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ARTICLE

Ocean colour signature of climate change
Stephanie Dutkiewicz 1,2, Anna E. Hickman3, Oliver Jahn1, Stephanie Henson4, Claudie Beaulieu3,5 &

Erwan Monier 2,6

Monitoring changes in marine phytoplankton is important as they form the foundation

of the marine food web and are crucial in the carbon cycle. Often Chlorophyll-a (Chl-a) is

used to track changes in phytoplankton, since there are global, regular satellite-derived

estimates. However, satellite sensors do not measure Chl-a directly. Instead, Chl-a is

estimated from remote sensing reflectance (RRS): the ratio of upwelling radiance to the

downwelling irradiance at the ocean’s surface. Using a model, we show that RRS in the

blue-green spectrum is likely to have a stronger and earlier climate-change-driven signal

than Chl-a. This is because RRS has lower natural variability and integrates not only changes

to in-water Chl-a, but also alterations in other optically important constituents. Phytoplankton

community structure, which strongly affects ocean optics, is likely to show one of the

clearest and most rapid signatures of changes to the base of the marine ecosystem.
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Phytoplankton in the sunlit layer of the ocean are important
both as the base of the marine food web, and so fuelling
fisheries, and in regulating key biogeochemical processes

such as export of carbon to the deep ocean. Satellite ocean colour
measurements over the last two decades have allowed the
scientific community an unprecedented dataset to study phyto-
plankton on a global scale and at regular, frequent intervals.
Ocean colour satellite sensors measure the radiance at the top of
atmosphere over a range of wavelengths. After taking account of
the optically significant constituents in the atmosphere (which
can include a substantial error)1, a key product of ocean colour is
remotely sensed reflectance (RRS), the ratio of the upwelling
radiance to the downwelling irradiance at the ocean surface. RRS
is the standard product provided by space agencies. Several
algorithms and quasi-analytical methods are used to deduce more
ecologically relevant quantities (such as Chl-a, the main pigment
utilized in photosynthesis) from the RRS measurements2–4. Such
ocean colour products have been used to explore trends in
ocean surface Chl-a5–7 as well as primary production8, suggesting
complex, but as yet limited, patterns of long-term change.

Numerical models provide a means to explore potential
future changes in phytoplankton due to anthropogenic climate
change. These models9–14 in general suggest a decrease in
globally integrated primary productivity driven by a reduction
in supply of macronutrients, though the predicted changes vary
in magnitude12,13, and some regions have increased productivity.

However, a key question remains: How long will it take to
detect an unambiguous signal of climate change in phytoplankton
populations? Modelling studies have been used to caution that
it will take many decades for significant trends in Chl-a and
primary production to be detectable15,16. This is due to the
magnitude of the signal of change relative to the often-large
interannual-to-decadal variability in these quantities. Thus,
while satellite ocean colour products provide regular and global
coverage, even these data will require additional decades of
observations before the signal of climate change is obvious over
large regions of the ocean.

Moreover, the satellite ocean colour products of Chl-a and
primary production are still proxies (based on RRS measurements)
of the real quantities (as might be measured in situ). How are
other optically important water constituents predicted to alter
over the coming century and how do they together alter reflec-
tance and ocean colour, as observed by satellites? Put another
way: How does the colour of the ocean change?

Here, we use a unique ocean physics, biogeochemistry and
ecosystem model that explicitly includes a representation of the
ocean’s optical properties17 to explore how climate change is
manifested in ocean colour over the course of the 21st century.
Because of the inclusion of a radiative transfer component, the
model captures how light penetrates through and is scattered
back out of the ocean, and can therefore calculate RRS (ocean
colour). In this paper, we specifically address how strong the
climate change signal will be in ocean colour and the different
factors that affect it. We determine which optical property is
likely to respond most rapidly to climate change, and thus should
be the focus of efforts to detect robust climate-driven trends in
satellite ocean colour records. The model also allows for esti-
mating Chl-a from the model RRS in a similar way to the typical
real world ocean colour Chl-a product2. As such, we use the
model to consider the implications of using satellite-derived Chl-a
for monitoring climate trends.

Results
The present day and interannual variability. The current day
biogeochemical and ecosystem model fields have been validated

against and compare well to observations (see Methods, Supple-
mentary Figs. 1–4; also see previous papers using this
model13,14,17–19). Chl-a (Fig. 1a) has high values in subpolar
regions and along the equator where upwelling water supplies
nutrients to fuel the marine ecosystem as is found in the real
ocean (Fig. 1c). These regions are dominated by larger phyto-
plankton cells (Supplementary Fig. 5a) such as diatoms. Chl-a
is much lower in the subtropical gyres; here nutrient supplies
are low and pico-phytoplankton, with their high nutrient
affinity, dominate.

A unique feature of this model is the explicit parameterization
of upwelling and downwelling irradiance, such that we can
calculate RRS (see Methods). In the model, RRS is resolved over
the visible spectrum from 400 to 700 nm in 25 nm bands. We
note that the model RRS does not have the uncertainties that
the real world RRS has due to the atmospheric correction1. The
model does not have the exact same wavebands as the ocean
colour satellites, therefore we interpolate the model RRS to the
same bands as the satellite measurements (Fig. 2, Supplementary
Fig. 2). The model captures the reversed patterns between blue
(443 nm) and green (555 nm) RRS between gyres and highly
productive regions. The model underestimates the blue RRS in the
subtropics where modelled Chl-a is likely too low relative to the
real ocean (Fig. 1, Supplementary Fig. 2), and the effects of
salinity on the ocean optics, not resolved in the model, may
become more important20. The model has noticeably higher
green (550 nm) RRS in the equatorial Atlantic and Indian Ocean
than the satellite measurements, but this is consistent with the
model over-estimating Chl-a relative to the satellite product in
this region (Fig. 1, Supplementary Fig. 2). These are also regions
of high cloud cover where the satellite product may be biased.

We construct a model ocean colour Chl-a product, similar
to that provided from an often used ocean colour algorithm2.
This proxy for Chl-a is derived from the model reflectance fields
and will be called derived Chl-a. This is a different property to
model actual Chl-a which is the sum of the dynamic Chl-a that
is explicitly resolved and is thus more equivalent to the Chl-a
that would be measured in situ. The derived Chl-a links the
model blue/green reflectance ratio to model actual Chl-a in a
manner equivalent to the algorithm that is often used in ocean
colour products in the real world2,19 (see Methods). This blue/
green ratio algorithm has co-variations with Chl-a, CDOM and
detrital matter intrinsically built into it19,21,22. This product
(Fig. 1b) is more appropriate to evaluate against real world
satellite-derived Chl-a (Fig. 1c, Supplementary Fig. 2) as it is
a more equivalent property19 and it captures the features of
the model actual Chl-a well.

Ocean ecosystems, and therefore ocean colour, are not static,
changing with the seasons and interannually (Fig. 1d–f, Supple-
mentary Fig. 3). The model (Fig. 1e) in general captures the
patterns of the satellite estimated variability (Fig. 1f), though
overestimates the interannual variability in higher latitudes,
where it also overestimates the mean (Supplementary Fig. 2). The
model Equatorial Pacific has a narrower band of variability
around the equator than seen in the observations (Supplementary
Fig. 3), a discrepancy that shows up in both Chl-a and RRS. The
RRS variability is otherwise generally underestimated. We find it
instructive to also examine the magnitude of the interannual
variability relative to the climatological mean composite (Fig. 3,
Supplementary Fig. 4). The model’s slightly lower value relative to
the observed median magnitude of this ratio in Chl-a (Fig. 3a) is
expected as the model does not capture all the sources of
variability (e.g. mesoscale features) found in the real ocean. The
current day relative magnitude of interannual variability of the
other optically important constituents (CDOM, detrital particles)
are predicted by the model to have similar values to Chl-a.
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However, the relative magnitude of the observed interannual
variability of RRS is lower (red symbols in Fig. 3b) than these
other variables. The model captures these lower ratios (though
underestimates the variability, as in Chl-a) over most of the
spectrum, but not at the high wavelength bands (Fig. 3b,
Supplementary Fig. 4). However, we note that the uncertainty in
RRS is higher at higher wavelength bands23.

Physical, biogeochemical and ecosystem response. The goal of
this paper is not to repeat a detailed discussion of the modelled
biogeochemical and ecological responses to climate change,
however we briefly summarize the main features here. In the
business as usual scenario (similar to the IPCC RCP8.524),
the model marine ecosystem is perturbed from its present-day
state by the physical ocean changes associated with unchecked
anthropogenic emissions14,25. Over the course of the 21st century
mean global sea surface temperature (SST) increases by 3 °C,
there is increased stratification and reduced mixing at the surface.
The meridional overturning circulation slows and shallows rela-
tive to current day conditions. These changes lead to a reduction
in the supply of macronutrients from depth. Sea-ice retreats.

The shifts in Chl-a (Fig. 4a) reflect multiple physical and
physiological changes. In many regions there is a decrease in Chl-a
and productivity due to reduction in macro-nutrient supply. In
polar regions a reduction in sea-ice leads to greater productivity as
more sunlight reaches the surface ocean. In other mid to high
latitude regions a complex combination of stratification-induced
reduction of light limitation (impacting both growth rates and
photo-acclimation26), decreased nutrient supply, and increased
growth rates due to warmer temperatures, leads to a mixed pattern
of positive and negative responses13. In general, Chl-a changes in
the same direction as primary production, but subtle differences
suggest that alterations in Chl:C ratios also play a role. In the
model Chl:C ratios are driven by light, temperature, and nutrient
stress27. As in most climate change models11,13,14,28, larger
phytoplankton that are disadvantaged in lower nutrient conditions
decrease in biomass relatively more than smaller phytoplankton
(Supplementary Fig. 5b). Smaller phytoplankton and diazotrophs
increase their habitat range13,18. There is a significant shift in the
total and relative abundances of the different phytoplankton types
resulting in alterations to the community structure, measured here
as a Bray–Curtis Dissimilarity index29 (Fig. 4b, see Methods).
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Fig. 1 Current day Chl-a and its interannual variability. Composite mean Chl-a (mg Chl m−3) for 1998–2015: a model actual; b model satellite-like derived
(using an algorithm and the model RRS,); c Ocean Colour Climate Change Initiative project (OC-CCI, v2) satellite derived. Interannual variability defined
as the standard deviation of the annual mean composites (1998–2015): d model actual; e model satellite-like derived; f OC-CCI, v2 satellite derived.
White areas are regions where model resolution is too coarse to capture the smaller seas, or where there is persistent ice cover. Statistical comparison of
derived model and OC-CCI product are provided in Supplementary Figs. 1–3. Model actual Chl-a is the sum of the dynamic Chl-a for each phytoplankton
type that is explicitly resolved in the model. It is equivalent to the Chl-a that would be measured in situ. This is distinct to satellite-derived Chl-a which
is calculated via an algorithm derived from the reflected light measured by ocean colour satellite instruments
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Fig. 2 Remotely sensed reflectance. Current day composite (1998–2015) for a model RRS interpolated to 443 nm, b observed RRS at 443 nm, c model RRS
interpolated to 555 nm, and d observed RRS at 555 nm. Units are sr−1. Observed fields are from the Ocean Colour Climate Change Initiative (OC-CCI)
project. White areas are regions where model resolution is too coarse to capture the smaller seas or regions of constant ice cover. Statistics of comparison
of model and all six observed wavebands are provided in Supplementary Figs. 1, 2
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Having established the main changes to the physics, biogeo-
chemistry and ecosystem in response to the climate perturbation,
and that they are consistent with previous studies, we now
explore the associated changes in the ocean colour response.

Optics and ocean colour response. We find that the colour of the
ocean will change. Here we use the hue angle (α, see Methods) to
quantify true colour (Fig. 5a). This metric uses the RRS spectrum
together with the spectrum from the sensitivity of the human
eye30 to provide a value between 0° and 360°. Open ocean values
range between green (~100°) where there is high productivity to
blue (~230°) in the oligotrophic subtropical gyres (Fig. 5a). We
find a change in the hue angle by up to 10° in some locations and
a decrease of up to 5° in others (Fig. 5b). We note that these are
relatively small shifts, unlikely to be easily registered by eye.
Increase in the hue angle can be interpreted as a shift to bluer
water, while a decrease suggests greener water. In general, the
pattern matches that of the change in Chl-a (Fig. 4a): bluer water
where there are decreases in Chl-a and greener waters where Chl-
a increases. These results can be understood by the changes seen
in the blue RRS (shown for 475 nm, Fig. 4c), which increases in
most regions where Chl-a decreases. Chl-a absorbs strongly in the
blue, such that a larger amount of blue light is reflected when
there is lower Chl-a. The reverse occurs for most regions where
Chl-a increases: increased blue reflectance and greener colour.
There is less impact of the changes in Chl-a in the green wave-
band (Fig. 4d). This strong impact of Chl-a concentrations on the
blue reflectance, but less on the green, is used by many algorithms
that determine Chl-a concentrations from space2 (see Methods).

Reflectance (and hence ocean colour) is determined by the
total amount of absorption (atot) and backscattering (bbtot) in the
water: RRS � bbtot

atotþbbtot
. Absorption of irradiance in any waveband

(λ) is the sum of the contribution of the main constituents (water

molecules, phytoplankton, CDOM and detrital matter):

atotðλÞ ¼ awðλÞ þ aphyðλÞ þ acdomðλÞ þ adetðλÞ ð1Þ
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current day (1998–2015) mean. b Change to phytoplankton community structure as defined from Bray–Curtis dissimilarity index for community structure
averaged over 2085–2100 versus the present day community (1998–2015). 0 indicates no change, 1 indicates a completely new community. Difference in
model RRS 2085–2100 mean and the current day (1998–2015) mean for c 475 nm (blue) and d 550 nm (green). In all panels only areas with statistically
significant differences between the two periods (p < 0.05) are shown. In addition, in c and d we only show regions which were ice free for most of the year
(i.e. open ocean where RRS was calculated) in the current day. The symbols (+,o) indicate two locations highlighted in Fig. 8
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Fig. 5 Hue angle. a Mean for 1998–2015, b difference in model 2085–2100
mean and the current day (1998–2015). In b only areas with a statistically
significant differences between the two periods (p < 0.05) and which were
ice free for most of the year (i.e. open ocean where RRS was calculated) in
the current day are shown
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and backscatter:

bbtot λð Þ ¼ bbw λð Þ þ bbphy λð Þ þ bbdet λð Þ ð2Þ

In general, the lowest absorption (and hence the most amount
of light available for phytoplankton growth) occurs in the blue
and blue-green portions of the spectrum between the strong
absorption by CDOM and water31 (Fig. 6a, b).

The amount of each constituent relative to each other impacts
the ocean colour (i.e. the spectrum of light seen from satellite).
The source of CDOM and detritus are modelled to increase/
decrease with higher/lower productivity. Over the course of the
21st century, the change in the relative roles of CDOM and
detritus on absorption usually have the same sign as for Chl-a
(Fig. 7). However, there are many regions where there are
opposite responses or the relative change to each other are
inconsistent in magnitude. This is because processes other than
productivity impact the constituents differently. For example,
CDOM is bleached by sunlight32, and the combined lower
production and increased bleaching due to higher stratification
decreases the relative importance of CDOM to the absorption of
irradiance in many regions (Fig. 7b). Larger phytoplankton cells
are modelled to produce relatively more particulate matter than
smaller cells, so as the community shifts to smaller cells we find a
larger decrease in the importance of particulate detrital matter
relative to Chl-a in many locations (Fig. 7c). Chl:C ratios are also
altered by such changes in the community structure. Thus, in
different regions of the ocean various combinations of relative
changes occur depending on the local alterations to stratification,
productivity, community structure and photo-acclimation, driv-
ing differing effects on reflectance. Here we have specifically
examined RRS at 475 nm, but other different effects also occur at

other wavebands and it is the combination of responses that leads
to the overall changes in ocean colour (Fig. 5).

To understand how the trends in the biogeochemistry, ecology
and optics, as simulated for the business as usual scenario, relate
to current observing capabilities, we ask: When will these changes
be unambiguous relative to natural interannual variability?
Biogeochemical and ecosystem trends and time of emergence.
We first explore when the anthropogenic climate change signal
exceeds the natural variability in Chl-a. We calculate the linear
trend of Chl-a between 1995 and 2100 (Figs. 8a, c and 9a) using a
generalized least squares fit (see Methods). In Fig. 9, we show only
regions with statistically significant trends (p < 0.05). That the
patterns in the trends (Fig. 9a) are similar to the differences shown
in Fig. 4a, gives confidence that a linear trend analysis is appro-
priate (note that Fig. 4a shows absolute differences and Fig. 9a
shows % trend, which magnifies the changes at lower Chl-a). The
North Atlantic shows a strong negative trend (less than −0.5%/
year) and the North Pacific shows a weaker negative trend
(alterations in limiting nutrient lead to a few regions showing a
positive trend13). However, we find that many regions of the ocean
do not have a statistically significant trend over the 21st century.

The time when the signal of climate change emerges from natural
variability can be defined as the time of emergence33–35. Here we
ask when the trend will be larger than the interannual variability of
the present day (1998–2015). We define the natural variability as
twice the standard deviation (STD) of the annual means at any grid
location, such that the time of emergence (ToE) is:

ToE ¼ 2 � STD
linear trend

ð3Þ

Only a few regions will show an unambiguous climate
change signal in Chl-a before 2030 and many regions will not
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show a signal by 2100 (white areas in Fig. 9c). We can summarize
these results by asking: What is the percentage of the ocean
area showing a significant trend at different intervals over the
21st century? This analysis (Fig. 10b) suggests that <5% of
the ocean has a significant trend in Chl-a by 2030, and only
31% by 2100. The high interannual variability in Chl-a (Fig. 3a)
results in few regions having a sufficiently strong signal for
the trend to be detectable (a similar conclusion was found
in a previous study15). However, does this mean that there are
only small changes occurring in the ocean ecosystem and
biogeochemistry over the course of the 21st century in this
scenario? We consider other optically important constituents of
the water.

Our model suggests that detrital matter will show an even
slower and less obvious signal than Chl-a (Fig. 10c), but that
CDOM will have a stronger signal (Fig. 10d) with 36% of the
ocean showing a significant trend by 2100. The increased
bleaching of CDOM in the more stratified surface waters leads
to this stronger signal relative to Chl-a.

Changes in phytoplankton community composition (as
determined by Bray–Curtis Dissimilarity, Fig. 4b) have stronger
and more significant trends over the course of the century
(Fig. 10e) than any of the other metrics that we have considered
to this point. A total of 50% of the ocean shows a signal of change
by 2100, and even by 2040, 21% of the ocean has an unambiguous
signal. In this model the community structure is determined by
biogeochemical functional groups; in which differences between
the groups are set by their nutrient requirements and roles in
biogeochemical cycles (see Methods). These different functional
groups also have distinct accessory pigments that lead to different
absorption36,37 and scattering spectra36,38. Thus, the unique
combination of phytoplankton that coexist (the community) at
any point in the ocean has a strong impact on the optics of the
ocean17,19,39,40 and changes to the communities will have an
important optical signal.

Though these findings are informative about potential changes
in the oceans, these are not as useful from the perspective of the
properties that ocean colour satellites actually measure. Each of
these quantities, i.e. actual Chl-a, CDOM, detritus and commu-
nity composition, are quantities that can only be measured in situ.
A more practical question would be: What is the percentage of the
ocean area showing a significant trend in globally observable
quantities at different intervals over the 21st century?

Optics and ocean colour trends and time of emergence. We
consider how the model RRS manifests trends and time of
emergence of the unambiguous climate change signal (Figs. 8b, d,
9b, d and 10 g). We find that the reflectance trend in the blue
(475 nm) waveband (Fig. 9b) is mostly anti-correlated with the
Chl-a trends (Fig. 9a) as already seen in the difference plots
(Fig. 4). However, in some regions (e.g. central North Atlantic
gyre) other optical constituents become more important and anti-
correlation is not as clear (see e.g. Fig. 8a, b). In regions of the
largest Chl-a trends, the 475 nm (blue) waveband RRS trend is
>0.1%/year (or 1%/decade).

Globally, all wavebands of the model reflectance (Fig. 10g) have
a stronger trend than the individual optically important water
constituents (Fig. 10b–d) other than community structure
changes. However, given that the model underestimates the
natural variability especially in the high wavebands (Fig. 3b), we
focus only on our results for the lower (<600 nm) wavelength
bands.

The strongest signal is in the blue-green range (in our model
the two 25 nm wavebands centred at 475 and 500 nm). These
wavebands show a clear signal over 50% of the ocean by the end
of the century. The strongest signal of trend was found over the
wavelengths spanning from 487 to 512 nm, with 63% of the ocean
providing a significant signal by 2100. These are the wavebands
where there is the least interannual variability in the model
(Fig. 3b, Supplementary Fig. 4). This matches what is found in the
OC-CCI product where interannual variability is lowest in the
490 and 510 nm wavebands. These wavebands also lie on the edge
of the wave-space between the strong absorption by CDOM in
the bluest bands (Fig. 6) and where the impact of absorption by
water starts to become more significant in the higher wavebands.
These bands are likely to be most sensitive to changes in
community composition. The low interannual variability together
with sensitivity to changes in all water constituents suggest that
these wavebands in the real world satellite sensors (490 and 510
nm) might be the first measurements to detect climate change
signal in the marine ecosystem.

The metric of true colour, the hue angle, which is composed of
the full visible reflectance spectra does not show a particularly
strong signal of change (Fig. 10f). Where some of the reflectance
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Fig. 7 Change in contribution of optically important constituents. Change
between 2085–2100 and 1998–2015 of a aphy/atot; b acdom/atot; c adet/atot
at 475 nm. Absorption is indicated by a: atot refers to total absorption, aphy
to the phytoplankton component of absorption, acdom to the dissolved
organic matter component, and adet to the detrital particle component. Only
regions with statistically significant differences (p < 0.05) between the two
sample periods are shown. In addition, we only show regions that were ice
free for most of the year
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bands do not show a strong trend, they will dampen the signal of
the change in true colour. While surface ocean colour harbours
important information on the ocean ecological and biogeochem-
ical response to climate change our results indicate that it is
necessary to resolve blue-green bands (nominally 467–510 nm) to
obtain the most sensitive indicator. This is not due to overall
changes in Chl-a per se but rather due to combined changes in
optical constituents, and particularly phytoplankton community
structure.

Consequences for satellite-derived Chl-a. We further ask how
the shifts in relative importance of different constituents will
affect ocean colour products (specifically Chl-a) that are derived
from these reflectance measurements. A particular concern is that
the algorithm coefficients used for the contemporary ocean may
not generate accurate Chl-a estimates for an optically different
future ocean.

We explore how the model-derived Chl-a and actual model Chl-
a differ over the course of the 21st century (Fig. 8a, c). In general,
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the trends in the two have the same sign, but in over 13% of the
ocean the trend in derived Chl-a is under-estimated relative to the
trend in actual Chl-a (e.g. Fig. 8a) and in 15% it is over-estimated.
Note that only 28% of the ocean has a statistically significant trend
in the model-derived Chl-a. Thus, the changes in the relative
importance of the different constituents suggests that the algorithms
developed for satellite derived Chl-a for the present day will not
necessarily be valid over the course of the 21st century. This
reduced ability to capture trends successfully, as well as differences
in the variability in the derived product in some locations (see e.g.
Fig. 8c), also leads to the derived Chl-a having an even smaller
signal of change and fewer regions showing statistically significant
long-term trends than the model actual Chl-a (Fig. 10a).

We note that there is a continuation of algorithm
development41,42, with current products often using a blend of
algorithm types depending on the region or water optical type
(see e.g. the NASA Reprocessing 2014.0, and OC-CCI V3 release).
However, algorithms based on reflectance ratios still use current
day datasets to fit coefficients. We suggest that algorithm
coefficients will need to be continuously adjusted based on
subsets of newer in situ measurements as the optical properties of
the ocean alter. On the other hand, there are also developments in
semi-empirical inversion algorithms3,4 that also estimate the
contributions of CDOM, particle backscattering, as well as Chl-a.
As such, these techniques may be less affected by the changing
relative importance of the different water constituents.

Uniqueness and caveats of the model. The results presented in
this manuscript must be interpreted carefully, i.e. in the context of
the ocean ecosystem and optical models simplified representation
of the real world. Though relatively complex, the model still has
only a limited number of optically different plankton species and
does not include several important optical constituents (e.g.
viruses, minerals36) or the effects of salinity20 that could impact
the accuracy of the reflectance and also the ability to capture the
natural interannual variability. The parameterization of CDOM
and detrital matter is still simplistic, and we caution that the
model cannot yet be used to make definitive comments on these
changes, but can provide a unique chance to explore the potential

alterations. The patterns and magnitudes of Chl-a and RRS match
satellite products (Figs. 1 and 2, Supplementary Figs. 1, 2), and
the relative magnitude of interannual variability is also captured
(Fig. 3, Supplementary Fig. 4). However, there are discrepancies,
with the model overestimating Chl-a in high latitudes and sug-
gesting a much more limited region of variability in the Equa-
torial Pacific than observed. The interannual variability of RRS at
higher wavebands is also underestimated. These discrepencies
suggests that the model is still missing important processes and
constituents that affect variability. The model has relatively coarse
(25 nm) wavebands, which differ in size and spacing from historic
and current satellite sensors. Thus, the model can only provide
broad estimates of the wavelengths, and cannot in its current
form suggest bandwidths, that will encompass the strongest long
term change signals. However, despite these caveats, the model
provides a unique opportunity to investigate trends in ocean
colour over the 21st century, and identify which signals will have
the strongest response to anthropogenic climate change. Very few
models currently include a radiative transfer component or
simulate products such as reflectance17,43–45, and no model with
these capabilities has looked at a climate change scenario.

Discussion
We use a model that includes ocean physics, biogeochemistry
and ecosystem components, plus an explicit representation of
the water optical properties and radiative transfer to consider
the ocean colour signature of climate change. We consider a
business-as-usual (similar to IPCC RCP8.5) scenario of green-
house gas emissions over the course of the 21st Century, which
leads to substantial changes to the physics, biogeochemistry
and ecology of the ocean13,14,18. We ask: How do the colour and
optical nature of the ocean respond to climate change, and how
long will it take for an unambiguous signal of climate change to
emerge in ocean colour properties?

We find that the most widely used indicator of marine phy-
toplankton, Chl-a, does not evince rapidly detectable long-term
trends, due to large natural variability. Instead, our study suggests
that individual wavebands of colour (here the RRS) have a more
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readily detectable climate change trend, over a greater proportion
of the ocean, than the hue angle, Chl-a, CDOM or detrital matter.
For instance, RRS centred at 500 nm has a significant trend by
2100 over 63% of the ocean, compared to only 31% of the ocean
for Chl-a. Reflectance has lower natural variability than Chl-a and
other in-water properties (Fig. 3). However, RRS also integrates
the alterations of all the optically important constituents. These
two aspects lead reflectance to be a more sensitive indicator of
change than any single constituent by itself. Changes to reflec-
tance might provide the earliest alert from ocean colour satellites
of climate change impacts on the bulk marine ecosystem. How-
ever, the precision and drift in ocean colour sensors will need to
be sufficiently low to capture these signals (trends generally <1%
per decade).

Though trends in RRS will not necessarily identify specific
changes (e.g. change in CDOM versus community structure),
they will indicate that there are ecosystem-level alterations taking
place. Community structure changes impact the water optics
since phytoplankton types absorb and scatter light differently to
one another36. Though more difficult to monitor from space
(though see IOCCG report 1546), our study suggests that changes
in phytoplankton community structure will have a stronger
climate-change-driven signal over the course of the coming
century than Chl-a. Sustaining time series measurements that
include information on taxonomic or functional group biomass is
therefore highly desirable, as is the continued improvement in
our ability to detect phytoplankton diversity from space39,40,46,47.
Changes in the types of phytoplankton in any location could have
dramatic impacts on higher trophic levels if grazers and their
predators cannot switch to the new community.

We find that the optically important water constituents do not
all alter in the same manner. For instance, CDOM is increasingly
bleached with higher stratification and community shifts alter
the relative amount of detrital matter. The shifts in the relative
importance of the optical constituents alter the spectral makeup
of the water leaving irradiance and the ocean colour. Such a
change will pose a problem to any of the ocean colour products
that utilize in situ knowledge of the ocean’s current optical make
up. We show that Chl-a derived from RRS with a reflectance
ratio algorithm developed for the current day does not capture
the correct trends over the course of the 21st century. New
algorithm development need to keep the ocean’s altering optical
properties in mind. Shifts in optical properties should be taken
into account when studying trends in Chl-a and productivity in
the real ocean, even in the near term. Such studies might consider
time-varying algorithms. Techniques that separately estimate the
different water constituents4,42 may provide a better avenue for
detecting trends.

There is considerable effort expended to determine the best
spectral bands for satellite sensors40,48, and numerical models are
starting to be used to explore aspects of band selection for future
missions (e.g. PACE)43. We suggest that the choice of bandwidths
for future satellite sensors should also include estimates of the
strength of trends they will capture. Our work identifies 467–512
nm as promising from this aspect. Current and historic sensors
(e.g. SeaWiFS, MODIS, VIIRS, MERIS) have all included wave-
bands around 490 nm and we suggest that it is imperative to
maintain a similar band in future missions for the earliest sig-
natures of marine ecosystem changes. Our results also suggest
that including sufficient bands to detect different communities
(e.g. hyperspectral) and those that will help separate signals of
CDOM (e.g. ultra-violet) will be important for monitoring eco-
system changes (such bands are planned for the PACE mission).

The estimates of bulk ocean phytoplankton, such as Chl-a,
commonly used in assessing the influence of both natural varia-
bility and climate change on marine ecosystems mask more

nuanced changes to the community structure and in turn their
impact on other optically important constituents of the ocean.
Although overall ecosystem productivity may change more
slowly, relatively rapid changes to phytoplankton community
structure may have significant knock-on effects for the fecundity
and composition of the local higher trophic level community.

Our results thus suggest several focus areas important for
monitoring the response of ocean productivity to climate
change: maintaining ocean colour sensor compatibility and long
term stability, particularly in the 490 nm waveband; maintaining
long-term in situ time-series of plankton community, e.g. the
Continuous Plankton Recorder survey and repeat stations (e.g.
HOT, BATS); reducing uncertainties in satellite-derived phyto-
plankton community structure estimates.

Methods
The numerical model. We use the biogeochemical/ecosystem/optical numerical
model of ref. 17 coupled to the MIT Integrated Global System Model
(IGSM13,14,18,25,49–53), an integrated assessment model that links an Earth system
model of intermediate complexity to a human activity model. We provide a brief
description here, including the pertinent features, but refer the reader to the above
cited papers for more details, equations, parameter values and evaluation.

The marine biogeochemical component resolves the cycling of carbon,
phosphorus, nitrogen, silica, iron, and oxygen through inorganic, living, dissolved
and particulate organic phases. The ecosystem component resolves 8
phytoplankton types (diatoms, coccolithophores, pico-eukaryotes, Synechococcus,
high and low light Prochlorococcus, Trichodesmium and unicellular diazotrophs)
and two grazers. The phytoplankton types differ in the nutrients they require (e.g.
diatoms require silica), maximum growth rate, nutrient half saturation constants,
sinking rates, and palatability to grazers. The phytoplankton also differ in their
spectral absorption and scattering characteristics (see Fig. 1 in ref. 17) and
maximum Chl-a:C ratio. Chl-a:C varies as a function of the light, temperature and
nutrient environment27.

The model includes explicit radiative transfer of spectral irradiance in 25 nm
bands between 400 and 700 nm. The three stream (downward direct, Ed, downward
diffuse, Es, and upwelling, Eu) model follows previous studies54–56, though here it is
reduced to a tri-diagonal system that is solved explicitly17. The model simulates the
spectral absorption and scattering properties of water molecules, the 8
phytoplankton types, detritus and coloured dissolved organic matter (CDOM).
Irradiance just below the surface of the ocean (direct, Ed0, and diffuse, Es0,
downward) is provided by the Ocean-Atmosphere Spectral Irradiance Model
(OASIM56,57). See ref. 17 for more details.

The marine biogeochemical and biological tracers are transported and mixed by
the MIT general circulation model (MITgcm58), the three-dimensional ocean
component of the IGSM. The ocean component has a 2° × 2.5° resolution in the
horizontal, and twenty-two layers in the vertical, ranging from 10 m at the surface
to 500 m thick at depth13,14,18,52. The Earth system model in the IGSM also
includes a simplified representation of atmospheric dynamics, physics and
chemistry, along with terrestrial water, energy and ecosystem processes, and a full
carbon cycle49,52,53. The ocean physics displays a realistic year-to-year variability in
surface temperature and produces interannual variability (e.g. ENSO) with
frequency, seasonality, magnitude and patterns in general agreement with
observations52,53.

In this study, because of the high computational demand of the biogeochemical/
ecosystem/optical numerical model, we use a single climate simulation from an
ensemble of perturbed physics (climate sensitivity), perturbed initial conditions,
and varied emissions scenarios. We focus on the climate simulation with a medium
climate sensitivity (3.0 °C) under a business-as-usual scenario similar to the
Representative Concentration Pathway 8.5 (RCP8.5) used in the Coupled Model
Intercomparison Project 5 (CMIP5)24. The coupled system is spun up for 2000
years (using 1860 conditions) before simulating 1860 to 2100 changes. Observed
concentrations of greenhouse gases, ozone and aerosols, including volcanic
stratospheric aerosols, as well as solar irradiance are used to force the IGSM from
1860 to 2000, and 21st century climate simulations are driven by anthropogenic
emissions simulated by the human activity model.

Nutrient distributions were initialized from results from previous simulations,
though the results presented here were not sensitive to these initial conditions. The
ecosystem was forced with the physical fields from the Earth System Model for the
pre-industrial control and run for 50 years to allow the phytoplankton community
and the upper ocean biogeochemistry to establish a quasi-equilibrium. A repeating
seasonal cycle was quickly reached and there was only a small biogeochemical drift
associated with upwelling of deep water. The several thousand years of integration
needed to adjust the deep ocean was computationally unfeasible with the full
ecosystem model. After the 50-year spin-up, the transient run from 1860 to
2100 was performed. A second simulation was conducted with no increase in
greenhouse gas emissions. This control simulation showed that there were no
significant drifts in the ecological or optical properties discussed in this study.
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The surface spectral irradiance was provided by OASIM56,57 products, and the
monthly surface iron dust fluxes were supplied by an atmospheric transport
model59. These latter two fields were climatological means and did not change in
the simulations described here. Though the impact of changes in light and dust are
likely to be important in the future, they are beyond the scope of this paper.

Model output of remotely sensed reflectance. Importantly for this paper, the
numerical model provides spectral surface upwelling irradiance: output that is
similar to measurements made by ocean colour satellites. Only a few biogeochemical/
ecosystem models have the ability to capture this diagnostic17,43,45, and until now
such diagnostics have not been part of a climate change simulation. We follow the
procedure as discussed in ref. 19 to calculate RRS. We calculate model reflectance for
each waveband as the upwelling just below the surface (Eu) divided by the total
downward (direct and diffuse) irradiance also just below the surface (as provided by

OASIM): R λ; 0�ð Þ ¼ EuðλÞ
Ed0 λð ÞþEs0 λð Þ. We first convert model subsurface irradiance

reflectance to remotely sensed reflectance just below the surface using a bidirectional

function Q: RRS λ; 0�ð Þ ¼ R λ;0�ð Þ
Q . The bidirectional function Q has values between 3

and 5 sr60 and depends on several variables, including inherent optical properties of
the water, wavelength, and solar zenith angles60,61. Here for simplicity we assume
that Q= 3 sr (as done in refs. 19,43). Secondly, we convert to above surface remotely

sensed reflectance using the formula of Lee et al.62: RRS λ; 0þð Þ ¼ 0:53RRS λ; 0�ð Þ
1�1:7RRS λ; 0�ð Þð Þ.

Hereafter we will refer to this quantity as RRS which has units of sr−1 and is
equivalent to the RRS provided by ocean colour satellite databases.

Deriving Chl-a product from remotely sensed reflectance. The ocean colour
Chl-a product that is most frequently used is based on the blue/green reflectance
ratio (e.g. NASA OC4 algorithm for SeaWiFS and OC-CCI, version2). This product
uses the fact that phytoplankton absorb more in the blue range of the light spec-
trum than the green. The ratio of the amount of blue to green light reflected at the
ocean surface at any location therefore supplies information on the concentration
of Chl-a. In particular, a 4th order polynomial can be constructed to estimate Chl-a
from measured blue/green reflectance ratios2:

chld ¼ 10a0þa1Xþa2X
2þa3X

3þa4X
4 ð4Þ

Here X ¼ log RRSB=RRSGð Þ, where RRSB is blue reflectance and RRSG is the
reflectance in the green range. Typically, in the real world, the values of coefficients
a0 to a4 are found using datasets of coincident in situ radiometric and Chl-a
measurements. This empirical algorithm is then used globally with satellite
remotely sensed reflectance. Our recent study19 shows that this method can also be
used with model RRS output, creating a credible ocean colour like Chl-a product.
We follow their approach, finding the coefficients using the model output for the
current day, subsampled in space and time as is currently available for the real
ocean in situ measurements63. RRSB is the blue reflectance (450 nm, 475 nm, or 500
nm, whichever is largest) and RRSG is the green reflectance (550 nm).

We note that there is considerable effort to improve the derived Chl-a
algorithms in the ocean colour community41,42. Newer Chl-a products from NASA
and OC-CCI use different algorithms in different regions of the ocean (e.g. low/
high Chl-a or optically different provinces). Here, for simplicity we have focused on
the simpler blue/green ratio OC4 algorithm. However, there are other approaches
(e.g. semi-analytical inversion)3,4 that attempt to more mechanistically estimate not
only Chl-a concentration, but other constituents such as CDOM. We believe that
exploring whether this approach will allow climate change trends to be more
rapidly or robustly detected will be a promising avenue for future study.

Model evaluation. The ecosystem model has been evaluated in several recent
papers13,14,17–19. Here we additionally show how the model derived Chl-a and
remotely sensed reflectance (RRS) compares favourably to the Ocean Colour Cli-
mate Change Initiative project (OC-CCI, https://www.oceancolour.org/) products
(Figs. 1–3, Supplementary Figs. 1–4). We compare mean composites (and the
interannual variability of these composites) over 1998 to 2015. Composites are
derived from all monthly means where there are satellite measurements. Thus for
instance, high latitudes only have input for months where there is sufficient light
and some equatorial regions miss months when there are too many clouds. Model
composites are derived with the same missing months to match the observations.
The model internal interannual variability does not match the real world (i.e. El
Ninos do not occur in the same years), thus we compare interannual variability in
terms of a temporal standard deviation of annual composites from 1998 to 2015
(Fig. 1, Supplementary Fig. 3). To evaluate the skill of the model, we compare to
satellite observations, which constitute only an estimate of true Chl-a, and RRS with
potential uncertainties due to atmospheric corrections1. It must also be noted that
the potential presence of discontinuities due to merging measurements from dif-
ferent sensors in the satellite record may also bias comparison with the model64.
Indeed, the model does not contain such discontinuities and measures of agree-
ment between the model and observations, such as correlation and relative bias
(Supplementary Figs. 1–4), may underestimate how the model captures central
tendency and interannual variability in the observations.

We show model actual and model satellite-like-derived Chl-a relative to the OC-
CCI-derived Chl-a product (Fig. 1). The model-derived Chl-a (Fig. 1b) closely
captures the actual Chl-a (Fig. 1a), though slightly overestimates the equatorial Chl-
a. Comparing the model derived Chl-a to the OC-CCI product (Fig. 1,
Supplementary Fig. 2), we find that the model captures the patterns of high and low
Chl-a values between upwelling high latitude, equatorial and nutrient limited
subtropical zones. The model has Chl-a too high relative to the OC-CCI product in
high latitudes (sometimes by a factor of 2 or more), and there are some patches
of the subtropical gyres that are too low. Regions of the equatorial Atlantic and
Indian oceans are too high in the model. The region of high Chl-a in the equatorial
Pacific is narrower in the model than the observations. Some additional regions of
high productivity are not captured in the model, especially along coastlines where
the model resolution is too coarse to capture the important coastal physics. The
model also does not capture the polar regions well, either in the physics or sea-ice
extent and we do not adequately parameterize sea-ice and sea-ice edge
phytoplankton communities. The model also captures the patterns of interannual
variability (Fig. 1e, f, Supplementary Fig. 3), but does overestimate it in regions
where it also overestimates the 18 year mean composite. Particularly noticeable is
that the high variability in the equatorial Pacific is shifted relative to the
observations, suggesting the physical manifestation of the El Nino/La Nina response
is slightly misplaced in the Earth System Model (unsurprisingly given the too
narrow upwelling band as seen in the Chl-a composite). The model also does a good
job at capturing the patterns of the ratio of the interannual variability to the 18-year
composite (Supplementary Fig. 4), though overestimates in the Equatorial Pacific
(where there is a mismatch in the physical manifestation of El Nino/La Nina), but
otherwise has a low bias elsewhere. This latter is expected as we do not capture all
the sources of variability (e.g. mesoscale features) found in the real ocean.

We further evaluate the model RRS (Fig. 2, Supplementary Figs. 1–4) in a similar
manner to Chl-a. The model RRS are linearly interpolated from the 25 nm bands to
the same bands as the OC-CCI product. The model captures the reversed patterns
between blue (412,443 nm) and green (555 nm) RRS between gyres and highly
productive regions. Several of the model biases reflect the biases seen in the Chl-a:
underestimation of the blue band in the subtropics where modelled Chl-a is too low
relative to the real ocean and higher green RRS in the equatorial Atlantic and
Indian Ocean than the satellite measurements where the model overestimates Chl-a
relative to the satellite product (Fig. 1, Supplementary Fig. 2). Additionally, the
wavebands all show discrepancies in the Equatorial Pacific where the modelled
Chl-a is too narrowly confined to the equator. The effect of salinity on RRS is
not captured in the model, likely leading to additional discrepancies especially in
the low latitudes where effects of salinity become more important20. Some
equatorial regions (especially the Atlantic) also have high cloud cover and, in
such regions, the satellite product may be biased. Correlations between model and
OC-CCI (Supplementary Fig. 1) are best for the low and high wavebands, and
worst for the blue-green (490 and 510). These latter are the wavebands where the
reversal of the patterns of high/low RRS occur (see Supplementary Fig. 2) and
are thus most difficult to capture correctly. For the same reason, these are the
wavebands where the linear interpolation from the model bands to those of the
OC-CCI products are most problematic. In general, the model has a low bias
(Supplementary Fig. 3) for the interannual variability in RRS, with the most
noticeable exception in the equatorial Pacific where the Chl-a mismatch bias
occurs. The model also captures the patterns of the ratio of the interannual
variability to the 18-year mean composite (Supplementary Fig. 4). The major
exception, again, is the equatorial Pacific where we have already noted the
mismatch in placement of the interannual variability in Chl-a. The model is biased
low in most other regions. However, the model does capture the lower ratio of
interannual variability relative to the mean in the 490 and 510 nm than the other
bands (Fig. 3, Supplementary Fig. 4).

True colour classification. We use the RRS to classify the true colour (the colour of
light from the ocean which our eyes might capture) of the model ocean. Colour can
be represented in terms of the three primary colours: blue, green and red. The
sensitivity of the human eye to these primaries can be given by the colour matching
functions30. We use these functions to convert the light spectrum from the ocean
into three chromatic coordinates. The hue angle is a metric that compresses the
spectrum in these three chromatic coordinates into a single value. Following van
der Woerd and Wernard65 we represent the three tristimulus values (X,Y,Z) in
terms of the RRS spectrum:

X ¼ I
X700

i¼400
RRS λð Þ�x λð ÞΔλ ð5Þ

Y ¼ I
X700

i¼400
RRS λð Þ�y λð ÞΔλ ð6Þ

Z ¼ I
X700

i¼400
RRS λð Þ�z λð ÞΔλ ð7Þ

where illumination I is taken as unity and �x λð Þ, �y λð Þ, �z λð Þ are the colour
matching functions, and λ is the wavelength at the middle of the waveband Δλ. We
then express two coordinates (x,y) as: x ¼ X

XþYþZ, y ¼ Y
XþYþZ.
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The hue angle is defined relative to white xw ¼ yw ¼ 1=3ð Þ as:
α ¼ arctan y � yw; x � xwð Þmodulus 2π ð8Þ

For the figures and discussion here we convert from radians to degrees. Typical
ocean values of α go from about 40° for turbid brown waters in estuaries to over
220° in oligotrophic gyres65.

Changes in phytoplankton community structure. As a metric of changes in
community structure we use the Bray–Curtis Dissimilarity index29. Here we define
the index Ctit0

at time i (ti) as:

Ctit0
¼ 1� 2

Pj¼n
j¼1 minðBjt0

;Bjti
Þ

Pj¼n
j¼1 Bjt0

þPj¼n
j¼1 Bjti

ð9Þ

Where Bj is the biomass of phytoplankton functional type j, t0 is the mean from
1998 to 2018. The time period for ti is chosen based on the question to be
addressed. For Fig. 4b, ti is a 15-year mean 2085–2100. To calculate trends, ToE,
and provide output for Fig. 10e, we used annual average biomass for each year to
construct yearly indices from 1995 to 2100. If there is no change in the community
structure, the index will be 0. If there is a completely new community structure (i.e.
no biomass of any of the original types), the index is 1. This index is calculated for
each grid cell in the model.

Trend analysis. Given the strong autocorrelation of the residuals from an ordinary
least squares fit, we instead used a generalized least squares fit66,67 to find the
trends in the different components. We used the R68 function gls using annual
means of the different fields from 1995 to 2100.

Code availability. The MITgcm model code is available through [https://mitgcm.
org], code modifications specific to this simulations are available on Harvard
dataverse: [https://doi.org/10.7910/DVN/UE8OS1].

Data availability
The model output used for this study are available through Harvard dataverse:
[https://doi.org/10.7910/DVN/08OJUV].
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