduction, there are many algorithms 

available for unbiased and locally efficient estimation of this statistical parameter in a 

randomized trial (e.g. [4, 5, 13–15]). Throughout, our focus is on TMLE, a general 

methodology for the construction of double robust, semiparametric, efficient substitution 

estimators [18, 19].

A TMLE for the population effect (Eq. 1) also serves as a consistent and asymptotically 

linear estimator of the sample effect (Eq. 2) [26]. The estimator can be implemented in three 

steps.
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Step 1. Initial estimation: Estimate the expected outcome, given the exposure and 

covariates Q̄0(A,W) ≡ 0(Y|A,W). We could rely on a pre-specified parametric working 

model or implement a more data-adaptive approach (as discussed below). The initial 

estimator is denoted Q̄n(A,W).

Step 2. Targeting: Update the initial estimator Q̄n(A,W).

• Calculate the “clever” covariate based on the known or estimated exposure 

mechanism gn(A|W):

• If the outcome is continuous and unbounded, run linear regression of the 

outcome Y on the covariate Hn(A,W) with the initial estimator as offset. 

Plug in the estimated coefficient εn to yield the targeted update: 

.

• If the outcome is binary or bounded in [0, 1]†, run logistic regression of 

the outcome Y on the covariate Hn(A,W) with the logit(x) ≡ log{x/(1 − 

x)} of the initial estimator as offset. Plug in the estimated coefficient εn to 

yield the targeted update: 

.

Step 3. Parameter estimation: Obtain the predicted outcomes for all observations under the 

treatment  and control . Average the difference in predicted outcomes:

If the initial estimator for Q̄0(A,W) is based on a working regression model with an intercept 

and a main term for the exposure and if the exposure mechanism is treated as known (i.e. not 

estimated), then the updating step can be skipped [16]. Further precision, however, can be 

attained by using a data-adaptive algorithm for initial estimation of the outcome regression 

Q̄0(A,W) and/or by estimating the exposure mechanism g0(A|W) [39].

Under standard regularity conditions, the TMLE is an asymptotically linear estimator of 

both the population and sample effects [19, 26]. The estimator minus the true effect can be 

written as an empirical mean of an influence curve and a second order term going to 0 in 

probability. As a result, the TMLE is asymptotically normal with variance well-

approximated by the variance of its influence curve, divided by sample size n. The influence 

curve for the TMLE of the population effect (PATE) is given by

†In greater generality, the logistic fluctuation can also be used for a continuous outcome that is bounded in [a, b] by first applying the 
following transformation to the outcome: Y* = (Y − a)/(b − a). Use of logistic regression over linear regression can provide stability 
under data sparsity and/or with rare outcomes (e.g. [25, 38]).
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where Q̄(A,W) denotes the limit of the targeted estimator of the conditional mean function 

Q̄0(A,W) and where we are assuming the exposure mechanism g0(A|W) is known or 

consistently estimated, as will always be true in a randomized trial [19]. A plug-in estimator 

of this influence curve is given by

(3)

where  denotes the point estimate. In finite samples, the variance of the TMLE for the 

PATE is well-approximated by the sample variance of this estimated influence curve, scaled 

by sample size:

The influence curve for the TMLE of the sample effect (SATE) relies on non-identifiable 

quantities, specifically the counterfactual outcomes Yi(1) and Yi(0) [26]. Nonetheless, a 

conservative plug-in estimator of its influence curve is obtained by ignoring these non-

identifiable quantities:

(4)

In finite samples, the variance of the TMLE for the SATE is conservatively approximated by 

the sample variance of this estimated influence curve, scaled by sample size:

We refer the reader to Balzer et al. [26] for further details.

With an estimate of the standard error (  for the population effect or  for the sample 

effect), we construct Wald-Type 95% confidence intervals as . Analogously, we 

can test the null hypothesis of no average effect with the test statistic . For trials with a 

limited number of independent units, the Student’s t-distribution is an appropriate alternative 

to the standard normal distribution. Randomization inference may not be appropriate 

however, because it is testing the sharp null of no treatment effect for any unit [40, 41], 

whereas our interest is in the null hypothesis of no treatment effect on average.
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Comparing Eq. 3 and 4, we see that for the SATE there is no variance contribution from the 

covariate distribution, which is considered fixed. As a result, the sample effect will often be 

estimated with more precision than the population effect [34, 42, 43]. Indeed, the TMLE for 

the PATE and the TMLE for the SATE will only have the same efficiency bound if the 

conditional mean Q̄0(A,W) is consistently estimated and if there is no variability in the 

intervention effect across units [26]. In many settings, there will be effect heterogeneity, and 

specifying the SATE as the target of inference can yield more power, especially in large 

trials. In small trials, the gains in precision from targeting the SATE can be attenuated, 

because this influence curve-based variance estimator is conservative (biased upwards).

3.1. Adaptive Pre-specified Approach for Step 1. Initial Estimation

Consider again the SEARCH trial for HIV prevention and treatment. Recall that the outcome 

Y is the five-year cumulative incidence of HIV and bounded between 0 and 1. The first step 

of the TMLE algorithm is to obtain an initial estimator of the expected outcome, given the 

exposure and measured covariates Q̄0(A,W). Suppose that as a working model, we consider 

running logistic regression‡ of the outcome Y on the treatment A and covariates W. It is 

unclear a priori which covariates should be included in the working model and in what form. 

For example, baseline HIV prevalence is a known predictor of the outcome and may be 

imbalanced between the treatment and control groups. Therefore, as initial estimator of 

Q̄0(A,W), we could consider a logistic regression working model with an intercept and main 

terms for the treatment and HIV prevalence. Likewise, there might be substantial 

heterogeneity in the treatment effect by region and allowing for an interaction between 

region and the intervention may reduce the variance of the TMLE. Including all the 

covariates and the relevant interactions in the working model is likely to result in overfitting 

and misleading inference. To facilitate selection between candidate initial estimators and 

thereby candidate TMLEs, we propose the following cross-validation selector.

First, we propose a library of candidate working models for initial estimation of the 

conditional mean outcome Q̄0(A,W). This library should be pre-specified in the protocol or 

the analysis plan. A possible library could consist of the following logistic regression 

working models:

where, for example, W1 denotes baseline prevalence and W2 denotes region. Of course, 

there are many more candidate algorithms, and we are considering this simple set for 

pedagogic purposes. We also note that the first working model corresponds to the unadjusted 

estimator.

‡Logistic regression naturally respects the bounds on this continuous outcome. Prior work has suggested that use of the logistic 
regression over linear regression can provide stability when there are positivity violations and/or the outcome is rare [25, 38]. Full R 
code is available in the Supplementary Material.
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Second, we need to pre-specify a loss function to measure the performance of the candidate 

estimators. Following the principle of empirical efficiency maximization [14, 31], we 

propose using the squared influence curve of the TMLE for the parameter of interest. The 

expectation of this loss function, called the “risk”, is then the asymptotic variance of the 

TMLE. Thereby, our goal is to select the candidate estimator that maximizes precision. If the 

target of inference is the population effect, our loss function is

(5)

where we are not estimating the known exposure mechanism g0(A|W) = 0.5. Since the true 

influence curve of the TMLE for the sample effect relies on non-identifiable quantities [26], 

our loss function for the SATE is the estimated influence curve-squared:

(6)

where again we are not estimating the known exposure mechanism g0(A|W) = 0.5. In this 

case, the loss function for the SATE corresponds to the L2 squared error loss function: 

ℒ (g0, Q̄) = (Y − Q̄(A,W))2.

Next, we need to pre-specify our cross-validation scheme, used to generate an estimate of 

the risk for each of the candidate estimators. For generality, we present V -fold cross-

validation, where the data are randomly split into V partitions, called “folds”, of size ≈ n/V. 

To respect the limited sample sizes common in early phase clinical trials and in cluster 

randomized trials, leave-one-out cross-validation is often appropriate. Leave-one-out cross-

validation corresponds with V = n-fold cross-validation, where each fold corresponds to one 

observation. The cross-validation procedure for initial estimation of the conditional mean 

Q̄0(A,W) can be implemented as follows.

A. For each fold v = {1, …, V} in turn,

a. Set the observation(s) in fold v to be the validation set and 

the remaining observations to be the training set.

b. Fit each algorithm for estimating Q̄0(A,W) using only data 

in the training set. For the above library, we would run 

logistic regression of the outcome Y on the exposure A 
and covariates W, according to the working model. Denote 

the initial regression fits as  and 

, respectively.

c. For each algorithm, use the estimated fit to predict the 

outcome(s) for the observation(s) in the validation set 

under the treatment and the control. For the first algorithm, 
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for example, we would have  and 

for observation Ok in the validation set.

d. For each algorithm, evaluate the loss function for the 

observation(s) in the validation set by plugging in the 

algorithm-specific predictions. For example, if our target 

of inference were the SATE, we would have for the first 

algorithm

for observation Ok in the validation set. The exposure 

mechanism is known: g0(A|W) = 0.5.

e. For each algorithm, obtain an estimate of the risk by 

averaging the estimated losses across the observations in 

validation set v. If our target of inference were the SATE, 

we would have for the first algorithm

where nv denotes the number of observations in validation 

set v.

B. For each algorithm, average the estimated risks across the V folds.

C. Select the algorithm with the smallest cross-validated risk. This is the 

algorithm yielding the smallest cross-validated variance estimate.

The selected working model is then used for initial estimation of the conditional mean 

outcome Q̄0(A,W) in Step 1 of the TMLE algorithm, described above (Sec. 3). Specifically, 

we would re-fit the selected algorithm using all the data. Since the exposure mechanism was 

treated as known and our library was limited to simple parametric working models with a 

main term for the exposure and an intercept, the updating step (Step 2) can be skipped. In 

other words, the chosen estimator is already targeted  and can be used 

for Step 3 parameter estimation.

4. Targeted Estimation in a Randomized Trial With Matching

Recall the pair-matching scheme briefly described in Section 2 for the SEARCH trial. First, 

the potential study units were selected. Then the baseline covariates, such as region, 

occupational mix and measures of migration, were collected. A matching algorithm was 

applied to the baseline covariates of candidate units to create the best 16 matched pairs. The 

intervention was randomized within the resulting pairs, and the outcome will be measured 

with longitudinal follow-up. This pair-matching scheme is considered to be adaptive, 
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because the resulting matched pairs are a function of the baseline covariates of all the 

candidate units [24–26]. This design has also been called “nonbipartite matching” and 

“optimal multivariate matching” [44–46].

The adaptive design creates a dependence in the data. Since the construction of the matched 

pairs is a function of the baseline covariates of all n study units, the observed data do not 

consist of n/2 i.i.d. paired observations, as current practice sometimes assumes (e.g. [8, 22, 

47, 48]). Instead, we have n dependent copies of O = (W,A, Y). Nonetheless, there remains 

substantial conditional independence in the data. Mainly, once we consider the baseline 

covariates of the study units as fixed, we recover n/2 conditionally independent units:

where the index j = 1, …, n/2 denotes the partitioning of the candidate units {1, … n} into 

matched pairs according to similarity in their baseline covariates (W1, …, Wn). Throughout 

subscripts j1 and j2 index the observations within matched pair j. The conditional 

distribution of the observed data, given the baseline covariates of the study units, factorizes 

as

where the second line follows from randomization of the intervention within matched pairs. 

For estimation and inference of the population effect (PATE), we need to assume that each 

community’s baseline covariates Wi are independently drawn from some common 

distribution P0(W). For estimation and inference of the sample effect (SATE), this 

assumption on the covariate distribution can be weakened [26].

Despite the dependence in the data, a TMLE for the population or sample effect can be 

implemented by ignoring the pair-matched design [24, 26]. In other words, a point estimate 

is obtained by following the procedure outlined in Section 3. In Step 1, we obtain an initial 

estimator of the conditional mean outcome with an a priori-specified parametric working 

model or with a more data-adaptive method (as detailed below). In Step 2, we target the 

initial estimator by using information in the known or estimated exposure mechanism. 

Finally in Step 3, we obtain the predicted outcomes for all observations under the treatment 

and the control, and then take the sample average of the difference in these targeted 

predictions.

In a trial with adaptive pair-matching, the TMLE is an asymptotically normal estimator of 

both the population and sample effects [24, 26]. For the PATE, we could estimate its 

variance with the sample variance of the estimated influence curve in the non-matched trial 

 divided by n [24]. This variance estimator, however, ignores any gains 
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in precision from pair-matching and will be conservative under reasonable assumptions. A 

less conservative variance estimator is obtained by accounting for the potential correlations 

of the residuals within matched pairs:

(7)

[24]. In finite samples, we recommend estimating of the variance of the TMLE for the 

population effect under pair-matching with

In a pair-matched trial, the TMLE minus the sample effect (SATE) again behaves as an 

empirical mean of an influence curve, depending on non-identifiable quantities [26]. 

Nonetheless, a conservative plug-in estimator of its influence curve is given by

where  is the estimated influence curve for observation O in the non-

matched trial (Eq. 4). In finite samples, we conservatively estimate the variance of the 

TMLE for the sample effect with the sample variance of the estimated (paired) influence 

curve divided by n/2:

If we order observations within matched pairs such that first corresponds to the intervention 

(Aj1 = 1) and the second to the control (Aj2 = 0) and do not estimate the exposure 

mechanism g0(A|W) = 0.5, we have

In this setting, the sample variance of the pairwise differences in residuals, divided by n/2, 

provides a conservative variance estimator. With an estimate of the standard error (  for 

the population effect or  for the sample effect), we can create 95% confidence intervals 

and conduct hypothesis tests, as described above.
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4.1. Adaptive Pre-specified Approach for Step 1. Initial Estimation

By balancing intervention groups with respect to baseline determinants of the outcome, pair-

matching increases the efficiency of the study (e.g. [24, 26, 49]). Nonetheless, residual 

imbalance on the baseline predictors often remains, and adjusting for these covariates during 

the analysis can further increase efficiency. In the SEARCH trial, for example, the matched 

pairs were created before baseline HIV prevalence was measured. As a result, there is likely 

to be variation across the pairs in baseline prevalence, a known driver of HIV incidence. 

Adjusting for baseline prevalence during the analysis is likely to increase power via two 

mechanisms: (1) reducing the variance of the TMLE for the point estimate, and (2) resulting 

in a less conservative variance estimator. Unfortunately, it is unclear a priori whether 

adjusting for prevalence will yield more power than adjusting for other covariates, such as 

male circumcision coverage or measures of community-level HIV RNA viral load. With 

only 16 (conditionally) independent units, we are limited as to the size of the adjustment set. 

Adjusting for too many covariates can result in over-fitting. As before, we want to data-

adaptively select the candidate TMLE (i.e. working regression model), which maximizes the 

empirical efficiency.

The data-adaptive procedure for initial estimation of the conditional mean outcome Q̄0(A,W) 

for a non-matched trial (Sec. 3.1) can be modified for a pair-matched trial. As before, we 

need to pre-specify our library of candidate estimators, our measure of performance, and the 

cross-validation scheme. We can use the same library of candidate working models for 

initial estimation of the conditional mean outcome Q̄0(A,W). To measure performance, 

however, we want to use as risk the estimated variance of the TMLE under pair-matching. 

To elaborate, consider the loss function for the sample effect in a non-matched trial. 

Minimizing the sum of squared residuals (Eq. 6) targets the conditional mean outcome 

Q̄0(A,W). As a result, the algorithm could select a working model adjusting for a covariate 

that is highly predictive of the outcome but on which we matched perfectly. In the SEARCH 

trial, for example, communities were paired within region, because HIV incidence is 

expected to be highly heterogeneous across regions. Therefore, minimizing the empirical 

variance of  might lead to selection of the candidate TMLE with main terms for 

the intervention and region. This selection would not improve the precision of the analysis 

over the unadjusted algorithm. (We already “controlled” for region in the design.) Instead, 

we want to select the candidate TMLE maximizing precision for the parameter of interest in 

a pair-matched trial. Thereby, our loss function for the PATE is

(8)

and our loss function for the SATE is
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(9)

(For further details, see Section 1 of the Supplementary Material.) Again, we are treating the 

exposure mechanism as known: g0(A|W) = 0.5.

Finally, in the cross-validation scheme, the pair should be treated as the unit of (conditional) 

independence. In other words, when the data are split into V-folds, the pairing should be 

preserved. In small trials, leave-one-pair-out cross-validation will often be appropriate. With 

these modifications, we can implement the cross-validation scheme, outlined in Section 3.1, 

to data-adaptively select the candidate working model, which minimizes the estimated 

variance of the TMLE in a pair-matched trial. As before, the selected working model would 

then be refit using all the data and used to estimate outcomes for all observations under the 

treatment and control. The average difference in the predicted outcomes would provide an 

estimate of the intervention effect.

5. Collaborative Estimation of the Exposure Mechanism

Even though the intervention A is randomized with balanced allocation, estimating the 

known exposure mechanism g0(A|W) = 0.5 can increase the precision of the analysis [39]. 

As before, we want to respect the study design (i.e. pair-matched or not) as well as adjust for 

a covariate only if its inclusion improves the empirical efficiency. For example, we will 

generally not want to adjust for a covariate that is imbalanced between the intervention 

groups (i.e. predictive of A) but not predictive of the outcome. Likewise, if a given covariate 

(e.g. W1) was included in the working model for conditional mean outcome Q̄0(A,W), 

further adjusting for this covariate when estimating the exposure mechanism may not 

increase precision. To this end, we incorporate the Collaborative TMLE (C-TMLE) 

approach into our algorithm [32, 33].

5.1. Adaptive Pre-specified Approach for Step 2. Targeting

First, we propose a library of candidate estimators of the exposure mechanism g0(A|W). As 

before, this library should be pre-specified in the protocol or analysis plan. A possible 

library could consist of the following logistic regression working models:

where, for example, W1 is baseline prevalence and W2 is male circumcision coverage. Each 

algorithm would yield a different update to a given initial estimator of the conditional mean 

outcome Q̄n(A,W), selected by the data-adaptive procedure for Step 1 (Sec. 3.1 for trials 

without matching and Sec. 4.1 for trials with matching). In other words, each candidate 

estimator of g0(A|W) results in a different targeted estimator . We also note that 

the first working model corresponds to the unadjusted estimator.
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To choose between candidate algorithms, we need to pre-specify a measure of performance. 

As before, we propose using as risk the estimated asymptotic variance of the TMLE, 

appropriate for the study design (i.e. pair-matched or not) and the scientific question (i.e. 

population or sample effect). Therefore, our loss functions are

• Without matching and for the PATE: ℒ℘(g, Q̄n) as in Eq. 5

• Without matching and for the SATE: ℒ (g, Qn̄) as in Eq. 6

• With matching and for the PATE: ℒ℘*(g, Q̄n) as in Eq. 8

• With matching and for the SATE: ℒ *(g, Q̄n) as in Eq. 9

where g denotes a candidate estimator of the exposure mechanism and Q̄n denotes our 

selected initial estimator of the outcome regression (Sec. 3.1 and 4.1).

Finally, we need to pre-specify our cross-validation scheme, used to obtain an honest 

measure of risk and to reduce the potential for over-fitting. As before, we present V -fold 

cross-validation, where the data are partitioned into V folds of size ≈ n/V. If matching was 

used, the partitioning should preserve the pairs. The cross-validation selector for 

collaborative estimation of the exposure mechanism can be implemented as follows.

A. For each fold v = {1, …, V} in turn,

a. Set the observation(s) in fold v to be the validation set and 

the remaining observations to be the training set.

b. Using only data in the training set, fit each algorithm for 

estimating the exposure mechanism. For the above library, 

we would run logistic regression of the exposure A on the 

covariates W, according to the working model. Denote the 

estimated exposure mechanisms as 

and , respectively.

c. For each algorithm, use the estimated fit of the exposure 

mechanism to target the initial estimator Q̄n(A,W), also fit 

with the training set. Denote the targeted regression fits as 

Q̄n(a),∗ (A,W), Q̄n(b),∗ (A,W) and Q̄n(c),∗ (A,W) where the 

superscript corresponds to the algorithm used to estimate 

the exposure mechanism.

d. For each algorithm, obtain targeted predictions of the 

outcome(s) for the observation(s) in the validation set 

under the treatment and the control. For the first algorithm 

for fitting the exposure mechanism, for example, we would 

have  and  for observation Ok in 

the validation set.

e. For each algorithm, evaluate the loss function for the 

observation(s) in the validation set by plugging in the 

algorithm-specific predictions. For example, if our target 
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of inference were the SATE in a non-matched trial, we 

would have for the first algorithm

for observation Ok in the validation set.

f. For each algorithm for estimating the exposure 

mechanism, obtain an estimate of the risk by averaging the 

estimated losses across the observations in validation set v. 

If our target of inference were the SATE in a non-matched 

trial, we would have for the first algorithm for estimating 

the exposure mechanism

where nv denotes the number of observations in validation 

set v.

B. For each algorithm, average the estimated risks across the V folds.

C. Select the algorithm with the smallest cross-validated risk. This is the 

algorithm yielding the smallest cross-validated variance estimate.

The chosen estimator for estimating the exposure mechanism is then used for targeting in 

Step 2 of the TMLE algorithm.

6. Obtaining Inference

In summary, we have proposed the following data-adaptive C-TMLE to maximize the 

precision and power of a randomized trial.

Step 1. Initial estimation of the conditional mean outcome with the working 

model Q̄n(A,W), which was data-adaptively selected to maximize the empirical 

efficiency of the analysis (Sec. 3.1 for a non-matched trial and Sec. 4.1 for a 

matched trial).

Step 2. Targeting the initial estimator using the estimated exposure mechanism 

gn(A|W), which was data-adaptively selected to further maximize the empirical 

efficiency of the analysis (Sec. 5.1).

Step 3. Obtaining a point estimate by averaging the difference in the targeted 

predictions of the outcome under the treatment and under the control:
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We now need a variance estimator that accounts for the selection process. For this, we 

propose using a cross-validated variance estimator. As before, the data are split into 

validation and training sets, respecting the unit of (conditional) independence. The selected 

TMLE is fit using the data in the training set and used to estimate the influence curve§ for 

the observation(s) in the validation set. The sample variance of the cross-validated estimate 

of the influence curve can then be used for hypothesis testing and the construction of Wald-

type confidence intervals. Step-by-step instructions are given in Section 2 of the 

Supplementary Material. We note that for a very small library (e.g. 2 candidate TMLEs), 

simulations support the use of the standard, as opposed to cross-validated, variance estimator 

for inference. For further details, see the Section 3 of the Supplementary Material.

7. Small Sample Simulations

We present the following simulation studies to demonstrate (1) implementation of the 

proposed methodology, (2) the potential gains in precision and power from data-adaptive 

estimation of the conditional mean outcome, (3) the additional gains in precision and power 

from collaborative estimation of the exposure mechanism, and (4) maintenance of nominal 

confidence interval coverage. All simulations were conducted in R v3.2.3 [36].

7.1. Study 1

For each unit i = {1, …, n}, we generated the nine baseline covariates by drawing from a 

multivariate normal with mean 0 and variance 1. The correlation between the first three 

covariates {W1,W2,W3} and between the second three covariates {W4,W5,W6} was 0.5, 

while the correlation between the remaining covariates {W7,W8,W9} was 0. The exposure 

A was randomized such that the treatment allocation was balanced overall. For the non-

matched trial, we randomly assigned the intervention to n/2 units and the control to the 

remaining n/2 units. For the pair-matched trial, we used the non-bipartite matching 

algorithm nbpMatch to pair units on covariates {W1, …,W6} [50], and the exposure A was 

randomized within the resulting matched pairs. Recall A is a binary indicator, equalling 1 if 

the unit was assigned the treatment and 0 if the unit was assigned the control. For each unit, 

the outcome Y was then generated as

where UY was drawn from a standard normal. We also generated the counterfactual 

outcomes Y (1) and Y (0) by intervening to set A = a. To reflect the limited sample sizes 

common in early phase clinical trials and in cluster randomized trials, we selected a sample 

size of n = 40. This resulted in n/2 = 20 conditionally independent units in the pair-matched 

trial.

§For the TMLE of the population effect in a pair-matched trial, we also need a cross-validated estimate of the correction term ρn (Eq. 
7). This term is a function of the residuals, which can be estimated for each pair in the validation set based on targeted estimator 

, fit with the training set.
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For each study design (non-matched or matched), this data generating process was repeated 

2,500 times. Recall that the sample effect (Eq. 2) is a data-adaptive parameter; its value 

changes with each new selection of units. Thereby, for each repetition, the SATE was 

calculated as the sample average of the difference in the counterfactual outcomes. The SATE 

ranged from 0.22 to 0.59 with a mean of 0.40. In contrast, the population effect (Eq. 1) is 

constant and was calculated by averaging the difference in the counterfactual outcomes over 

a population of 900,000 units. The true value of the PATE was 0.40.

We compared the performance of the unadjusted estimator to TMLE with various 

approaches to covariate adjustment. Specifically, we implemented the TMLE algorithm, 

where the initial estimation of the conditional mean outcome Q̄0(A,W) was based on a linear 

working model with main terms for the intervention A and the irrelevant covariate W9 and 

where the exposure mechanism was treated as known: g0(A|W) = 0.5. This approach was 

equivalent to standard maximum likelihood estimation (MLE) and represented the 

unfortunate scenario where the researcher pre-specified adjustment for a covariate that was 

not predictive of the outcome.

We also implemented a TMLE with the data-adaptive approach for Step 1 initial estimation 

of the conditional mean outcome (Sec. 3.1 and 4.1). Our library consisted of 10 working 

linear regression models, each with an intercept, a main term for the exposure A and a main 

term for one baseline covariate: {∅, W1, …, W9}, where ∅ corresponds to the unadjusted 

estimator. Our measure of performance (i.e. our risk function) was the estimated asymptotic 

variance of the TMLE, appropriate for the target parameter and study design. We chose the 

candidate working model based on leave-one-out cross-validation for the non-matched trial 

and leave-one-pair-out cross-validation for the matched trial. We also implemented 

Collaborative-TMLE (C-TMLE), which couples the data-adaptive approach for Step 1 initial 

estimation of the conditional mean outcome (Sec. 3.1 and 4.1) with the data-adaptive 

approach for Step 2 targeting (Sec. 5.1). For the latter, our library of candidates to estimate 

the exposure mechanism consisted of 10 working logistic regression models, each with an 

intercept and a main term for one baseline covariate: {∅, W1, …, W9}. The same loss 

function and cross-validation scheme were used for C-TMLE.

For the unadjusted estimator and the MLE, inference was based on the estimated influence 

curve. For the data-adaptive TMLEs, inference was based on the cross-validated estimate of 

the influence curve (Sec. 6). We assumed the standardized estimator followed the Student’s 

t-distribution with n − 2 = 38 degrees of freedom for the non-matched trial and with n/2 − 1 

= 19 degrees of freedom for the matched trial.

7.1.1. Results—Table 1 illustrates the performance of the estimators over the 2,500 

simulated data sets. Specifically, we show the mean squared error (MSE), the relative MSE 

(rMSE), the average standard error estimate σ̂, the attained power and the 95% confidence 

interval coverage. As expected, matching improved efficiency. The MSE of the unadjusted 

estimator, for example, was over 2 times larger in the non-matched trial than in the pair-

matched trial. Furthermore, for the pair-matched trial, targeting the sample effect, as 

opposed to the population effect, resulted in substantial gains in attained power: 36% with 

the unadjusted estimator for the PATE and 53% with the same estimator for the SATE. For 

Balzer et al. Page 18

Stat Med. Author manuscript; available in PMC 2017 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the trial without matching, targeting the sample parameter increased efficiency (smaller 

MSE), but did not directly translate into increased power due to the conservative variance 

estimator for the SATE.

In all scenarios, the MSE of the MLE, adjusting for the irrelevant covariate W9, was worse 

than the other estimators. This demonstrates the potential peril of relying on one pre-

specified adjustment variable. Indeed, the TMLE with data-adaptive selection of the initial 

estimator of Q̄0(A,W) improved precision over the unadjusted estimator and the MLE. 

Collaborative estimation of the exposure mechanism g0(A|W) led to further gains in 

precision. Consider, for example, estimation of the PATE in a trial without matching. The 

MSE of the unadjusted estimator was 1.49 times larger than the TMLE and 1.57 times larger 

than the C-TMLE. The attained power was 34%, 48% and 48%, respectively. As a second 

example, consider the attained power to detect that the SATE was different from zero in the 

pair-matched trial. We would have 53% power with the unadjusted estimator and with the 

MLE, adjusting for the irrelevant covariate W9. By incorporating the cross-validation 

selector for initial estimation of Q̄0(A,W), the TMLE achieved 65% power. By further 

incorporating collaborative estimation of the exposure mechanism g0(A|W), the C-TMLE 

achieved 67% power.

Overall, the greatest efficiency was achieved with C-TMLE for the SATE in the pair-

matched trial. Indeed, the MSE of the unadjusted estimator for the population parameter in 

the trial without matching was 3 times larger than the MSE of the C-TMLE for the sample 

effect in the pair-matched trial. Throughout, the confidence interval coverage was 

maintained near or above the nominal rate of 95%. Table 1 of the Supplementary Material 

provides the proportion of times each working model was selected with the TMLE and C-

TMLE algorithms.

7.2. Study 2

For the second simulation study, we increased the complexity of the data-generating process 

and reduced the sample size to n = 30. As before, we generated nine baseline covariates 

from a multivariate normal with mean 0, variance 1 and the same correlation structure. We 

also generated a binary variable R, equalling 1 with probability 0.5 and equalling −1 with 

probability 0.5. The final covariate Z was generated as a function of these baseline 

covariates and random noise UZ:

where UZ was drawn independently from a standard normal. As before, the intervention A 
was randomized with balanced allocation. For the pair-matched trial, we used the non-

bipartite matching algorithm nbpMatch to explore two matching sets [50]. In the first, units 

were matched on R, a baseline covariate strongly impacting Z. In the second, units were 

matched on {R,W2,W5,W8}. For each unit, the outcome Y was then generated as
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where UY was drawn from a standard normal. Thereby, the outcome was a continuous 

variable bounded in [0, 1] (e.g. a proportion). We also generated the counterfactual outcomes 

Y (1) and Y (0) by intervening to set A = a. For each study design, this data generating 

process was repeated 2,500 times. The SATE and PATE were calculated as before. The 

SATE ranged from 0.2% to 3.3% with a mean of 1.6%. The true value of the PATE was 

1.6%. Table 2 depicts the relationship between the baseline covariates and the outcome as 

well as the adaptive pair-matching schemes.

We compared the same algorithms: the unadjusted estimator, the MLE adjusting for the 

irrelevant covariate W9, the TMLE with data-adaptive estimation of the conditional mean 

outcome, and the C-TMLE pairing data-adaptive estimation of the conditional mean 

outcome with data-adaptive targeting. Our library for initial estimation of the conditional 

mean outcome Q̄0(A,W) consisted of 12 working logistic regression models, each with an 

intercept and a main term for the exposure A and a main term for one candidate adjustment 

variable {∅ ,R, W1, …, W9, Z}. Our library for collaborative estimation of the exposure 

mechanism g0(A|W) included 12 working logistic regression models, each with an intercept 

and a main term for one candidate adjustment variable: {∅, R, W1, …,W9, Z}. We used the 

same measure of performance and cross-validation scheme. As before, inference was based 

on the estimated influence curve for the unadjusted estimator and the MLE and on the cross-

validated estimate of the influence curve for the TMLEs (Sec. 6). We assumed the 

standardized estimator followed the Student’s t-distribution with n − 2 = 28 degrees of 

freedom for the non-matched trial and with n/2 − 1 = 14 degrees of freedom for the matched 

trial.

7.2.1. Results—The results for the second simulation study are given in Table 3 and 

largely echoed the above findings. Pair-matching, even on a single covariate (i.e. matching 

set 1), improved the precision of the analysis. Targeting the sample effect instead of the 

population effect further improved efficiency. Allowing for data-adaptive selection of the 

working model for initial estimation of Q̄0(A,W) yielded even greater precision, and the 

most efficient analysis was with C-TMLE. Indeed, the MSE of the unadjusted estimator for 

the PATE in the non-matched trial was nearly 4.5 times higher than the MSE of the C-TMLE 

for the SATE when matching on predictive covariates (i.e. matching set 2). This resulted in 

29% more power to detect the intervention effect.

For these simulations, there was a notable impact of parameter specification on estimator 

performance. We first focus on the estimation of the PATE and then on estimation of the 

SATE. When the population effect was the target of inference, the gains in attained power 

from pair-matching were attenuated despite the gains in MSE. This was likely due to the 

slight underestimation of the standard error in the non-matched trial and overestimation in 

the pair-matched trial. Indeed, the 95% confidence interval coverage in the non-matched trial 

was slightly less than nominal (93–94%), while the coverage when matching well (i.e. set 2) 

approached 100%. For this set of simulations, the correction factor ρn (Eq. 7) used in 

variance estimation for the pair-matched design was approximately 0. As a result, the 

variance estimator in the pair-matched trial was quite conservative, and the cross-validation 

selection scheme was more optimized for the non-matched trial. The latter point is 

evidenced by Table 2 in the Supplementary Material, which shows the proportion of times 
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each candidate working model was selected. The logistic regression model adjusting for R 
was selected for initial estimation of Q̄0(A,W) in 10% of the studies without matching and in 

7% of the studies when matching well on R (i.e. set 1). Furthermore, when matching on 

several covariates (i.e. set 2), the selection of working models for Q̄0(A,W) was very similar 

to the selection in the non-matched trial.

In contrast, when estimating the SATE, smaller MSE translated to greater attained power, 

while maintaining nominal, if not conservative, confidence interval coverage. For example, 

the attained power of the TMLE was 33% in the non-matched trial, 40% when matching on 

a single covariate and 47% when matching on several covariates. Likewise, the attained 

power of the C-TMLE was 34% in the non-matched trial, 44% in the trial pair-matching on a 

single covariate and 53% in trial matching on several covariates. In Table 2 of the 

Supplementary Material, we see that the working model adjusting for R was selected for 

initial estimation of Q̄0(A,W) in 10% of the studies without matching and only in 2% of the 

studies when matching well on R (i.e. set 1). In the latter, more weight was given to other 

predictive baseline covariates, such as W2 and Z.

8. Discussion

This paper builds on the rich history of covariate adjustment in randomized trials [1–4, 13, 

15, 21, 27, 51]. In particular, Rubin and van der Laan [14] proposed the principle of 

empirical efficiency maximization as a strategy to select the estimator of conditional mean 

outcome Q̄0(A,W) that minimized the empirical variance of the estimated efficient influence 

curve. Their procedure, however, relied on solving a weighted nonlinear least squares 

problem. Our approach only requires researchers to take the sample variance. More recently, 

van der Laan and Gruber [32] proposed collaborative estimation of the exposure mechanism 

to achieve the greatest bias reduction in the targeting step of TMLE in a observational study. 

In randomized trials, there is no risk of bias from regression model misspecification [16]. 

Thereby, the collaborative approach, implemented here, serves only to increase precision by 

estimating the known exposure-mechanism. To our knowledge, this is the first research into 

C-TMLE in a randomized trial setting. Most recently, van der Laan [31] suggested selection 

of the candidate (C-)TMLE based on minimizing the estimated variance of its influence 

curve. Our paper generalizes this scheme for estimation and inference of both the population 

and sample average treatment effects in randomized trials with and without pair-matching.

Our simulations illustrate the performance of the proposed procedure in realistically-sized 

(i.e. small) trials. In particular, with only 15 (conditionally) independent units, our procedure 

was able to identify the optimal working model for initial estimation of Q ̄0(A,W) from a 

library of 12 candidates as well as for collaborative estimation of g0(A|W) from a library of 

12 candidates, while maintaining close to nominal confidence interval coverage. The 

simulations also indicated the most efficient combination (design, target parameter and 

adjustment approach) was estimating the sample effect with C-TMLE in pair-matched trial. 

Indeed, this approach was nearly 4.5 times more efficient than targeting the population effect 

with the unadjusted estimator in the non-matched trial. Thereby, our procedure dispels the 

common concern of “analytical limitations” to pair-matched trials (e.g. [11, 22, 23]).
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There are several areas of future work. First, our library of candidate estimators was limited 

to simple parametric working models. This choice was made both for pedagogic purposes 

and to avoid over-fitting in small studies. Although not studied directly in simulations, it 

should be possible for larger trials to expand the library to include working models with 

multiple adjustment variables and interactions as well as selection procedures (e.g. stepwise 

regression) and other semiparametric algorithms. Future work will involve simulations to 

evaluate the methodology in larger trials. Simulations, such as those presented here, can 

inform the practitioner as to the optimal library size for his/her specific application. Future 

work will also evaluate using cross-validation to select the size of the candidate library. 

Second, this manuscript focused on randomized trials with and without pair-matching. The 

application to matched triplets, as opposed to matched pairs, should be straightforward. 

However, the impact of other designs (e.g. adaptive stratification, restricted randomization, 

and the minimization method) on estimation and inference merits additional consideration. 

Finally, we focused on two causal parameters: the population and sample average treatment 

effects. However, TMLE is a general methodology for the construction of double robust, 

semiparametric, efficient substitution estimators for a wide range of parameters. Our 

proposed strategy for covariate selection should extend to other causal parameters, such as 

the conditional average treatment effect (e.g. [25, 52]), the average treatment effect among 

the treated (e.g. [43]), and the natural direct effect (e.g. [53, 54]).

Overall, we proposed a general strategy to increase power in randomized trials. The 

proposed methodology is applicable to early and later phase clinical trials as well as cluster 

randomized trials. Specifically, we used cross-validation to select the candidate TMLE that 

optimized the efficiency of the analysis. Since the step-by-step algorithm (including the 

library definition) was pre-specified, there was no risk of bias or misleading inference from 

ad hoc analytic decisions. In other words, we have proposed a black box procedure to data-

adaptively select the most powerful analysis. Furthermore, including the unadjusted 

estimator as a candidate obviates the need for guidelines on whether or not to adjust (e.g. 

[21, 27]). Finally, our procedure is tailored to the scientific question (population vs. sample 

effect) and study design (with or without pair-matching). Decisions about whether to adjust 

and how to adjust are made with a rigorous and principled approach, removing some of the 

“human art” from statistics.
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Acknowledgments

Contract/grant sponsor: NIH grant numbers R01AI074345, UM1AI069502 & U01AI099959

Research reported in this publication was supported by Division of AIDS, NIAID of the National Institutes of 
Health under award numbers R01-AI074345, UM1AI069502 and U01AI099959 and in part by the President’s 
Emergency Plan for AIDS Relief and Gilead Sciences. The content is solely the responsibility of the authors and 
does not necessarily represent the official views of the NIH, PEPFAR, or Gilead. The SEARCH project gratefully 
acknowledges the Ministries of Health of Uganda and Kenya, our research team, collaborators and advisory boards, 
and especially all communities and participants involved.

Balzer et al. Page 22

Stat Med. Author manuscript; available in PMC 2017 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Fisher, R. Statistical methods for research workers. 4. Oliver and Boyd Ltd; Edinburgh: 1932. 

2. Cochran W. Analysis of covariance: its nature and uses. Biometrics. 1957; 13:261–281. DOI: 
10.2307/2527916

3. Cox D, McCullagh P. Some aspects of analysis of covariance. Biometrics. 1982; 38(3):541–561. 
DOI: 10.2307/2530040 [PubMed: 7171689] 

4. Tsiatis A, Davidian M, Zhang M, Lu X. Covariate adjustment for two-sample treatment 
comparisons in randomized clinical trials: A principled yet flexible approach. Statistics in Medicine. 
2008; 27(23):4658–4677. DOI: 10.1002/sim.3113 [PubMed: 17960577] 

5. Moore K, van der Laan M. Covariate adjustment in randomized trials with binary outcomes: 
Targeted maximum likelihood estimation. Statistics in Medicine. 2009; 28(1):39–64. DOI: 10.1002/
sim.3445 [PubMed: 18985634] 

6. Statistical principles for clinical trials E9. Feb. 1998 ICH Harmonised Tripartite Guideline. 

7. Pocock S, Assmann S, Enos L, Kasten L. Subgroup analysis, covariate adjustment and baseline 
comparisons in clinical trial reporting: current practice and problems. Statistics in Medicine. 2002; 
21(19):2917–2930. DOI: 10.1002/sim.1296 [PubMed: 12325108] 

8. Hayes, R.; Moulton, L. Cluster Randomised Trials. Chapman & Hall/CRC; Boca Raton: 2009. 

9. Austin P, Manca A, Zwarensteina M, Juurlinka D, Stanbrook M. A substantial and confusing 
variation exists in handling of baseline covariates in randomized controlled trials: a review of trials 
published in leading medical journals. Journal of Clinical Epidemiology. 2010; 63:142–153. DOI: 
10.1016/j.jclinepi.2009.06.002 [PubMed: 19716262] 

10. Kahn B, Jairath V, Doré C, Morris T. The risks and rewards of covariate adjustment in randomized 
trials: an assessment of 12 outcomes from 8 studies. Trials. 2014; 15(139):1–7. DOI: 
10.1186/1745-6215-15-139 [PubMed: 24382030] 

11. Campbell, M. Cluster randomized trials. In: Ahrens, W.; Pigeot, I., editors. Handbook of 
Epidemiology, 2nd edition. Springer; 2014. 

12. European Medicines Agency. Guideline on adjustment for baseline covariates in clinical trials. 
London: Feb. 2015 

13. Zhang M, Tsiatis A, Davidian M. Improving Efficiency of Inferences in Randomized Clinical 
Trials Using Auxiliary Covariates. Biometrics. 2008; 64(3):707–715. DOI: 10.1111/j.
1541-0420.2007.00976.x [PubMed: 18190618] 

14. Rubin DB, van der Laan M. Empirical efficiency maximization: improved locally efficient 
covariate adjustment in randomized experiments and survival analysis. The International Journal of 
Biostatistics. 2008; 4(1) Article 5. doi: 10.2202/1557-4679.1084

15. Shen C, Li X, Li L. Inverse probability weighting for covariate adjustment in randomized studies. 
Statistics in Medicine. 2014; 33:555–568. DOI: 10.1002/sim.5969 [PubMed: 24038458] 

16. Rosenblum M, van der Laan M. Simple, efficient estimators of treatment effects in randomized 
trials using generalized linear models to leverage baseline variables. The International Journal of 
Biostatistics. 2010; 6(1) Article 13. doi: 10.2202/1557-4679.1138

17. Robins J. A new approach to causal inference in mortality studies with sustained exposure periods–
application to control of the healthy worker survivor effect. Mathematical Modelling. 1986; 
7:1393–1512. DOI: 10.1016/0270-0255(86)90088-6

18. van der Laan M, Rubin D. Targeted maximum likelihood learning. The International Journal of 
Biostatistics. 2006; 2(1) Article 11. doi: 10.2202/1557-4679.1043

19. van der Laan, M.; Rose, S. Targeted Learning: Causal Inference for Observational and 
Experimental Data. Springer; New York Dordrecht Heidelberg London: 2011. 

20. Scharfstein D, Rotnitzky A, Robins J. Adjusting for Nonignorable Drop-Out Using Semiparametric 
Nonresponse Models (with Rejoiner). Journal of the American Statistical Association. 1999; 
94(448):1096–1120. 1135–1146. DOI: 10.2307/2669930

21. Colantuoni, E.; Rosenblum, M. Technical Report. Vol. 263. Johns Hopkins University, Dept. of 
Biostatistics Working Papers; Feb. 2015 Leveraging prognostic baseline variables to gain precision 
in randomized trials. http://biostats.bepress.com/jhubiostat/paper263

Balzer et al. Page 23

Stat Med. Author manuscript; available in PMC 2017 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://biostats.bepress.com/jhubiostat/paper263


22. Klar N, Donner A. The merits of matching in community intervention trials: a cautionary tale. 
Statistics in Medicine. 1997; 16(15):1753–1764. DOI: 10.1002/(SICI)1097-0258(19970815)16:15
〈1753::AID-SIM597〉3.0.CO;2-E [PubMed: 9265698] 

23. Imbens, G. Technical Report. 2011. Experimental design for unit and cluster randomized trials. 
NBER Technical Working Paper

24. van der Laan M, Balzer L, Petersen M. Adaptive Matching in Randomized Trials and 
Observational Studies. Journal of Statistical Research. 2012; 46(2):113–156. [PubMed: 25097298] 

25. Balzer L, Petersen M, van der Laan M. the SEARCH Consortium. Adaptive pair-matching in 
randomized trials with unbiased and efficient effect estimation. Statistics in Medicine. 2015; 34(6):
999–1011. DOI: 10.1002/sim.6380 [PubMed: 25421503] 

26. Balzer L, Petersen M, van der Laan M. Targeted estimation and inference of the sample average 
treatment effect in trials with and without pair-matching. Statistics in Medicine. 2016; Early View. 
doi: 10.1002/sim.6965

27. Moore K, Neugebauer R, Valappil T, van der Laan M. Robust extraction of covariate information 
to improve estimation efficiency in randomized trials. Statistics in Medicine. 2011; 30(19):2389–
2408. DOI: 10.1002/sim.4301 [PubMed: 21751231] 

28. Califf R, Zarin D, Kramer J, Sherman R, Aberle L, Tasneem A. Characteristics of clinical trials 
registered in ClinicalTrials.gov, 2007–2010. JAMA. 2012; 307(17):1838–1847. DOI: 10.1001/
jama.2012.3424 [PubMed: 22550198] 

29. Selvaraj S, Prasad V. Characteristics of cluster randomized trials: Are they living up to the 
randomized trial? JAMA Internal Medicine. 2013; 173(23):313.doi: 10.1001/jamainternmed.
2013.1638 [PubMed: 23337957] 

30. Olken B. Pre-analysis plans in economics. Technical Report. Massachusetts Institute of 
Technology Department of Economics; 2015. http://economics.mit.edu/files/10399

31. van der Laan, M. Appendix A.19: Efficiency maximization and TMLE. In: van der Laan, M.; Rose, 
S., editors. Targeted Learning: Causal Inference for Observational and Experimental Data. 
Springer; New York Dordrecht Heidelberg London: 2011. 

32. van der Laan M, Gruber S. Collaborative double robust targeted maximum likelihood estimation. 
The International Journal of Biostatistics. 2010; 6(1)doi: 10.2202/1557-4679.1181

33. Gruber, S.; van der Laan, M. C-TMLE of an Additive Point Treatment Effect. In: van der Laan, M.; 
Rose, S., editors. Targeted Learning: Causal Inference for Observational and Experimental Data. 
Springer; New York Dordrecht Heidelberg London: 2011. 

34. Neyman J. Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des 
principes (In Polish). English translation by D.M. Dabrowska and T.P Speed (1990). Statistical 
Science. 1923; 5:465–480.

35. University of California, San Francisco. Sustainable East Africa Research in Community Health 
(SEARCH). ClinicalTrials.gov. 2013. http://clinicaltrials.gov/show/NCT01864603

36. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing; Vienna, Austria: 2015. http://www.R-project.org

37. Rubin D. Estimating causal effects of treatments in randomized and nonrandomized studies. 
Journal of Educational Psychology. 1974; 66(5):688–701. DOI: 10.1037/h0037350

38. Gruber S, van der Laan M. A targeted maximum likelihood estimator of a causal effect on a 
bounded continuous outcome. The International Journal of Biostatistics. 2010; 6(1) Article 26. doi: 
10.2202/1557-4679.1260

39. van der Laan, M.; Robins, J. Unified Methods for Censored Longitudinal Data and Causality. 
Springer-Verlag; New York Berlin Heidelberg: 2003. 

40. Small D, Ten Have T, Rosenbaum P. Randomization inference in a group–randomized trial of 
treatments for depression: Covariate adjustment, noncompliance, and quantile effects. Journal of 
the American Statistical Association. 2008; 103(481):271–279. DOI: 
10.1198/016214507000000897

41. Zhang K, Traskin M, Small D. A powerful and robust test statistic for randomization inference in 
group-randomized trials with matched pairs of groups. Biometrics. 2012; 68:75–84. DOI: 
10.1111/j.1541-0420.2011.01622.x [PubMed: 21732926] 

Balzer et al. Page 24

Stat Med. Author manuscript; available in PMC 2017 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://economics.mit.edu/files/10399
http://clinicaltrials.gov/show/NCT01864603
http://www.R-project.org


42. Rubin DB. Comment: Neyman (1923) and causal inference in experiments and observational 
studies. Statistical Science. 1990; 5(4):472–480.

43. Imbens G. Nonparametric estimation of average treatment effects under exogeneity: a review. 
Review of Economics and Statistics. 2004; 86(1):4–29. DOI: 10.1162/003465304323023651

44. Greevy R, Lu B, Silber J, Rosenbaum P. Optimal multivariate matching before randomization. 
Biostatistics. 2004; 5(2):263–275. DOI: 10.1093/biostatistics/5.2.263 [PubMed: 15054030] 

45. Zhang K, Small D. Comment: The essential role of pair matching in cluster-randomized 
experiments, with application to the Mexican universal health insurance evaluation. Statistical 
Science. 2009; 25(1):59–64. DOI: 10.1214/09-STS274B

46. Lu B, Greevy R, Xu X, Beck C. Optimal Nonbipartite Matching and its Statistical Applications. 
American Statistician. 2011; 65(1):21–30. DOI: 10.1198/tast.2011.08294 [PubMed: 23175567] 

47. Freedman L, Gail M, Green S, Corle D. The COMMIT Research Group. The Efficiency of the 
Matched-Pairs Design of the Community Intervention Trial for Smoking Cessation (COMMIT). 
Controlled Clinical Trials. 1997; 18(2):131–139. DOI: 10.1016/S0197-2456(96)00115-8 
[PubMed: 9129857] 

48. Campbell M, Donner A, Klar N. Developments in cluster randomized trials and Statistics in 
Medicine. Statistics in Medicine. 2007; 26(1):2–19. DOI: 10.1002/sim.2731 [PubMed: 17136746] 

49. Imai K, King G, Nall C. The essential role of pair matching in cluster-randomized experiments, 
with application to the Mexican Universal Health Insurance Evaluation. Statistical Science. 2009; 
24(1):29–53. DOI: 10.1214/08-STS274

50. Beck, C.; Lu, B.; Greevy, R. nbpMatching: functions for optimal non-bipartite optimal matching. 
2016. https://CRAN.R-project.org/package=nbpMatching, R package version 1.5.0

51. Yuan S, Zhang H, Davidian M. Variable selection for covariate-adjusted semiparametric inference 
in randomized clinical trials. Statistics in Medicine. 2012; 31:3789–3804. DOI: 10.1002/sim.5433 
[PubMed: 22733628] 

52. Abadie A, Imbens G. Simple and bias-corrected matching estimators for average treatment effects. 
Technical Report. 2002; 283 NBER technical working paper. 

53. Robins J, Greenland S. Identifiability and exchangeability for direct and indirect effects. 
Epidemiology. 1992; 3:143–155. DOI: 10.1097/00001648-199203000-00013 [PubMed: 1576220] 

54. Pearl, J. Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence. 
Morgan Kaufmann; San Francisco: 2001. Direct and indirect effects; p. 411-420.

Balzer et al. Page 25

Stat Med. Author manuscript; available in PMC 2017 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=nbpMatching


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Balzer et al. Page 26

Ta
b

le
 1

Su
m

m
ar

y 
of

 e
st

im
at

or
 p

er
fo

rm
an

ce
 f

or
 S

im
ul

at
io

n 
1.

 T
he

 r
ow

s 
de

no
te

 th
e 

st
ud

y 
de

si
gn

 a
nd

 th
e 

es
tim

at
or

: u
na

dj
us

te
d,

 M
L

E
 a

dj
us

tin
g 

fo
r 

W
9,

 T
M

L
E

 

w
ith

 d
at

a-
ad

ap
tiv

e 
se

le
ct

io
n 

of
 th

e 
in

iti
al

 e
st

im
at

or
, a

nd
 C

ol
la

bo
ra

tiv
e-

T
M

L
E

 (
C

-T
M

L
E

) 
w

ith
 d

at
a-

ad
ap

tiv
e 

se
le

ct
io

n 
of

 th
e 

in
iti

al
 e

st
im

at
or

 p
ai

re
d 

w
ith

 

da
ta

-a
da

pt
iv

e 
es

tim
at

io
n 

of
 th

e 
ex

po
su

re
 m

ec
ha

ni
sm

.

PA
T

E
SA

T
E

M
SE

a
rM

SE
b

σ̂c
P

ow
d

C
ov

e
M

SE
a

rM
SE

b
σ̂c

P
ow

d
C

ov
e

N
on

-M
at

ch
ed

U
na

dj
6.

8E
-2

1.
00

0.
25

0.
34

0.
94

6.
4E

-2
1.

06
0.

25
0.

34
0.

94

M
L

E
6.

9E
-2

0.
98

0.
25

0.
35

0.
94

6.
5E

-2
1.

04
0.

25
0.

35
0.

94

T
M

L
E

4.
5E

-2
1.

49
0.

20
0.

48
0.

94
4.

2E
-2

1.
62

0.
20

0.
48

0.
95

C
-T

M
L

E
4.

3E
-2

1.
57

0.
20

0.
48

0.
95

4.
0E

-2
1.

70
0.

20
0.

48
0.

96

M
at

ch
ed

U
na

dj
3.

2E
-2

2.
10

0.
22

0.
36

0.
99

2.
9E

-2
2.

31
0.

18
0.

53
0.

97

M
L

E
3.

4E
-2

2.
01

0.
22

0.
37

0.
98

3.
1E

-2
2.

19
0.

18
0.

53
0.

96

T
M

L
E

2.
6E

-2
2.

64
0.

19
0.

51
0.

98
2.

3E
-2

2.
93

0.
16

0.
65

0.
96

C
-T

M
L

E
2.

5E
-2

2.
71

0.
18

0.
53

0.
98

2.
2E

-2
3.

03
0.

15
0.

67
0.

96

a M
ea

n 
sq

ua
re

d 
er

ro
r:

 th
e 

bi
as

 (
av

er
ag

e 
de

vi
at

io
n 

be
tw

ee
n 

th
e 

po
in

t e
st

im
at

e 
an

d 
sa

m
pl

e-
sp

ec
if

ic
 tr

ue
 v

al
ue

) 
- 

sq
ua

re
d 

pl
us

 th
e 

va
ri

an
ce

b R
el

at
iv

e 
M

SE
: t

he
 M

SE
 o

f 
th

e 
un

ad
ju

st
ed

 e
st

im
at

or
 f

or
 th

e 
PA

T
E

 in
 a

 n
on

-m
at

ch
ed

 tr
ia

l r
el

at
iv

e 
to

 (
di

vi
de

d 
by

) 
th

e 
M

SE
 o

f 
an

ot
he

r 
es

tim
at

or

c A
ve

ra
ge

 s
ta

nd
ar

d 
er

ro
r 

es
tim

at
e,

 b
as

ed
 o

n 
th

e 
es

tim
at

ed
 in

fl
ue

nc
e 

cu
rv

e

d A
tta

in
ed

 p
ow

er
: p

ro
po

rt
io

n 
of

 ti
m

es
 th

e 
fa

ls
e 

nu
ll 

hy
po

th
es

is
 w

as
 r

ej
ec

te
d

e C
on

fi
de

nc
e 

in
te

rv
al

 (
C

I)
 c

ov
er

ag
e:

 p
ro

po
rt

io
n 

of
 ti

m
es

 th
e 

tr
ue

 v
al

ue
 w

as
 c

on
ta

in
ed

 in
 th

e 
95

%
 C

I

Stat Med. Author manuscript; available in PMC 2017 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Balzer et al. Page 27

Ta
b

le
 2

Fo
r 

Si
m

ul
at

io
n 

2,
 th

e 
re

la
tio

ns
hi

ps
 b

et
w

ee
n 

ba
se

lin
e 

co
va

ri
at

es
 a

nd
 th

e 
ou

tc
om

e 
as

 w
el

l a
s 

th
e 

ad
ap

tiv
e 

pa
ir

-m
at

ch
in

g 
sc

he
m

es
.

R

co
rr

el
at

io
n 

0.
5

co
rr

el
at

io
n 

0.
5

co
rr

el
at

io
n 

0

Z
W

1
W

2
W

3
W

4
W

5
W

6
W

7
W

8
W

9

Pa
re

nt
s 

of
 c

ov
ar

ia
te

 Z
✓

✓
✓

✓

Pa
re

nt
s 

of
 th

e 
ou

tc
om

e 
Y

✓
✓

✓
✓

M
at

ch
in

g 
se

t 1
✓

M
at

ch
in

g 
se

t 2
✓

✓
✓

✓

Stat Med. Author manuscript; available in PMC 2017 November 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Balzer et al. Page 28

Ta
b

le
 3

Su
m

m
ar

y 
of

 e
st

im
at

or
 p

er
fo

rm
an

ce
 f

or
 S

im
ul

at
io

n 
2.

 T
he

 r
ow

s 
de

no
te

 th
e 

st
ud

y 
de

si
gn

 a
nd

 th
e 

es
tim

at
or

: u
na

dj
us

te
d,

 M
L

E
 a

dj
us

tin
g 

fo
r 

W
9,

 T
M

L
E

 

w
ith

 d
at

a-
ad

ap
tiv

e 
se

le
ct

io
n 

of
 th

e 
in

iti
al

 e
st

im
at

or
, a

nd
 C

ol
la

bo
ra

tiv
e-

T
M

L
E

 (
C

-T
M

L
E

) 
w

ith
 d

at
a-

ad
ap

tiv
e 

se
le

ct
io

n 
of

 th
e 

in
iti

al
 e

st
im

at
or

 p
ai

re
d 

w
ith

 

da
ta

-a
da

pt
iv

e 
es

tim
at

io
n 

of
 th

e 
ex

po
su

re
 m

ec
ha

ni
sm

.

PA
T

E
SA

T
E

M
SE

a
rM

SE
b

σ̂c
P

ow
d

C
ov

e
M

SE
a

rM
SE

b
σ̂c

P
ow

d
C

ov
e

N
on

-m
at

ch
ed

U
na

dj
1.

8E
-4

1.
00

0.
01

3
0.

24
0.

94
1.

6E
-4

1.
12

0.
01

3
0.

24
0.

95

M
L

E
1.

8E
-4

0.
95

0.
01

2
0.

25
0.

93
1.

7E
-4

1.
06

0.
01

2
0.

25
0.

94

T
M

L
E

1.
2E

-4
1.

50
0.

01
0

0.
33

0.
94

9.
8E

-5
1.

79
0.

01
0

0.
33

0.
96

C
-T

M
L

E
1.

1E
-4

1.
54

0.
01

0
0.

34
0.

93
9.

5E
-5

1.
85

0.
01

0
0.

34
0.

96

M
at

ch
 S

et
 1

U
na

dj
1.

1E
-4

1.
54

0.
01

2
0.

21
0.

98
9.

2E
-5

1.
90

0.
01

1
0.

28
0.

97

M
L

E
1.

2E
-4

1.
48

0.
01

2
0.

23
0.

97
9.

7E
-5

1.
81

0.
01

1
0.

29
0.

97

T
M

L
E

9.
2E

-5
1.

91
0.

01
0

0.
31

0.
97

6.
9E

-5
2.

52
0.

00
9

0.
40

0.
96

C
-T

M
L

E
9.

0E
-5

1.
95

0.
01

0
0.

33
0.

96
6.

9E
-5

2.
53

0.
00

8
0.

44
0.

95

M
at

ch
 S

et
 2

U
na

dj
6.

5E
-5

2.
70

0.
01

1
0.

17
0.

99
4.

6E
-5

3.
79

0.
00

9
0.

37
0.

98

M
L

E
7.

3E
-5

2.
41

0.
01

1
0.

20
0.

99
5.

4E
-5

3.
27

0.
00

9
0.

37
0.

98

T
M

L
E

5.
3E

-5
3.

30
0.

00
9

0.
28

0.
99

3.
8E

-5
4.

66
0.

00
8

0.
47

0.
98

C
-T

M
L

E
5.

3E
-5

3.
28

0.
00

9
0.

32
0.

99
3.

9E
-5

4.
44

0.
00

7
0.

53
0.

97

a M
ea

n 
sq

ua
re

d 
er

ro
r:

 th
e 

bi
as

 (
av

er
ag

e 
de

vi
at

io
n 

be
tw

ee
n 

th
e 

po
in

t e
st

im
at

e 
an

d 
sa

m
pl

e-
sp

ec
if

ic
 tr

ue
 v

al
ue

) 
- 

sq
ua

re
d 

pl
us

 th
e 

va
ri

an
ce

b R
el

at
iv

e 
M

SE
: t

he
 M

SE
 o

f 
th

e 
un

ad
ju

st
ed

 e
st

im
at

or
 f

or
 th

e 
PA

T
E

 in
 a

 n
on

-m
at

ch
ed

 tr
ia

l r
el

at
iv

e 
to

 (
di

vi
de

d 
by

) 
th

e 
M

SE
 o

f 
an

ot
he

r 
es

tim
at

or

c A
ve

ra
ge

 s
ta

nd
ar

d 
er

ro
r 

es
tim

at
e,

 b
as

ed
 o

n 
th

e 
es

tim
at

ed
 in

fl
ue

nc
e 

cu
rv

e

d A
tta

in
ed

 p
ow

er
: p

ro
po

rt
io

n 
of

 ti
m

es
 th

e 
fa

ls
e 

nu
ll 

hy
po

th
es

is
 w

as
 r

ej
ec

te
d

e C
on

fi
de

nc
e 

in
te

rv
al

 (
C

I)
 c

ov
er

ag
e:

 p
ro

po
rt

io
n 

of
 ti

m
es

 th
e 

tr
ue

 v
al

ue
 w

as
 c

on
ta

in
ed

 in
 th

e 
95

%
 C

I

Stat Med. Author manuscript; available in PMC 2017 November 10.


	Abstract
	1. Introduction
	2. Motivating Example and Causal Parameters
	3. Targeted Estimation in a Randomized Trial Without Matching
	Step 1. Initial estimation: Estimate the expected outcome, given the exposure and covariates Q̄0(A,W) ≡ 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="8.036px" height="9.268px" viewBox="4.084 -1.072 8.036 9.268" enable-background="new 4.084 -1.072 8.036 9.268"
xml:space="preserve">
<path d="M12.119,7.622l-0.153,0.574H4.084v-9.268h7.756v0.574H7.682c-0.168,0-0.313,0.051-0.435,0.154
C7.126-0.24,7.066-0.11,7.066,0.049v3.01h4.004v0.574H7.066v3.444c0,0.364,0.121,0.546,0.364,0.546H12.119z M5.638,7.622v-8.204
h-0.98v8.204H5.638z"/>
</svg>
0(Y|A,W). We could rely on a pre-specified parametric working model or implement a more data-adaptive approach (as discussed below). The initial estimator is denoted Q̄n(A,W).Step 2. Targeting: Update the initial estimator Q̄n(A,W).•Calculate the “clever” covariate based on the known or estimated exposure mechanism gn(A|W):•If the outcome is continuous and unbounded, run linear regression of the outcome Y on the covariate Hn(A,W) with the initial estimator as offset. Plug in the estimated coefficient εn to yield the targeted update: .•If the outcome is binary or bounded in [0, 1]††In greater generality, the logistic fluctuation can also be used for a continuous outcome that is bounded in [a, b] by first applying the following transformation to the outcome: Y* = (Y − a)/(b − a). Use of logistic regression over linear regression can provide stability under data sparsity and/or with rare outcomes (e.g. [25, 38])., run logistic regression of the outcome Y on the covariate Hn(A,W) with the logit(x) ≡ log{x/(1 − x)} of the initial estimator as offset. Plug in the estimated coefficient εn to yield the targeted update: .Step 3. Parameter estimation: Obtain the predicted outcomes for all observations under the treatment  and control . Average the difference in predicted outcomes:If the initial estimator for Q̄0(A,W) is based on a working regression model with an intercept and a main term for the exposure and if the exposure mechanism is treated as known (i.e. not estimated), then the updating step can be skipped [16]. Further precision, however, can be attained by using a data-adaptive algorithm for initial estimation of the outcome regression Q̄0(A,W) and/or by estimating the exposure mechanism g0(A|W) [39].Under standard regularity conditions, the TMLE is an asymptotically linear estimator of both the population and sample effects [19, 26]. The estimator minus the true effect can be written as an empirical mean of an influence curve and a second order term going to 0 in probability. As a result, the TMLE is asymptotically normal with variance well-approximated by the variance of its influence curve, divided by sample size n. The influence curve for the TMLE of the population effect (PATE) is given bywhere Q̄(A,W) denotes the limit of the targeted estimator of the conditional mean function Q̄0(A,W) and where we are assuming the exposure mechanism g0(A|W) is known or consistently estimated, as will always be true in a randomized trial [19]. A plug-in estimator of this influence curve is given by(3)where  denotes the point estimate. In finite samples, the variance of the TMLE for the PATE is well-approximated by the sample variance of this estimated influence curve, scaled by sample size:The influence curve for the TMLE of the sample effect (SATE) relies on non-identifiable quantities, specifically the counterfactual outcomes Yi(1) and Yi(0) [26]. Nonetheless, a conservative plug-in estimator of its influence curve is obtained by ignoring these non-identifiable quantities:(4)In finite samples, the variance of the TMLE for the SATE is conservatively approximated by the sample variance of this estimated influence curve, scaled by sample size:We refer the reader to Balzer et al. [26] for further details.With an estimate of the standard error (  for the population effect or  for the sample effect), we construct Wald-Type 95% confidence intervals as . Analogously, we can test the null hypothesis of no average effect with the test statistic . For trials with a limited number of independent units, the Student’s t-distribution is an appropriate alternative to the standard normal distribution. Randomization inference may not be appropriate however, because it is testing the sharp null of no treatment effect for any unit [40, 41], whereas our interest is in the null hypothesis of no treatment effect on average.Comparing Eq. 3 and 4, we see that for the SATE there is no variance contribution from the covariate distribution, which is considered fixed. As a result, the sample effect will often be estimated with more precision than the population effect [34, 42, 43]. Indeed, the TMLE for the PATE and the TMLE for the SATE will only have the same efficiency bound if the conditional mean Q̄0(A,W) is consistently estimated and if there is no variability in the intervention effect across units [26]. In many settings, there will be effect heterogeneity, and specifying the SATE as the target of inference can yield more power, especially in large trials. In small trials, the gains in precision from targeting the SATE can be attenuated, because this influence curve-based variance estimator is conservative (biased upwards).
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