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Abstract
Objective—Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by
autoantibody production and altered type I interferon expression. Genetic surveys and genome-
wide association studies have identified more than 30 SLE susceptibility genes. One of these
genes, TNIP1, encodes the ABIN1 protein. ABIN1 functions in the immune system by restricting
the NF-κB signaling. In order to better understand the genetic factors that influence association
with SLE in genes that regulate the NF-κB pathway, we analyzed a dense set of genetic markers
spanning TNIP1 and TAX1BP1, as well as the TNIP1 homolog, TNIP2, in case-control sets of
diverse ethnic origins.

Methods—We fine-mapped TNIP1, TNIP2, and TAX1BP1 in a total of 8372 SLE cases and
7492 healthy controls from European-ancestry, African-American, Hispanic, East Asian, and
African-American Gullah populations. Levels of TNIP1 mRNA and ABIN1 protein were analyzed
using quantitative RT-PCR and Western blotting, respectively, in EBV-transformed human B cell
lines.

Results—We found significant associations between genetic variants within TNIP1 and SLE but
not in TNIP2 or TAX1BP1. After resequencing and imputation, we identified two independent
risk haplotypes within TNIP1 in individuals of European-ancestry that were also present in
African-American and Hispanic populations. These risk haplotypes produced lower levels of
TNIP1 mRNA and ABIN1 protein suggesting they harbor hypomorphic functional variants that
influence susceptibility to SLE by restricting ABIN1 expression.

Conclusion—Our results confirmed the association signals between SLE and TNIP1 variants in
multiple populations and provide new insight into the mechanism by which TNIP1 variants may
contribute to SLE pathogenesis.

Introduction
The Nuclear factor kappa B (NF-κB) family of transcription factors are key mediators of
innate and adaptive immune responses. A diverse array of surface receptors including
Tumor Necrosis Factor-alpha (TNFα) and Toll-like receptors (TLRs) converge on NF-κB
(1, 2), therefore, precise control of NF-κB is required to effectively interpret and transmit
these signals in order to produce an effective defense against invading pathogens and
viruses. The ubiquitin editing enzyme, A20, encoded by tumor necrosis factor-alpha
inducible protein 3 (TNFAIP3, OMIM 191163), is a critical negative regulator of NF-κB (3,
4). Termination of NF-κB signaling by A20 leverages adapter proteins such as Tax1 (human
T-cell leukemia virus type I) binding protein 1 (TAX1BP1, OMIM 605326) and the A20
binding inhibitor of NF-κB1 (ABIN1), which facilitate the interaction of A20 with target
molecules (5, 6). Breakdown of this system leads to unrestrained NF-κB transactivation that
can result in autoimmune diseases, sepsis, and/or malignancy (7–10).

Systemic lupus erythematosus (SLE, OMIM 152700) is an autoimmune disease that
demonstrates a robust but complex genetic architecture. Candidate gene and genome-wide
association studies have identified over 30 genetic loci convincingly associated with SLE
(11–13). Among these are TNFAIP3 and TNFAIP3 interacting protein 1 (TNIP1, OMIM
607714), which encodes ABIN1, emphasizing the importance of these genes in restricting
autoimmunity. Variants in the vicinity of TNFAIP3 are associated with multiple
autoimmune diseases in multiple ethnic populations (14–16). Moreover, multiple
independent genetic effects associated with SLE appear to be operating in the region (17–
19). Our group recently identified a functional polymorphism in a regulatory element ~25 kb
telomeric of the TNFAIP3 coding region that can explain the association signal of one of
these independent effects (20).
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Variants in the region of TNIP1 are also associated with multiple autoimmune diseases,
including psoriasis (21) (OMIM 177900), psoriatic arthritis (22) (OMIM 607507), systemic
sclerosis (23) (OMIM 181750), and SLE (24, 25). However, in contrast to TNFAIP3, less is
known about the genetic architecture of TNIP1. For instance, association with TNIP1 has
only been evaluated in SLE cases of European and Asian ancestry (24, 25), thus it is not
known if TNIP1 is a risk locus in African American and Hispanic populations. Furthermore,
TNIP1 has not been thoroughly fine-mapped to determine the number of risk effects present
in the region, nor have any functional mechanisms have been attributed to TNIP1 associated
risk haplotypes.

In order to gain a more comprehensive understanding of the TNIP1 locus in SLE we
performed a genetic fine-mapping study in five ethnically diverse SLE case-control
collections. We also included single-nucleotide polymorphisms (SNPs) in TAX1BP1, an
adapter molecule for A20 (5) located adjacent to the previously described SLE susceptibility
gene JAZF zinc finger 1 (JAZF1, OMIM606246) and in the TNIP1 homolog, TNFAIP3
interacting protein 2 (TNIP2, OMIM 610669). Our results demonstrate a complex genetic
architecture within the TNIP1 locus that is shared, in part, across multiple ethnic
populations. We identify two independent functional risk haplotypes that result in decreased
expression of TNIP1 mRNA and ABIN1 protein, providing insight into the mechanism by
which variants in TNIP1 may contribute to SLE pathogenesis.

Patients and Methods
Subjects

The following groups of independent cases and controls were included in the study
(Supplementary Table 1): European-ancestry (EA, 4,248 cases and 3,818 controls), African-
American (AA, 1,569 cases and 1,893 controls), Hispanic enriched for the Amerindian-
European admixture (HS, 1,622 cases and 887 controls), East Asian (AS, 1,328 cases and
1,348 controls), and African-American Gullah (AAG, 155 cases and 131 controls)
populations. The majority of AS samples were from Korea (906 cases and 1012 controls)
but also included Chinese, Japanese, Taiwanese and Singaporeans. The AAG population is a
group of African Americans originating from Sierra Leone with low genetic admixture who
live in the Sea Islands of the Carolinas. All cases met the 1997 ACR revised criteria for the
classification of SLE (26). Samples were supplied from multiple institutions with the
approval from their respective Institutional Review Boards (IRBs); consent forms were
obtained at each place under IRB guidelines. Samples were then assembled at the Oklahoma
Medical Research Foundation (OMRF) under the approval of the OMRF IRB. Only
individuals who signed informed consent forms were included in the study.

Genotyping and Quality Control
Genotyping was performed on the Illumina iSelect platform at OMRF for 88, 22, and 52
SNPs within and flanking TNIP1 on chromosome 5q33, TAX1BP1 on chromosome 7p15,
and TNIP2 on chromosome 4p16, respectively, as well as 347 genome-wide ancestry-
informative markers (AIMs) (27, 28) (Supplementary Table 2). For inclusion we required
SNPs to have well-defined cluster scatter plots, a call rate >90%, a minor allele frequency
>0.001 and Hardy-Weinberg proportion test P-value in controls >0.001. For the AIMs, we
excluded AIMs with low call rates (<90%), low minor allele frequencies (<0.001), and that
are in LD with each other (r2>0.2). The Hardy-Weinberg proportion test was not performed
here to avoid AIMs being removed due to monomophic states in one of the populations. A
total of 1,135 samples were excluded because they were sample heterozygosity outliers (>5
standard deviations from the mean), extreme population outliers (based on global ancestry
estimation and principal component analysis), sample duplicates (the proportion of alleles
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shared identity by descent >0.4), had a low call rate (<90%), or gender discrepancies
between reported gender and genetic data (Supplementary Table 3). Using 262 AIMs,
principal components analysis (29), calculated using R (Supplementary Figure 1), and global
ancestry, estimated using ADMIXMAP (30, 31), were used to identify population outliers
(>4 standard deviation from the mean of principal components 1 and 2 with ancestral allele
frequencies from African, European, American Indian, and East Asian populations) and
estimate percent ancestry for inclusion in association analysis as an adjustment for
population substructure. After applying sample and SNP quality control measures, the final
dataset was comprised of the samples and SNPs shown in Table 1 and Supplementary Table
4, respectively.

Association Analyses
Single-marker associations were assessed using the logistic regression function in PLINK
v1.07 (32) and R version 2.12.0, assuming an additive model and adjusting for gender and
either global ancestry (African, European, and East Asian) or the first three principal
components, with no observable difference. We set a stringent Bonferroni corrected P-value
threshold of P < 3.21 × 10−4 based on multiple tests of 156 genotyped SNPs (0.05/156). The
association results were plotted using LocusZoom (33).

Resequencing, Variant Detection and Quality Control
Three to five micrograms of genomic DNA from a set of 296 European, 41 African
American and 40 Hispanic individuals enriched for known SLE risk haplotypes were
sheared and prepared for sequencing using the Illumina Paired-End Genomic DNA Sample
Prep Kit (Illumina Inc., San Diego, CA). The region of interest enrichment was performed
using a SureSelect Target Enrichment System with a custom designed bait pool.
Resequencing and generation of fastq sequencing reads were performed on the Illumina
GAIIx platform and Illumina Pipeline software v.1.7 using standard procedures.

We removed duplicate reads using a custom script followed by alignment to the human
reference genome build hg19 using BWA alignment software version 0.5.9 (34).
Realignment of reads around insertion/deletion sites and problematic areas, base quality
score recalibration, and variation detection were performed using the Genome Analysis Tool
Kit (GATK) software suite version 1.0 (35, 36). We excluded variants with a quality score <
30, a quality by depth score < 5, inclusion within a homopolymer run of 5 or more bases, or
a strand bias score of > −0.1, as well as variants clustered within 10 base pairs. All samples
were sequenced to minimum average fold coverage of 25X. We compared sequence-based
variant calls with SNPs previously genotyped on the Illumina iSelect platform and found >
99% concordance between platforms. The program BEAGLE version 3.3 (37) was used to
determine variant phase. PLINK version 1.07 and IMPUTE2 (38) format files were
generated using the vcftools software suite version 0.1.3 (39).

Imputation and Haplotype Analyses
Imputation was performed over a 500 kb interval flanking the TNIP1 region for each
population using the IMPUTE2 program with data from iSelect genotyping as the source of
observed genotypes and the haplotypes from the 1000 Genomes Project Phase I interim
release (June 2011) for 1,094 individuals from Africa, Asia, Europe, and the Americas (40)
(Supplementary Table 5) and our in-house sequencing as reference. IMPUTE2 estimates
posterior probabilities for the three possible genotypes of imputed SNPs (i.e. AA, AB, and
BB). Association analyses of imputed SNPs were calculated using a missing data likelihood
score test implemented in SNPTEST version 2.3.0 by taking into account the genotype
uncertainty of imputed SNPs and adjusting for gender and global ancestry estimates (41).
Conditional association analyses were also performed in SNPTEST adjusting for gender,
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global ancestry estimates, and SNP(s) of interest within the risk haplotypes. For haplotype
analyses, the posterior probabilities were converted to the most likely genotypes with a
threshold of 0.8. Imputed SNPs with the information measure less than 0.5, the average
maximum posterior genotype call probability less than 0.9 or failed quality control measures
were removed. Linkage disequilibrium (LD) between variants (confirmed by the r2 values)
and haplotypes were estimated followed by haplotypic association using Haploview version
4.2 (42). The number of variants imputed from the 1000 Genomes Project and our
sequencing data that passed quality control measures can be found in Supplementary Table
4.

Cell Culture
EBV-transformed B cell lines of EA individuals were obtained from the Lupus Family
Registry and Repository (LFRR) (43) at OMRF with an IRB approval and were selected
based on the genotypes of rs7719549 (a proxy of the H1 haplotype) and rs33934794 (a
proxy of the H2 haplotype). Cell lines are either homozygous (carry two copies) of non-risk
haplotype or homozygous (carry two copies) of each risk haplotype. Culturing of cell lines
was performed in RPMI 1640 supplemented with 10% fetal bovine serum, penicillin,
streptomycin, L-glutamine, and 55μM beta-mercaptoethanol. We harvested equal numbers
of cells under basal conditions in log-phase growth.

RNA Isolation and Quantitative RT-PCR
The isolation of total RNA was performed using the Trizol total RNA isolation reagent
(Invitrogen Inc., Carlsbad, CA). The concentrations of total RNA were measured using
nanodrop, and were diluted with 20ng/μL of MS2-RNA (Hoffmann-La Roche, Inc., Nutley
NJ) to a final concentration of 0.5μg/μL. Total RNA was treated with DNase and cDNA
was synthesized using the iScript cDNA Synthesis Kits (Bio-Rad Laboratories, Inc.,
Hercules, CA). Quantitative PCR was done using the SYBR Green method to determine the
mRNA expression of TNIP1. The following pair of primers were designed and synthesized:
sense, 5′-AAATCCAAATCAGAGCTCCCAA-3′; anti-sense, 5′-
CAAATGACACAATCTGGTCTCACT-3′. The PCR product corresponds to
2407bp-2519bp of TNIP1 mRNA. We used the human hydroxymethylbilane synthase
(HMBS) gene in quantitative RT-PCR as a reference. The RT2 qPCR Primer Assay-SYBR
Green Human HMBS Kit was obtained from SABiosciences Inc., Frederick, MD. The
mRNA expression of TNIP1 was normalized to HMBS. Statistical analyses were performed
using an unpaired t-test on Prism 5.0 software.

Analysis of Protein Expression
We harvested and lysed EBV-transformed B cells in Whole Cell Extraction Buffer (25mM
Tris, 1% Triton X-100, 150mM NaCl, 1mM EDTA and protease inhibitors). Protein
concentrations in each cell line were measured using Quick Start Bradford Protein Assay
Kits and were adjusted to a final protein concentration of 2mg/mL. Anti-ABIN1 antibodies
(kindly provided by Drs. Sambit Nanda and Philip Cohen, MRC Protein Phosphorylation
Unit, University of Dundee, Dundee, DD1 5EH, Scotland, UK) were used to detect ABIN1
protein expression in EBV cell lines. The generation and characterization of this antibody is
described in Nanda et al (44). Anti-GAPDH (glyceraldehyde-3-phosphate dehydrogenase)
antibodies were procured from Cell Signaling Technology, Inc. and were used to detect
protein expression of GAPDH. ECL Plus Western blotting detection kit was purchased from
GE Heathcare, Inc. and was used to visualize horseradish-peroxidase conjugated antibodies.
Band intensities were analyzed using Image J (NIH) software. Protein expression of ABIN1
was normalized to GAPDH. The expression differences were tested using an unpaired t-test
on Prism 5.0 software.
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Results
To test for genetic association, we performed single-marker logistic regression analysis
adjusting for gender and global ancestry estimated using AIMs (Patients and Methods). We
found no convincing association exceeding a Bonferroni corrected threshold of P < 3.21 ×
10−4 in TAX1BP1 or TNIP2 for any of the populations (Supplementary Figures 2 and 3),
however, rs232722, located downstream of TNIP2, demonstrated suggestive association in
the AS cohort (P = 8.91 × 10−4, OR = 0.83, 95% CI = 0.74 – 0.92) (Supplementary Figure
3D). In contrast, significant association was observed for SNPs in TNIP1 in the EA
(rs6889239; P = 2.24 × 10−11), AA (rs13168551; P = 5.86 × 10−5) and HS (rs7708392; P =
2.02 × 10−6) populations (Figures 1A–C). In the AS population we observed association
slightly below the Bonferroni corrected threshold (rs4958435; P = 5.49 × 10−4, Figure 1D)
while no significant association was observed in the AAG (Supplementary Figure 4). The
AS population consisted of 71% Koreans and, when analyzed independently, resulted no
marked differences in association from the Korean dataset; hence, subsequent analyses were
performed on the full AS dataset. The presence of multiple associated SNPs with variable
pairwise LD in the EA, AA and HS populations suggested that multiple independent SLE
associated haplotypes are present in the region (Figure 1).

Before proceeding to evaluate TNIP1 using haplotype and conditional analyses, we sought
to enrich our genotype dataset by imputing untyped variants in linkage disequilibrium (LD)
with SLE associated SNPs. To do this, we imputed variants from the 1000 Genomes Project
(1TGP) using reference panels from individuals of European, African, Asian and
Amerindian ancestry (Supplementary Table 4). This procedure increased the number of
variants in all populations and added to the dataset 19 to 30 additional variants in LD with
directly genotyped SLE associated SNPs (Supplementary Table 4). As a further enrichment
step for causal variants we imputed variants from an independent resequencing study of EA
SLE cases (N=159) and controls (N=137), AA cases (N=21) and controls (N=20), and HS
cases (N=38) performed in our laboratory. This procedure added 13 to 30 novel variants not
present in the 1TGP reference panels, five of which were in moderate to high LD (two
variants with r2 = 0.71 and three variants with r2 = 0.99) with SLE associated genotyped
SNPs (Supplementary Table 4). In total, imputation of variants from the 1TGP and our own
resequencing introduced 24 to 35 (depending on the population) SLE associated variants
into consideration. Association analyses using these enriched datasets demonstrated
enhanced granularity of the association signals, although the most significant signals in the
EA, AA, and HS populations remained constant (Figure 1). In the case of the AS, however,
the peak association signals shifted approximately 6 kb centromeric from rs4958435 to
rs2112635 (P = 2.00 × 10−4, OR = 0.74, 95% CI = 0.63 – 0.88) (Figure 1D).

To investigate the presence of multiple SLE associated haplotypes in TNIP1, we constructed
haplotypes using SNPs that surpassed the Bonferroni corrected threshold of P < 3.21 × 10−4

(Table 2). In the EA population we observed two risk haplotypes, H1 and H2, spanning 29
kb of the TNIP1 region (Figure 2). Of the 42 SNPs carried on H1 and the 19 SNPs carried
on H2, 11 were found on both risk haplotypes and produced the most significant association
signals (Figure 2). To determine if these haplotypes defined independent association signals,
we performed conditional analyses. Conditioning on variants unique to H1 did not
significantly change the magnitude of association for SNPs unique to H2, but did reduce the
magnitude of the association for the SNPs shared by both risk haplotypes by about one half
(Supplementary Figure 5A). Likewise, adjusting for the H2 haplotype failed to reduce the
magnitude of association at variants unique to H1, while again reducing the magnitude of
association for the shared SNPs (Supplementary Figure 5B). Adjusting for both H1 and H2
effectively eliminated the association signals in the region (Supplementary Figure 5C), thus
confirming the presence of two independent risk haplotypes.
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We then looked for these haplotypes in the other populations. H1 was present in the AA and
HS populations but we did not observe it in the AS population at a haplotype frequency
above 3% (Table 3, Supplementary Figure 6, Supplementary Table 6). The frequency of H1
differed across populations and was more prevalent in the AA than any other population. H2
was observed in the AA, HS, and AS populations (Table 3, Supplementary Figure 6,
Supplementary Table 6). The AS population had the highest prevalence of the H2 haplotype
but it was evenly distributed between cases and controls and not associated with SLE. The
odds ratios for both haplotypes in the AA and HS populations ranged from 1.31 to 1.45
indicating that they also conferred risk for SLE. Conditional analyses in these populations
confirmed that they were independent (Supplementary Figures 7 and 8).

To evaluate the effects of the TNIP1 risk haplotypes on mRNA expression, quantitative RT-
PCR was performed in an independent set of EA derived EBV-transformed B cell lines
homozygous for H1 (N=7), H2 (N=7), and the non-risk haplotype (N=8). Compared with
cells from the non-risk haplotype, cells homozygous for H1 (P = 0.044) or H2 (P = 0.0035)
exhibited decreased mRNA expression of TNIP1 (Figure 3A).

Western blotting was also performed in the same independent set of EBV-transformed B
cells to evaluate the effects of the risk haplotypes on protein expression of ABIN1.
Compared with cells from the non-risk haplotype and concordant with mRNA
measurements, decreased ABIN1 expression was observed in cells homozygous for H1 (P =
0.0463) or H2 (P = 0.0002) (Figure 3B and Supplementary Figure 9). Together, these data
suggest that both haplotypes harbor hypomorphic risk variants that influence autoimmune
susceptibility by reducing expression of ABIN1.

Discussion
In this study, we genetically dissected the TNIP1 locus in a multi-ethnic SLE case-control
sample collection. Using haplotype and conditional analyses and a comprehensive variant
dataset derived from direct genotyping and imputation of variants from the public domain
and targeted deep resequencing, we identified two independent risk haplotypes (H1 and H2)
in the EA, AA, and HS populations. These risk haplotypes likely carry hypomorphic
functional alleles since cell lines derived from EA individuals with these haplotypes
demonstrated reduced expression of TNIP1 mRNA and ABIN1 protein.

In addition to our study, a study of systemic sclerosis also demonstrated decreased
expression of TNIP1 mRNA and ABIN1 protein in both lesional skin tissue and cultured
dermal fibroblasts (23). They identified rs2233287, rs4958881, and rs3792783 (all within
the H1 haplotype) as associated with disease (23). While the samples were not stratified by
genotype, decreased expression in diseased tissue and association with what appears to be
one of the risk haplotypes we have identified in SLE suggests the possibility of a shared
mechanism in the etiologies of systemic sclerosis and SLE.

TNIP1 encodes the adapter protein ABIN1, which recruits A20 to polyubiquitinated NEMO
(IKKγ) and subsequently facilitates NEMO deubiquitination and restriction of NF-κB
signaling (45) making it a compelling candidate for SLE susceptibility. The importance of
ABIN1 in restricting NF-κB signaling has been shown in mice deficient for ABIN1, which
succumb to hepatocyte apoptosis, anemia and bone marrow hypoplasia in utero (46).
Moreover, mice expressing a mutated ABIN1 that is defective in polyubiquitin-binding
develop lupus-like autoimmunity (44). Embryonic fibroblasts from ABIN1-deficient mice or
mice expressing polyubiquitin-binding defective ABIN1 also demonstrated hypersensitivity
to TNF-induced apoptosis (44, 46). The ABIN1 interaction with polyubiquitin chains,
including linear and K63 polyubuquitin chains, suppressed the activation of TLR-MyD88
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signaling that is important to prevent autoimmune disease (44). The loss of ABIN1 has also
been shown to increase the expression of TLR-induced CCAAT/enhancer binding protein β
(C/EBPβ) resulting in the development of a lupus-like inflammatory disease (47). The H1
haplotype also carries the minor allele of a coding missense variant rs2233290, which results
in a proline to alanine substitution at position 151 in ABIN1. The P151A polymorphism is
predicted to be damaging according to PolyPhen-2 version 2.1.0 (48) and represents a
putative causal variant for future functional studies.

The H1 and H2 haplotypes include SNPs near the TNIP1 promoter and it is therefore likely
that causal variants located within regulatory elements affect TNIP1 gene expression. A
recent study has functionally validated five NF-κB binding sites in the TNIP1 promoter that
potentially influence TNIP1 expression (49). However, none of these NF-κB binding sites
are modified by SNPs carried on the SLE associated haplotypes.

We did not identify any significant association between SLE and variants in the other genes
investigated: TNIP2 and TAX1BP1. We did however observe modest association in the
TNIP2 region for the AS population, warranting further study in larger AS SLE sample
collections. Note, that our TAX1BP1 fine-mapping SNP panel was near, but did not overlap
sufficiently with the JAZF1 locus, known to be associated with SLE in individuals of
European-ancestry (24). Thus, we cannot provide independent replication of the JAZF1
association. However, our results are likely sufficient to rule out an effect from TAX1BP1
being responsible for, or contributing to, the association in JAZF1.

In summary, our results clarify the association signals in the TNIP1 locus in human SLE
across multiple ethnic populations and suggest that reduced expression of ABIN1
contributes to SLE pathogenesis. Our data also inform ongoing efforts to identify TNIP1
causal variants in other autoimmune diseases by clarifying the genetic architecture of the
locus across multiple world populations. In addition, this trans-ethnic mapping study design
has been successful in narrowing other SLE associated regions including the ITGAM and
TNFAIP3 loci (20, 50). Given the importance of ABIN1 in restricting NF-κB signaling, a
mechanistic understanding of how deleterious genetic variation in the TNIP1 locus
influences susceptibility to autoimmune disease is needed. These results will serve to focus
functional hypotheses that can be tested in the laboratory.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
SNPs in and around the TNIP1 region associated with SLE in (A) European-ancestry (B)
African-American, (C) Hispanic, and (D) East Asian populations. Genotyped SNPs are
represented by triangles and imputed SNPs are shown in circles. The red solid line refers to
the Bonferroni threshold of significance. The color of each triangle or circles represents the
level of linkage disequilibrium (LD) between each SNP and the most significant SNP.
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Figure 2.
TNIP1 haplotypes and linkage disequilibrium (LD) for SLE-associated variants that
surpassed the Bonferroni correction threshold of P < 3.21 × 10−4 in European-ancestry
population. Haplotypes are shown at a frequency > 3%. The group of variants unique to H1,
H2, or shared by H1 and H2 haplotypes, are colored in blue, red, and green, respectively. In
the haplotype block, white boxes represent the major alleles and colored boxes represent the
minor alleles (colored according to their group). Pairwise LD relationships (r2) are shown
below the haplotype block with different color intensities according to degree of correlation
between two variants.
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Figure 3.
Effect of the risk haplotypes on (A) TNIP1 mRNA and (B) ABIN1 protein expression. On
the X-axis, the three different haplotypes are displayed corresponding to the non-risk, H1,
and H2 haplotypes. On the Y-axis is the level of normalized expression for each assay. Each
data point represents the expression level of TNIP1 mRNA or ABIN1 protein for one
individual. Significant differences from the mean expression of the non-risk haplotype were
determined using an unpaired t-test.
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