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ABSTRACT OF THE DISSERTATION

Information Chains and Content Management

by

Boyoun Choi

Doctor of Philosophy in Management

University of California, Los Angeles, 2015

Professor Uday S. Karmarkar, Chair

The dissertation consists of three chapters that study topics in information chains.

Information chains acquire, process and distribute content (information or data) in

a way analogous to physical goods in supply chains. However information chains

are different in that demand does not deplete inventories. Rather, information can

lose value over time, become erroneous, or false, so that it needs to be purged.

Furthermore, it is often not possible to plan or control the production of content,

and the arrival of data elements or content can be stochastic. In effect flow in

the chain is driven by content arrival, rather than inventory depletion. In the first

chapter, we describe the flow of information in the content processing and storage

portion of the chain using different models, and formulate decision problems related

to capacity planning. The objectives include the size of the content data base (as a

proxy for value) and the time required for content to be available to users.

In the second chapter, we consider a dynamic capacity planning problem for

information content management in supply chains, where information is processed
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to be entered into a data base, which is then available to customers and users.

Information processing is done by workers, and the capacity decision requires the

determination of the number of workers required to process a time varying work

load. The average time taken for processing is an important performance parameter,

and this drives capacity decisions. In the short term planning problem it is possible

to vary capacity by using overtime and part-time work. The problem is formulated

as a multi-period, nonlinear, mixed integer program. Clearing functions are used to

capture processing delays. Small problems can be solved optimally, but large cases

can be challenging. We develop Lagrangean relaxation methods to decompose the

problem and generate lower bounds, and propose heuristics for solving the problem

efficiently.

The third chapter models and studies a decision problem faced by supplier of

information content. With customers that are sensitive to both price and release

time of content, we study profit maximization problem for a monopolist provider.

Then we look at the case of supplier with two downstream distribution channels

where the channels have to compete on setting their price and release time for the

identical content to attract more customers. When supplier fixes the release time

for the content and charges fixed prices to both channels, we find that there is an

equilibrium pair of prices for the channels to charge the customers.

iii



The dissertation of Boyoun Choi is approved.

Felipe Caro

Charles Corbett

Ichiro Obara

Uday S. Karmarkar, Committee Chair

University of California, Los Angeles

2015

iv



To my family

v



Contents

List of Figures viii

List of Tables ix

1 Content Management and
Capacity Decisions in
Information Chains 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Flow Models and System Behavior . . . . . . . . . . . . . . . . . . . 7

1.3.1 A Deterministic Flow Model (I) . . . . . . . . . . . . . . . . . 8
1.3.2 Single-Server Process with Obsolescence in the Database Only

(Model II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Multi-Server Process with Obsolescence in the Database Only

(Model IV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Single-Server Process with Obsolescence in the Entire System

(Model III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.5 Multi-Server Processing with Obsolescence in the Entire Sys-

tem (Model V) . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Decision Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Optimal Processing Rate . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Optimal Processing Capacity . . . . . . . . . . . . . . . . . . 18

1.5 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . 22

2 Dynamic Capacity Planning for Content Management in Informa-
tion Chains 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



2.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Problem Decomposition and Lower Bounds . . . . . . . . . . . . . . . 36
2.5 Heuristics and Upper Bounds . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Myopic Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.2 Conservative Heuristic . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3 Sequential Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Auto-Cite Case Simulation . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.1 Four-week Problem . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.2 Twenty-week Problem . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . 47

3 Competing on Price and Release Time for Information Content 51
3.1 Introduction and Literature Review . . . . . . . . . . . . . . . . . . . 52
3.2 Model Formulation - Monopolist Provider . . . . . . . . . . . . . . . 54

3.2.1 Linear Decay: Single Release . . . . . . . . . . . . . . . . . . . 55
3.2.2 Linear Decay: Multiple Releases . . . . . . . . . . . . . . . . . 58
3.2.3 Exponential Decay . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Supplier with Two Distribution Channels . . . . . . . . . . . . . . . . 64
3.3.1 Channel Competition . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Pricing Problem for the Supplier . . . . . . . . . . . . . . . . 68

3.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 73

vii



List of Figures

1.1 General illustration of information flow . . . . . . . . . . . . . . . . . 6

1.2 Queues in tandem model . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 2-dimensional model for Np and Nd . . . . . . . . . . . . . . . . . . . 11

1.4 Birth-and-death model for the number of waiting and in-process items 12

1.5 Graph of PµPc as a function of µ (top: with fixed σ; bottom: with

fixed λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Algorithm for calculating R and Rl’s . . . . . . . . . . . . . . . . . . 26

2.1 Flow of information content . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Material balance relationship . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Throughput vs. WIP (µ = 5) . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Plot of DVD sales on time . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Buy Regions for different price-time pairs. . . . . . . . . . . . . . . . 56

3.3 S1(10, 1) ∪ S2(5, 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Segmentation of customers into R1 and R2 . . . . . . . . . . . . . . . 60

3.5 S(10, 1), or “Buy Region” . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Profit functions under different parameters . . . . . . . . . . . . . . . 64

3.7 Segments of customers buying from providers A and B . . . . . . . . 65

3.8 Response functions for A and B . . . . . . . . . . . . . . . . . . . . . 67

3.9 Graph of supplier’s profit on ps . . . . . . . . . . . . . . . . . . . . . 70

viii



List of Tables

1.1 Model characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Parameters used in sample data sets . . . . . . . . . . . . . . . . . . 41

2.2 Parameters used in the 4-week example . . . . . . . . . . . . . . . . . 45

2.3 Results when CH = CF = 20 . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Parameters used in the 20-week example (Awt in 000’s, Aet in 00’s) . . 46

ix



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor and

chair of dissertation committee, Professor Uday Karmarkar. It was truly a privilege

for me to work under his supervision while he provided tremendous guidance and

invaluable advice. His encouraging comments and exceptional mentorship helped me

move forward and accomplish my educational goals. I learned how to translate an

idea into formulations and lay those out as models. I am also truly thankful for his

patience and generosity during my Ph.D. program.

I am also extremely grateful to my dissertation committee members: Professor

Charles Corbett, Professor Felipe Caro, and Professor Ichiro Obara for their valuable

time and advice on my dissertation. I was privileged to learn in-depth topics in

dynamic programming from Felipe Caro which helped broaden my analytical skills.

I also had a great opportunity to work as a teaching assistant for Professor Corbett’s

Operations Management course, where I learned about valuable managerial insights

and real world problems in operations. I am thankful to Professor Obara for teaching

me fundamental concepts of microeconomics and game theory which were essential

in completing many parts of my dissertation.

I also wish to acknowledge other UCLA faculty members from whom I had oppor-

tunities to learn and build on many important analytical skills and acquire invaluable

knowledge in various disciplines of Operations Management: Professor Reza Ahmadi,

Professor Christiane Barz, Professor Kumar Rajaram, and Professor Rakesh Sarin. I

am sincerely grateful for advice and guidance from Professor Barz during my teaching

assistantship for Data and Decisions courses.

In addition, I would like to thank UCLA Anderson Graduate School of Manage-

ment for generous funding over the past five years. I would also like to acknowl-

edge Easton Technology Leadership Program at Anderson School for their financial

support that provided me resource to conduct research and to present my work at

conferences. I also want to thank Lydia Heyman for all her support during my Ph.D.

x



program.

I would like to thank DOTM Ph.D. students that graduated before me who

provided precious guidance during my studies: Dimitrios Andritsos, Foad Iravani,

Morvarid Rahmani, George Georgiadis, Aparupa Das Gupta, and Jaehyung An.

Finally, I would like to thank all my colleagues, Wei, Paul, Sandeep, and Christian

with whom I had great time at Anderson together.

Last but not least, I would like to thank my family for endless love and support

that they gave me throughout my life and especially during my Ph.D. program.

In particular, I am extremely grateful to my husband, Jong Woung Kim for his

encouragement, understanding, prayers, and patience that helped me move forward

throughout my studies.

xi



VITA

2007 Sc.B., Applied Mathematics-Computer Science

Brown University

2007-2010 Software Engineer

Oracle Corporation

2010-2015 Graduate Student Researcher

UCLA Anderson School of Management

xii



Chapter 1

Content Management and

Capacity Decisions in

Information Chains
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1.1 Introduction

The rapid growth of information chains is a major part of the transition of the

US from a material-based to an information-based economy (Apte et al. 2012). Just

as physical goods are moved from stage to stage in supply chains, the flows in in-

formation chains are of data or information. One form of this data is experiential

digital content such as songs, video streams, and images. Other examples include

financial data, catalogs of parts and products, weather data, content portals, news,

magazines and books. Transaction based services such as retail banking or online

retailing, also generate content and the transactions themselves could be considered

a micro form of content.

As an example of content management, consider the news service industry. A

news distribution company like a TV broadcaster or newspaper, receives news items

from their own and from external sources whenever a newsworthy event occurs.

They have to decide which stories to acquire and process. The selected items are

then edited, formatted and processed to the appropriate distribution format, and

made available to users through their distribution mechanism, whether broadcast,

print or online. This sequence of stages from the arrival of data to processing to

distribution accessible to users is an example of an information chain. Figure 1.1

shows a schematic example of these stages.

Taking the viewpoint of an industry sector, section 1.5 in Appendix shows the in-

formation chain for weather services (Connor 1998). The stages in this chain include

data acquisition, processing, storage, and finally distribution in various forms at a

retail level. The content itself is converted from raw data acquired from a variety

of sensors, to formatted data, to weather forecasts including graphics, and finally

to information at accessible to end consumers. The chain includes both B2B and

B2C transactions and has multiple market segments, ranging from commuters to

agriculture to aviation.
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A distinct characteristic of such information chains that differentiates them from

supply chains is that when the final product of information is consumed, there is

no depletion of inventory. It is not demand that eventually reduces inventory, but

obsolescence and active purging. Content becomes obsolete either when it becomes

false, or when the demand for it, and its value, declines. Examples of false content

could be a listing in a guidebook for a restaurant that has since closed down, the

temperature at a particular location, or a price listing for an item for which the price

has changed. Content types with declining value and declining demand over time,

include music, videos, news and books (fiction or non-fiction).

Another important characteristic of information chains is that often one cannot

control or predict when a new item will arrive. There are some situations like weather

services case where raw weather data is captured fairly regularly and predictably

at monitoring points. A more typical case is the legal database industry, where a

publisher has to process all the legal cases that arrive on a random basis to have

them available in a database within a required time (Karmarkar 2014). As another

example, an electronic parts catalog publisher (Bashyam and Karmarkar 2000) must

find, select and process electronic component information from parts manufacturers

as and when it becomes available, and then update the database to be accessible to

users. In publishing articles or research papers, the content arrivals are random, and

must be processed (reviewed, possibly rejected, edited) to be available for publication.

In the insurance industry, applications for insurance policies can arrive at any time,

and must be processed rapidly and correctly (Harrison 1997). While this is the back-

room of a service process, the process characteristics, performance requirements, costs

and management decision issues are very similar. For companies in such information

chains, operational decision-making is required at many stages of the chain, from

the acquisition and selection of input items, and processing of content and format,

to detecting and then purging the database of obsolete items. This gives rise to

processing capacity decisions which will then determine the quality of the data base
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in terms of the time of availability, quality of content, and correctness.

In this chapter, we focus on the processing stage of the chain. Before introducing

decision models, we first describe different approaches to modeling the information

flow in the chain, from arrival to obsolescence. Mainly using Poisson arrival assump-

tions, we consider the number of processors available to process the arriving items,

and the characteristics of obsolescence. The simplest case assumes that data items

may become obsolete only after they are in the database. In a second case, data are

subject to obsolescence as soon as they are acquired, meaning that they may leave

the system without being processed while waiting for processing or even while being

processed. The flow models are used to formulate decision problems regarding the

choice of optimal processing capacity to ensure timely flow into the database. When

we are in settings in which items may become obsolete at any time, we consider the

loss probability, i.e. the probability of losing the item due to obsolescence before

it enters the database. In determining the optimal processing capacity, the cost of

additional processors versus the cost of time is a key tradeoff.

The chapter is organized as follows. In section 1.2 we provide a review of exist-

ing literature. In section 1.3, we describe five different flow models and derive key

operating characteristics of each model. Then in section 1.4, we formulate decision

models in three different settings, and analytically or numerically derive the optimal

solution. Section 1.5 provides conclusions and possible extensions to the problem,

and suggests directions for future research.

1.2 Literature Review

Information chains are a topic that has not been extensively covered in the re-

search literature. Karmarkar and Apte (2007) review the evolution from material-

based economy to an information-based economy, and discuss the similarities and

differences between operations in information industries and traditional manufactur-
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ing industries. Bashyam and Karmarkar (2007) and Bashyam (2000) examine meth-

ods of delivering business information, and models the information services market

where each provider has either physical or online delivery technology. Papadimitriou

(2004) discusses the efficient management and use of information; he treats data like

a perishable good and develop optimal update policies to ensure the“freshness”of the

database. The frequency of updates is determined considering the cost of update ver-

sus the cost of having erroneous data in the database. De Vleeschauwer and Laevens

(2009) study a caching algorithm that tracks popularity of objects to make intelligent

decisions in TV on-demand services. In computer science literature, Ipeirotis et al.

(2005) models database changes over time to predict when each content summary

should be updated.

We will see that queuing models are relevant to modeling content management,

not unlike models of services. The extensive queuing literature tends to emphasize

process models rather than decision models. Models closely related to our case in

which obsolescence occurs throughout the flow, are those which address queuing with

impatient customers, or queuing with reneging. Haight (1959) considers a queue with

a single server with a limit on the holding capacity in which a person may decide to

leave and give up service if time exceeds some maximum threshold. He first discusses

the point of view of those who join the queue, and later summarizes the behavior

of the queue. Barrer (1957) also considers customers who will wait in the queue for

at most a fixed time, and derives expressions for the ratio of the average loss rate

to the average arrival rate of customers. Ancker and Gafarian (1963a) obtain the

probabilities of balking, waiting, reneging, and acquiring service in a single-server

facility where customers may balk or renege. As an extension, Ancker and Gafarian

(1963b) consider a facility with multiple heterogeneous servers with balking and

reneging, and obtain the probability that an arrival reaches service and the mean

rate of loss due to balking and reneging.

There is some existing work which includes the optimization of queuing system
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Figure 1.1: General illustration of information flow

parameters. Crabill (1972) considers the determination of optimal control rules for

a service facility which has a finite number of possible service rates and a constant

input rate, where the objective is to minimize the long-run average expected cost rate

of the queue by finding a policy which determines the service rates to be employed

at any point in time. George and Harrison (2001) consider a similar problem and

obtain the optimal service rates as a function of the number of jobs in system. Both

works show that the optimal service rates are non-decreasing as a function of queue

length. Since the optimal rate depends on queue length, it is difficult to implement

the optimal policy in a real application unless the system size changes infrequently.

Work on applied settings includes the literature on call center staffing problems.

Borst et al. (2004) look at the staffing problem of large call centers and determine the

asymptotically optimal staffing level as arrival rate increases. In Garnett et al. (2002),

optimal staffing rules are analyzed with the existence of impatient customers who

might decide to leave before the service begins. They compare the three staffing rules

under different magnitudes of load conditions, and perform an asymptotic analysis

as load increases indefinitely.
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1.3 Flow Models and System Behavior

The basic information flow pattern for content management is shown in 1.1. Data

items arrive and are accepted or rejected. The accepted items are processed by the

available servers, and are then loaded into the database where they become available

to users. The data may become obsolete at any time during the process. Certain

different variations of the model are listed in table 1.1 below. Each of the arrival,

processing, and obsolescence processes can be either deterministic or stochastic with

a given rate. In the first and the third model, we assume that the items may become

obsolete only after they enter the database, while in other models, items may become

obsolete at any point in time throughout the flow at any time after arrival, as in

Figure 1.1.

# of Servers Arrival Process Obsolescence Model

Deterministic Deterministic Determinstic/Always I

One Poisson Poisson Poisson/ Only in DB II

Poisson Poisson Poisson/ Always III

Many
Poisson Poisson Poisson/ Only in DB IV

Poisson Poisson Poisson/ Always V

Table 1.1: Model characteristics

We adopt the following notation. Let Np denote the total number of items waiting

to be processed plus those being processed. Nd denotes the number of items in the

database. λ and µ denote the rate of arrival and rate of processing, respectively,

and σis the rate of obsolescence for each item. We introduce alternative modeling

approaches, starting with a simple form and then adding complexity in terms of the

modeling assumptions.
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1.3.1 A Deterministic Flow Model (I)

We assume that items arrive at a known deterministic rate and it takes a server

fixed amount of time, Tp, to process an item. By Little’s Law, Tp = Np/λ, where Np

is the number of items waiting in queue and in process. We define L1 as the rate of

obsolescence from the first part of the flow before items enter the database, and L2

as the rate of obsolescence from the database. Then L1 = Npσ and L2 = Ndσ, and

λ = L1 + L2 for system at steady state. From the given information, we can obtain

the database size at steady state, Nd = L2

σ
= λ−L1

σ
= λ

σ
−Np = λ( 1

σ
− Tp).

These expressions give us basic relationships between flows and quantities but

are not adequate to capture capacity planning tradeoffs. We will take a look at more

realistic scenarios in the following models, where we assume stochastic arrivals.

1.3.2 Single-Server Process with Obsolescence in the Database

Only (Model II)

Figure 1.2: Queues in tandem model

We assume that data items arrive according to Poisson process with rate λ. Each

item is then processed at a single-server facility according to a Poisson process with

rate µ. After the item is processed, it is loaded into the database and is available to

users until it becomes obsolete. We assume that items do not become obsolete in the

processing stage. This can be a reasonable assumption if the time spent in processing

is very small and the rate of obsolescence is also very low. The rate of obsolescence

8



for each item in the database is σ, and we assume items leave the database (become

obsolete) according to a Poisson process. Assuming λ/µ < 1, the rate of arrival

of items in the database in steady state is also λ, which is the total throughput or

output rate from the processing stage (Station 1 in Figure 1.2). Hence, we can view

the entire process as two queues in tandem. The first system is a M/M/1 queue with

arrival and service rates λ and µ, and the second is a M/M/∞ queue with arrival

and service rates λ and σ. The number in the first system is Np in Figure 1.1, and the

number in the second system is the number in the database, Nd. The steady-state

distribution of the first system is then P (i) = (1− λ
µ
)(λ
µ
)i. The distribution of items

in the second system M/M/∞ is P (j) = (λ/σ)j

j!
e−λ/σ. By Little’s Law, we know that

the average time it takes for a data item to become available in the database after

arrival (the mean delay time of the first queue) is 1/µ
1−λ/µ = 1

µ−λ . The average number

of items in the database at steady state is λ/σ, and the average life time for a data

item in the database is 1/σ. Since at steady state, the number of items in queue 1 is

independent from the number of items in queue 2, we can obtain the joint stationary

distribution as:

P (i, j) = P (size of Station 1 = i & size of Station 2 = j) (1.1)

= P (i)·P (j)

= (1− λ

µ
)(
λ

µ
)i·(λ/σ)j

j!
e−λ/σ

1.3.3 Multi-Server Process with Obsolescence in the Database

Only (Model IV)

We model the multi-server processing facility modeled as a M/M/m queue. Other

parameters remaining the same, station 1 in Figure 1.2 now has m servers processing

incoming data items. Again, assuming λ < mµ (i.e., ρ = λ
mµ

< 1), we have the
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steady-state distribution of the processing station as

P (0) =

(m−1∑
k=0

(λ/µ)k

k!
+

(λ/µ)m

m!(1− ρ)

)−1

,

P (n) =


(λ/µ)n

n!
P (0), for 0 < n ≤ m− 1

(λ/µ)n

m!mn−m
P (0), for m ≤ n,

(1.2)

and the average waiting time in queue is given by

Tq =
ρ

λ(1− ρ)
P (m+) (1.3)

=
ρ

λ(1− ρ)
· (λ/µ)m

m!(1− ρ)
P (0),

where P (m+) is the probability that all servers are occupied. With λ and µ fixed,

the average waiting time is monotonically decreasing in m. The average time for an

item to enter the database is Tq + 1
µ
.

1.3.4 Single-Server Process with Obsolescence in the Entire

System (Model III)

In the two preceding sections, data items could only become obsolete after they

entered the database. However, for time-sensitive materials such as news, or financial

data, this assumption is not realistic. We now assume that the items are subject

to obsolescence at any time from the moment that they arrive in the queue to be

processed. Obsolescence of data is again assumed to follow a Poisson process with

rate σ for each item, so that the total rate is proportional to the number of items

present at any stage in the system.

We model the relationship between the number of waiting and in-process items

and the number of items in the database as a two-dimensional Markov chain, as in

Figure 1.3. Each state is described by the pair (Np, Nd), and the state space is semi-

infinite on each dimension. The Markov chain model corresponds to a level-dependent
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Figure 1.3: 2-dimensional model for Np and Nd
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Figure 1.4: Birth-and-death model for the number of waiting and in-process items

quasi-birth-and-death process (Kharoufeh 2011), which is a bivariate Markov process

with state space S = {(i, j) : i ≥ 0, j = 1, 2, ...,m} where i is called the level of the

process, j is called the phase of the process, and m is an integer that can be finite or

infinite. Algorithms for truncating the infinite space and calculating the steady state

distribution exist, and numerical examples are included in Appendix 1.5. Given

the steady state probabilities of the truncated Markov chain, we can obtain the

average size of the database or the average number of waiting and in-process items

by straightforward calculations.

A Reduced Model for the Number in Waiting and Process (Np)

Focusing on the first part of the flow from Figure 1.1, or looking only at horizontal

dimension in Figure 1.3, we can represent the number of items waiting or being

processed, Np, as a one-dimensional birth-and-death process (Figure 1.4), with rate

of arrival being λ and rate of departure being µ + iσ, since data items can either

leave the system by obsolescence or by completion of processing. We use i in place

for Np for notational convenience here. This model is similar to the M/M/1 queue

with reneging (Haight 1959 and Ancker and Gafarian 1963a), except that in our

scenario, even the item in the processor may become obsolete, at the same rate σ.

Note that we do not need the assumption λ < µ here, since the obsolescence process

for any non-zero obsolescence rate ensures that the number in the system does not
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grow infinitely. We can derive the steady-state distribution for i as:

P (0) =
1

1 +
∑∞

n=1 an
,

P (n) = P (0)an,

an =
n∏
i=1

λ

µ+ iσ
,

=
λnΓ(µ

σ
+ 1)

σnΓ(µ
σ

+ n+ 1)
, (1.4)

where Γ(·) is the gamma function.

Deriving the mean time spent in this system is not straightforward, because of

the two different components that control the departure. Some of the items depart

the system by being processed (at a rate µ), and some items leave at the rate of

obsolescence, iσ, where i includes the one currently being processed. We can deter-

mine the proportion of data items that reach the processor before becoming obsolete,

denoted Pµ as:

Pµ =
∞∑
n=0

P (n)·P (reach the processor|n items in system)

=
∞∑
n=0

P (n)
µ

µ+ nσ

= µP (0)
∞∑
n=0

λnΓ(µ
σ

+ 1)

σn(µ+ nσ)Γ(µ
σ

+ n+ 1)
. (1.5)

In fact, equation (1.5) is similar to P (A) in equation (29) from Ancker and Gafar-

ian (1963a), the probability that a new arrival will reach service. Given that an item

started being processed, it will either enter the database after completion or become

obsolete during the process. The probability that the item will enter the database

upon reaching the processor, or the probability of completing the process is given as
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follows:

Pc = P (server busy)P (processing completed|item is being processed)

= (1− P (0))
µ

µ+ σ
. (1.6)

Proposition 1. Items enter the database according to Poisson Process with rate

λPµPc.

This is straightforward. The initial arrival to the processor is a Poisson process

with rate λ, and the proportion of arriving items that eventually enter the database

is PµPc, so the rate at which data items enter the database is λPµPc. The loss

probability is 1 − PµPc. The items that complete processing experience the same

environment as M/M/1 queue with rate of processing µ, while the items that leave

from obsolescence essentially go through M/M/∞ queue where there is no waiting.

Using these two facts, we can calculate the average time until the item either becomes

obsolete or reaches the processor (i.e. mean time in queue),

E(time in queue) = PµPc
ρ

µ− λ
+ (1− PµPc)

1

σ
, (1.7)

using the known expressions for the mean waiting and delay times of two types of

queues.

From P1, we also obtain the average number of items in the database, since the

flow into the database is equivalent to the flow into station 2 in Figure 1.2, with

arrival rate of λPµPc instead of λ. Thus the average number of items in the database

is λPµPc/σ.

1.3.5 Multi-Server Processing with Obsolescence in the En-

tire System (Model V)

The assumptions about obsolescence remains the same as in section 1.3.4, and now

we assume a multi-server facility. We omit the analysis for the 2-dimensional model
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equivalent to Figure 1.3 and just focus on the birth-and-death model representing

Np, the number of items waiting in queue and in processors. The only difference from

the previous multi-server case is that obsolescence of data may occur at any point

during the flow. The steady-state distribution can be derived in the same manner

as we obtained equation (1.4), since the model is similar to Figure 1.4 with rate of

service being mµ+ iσ. As before, denoting P (Np = n) as P (n),

P (0) =

( m∑
k=0

( λ
µ+σ

)k

k!
+

∞∑
k=m+1

( λ
µ+σ

)k

k!
∏k

i=m+1(mµ+ iσ)

)−1

,

P (n) =


( λ
µ+σ

)n

n!
P (0), for 0 < n ≤ m

( λ
µ+σ

)n

n!
∏n
i=m+1(mµ+iσ)

P (0), for n ≥ m+ 1.
(1.8)

Expressions equivalent to equations (1.5) and (1.6) can be obtained as follows:

Pµ =
m∑
n=0

P (n)
µ

nµ+ nσ
+

∞∑
n=m+1

P (n)
µ

mµ+ nσ

= P (0)

( m∑
n=0

µ( λ
µ+σ

)n

(nµ+ nσ)n!
+

∞∑
n=m+1

µ( λ
µ+σ

)n

(mµ+ nσ)n!
∏n

i=m+1(mµ+ iσ)

)
,(1.9)

Pc = (1− P (0))
µ

µ+ σ
. (1.10)

1.4 Decision Models

We have looked at key characteristics of the chain under each flow model in Table

1.1, allowing us to compute quantities like the average time to enter the database,

the average size of the database, and the probability that an item becomes obsolete

before entering the database (loss probability). We now examine the formulation of

decision models.

As with supply chains, capacity determination is an important problem in infor-

mation chains as well. However, unlike supply chains, inventories cannot be used to
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improve the matching of supply to demand. Rather, as with service settings, capac-

ity is driven by the requirements of processing arriving data. As a result capacity is

driven more by the spread of the arrival distribution rather than the average.

At an operational level, supply chains require production decisions which depend

on the state of inventory and the need for replenishing depleted stocks. However,

in information chains, processing is simply initiated by the arrival of data. Now

in many cases of content processing, it is possible to choose what data elements to

process, and to decline or discard some part of the data. For example, a daily news

broadcast must fill a certain amount of time. On a busy news day, many potentially

usable news items may be discarded if they are thought to be less significant. On

the other hand such items may well be “accepted” and processed on a slow day. Such

“accept or decline” decisions are often made at a pre-processing stage in many other

content management settings like journal publishing. Note that in service systems,

customers often make these decisions (by balking or reneging) when queue times are

long.

In some settings, like legal publishing (Karmarkar 2014), since it is necessary to

process and include all arriving information, there is no accept-decline option.

The objective function for both planning and operational decisions can be quite

specific to particular settings for content management. For example, the costs of

holding information are typically so small as to be negligible. Data base size in

some cases is a positive feature, since in competition, customers may choose the

larger data base over a smaller. For example, in the Aspect case (Bashyam and

Karmarkar 2000), “completeness” of the parts catalog is one of their four C’s of

performance measurement. However, data base size can have diminishing returns

with the inclusion of items that are less valuable to the customer. This is often the

case with catalogs. In some cases, data base size may also increase search and access

costs, as well as the costs of reviewing, updating and purging obsolete items from

the catalog.
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In a broadcast, or publishing situation, the size of the database or content package

might be limited or even fixed, and it may not be of value to simply maximize the

size beyond a threshold level. In legal publishing (Karmarkar 2014), the size of the

data base is not a decision or design choice, since it is necessary to include all arriving

information without exception.

In terms of overall performance, a universally relevant parameter is “currency” or

the time from the arrival and potential inclusion of content, to the time when it is

available to customers. This is the case for settings like news publishing. The time

from arrival to availability can also affect the measure of “loss probability” which

the probability that an item never makes it into the data base, because it becomes

obsolete while it is still waiting or being processed. The total time to process and

loss probability are equivalent measures in the expected sense, but not necessarily in

terms of distribution.

In some cases, it may be a reasonable approximation to consider processing rate

to be a decision variable. If processing is being performed by scalable capacity, and

if the processing task can be correspondingly scaled or divided (as with certain kinds

of data processing and file transformation tasks), this may be a reasonable model.

However, in certain cases it may be necessary to make capacity decisions in terms of

the number of processors. This is often the case where the information processing is

being done by human effort or by specialized capacity that cannot easily be varied

or scaled.

1.4.1 Optimal Processing Rate

We consider a single-server system with obsolescence (model III). In section 1.3.4,

we have developed expressions for the probability of reaching the processor, the

probability of entering the database, and the mean time until obsolescence or reaching

the database.
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In Crabill (1972) and George and Harrison (2001), the objective is to minimize

average cost per time unit over infinite horizon, where cost includes holding cost for

each item in system and cost of operating the server at a given rate. In examples

such as customers waiting in line at a restaurant or a hospital, having a line is often

costly; however, in our setting where digital content and electronic files are in place of

customers, holding cost is almost zero, or negligible. Instead of minimizing the cost

of operation, we want to find a processing rate that minimizes the loss probability, or

maximizes the proportion of arriving items that enter the database before becoming

obsolete, or PµPc. This is especially important for items that lose value quickly.

Given an exponential arrival rate λ, the unconstrained problem then becomes

maxµ{PµPc}, and the maximizing processing rate then results in the minimum loss

probaility and maximum average size of the database with σ also fixed (recall that loss

probability was 1− PµPc and the average size of the database was λPµPc/σ). Using

Pµ and Pc derived in equations (1.5) and (1.6), we want to check the relationship

between µ and PµPc.

Conjecture 2. P2. PµPc is quasiconcave in µ.

Numerical tests show the unimodal shape of PµPc as a function of µ. In sum,

the processing rate that minimizes the loss probability is close to the value of arrival

rate λ given a small fixed value of σ, and as expected, minimum loss probability

decreases as arrival rate goes up (Figure 1.5 (a) to (c)). When λ is fixed, the optimal

processing rate decreases as rate of obsolescence increases, which is unexpected.

1.4.2 Optimal Processing Capacity

In the cases of Aspect Development and Autocite, or many other information

providers, timely processing of newly arriving data items is a critical component in

the success of business, since customers demand up-to-date items in the database.
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(a) λ = 5, σ = 0.1 (b) λ = 10, σ = 0.1 (c) λ = 15, σ = 0.1

(d) λ = 20, σ = 0.01 (e) λ = 20, σ = 0.1 (f) λ = 20, σ = 1

Figure 1.5: Graph of PµPc as a function of µ (top: with fixed σ; bottom: with fixed

λ)
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The bigger the processing capacity, the quicker the item enters database (as in sec-

tion 1.3.3), but bringing additional processors (i.e. hiring more workers or setting up

machines) incurs addtional cost. We assume the settings of model IV, and shift our

focus to the number of processors instead of the processing rate, assuming homoge-

neous processors (µ is same for all servers). Firms try to minimize the total cost,

which includes the processing cost and cost of time.

The minimum cost problem solved by a provider is

min
m>λ/µ

{Cp(m) + E[Ct(Tm)]}, (1.11)

where m is the number of processors, Cp(m) is cost of processing per unit time using

m servers, which is an increasing function of m, and Ct(Tm) is an increasing cost

function of time with Tm denoting the average time it takes an item to enter the

database when there are m processors (see equation 1.3). We assume exponential

arrival rate λ and exponential service rate µ for each processor added. Also, we

impose a lower bound on m so that the processing rate will exceed the arrival rate.

Assuming for simplicity that each item has a constant demand once it is in the

database, unit cost of time is taken to be equivalent to the price of demand for an

item per time period, since a delay in getting an item into the database results in

lost revenue. Since m is a positive integer, this is a discrete optimization problem.

We show that the expected cost is convex in the number of processors under certain

assumptions.

Proposition 3. If Cp(·) is a convex function of m, and Ct(·) is a convex function of

time, the expected cost is convex in m, the number of processors.

Proof. Tm is equivalent to Tq+
1
µ
, where Tq is the mean waiting time in equation (1.3).

Dyer and Proll (1977) proved the convexity of the expected queueing time formula

for an M/M/m queue, so Tq and thus Tm is convex in m. Since Ct(·) is strictly

increasing and convex in time in the assumption, Ct(Tm), a composition function,
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is convex in m (chapter 3.2.4 in Boyd and Vandenberghe 2004). Since expectation

preserves convexity, and sum of two convex functions is convex, the expected cost in

equation (1.11) is convex in m.

As a result, the cost-minimizing number of processors can be found by simple

marginal analysis. Below is an examples with both Cp and Ct being linear functions.

Example. λ = 1, µ = 0.21, Cp(m) = k1m, Ct(T ) = k2T for some constants k1 and

k2. k1 is a cost per processor per time unit, and k2 is a delay cost per item per time

unit.

(a) k1 = 2, k2 = 1: minimum cost at m = 6. (b) k1 = 2, k2 = 10: minimum cost at m = 8.

As expected, it is optimal to employ more servers when cost of time increases.

Furthermore, the results in this example confirms the square-root safety staffing

rule widely used in determining call center capacity (Borst et al. 2004), which gives

N∗ = λ
µ

+ y∗(k2

k1
)
√

λ
µ

for the optimal number of staff where y∗(·) is an increasing

function for which an approximation was given.
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1.5 Conclusion and Future Research

In this chapter we discussed the structure of the information chain highlighting

the difference from the traditional supply chains, and formulated a few different

models that fit certain scenarios. We categorized the flow models first by number

of processors available, and then by the obsolescence characteristic. We considered

two scenarios; one is where only the items in the database become obsolete, and the

other is where items may become obsolete and leave the system anytime after they

arrive. We assumed exponential arrival rate in all models except the deterministic

case, and in each model derived the steady state distribution of the number of items

in system, average size of the database, and average time to enter the database and

loss probability, where applicable.

We then formulated optimization problems based on some of the flow models

we discussed. Assuming a single-server facility with obsolescence occurring anytime

during the flow, we search for the optimal processing rate which minimizes the loss

probability, or maximizes the probability of entering the database and the average

size of the database. We provided a conjecture that PµPc, the probability of an item

entering the database before becoming obsolete, is quasiconcave in µ, illustrated with

numerical examples.

We also discussed the problem of finding optimal number of processors, assuming

a multi-server processing facility where obsolescence only occurs in the database.

The objective function, which is a sum of the cost of processing and the cost of time,

were shown to be convex in number of processors, and numerical examples verified

that the optimal value equals the value obtained by the square root formula widely

used for call center design.

The immediate extension we can add is a capacity decision problem when the

obsolescence occurs throughout the flow. Some asymptotic analysis using different

staffing rules were presented in Garnett et al. (2002). Also, the decision problems
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in this chapter were centered on processing stage of the information flow. However,

there are other areas where planning is needed, from acquisition to purging, which

incur cost and time. We can base the decision to acquire each item on the forecast

of demand for that type of item, cost of having the item in the database, and so on.

Purging the database can use some ideas similar to that of Papadimitriou (2004). It

is certain that information chain and the content management is a topic with a room

for extended research and improvement.

Appendix 1.1: Examples of Information Chains

A. Weather Information Industry 1

1Connor (1998)
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B. Aspect Development Production Process2

Appendix 1.2: Steady State Probabilities of 2D

Markov Chain

Quasi-birth-and-death-process, as briefly described in section 1.3.4, is a Markov

chain, in which transitions are allowed only to the neighboring levels or within the

same level (see Osogami 2005). In Figure 1.3, Np and Nd correspond to level and

2Bashyam and Karmarkar (2000)
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phase, respectively. A generator matrix of a QBD process is of the form

Q =


L0 F 0

B1 L1 F 1

B2 L2 F 2

. . . . . . . . .

 ,

where each entry is a submatrix. For levels l ≥ 0, Ll contains transitions within level

l, F l contains transitions from level l to l+ 1, and Bl contains transitions from level

l to l − 1 (for l ≥ 1). So from state (l, j), the process transitions to (l, k) at rate

[Ll]j,k, to (l + 1, k) at rate [F l]j,k, and to (l − 1, k) at rate [Bl]j,k.

In our example in Figure 1.3, the submatrices will look like

Ll =


−(λ+ µ+ lσ)

σ −(λ+ µ+ (l + 1)σ)

2σ −(λ+ µ+ (l + 2)σ)

3σ
. . .

 ,

F l =


λ

λ

λ
. . .

 , Bl =


lσ µ

lσ µ

lσ µ
. . .

 ,

where we treat the entry (1, 1) as (0, 0) in each matrix since in Figure 1.3, level and

phase (Np and Nd) start from 0.

From Kharoufeh (2011), assuming we have an irreducible generator matrix Q,

the process is positive recurrent if and only if there exists a strictly positive solution

to the system of eqautions

~π0(L0 +R1B1) = ~0, (1.12)

where ~πl is a vector containing stationary probabilities whose ith element denotes the

stationary probability that the process is in state (l, i), and Rl is given recursively
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Figure 1.6: Algorithm for calculating R and Rl’s

computed via

F l−1 +RlLl +RlRl+1Bl+1 = 0.

The stationary probability vectors are given recursively by ~πl = ~πl−1R
l, so once

Rl’s are obtained, ~πl’s are calculated from ~π0, which must satisfy equation (1.12) and

the normalization condition

~π0

∞∑
l=0

l∏
i=1

Ri~1 = 1.

For QBD processes that have infinite number of levels, the state space needs to be

truncated so that Rl matrices can be calculated from a certain large enough integer

L (see Bright and Taylor 1995). In Figure 1.6, the algorithm for obtaining R and

Rl’s are given. We can use FL, LL, BL for some large L as the input matrices.
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Chapter 2

Dynamic Capacity Planning for

Content Management in

Information Chains
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2.1 Introduction

The rapid growth of information chains is part of the transition of the US from a

material-based to an information-based economy (Apte et al. 2012). Just as physical

goods are moved from stage to stage in supply chains, the flows in information chains

are of data or information. One form of this data is experiential digital content such

as songs, video streams, and images. Other examples include financial data, catalogs

of parts and products, weather data, content portals, news, magazines and books.

As an example of content management, consider a publication like a magazine or

newspaper. Articles from their own and from external sources “arrive” periodically,

perhaps whenever some major event occurs. Some or all the arriving items may be

selected, others declined. The selected items are then edited, amended, enhanced,

formatted and processed to the appropriate distribution format, stored as a master

copy, and made available to users through their distribution mechanism, whether

broadcast, print or online. In the online case some or all of the data base may

be accessible to end consumers. This sequence of stages from the arrival of data

to processing to distribution in a form accessible to users is an information chain.

Figure 2.1 shows a schematic example of these stages.

A distinct characteristic of such information chains that differentiates them from

supply chains is that when the final product – information – is demanded and con-

sumed, there is no depletion of inventory. It is not demand that reduces inventory,

but eventual obsolescence and purging or updating of the data base. Content be-

comes obsolete either when it becomes false, or when its value to the consumer and

hence the demand for it, declines. Examples of false content could be a listing in a

guidebook for a restaurant that has since closed down, the current temperature at

a particular location, or a price listing for an item for which the price has changed.

Content types with declining value and declining demand over time, include music,

videos, news, articles, blogs and books (fiction or non-fiction). False or erroneous
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content is generally purged as soon as possible. For content with declining value, the

decision to purge depends on a cost benefit comparison. In some cases, there may

be no removal of items, but older content with lower value and demand, might be

moved to a separate data category or data store, to reduce the size of the active data

base and simplify search and access.

Another important characteristic of information chain is that often one cannot

control or predict when a new item will arrive. There are some situations like weather

services case where raw weather data is captured fairly regularly and predictably at

monitoring points. A different situation holds for legal publishing, where a publisher

has to process all the legal cases that arrive to have them available in a database

within a required time (Karmarkar 2014). In yet another setting, a parts catalog

publisher (Bashyam and Karmarkar 2000) must find, select and process component

information from all relevant parts manufacturers as and when it becomes available,

and then update the catalog database to have current information rapidly accessible

to users. A case familiar to academics is that of a journal where papers are submitted

by authors at any time. Here the accept/decline decision is of major importance,

with emphasis on correctness and contribution, with less weight given to speed.

Information chains and content management in such chains, have characteristics

that are in some ways like manufacturing and in other ways like services. On the one

hand, processing is a back room operation like manufacturing. It is often possible

to standardize some aspects of the process, the steps are not directly visible to the

customer, and efficiency is an important factor especially when content volumes are

high. On the other hand, processing is triggered by the arrival of content, rather

than by orders or the need to replenish inventories. Furthermore the outputs are

not standard pre-defined products. So production cannot be planned ahead based

on forecasts, as in manufacturing. There is some similarity with agricultural product

processing or water management, where arrival rates can be stochastic.

Since content is not pre-defined and standardized, advance production is not
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possible, and information inventories do not provide a buffering function that allows

for smoothing production levels in manufacturing. In that respect, this is more like

a service situation, where buffering must be done through capacity. Consequently,

capacity levels tend to be driven by the variations in content arrival and peak arrival

rates rather than average demand rate. Finally as noted above, the size of the data

base may be a positive factor for customers. This is a bit like retail inventories in

certain supply chains where variety is a desirable property. In effect size is a proxy

for variety or for “completeness” of the data base. (Bashyam and Karmarkar 2000)

Capacity planning is the process of determining production capacity to meet the

changing demands. Just as lead time is a critical factor in manufacturing, timely

processing of information is important for content management where information

content is equivalent to physical goods in traditional supply chain. A typical though

stylized flow of information in content management is shown in Figure 2.1. Items

arrive and wait in a queue until processed by an available processor. Then they are

loaded to the database which is available to customers. As noted above, demand does

not deplete the inventory (database), nor can inventory act as a buffer. Holding costs

are negligible, and data base size may actually be a desirable performance measure.

However, there may be diminishing returns to size, and in some cases search and

access costs may be relevant. Capacity of the processing stage determines the time

it takes for each item from arrival till availability in database. Since data arrival is

stochastic, processing capacity also affects the length of the queue and the size of the

database. Content in the database become obsolete at some rate, either because it

loses value over time or it becomes invalid or false. In general, content is periodically

reviewed and purged to remove the obsolete content which is either erroneous, which

erodes the perceived value of the data base, or which does not contribute to revenue

generation.

We study how to make periodic decisions on capacity and processing by devel-

oping a discrete time multi-period model, in which capacity can be increased or
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Figure 2.1: Flow of information content

decreased in each period by acquisition (“hiring”) or reduction (“firing”). We assume

that the performance characteristics of processors are known in terms of the output

achievable as a function of the available capacity, and the current workload. The

objective is to minimize the total cost of operations, including hiring, firing and pro-

cessing costs, while maximizing the value of the database (measured in terms of size).

The decision problem is formulated as a dynamic program with nonlinear constraints

and mixed integer and continuous variables.

In the next section we review existing literature on capacity planning and pro-

cessing. Then we formulate a general dynamic capacity planning model. We develop

decomposition and relaxation approaches to provide bounds on the problem value,

and propose heuristics. Next we describe a specific case study of content manage-

ment for an online database, and illustrate the application of the methods to the

example.

2.2 Literature Review

There are several streams of literature that relate to the present paper. The

first is that of aggregate planning or seasonal planning in manufacturing setting.

Traditional multi-period formulations of such models (c.f. Hax 1978, Bitran and

Tirupati 1993) employ capacity constraints, and often include consideration of short

term capacity planning in terms of workforce changes. These are typically LP models
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which do not consider the effect of capacity and loading on processing lead times.

Recently, clearing functions have been used to capture lead time and work-in-process

consequences in the context of a deterministic model (Karmarkar 1989, Selcuk et al.

2008, Asmundsson et al. 2009, Armbruster and Uzsoy 2012). The dynamic factors

in these planning models are due to demand variations over seasonal cycles, which

are usually approximated as deterministic forecasts. Dobson and Karmarkar (2011)

have included stochastic demand in a multi-period model with clearing functions, so

as to be able to capture the interaction between capacity loading, lead times, and

safety stocks (which depend on lead times).

A second stream of related literature is that addressing capacity planning in

service settings. Many of these address the static stochastic case, including our own

related work (Choi and Karmarkar 2014). We provide a brief review of relevant work

in that paper.

The third stream of work is that addressing dynamic capacity decisions in service

(non-manufacturing) settings. These papers include staffing decisions in call centers

(Garnett et al. 2002, Borst et al. 2004) and in various service systems (Thompson

1997, Whitt 2007). One work that is related to ours in terms of methodology and

some modeling aspects is that of Feldman et al. (2008) which is a deterministic multi-

period model with capacity constraints, lead time effects due to congestion, budget

limitations, resource allocation, and the choice of screening policies.

2.3 Model Formulation

Consider a content processing setting, where the decisions include determining

capacity by determining the number of workers to hire or fire in each period. The

available capacity constrains the number of items (volume) that are processed in

each time periodt, t ∈ T = (1, ..., n). We assume that the number of data items

arriving at the beginning of each period is known. In each period, seeing the newly
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Figure 2.2: Material balance relationship

arriving items and the items from previous period waiting to be processed, we can

hire more workers or fire some existing workers (i.e., add or remove processors) to

satisfy certain requirements. We also decide how many items to process, which will

then affect the size of the database. Processed items enter the database, and items

left in the queue carry over into the next period. Figure 2.2 presents the material

balance relationship for period t. We define the following decision variables:

Mt = number of workers used in period t.

Ht = number of workers hired in period t.

Ft = number of workers fired in period t.

Wt = work-in-process (WIP) at the end of period t.

Xt = number of items processed during period t.

We also have the following parameters that are given exogenously:

At = number of items that arrive at the beginning of period t.

Lt = current workload in period t.

It = size of the database at the end of period t.

Ot = number of items that become obsolete during period t.

f(Mt, Lt) = the clearing function.
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ct = cost per worker in period t.

cH = cost of hiring a worker.

cF = cost of firing a worker.

p = processing cost per item.

V (It) = value of the database of size It.

We use a clearing function (e.g. Karmarkar 1989, 2006) to determine the max-

imum possible throughput rate given the current workload and number of workers.

This imposes an upper bound on the number of items processed. It is assumed that

each worker is able to process work at the same rate (this assumption can be relaxed

at the expense of a larger state space). The cost per worker can depend on the time

period, since pay rates may be higher for overtime and weekend periods, and may

also vary seasonally. The cost of hiring and firing includes administrative costs for

those activities. We assume (Bashyam and Karmarkar 2000) that the value function

V (I) is concave increasing in I, the database size. We present the dynamic capacity

planning problem as a dynamic program with continuous and integer variables. Of

course, it is also possible to state the problem as a monolithic formulation. The

objective is to minimize the sum of operating costs, hiring/firing costs and item pro-

cessing cost, and to maximize the value of the database. We assume that the holding

cost for content is negligible, or is captured in the function V . We also assume that

there is a constraint on the average processing time for items to be processed in each

period which captures a policy decision regarding the desired currency and avail-

ability of new content. We model this by setting an upper bound on the workload,

divided by total processing capacity in that period (i.e. using Little’s Law).

In the last period, we solve the following nonlinear mixed-integer program which

we call CPP (capacity planning problem):

(CPP n) : Zn(Mn−1,Wn−1, In−1) = min
Mn,Xn

{
cnMn + cHHn + cFFn + pXn − V (In)

}
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subject to

Xn ≤ f(Mn, Ln) (2.1)

Ln = Wn−1 + An (2.2)

Wn = Wn−1 + An −Xn (2.3)

Wn ≤ Wmax (2.4)

In = In−1 +Xn −On (2.5)

Mn = Mn−1 +Hn − Fn (2.6)

Wn, Xn, In ≥ 0 (2.7)

Mn, Hn, Fn ∈ Z+. (2.8)

The objective is to minimize the sum of operating cost, hiring/firing costs, and

item processing cost, and maximize the value of the database. We assume that the

holding cost is negligible, as storage cost for data is very minimal in general.

Constraint (2.1) sets an upper bound on the number of items processed in each

period n. Constraint (2.2) defines the total workload in the period. Constraints (2.3)

and (2.5) are the content balance equations corresponding to Figure 2.2. Observe

that Wn follows directly from Xn, while Hn and Fn are determined once Mn−1 and

Mn are set, as given in constraint (2.6). There can be several different ways to

include the quick processing requirement. Since in this discrete period model, we

do not have the explicit expression for average lead time, or the time for an item

to enter the database, we include constraint (2.4) to ensure that the queue does not

build up beyond a predetermined threshold. Integrality and nonnegativity conditions

are enforced by constraints (2.7) and (2.8). For period t = 1, 2, ..., n − 1, we solve

the following:

(CPP t) : Zt(Mt−1,Wt−1, It−1) = min
Mt,Xt

{
ctMt+cHHt+cFFt+pXt−V (It)+Zt+1(Mt,Wt, It)

}
subject to (2.1) - (2.8), with subscripts n replaced by t.
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The optimal solution is obtained by solving problem (CPP 1). However, this

dynamic program is difficult to solve due to the large state space since the number

of items in the database can take on large set of values in many applications. It

is unlikely for a realistic instance of the problem to be solved to optimality, as we

describe in our computational result below. In some cases the number of workers

can also be quite large. One possibility is to limit the size of the state space by

only considering a finite number of data base states. Another is to treat the data

base size as a continuous variable, and to use value function approximations. In

the next section, we develop a Lagrangean decomposition of the problem that can

be solved easily, and that provides lower bounds. We propose potential heuristic

solution methods.

2.4 Problem Decomposition and Lower Bounds

In order to solve the problem by decomposition, we first look at problem (CPP n).

Observe that we are deciding capacity of the processing stage, and the output from

the process. The two decision variables are linked together by the nonlinear constraint

(2.1). We relax this constraint by introducing a Lagrange multiplier λn, and also relax

(2.2) with a multiplier µn. Now the capacity decision problem (Cn) is separated from

the output decision problem (T n), and we get the following sub-problems for period

n:

(Cn) : Un(Mn−1, λn, µn) = min
Mn,Ln

{
cnMn + cHHn + cFFn − λnf(Mn, Ln) + µnLn − µnAn

}
subject to (2.6), (2.8), and λn ≥ 0,

(T n) : Yn(Wn−1, In−1, λn, µn) = min
Xn

{
(λn + p)Xn − µnWn−1 − V (In)

}
subject to (2.3), (2.4), (2.5), and (2.7). The relaxed problem (RP n) is

(RP n) : Z̃n(Mn−1,Wn−1, In−1, λn, µn) = Un(Mn−1, λn, µn) + Yn(Wn−1, In−1, λn, µn).
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In (Cn), the Lagrange multiplier λn can be interpreted as the value gained per

unit of increased output, whereas in (T n) it can be interpreted as the extra cost for

processing an additional item.

In period t, we solve:

(Ct) : Ut(Mt−1, λt, µt) = min
Mt,Lt

{
ctMt+cHHt+cFFt−λtf(Mt, Lt)+µtLt−µtAt+Ut+1(Mt, λt+1, µt+1)

}
subject to (2.6), (2.7), (2.8), and λt ≥ 0,

(T t) : Yt(Wt−1, It−1, λt, µt) = min
Xt

{
(λt+p)Xt−µtWt−1−V (It)+Yt+1(Wt, It, λt+1, µt+1)

}
subject to (1.11), (1.4), (2.5), and (2.7),

(RP t) : Z̃t(Mt−1,Wt−1, It−1, λt, µt) = Ut(Mt−1, λt, µt) + Yt(Wt−1, It−1, λt, µt).

To solve the capacity decision problem in the last period, we first define the

clearing function using equation (2.23) from the Appendix. The following proposition

characterizes problem (Cn).

Proposition 4. The objective function of (Cn) is jointly convex in Mn and Ln.

Proof. We have f(Mn, Ln) = MnrLn
α+Ln

, where r is the processing rate of a worker and

α ≥ 0 is a constant.

∂f(Mn, Ln)

∂Mn

=
rLn

α + Ln
,

∂f(Mn, Ln)

∂Ln
=

Mnrα

(α + Ln)2
,

∂2f(Mn, Ln)

∂L2
n

=
−2Mnrα

(α + Ln)3

≤ 0.

And we have ∂2f(Mn,Ln)
∂M2

n
= 0, ∂2f(Mn,Ln)

∂Mn∂Ln
= rα

(α+Ln)2 . Thus, Hessian is negative semidefi-

nite, and we have that f(Mn, Ln) is jointly concave inMn and Ln. Then−λnf(Mn, Ln)

is a convex function and hence the objective function of (Cn), which is a sum of linear

and convex functions, is convex in Mn and Ln.
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Starting in period n, we can solve (Cn) using convex optimization methods with

specific choice of multipliers, and search the neighborhood of the obtained solution

to find integer optimum Mn. Continuing recursively to period 1, we can obtain the

solution with this dynamic programming algorithm of complexity O(mn), where m

is the maximum number of workers available in each period, which is not prohibitive

for reasonable values of m and n. In problem (T n), assuming that fixed fraction

of items in the database becomes obsolete every period, we can replace constraint

(2.5) with In = βIn−1 +Xn, with some β between 0 and 1. Then V (In) is a concave

function of Xn, and the objective function of (T n) is convex in Xn. We solve (T n) as a

constrained convex optimization problem, and continue with (T n−1), ...(T 1). In each

period, we need to determine the optimal solution for every possible pair of (Wt, It),

which can involve a large number of computations compared to solving (Ct). To

obtain tight lower bounds, we can use subgradient methods to solve the Lagrangian

dual of (CPP t),

LDt = max
λt,µt

Z̃t(Mt−1,Wt−1, It−1, λt, µt). (2.9)

2.5 Heuristics and Upper Bounds

The complexity of solving the decomposed problem is less than that for solving

the original formulation, but the solution might be infeasible, since the constraint

relating throughput to the number of workers using a clearing function is relaxed in

the decomposition. We introduce heuristic solution approaches below.

2.5.1 Myopic Heuristic

In the case of legal database compilation (Karmarkar 2014), managers attempt

to bring down the queue daily, as it quickly builds up on days with large arrivals. In

this heuristic, we simulate what the real data suggests about practice in the industry

by processing as much content as possible in each period. In the beginning of period
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t, given the current load in the queue (that is, Lt = Wt−1 + At in our notation),

we determine the number of workers for the period as Mt = dLt/re, where r is the

processing rate per worker. This is a heuristic approach for picking the appropriate

number of workers when the only information available is the number of items in the

queue. Once Mt is chosen, each worker processes as many items as possible, i.e., set

Xt = bf(Mt, Lt)c. In this heuristic, cost is not an important concern while maximum

throughput is; however, it could lead to high cost of hiring and firing.

2.5.2 Conservative Heuristic

In this heuristic, the goal is to process only enough to satisfy the constraint on

throughput. For selecting the number of workers, we follow the same rule as in

Myopic Heuristic, where Mt = dLt/µe. Note that constraints (2.3) and (2.4) can be

rewritten as Xn ≥ Wn−1 +An −Wmax. We then choose the lowest Xn such that the

inequality is satisfied. This will incur low processing cost, but does not aim to get

the items into the database quickly.

2.5.3 Sequential Heuristic

Since this is a multiperiod problem, we make decisions in every period. We tackel

the problem starting from the first stage. In period 1, pick M1 between 0 and the max

value from Myopic Heuristic, dL1/re. Also, for simplicity, assume that V (I) = kI

where k is a constant. For the first period, given M1, we choose X1 such that it is

the maximum number possible less than f(M1, L1), since pX1 − V (I1) = (p − k)X1

for the first period, as seen in the objective function of (CPP 1). Here we assume

that k > p.

In subsequent periods, we first proceed with following algorithm for deciding on

Mt:

39



if (condition1 = false) {
while (condition2 = true) {
Mt = Mt − 1

}
} else {
while (condition1 = true) {
Mt = Mt−1 + 1

}
}

In the above, condition1 = cH + ct < (k+ 1)∂f(Mt,Lt)
∂Mt

, and condition2 = cF − ct <
(k+1)∂f(Mt,Lt)

∂Mt
. Basically, we will only be hiring/firing additional worker if the benefit

outweights the cost. Once we choose Mt, we can pick Xt in the same way we did for

period 1. We assume obsolescence of items is negligible in this process.

2.5.4 Computational Results

We present a computational study to evaluate the performance of the heuristics.

Based on arrival information we have from online citations company, we generated

50 sample data sets, each having 52-week time horizon comprising of 52 periods

with arrivals in each week. Arrival rates are randomly generated based on a given

range, and parameters were chosen among a range of reasonable values. Table 2.1

summarizes the parameters and their values used in the samples. We solved the

optimization problems using Bonmin on NEOS server using AMPL1. Bonmin (Basic

Open-source Nonlinear Mixed INteger programming) is an open-source C++ code for

solving general MILP, and features several algorithms including branch-and-bound

and decomposition algorithms2.

To validate the need for heuristics, we submitted a test problm to the server

1http://www.neos-server.org/neos/solvers/minco:Bonmin/AMPL.html
2https://projects.coin-or.org/Bonmin
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without using any heuristic. A 20-period problem in its original formulation from

section 2.3 with a sample set of parameters picked from ranges defined in Table 2.1

ran for 24 hours on NEOS server, and returned with incomplete result error.

As a measure of performance, we compare our heuristic solutions to the La-

grangean lower bound from equation (2.9), which we denote LBLg. We calculated

UB1 through UB3, which represent upper bounds obtained from myopic, conser-

vative, and sequential heuristic. Just for the purpose of comparison, we include

UBLP , which is obtained by relaxing integrality constraints from the original prob-

lem (CPP ), although this will almost always return infeasible solution. Following is

the summary of results over all data sets, showing average cost and suboptimality

gap relative to the Lagrangean lower bound, which is calculated as
UBi−LBLg

LBLg
for each

heuristic i.

UB1 UB2 UB3 UBLP

Average cost 377620 352943 339806 335267
Gap (%) 25.9 17.6 13.3 11.8

Among our three heuristics, sequential heuristic outperformed the other two with

relatively small suboptimality gap. In the next section, we look at a problem faced

by a real database company dealing with daily workload.

2.6 Auto-Cite Case Simulation

The Auto-Cite product was an on-line data base containing citations and refer-

ences to legal opinions from Federal and State courts. The company processes the

incoming legal opinions that are either electronic or on print and logs an entry into

Parameter At f(Mt, Lt) ct cH cF p V (It)

Value range (1000,6000) 5MtLt
100+Lt

(10,15) (20,200) (20,100) (1,5) kI, k ∈ (5, 10)

Table 2.1: Parameters used in sample data sets
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their database in predefined format. This workflow involves manual inputs from var-

ious teams. To be competitive in the citations services market, maintaining quick

turnaround time from publishing of an opinion to when it was accessible in their

database for clients was very important. (Karmarkar, 2014)

A new batch of information arrives to Auto-Cite six days a week at variable rates,

but the company does not have workers on Saturday to process the new information

coming in that day, and thus usually sees a high pile of unfinished cases on Monday.

There is a tradeoff between cost of resources and speed of processing. We want

to determine the optimal capacity and optimal number of cases to process in each

period.

We start with an assumption that each week consists of two periods, a“weekdays”

period and a weekend period, which we will distinguish using superscripts w and e,

respectively. The two periods will not be equal in length, since a weekend period

only consists of one day while there are five days in the weekdays period. However,

this definition will be useful in capturing different characteristics in staffing full-time

workers and part-time workers. We are given the number of cases that arrive in each

period. Full-time workers, who work fixed hours, work only in weekday periods, and

part-time workers only work in the weekend periods. The company has to decide how

many workers of each type to use in each period for week 1, 2, ..., N . We introduce

the following variables.

Parameters:

N =number of weeks in the planning horizon,

sf = hourly salary of a full-time worker,

sp = hourly salary of a part-time worker,

cH = cost of hiring a worker,

cF = cost of firing a worker,

r = processing rate for all workers (cases/hr),

Qw
t =number of items in the queue at the beginning of period w in week t,
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Qe
t =number of items in the queue at the beginning of period e in week t,

Awt = number of items that arrive at the beginning of period w in week t,

Aet = number of items that arrive at the beginning of period e in week t,

Lwt = workload in period w in week t,

Let = workload in period e in week t,

T̄ =upper bound for turnaround time,

f(W,L), f(H,L) =function of capacity and load for providing upper bound in

processing.

Decision variables:

W t = number of full-time workers used in week t,

Ht = number of part-time hours used in week t,

nht =number of workers hired in period t,

nf t = number of workers fired in period t,

Pw
t = number of items processed during period w in week t,

P e
t = number of items processed during period e in week t.

We assume the same processing rate for both full-time and part-time workers.

However, hourly wage of a part-time worker is higher than that of a full-time worker,

since part-time is fixed to the weekend periods. The objective of the company is

to minimize the cost of workers while meeting certain turnaround time goal for the

cases, which is formulated as:

min
Wt,Ht

N∑
t=1

40sfWt + spHt + cHnht + cFnft
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subject to

Qw
1 = Qw

N+1 (2.10)

H1 = HN (2.11)

W1 = WN+1 (2.12)

P i
t ≤ min(Lit, fi(Wt, L

i
t)) for i = w, e, t = 1...N (2.13)

Lit = Qi
t + Ait for i = w, e, t = 1...N (2.14)

Qw
t = Let−1 − P e

t−1 for t = 2...N + 1 (2.15)

Qe
t = Lwt − Pw

t for t = 1...N (2.16)

Wt = Wt−1 + nht−1 − nft−1 for t = 2...N + 1 (2.17)

Lwt +Aet
Pwt +P et

≤ T̄ for t = 1...N (2.18)

Wt, Ht, P
i
t , Q

w
t ∈ Z, for i = w, e, t = 1...N. (2.19)

Constraints (2.10), (2.11), and (2.12) impose a requirement for the wrap-around

solution. By wrapping around the last period to the first period, end-of-term ap-

proximation for the last period is no longer needed, and the solution represents an

equilibrium of the system. Constraint (2.13) is setting an upper bound to the number

of items processed using a clearing function in the same way as in section 2.3. Con-

straints (2.14) to (2.17) are flow balance equations for each period, and constraint

(2.18) imposes a turnaround time target by using the ratio of current load to current

throughput as a measure.

2.6.1 Four-week Problem

To get an idea of the tradeoff between turnaround time and cost, we start by

solving instances of this problem with manageable size. Each instance has four-week

horizon and different parameters for the target turnaround time T̄ . Table 2.2 lists

the parameters used in the instances. We assumed hourly wage of a part-time worker
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Awt Aet
t = 1 2000 300
t = 2 3000 600
t = 3 5000 800
t = 4 1000 300

N r sf sp cH , cF

4 5 10 15 200

Table 2.2: Parameters used in the 4-week example

who works on weekend to be 50% greater than that of a full-time worker. The cost of

hiring and firing were set substantially higher than the hourly wage, since adjusting

the number of workers during the week involved manual work at Auto-Cite.

In cases 1 and 3, no part-time hours are allowed. We varied the upper bound for

turnaround time between the first two cases and the last two to see the variation in

cost. The results are as follows:

Case 1 2 3 4
T̄ 2.5 2.5 1.25 1.25

Cost 27200 26830 33600 31690
Staff full-time full-time part-time(hrs) full-time full-time part-time(hrs)

1 17 16 1 12 13 1
2 17 16 1 18 16 25
3 17 16 79 27 16 459
4 17 16 1 12 13 1

Allowing part-time resource leads to cost savings, and the savings is greater be-

tween cases 3 and 4 with over 5 percent, compared to about 2 percent in the first

two cases where turnaround time bound is set twice as large. Although the arrival

load differed from week to week, the number of full-time workers is consistent over

the weeks in cases 1 and 2 due to the high cost of hiring and firing.

As a comparison, we then solved the same instances, with the cost of hiring

and firing reduced to one-tenth. Table 2.3 shows the new results. Now in all cases,
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Case 1 2 3 4
T̄ 2.5 2.5 1.25 1.25

Cost 26850 26830 27440 27435
Staff full-time full-time part-time(hrs) full-time full-time part-time(hrs)

1 16 16 1 11 12 1
2 18 17 1 18 17 1
3 14 17 1 27 26 2
4 16 16 1 11 12 1

Table 2.3: Results when CH = CF = 20

N r sf sp cH , cF

20 5 10 15 200

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Awt 3 4 5 2.5 5.5 3.5 3 4 2 3 5 4 2 2.5 5.5 6 4 2.5 3.5 2
Aet 5 6 7 3 2.5 6 8 4 2.5 5 5 6 7 3 2.5 3 4 2.5 4.5 5

Table 2.4: Parameters used in the 20-week example (Awt in 000’s, Aet in 00’s)

number of full-time workers varies along the planning horizon, and the value of having

part-time resource is not as pronounced with a small cost of hiring and firing.

We next look at a problem with a longer horizon with representative data from

Auto-Cite case.

2.6.2 Twenty-week Problem

Auto-Cite has varying daily arrival rate. From the daily arrival data, we take

sum of daily arrivals for each weekday period and weekend period over the period of

one year to come up with Awt and Aet for our 20-week planning horizon. Table 2.4

shows the arrival rates and other parameters used in this problem.

We compared three different upper bounds for the turnaround time under this

setting. Even-numbered cases had part-time workers included. The cost for each
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case is displayed below.

Case 1 2 3 4 5 6

T̄ 5 5 2.5 2.5 1.25 1.25
Part-time? N Y N Y N Y

Cost 172600 172100 179800 175500 189196 180024
Savings 0.3% 2.4% 4.8%

As seen in the 4-week problem before, the benefit from having part-time resources

is maximized when the target turnaround time is tight. Since this was the case for

Auto-Cite which constantly competes on time with other database products in the

market, incorporating Saturday part-time hours into their current scheduling policy

can reduce their total cost by considerable amount.

2.7 Conclusions and Future Research

In this chapter we study capacity planning and processing planning for informa-

tion content arriving periodically with a variable pattern. We model the problem

as a mixed integer nonlinear program to minimize the cost of workers including hir-

ing and firing costs and the cost of processing, while maximizing the value of the

database as a function of database size . The problem was decomposed into two

sub-problems for each period using Lagrangian relaxation, to obtain a lower bound

to the optimal value. Each decomposed problem is a dynamic program that can be

solved as convex optimization problem. We then proposed three heuristics, which

provided upper bounds to the minimization problem.

In addition, we examined a specific problem faced by a legal citations database

company (Auto-Cite, Karmarkar 2014), and showed that they can reduce the to-

tal cost by hiring part-time workers on weekends when they have to meet tight

turnaround time requirement.

Another approach can be used for solving the problem, in which we linearize

the nonlinear constraint linking the throughput and the number of workers. This
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can be a possible extension to the current solution method. We can also modify

how obsolescence is modeled to better capture realistic scenarios. The processing

time requirement can also be included in a separate constraint that involves average

system time, which is more complicated than simply setting an upper limit on the

work-in-process, since we need to find out a way to capture the residence time of

each processed item. The model presents many more opportunities for extensions

and future research.

Appendix 2.1: Clearing Function

We would like to approximate the relationship between the average work-in-

process (WIP) and the throughput rate for the system when there are multiple

servers processing. Under M/M/1 assumption (i.e., items arrive according to Pois-

son process and get processed by a single server with exponentially distributed service

time), clearing function can be derived using a few steps using Little’s Law (as in

Karmarkar 1989) to express the throughput as a function of WIP since there exists

simple expression for average time in queue. Under M/M/m assumption with arrival

rate λ and service rate µ, however, the equation involving the expected throughput

rate X, and the WIP W , assuming λ = X, becomes

W = XL

= X(Tq +
1

µ
)

= X

(
1

mµ−X
P (m+) +

1

µ

)
, (2.20)

where L is the leadtime, or the time in system, and Tq denotes the average time an

item spends in queue. The third equality comes from the standard expression for the

time in queue for M/M/m queues, with probability of waiting (more than m items

in the system) denoted P (m+). We cannot derive a closed from expression for X

from equation (2.20) above.
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Figure 2.3: Throughput vs. WIP (µ = 5)

We turn to the heavy traffic theory (see Köllerström 1974), which states that when

the traffic intensity is less than, but close to, unity, the waiting time is approximately

exponential with mean var(s/k)+var(t)
E(t)−E(s/k)

, where s and t are service and arrival processes,

respectively. Applying this to our M/M/m scenario, the mean waiting time is

Tq =
λ2 +m2µ2

mλµ(mµ− λ)
. (2.21)

Combining with equation (2.20), we obtain

X = f(m,W ) =
mµ(W +m)±mµ

√
(W +m)2 − 4(m− 1)(W − 1)

2(m− 1)
. (2.22)

Figure 2.3 illustrates the relationship between throughput and WIP for an arbitrary

service rate, for different number of processors (denoted as c in the graph). The ap-

proximated function of throughput appears concave increasing in WIP as expected.

To simplify the computation for CPP , we adopt the form used in Dobson and Kar-

markar 2011 with

f(M,L) =
MsL

α + L
, (2.23)
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where s is a service rate of a worker in a period and α ≥ 0 affects the shape of the

function. For other forms of clearing functions, Armbruster and Uzsoy (2012) has

an extensive discussion on various models where different types of clearing functions

are used.
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Chapter 3

Competing on Price and Release

Time for Information Content
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3.1 Introduction and Literature Review

Information chains acquire, process and distribute content in a way analogous to

physical goods in supply chains. One of the aspects that distinguishes information

chains from supply chains is that information may be held in ”inventory” for a long

time, since it does not deplete with sales or physically decay. However, information

nonetheless can lose value over time. Examples that clearly show such characteristics

include digital music, video content, financial data and more. In the previous chap-

ters, we have studied problems in the capacity planning stage of the chain related

to size of the content database and the processing time until content is available to

users. In this chapter we look at distribution stage of the information chain, which

comes after the acquisition, processing, and storage steps.

The most common and critical decision factor in the distribution stage for a

supplier is pricing the goods, or the content in the case of information chains. While

there is a large stream of literature addressing pricing and revenue management for

products and capacities, there appears to be less work specifically directed towards

online digital content. Mendelson and Whang (1990) derived an incentive-compatible

pricing scheme for a service facility involving multiple classes of users, such as a

computer system, a production line, or a communication facility. Cocchi et al. (1993)

studied pricing in computer networks and suggested that optimal pricing of network

services require that consumers are charged on the basis of service that they desire.

Both works focus on optimizing the efficiency of the system or network. Jain and

Kannan (2002) studied issues in pricing information products, which involved online

servers choosing between search-based and subscription-fee pricing. They present

conditions where subscription-fee pricing is optimal and also find that online servers

can compete in the market each making profit. In the early years of the internet,

network pricing problems addressed network congestion and loads which were not

negligible at the time.
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Figure 3.1: Plot of DVD sales on time

We study the pricing problem for information content in conjunction with decid-

ing when to release the content to the market. Figure 3.1 shows a graph of sales

revenue for 10 different DVD titles plotted weekly from the time they were released.

The speed of reduction in sales is different for each title, and it depends on the distri-

bution of consumer interest and sensitivity, but it is generally the case that popularity

of content decreases with time and that release time affects the market demand. The

importance of catering to individual needs has been increasing, and with modern

technology, some providers like Netflix succeed in attracting customers by making

recommendations based on past choices (Bennett and Lanning 2007). Recently, Au-

gust et al. (2013) studied optimal timing of distributing a film’s theatrical and video

releases. They present a consumer choice model that examines trade-offs between

substitutable products. Their model involves a market condition where a monopolist

studio makes release time and price selections such that equilibrium strategies of the

consumers are satisfied.

In general, for most content, releasing early is favored especially in secondary

markets like Netflix. As discussed in Chapter 2, however, there is cost associated
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with processing information content, and the cost for having shorter processing time

is higher in general. We develop a model in which market demand depends on the

utility of each individual customer, which is a function of price and release time.

Our objective is to study the optimal decision suppliers have to make in order to

maximize profit (or increase market share in case of more than one supplier). For

a monopolist supplier, we define the optimal price and release time decision under

different assumptions on customers’ utility functions. We then study a competitive

situation in which a supplier sells the content to two downstream channels who

distribute it to the market. The problem of two channels deciding on price and

release time for the content is a two player game with multiple parameters, a setting

analogous to product and price competition in Moorthy (1988). We characterize

conditions under which equilibrium prices exist.

3.2 Model Formulation - Monopolist Provider

For suppliers of information goods such as video content, the age of the content

is as important as price, since customers are very sensitive to the currency of the

content that they purchase. The value of the content declines as it ages, but getting

the content available sooner requires more work for the provider. We define p and t to

be the price and release time of the content respectively, which are decision variables

that the provider sets. We assume that there is cost associated with a release at

time t, denoted c(t). Furthermore, there is a fixed cost for acquiring the content in

addition to variable cost of processing which is proportional to the service rate, or

processing rate of the content, denoted µ. If we impose, for simplicity, the Poisson

arrival and service process assumption, we have from Little’s Law that t̄ = 1
µ−λ , or

µ = 1
t

+λ. Thus we obtain that c(t) = cf +k(1
t

+λ) = F + k
t
, with a given fixed cost

F and a positive constant k representing the cost for service rate. This cost implies

that the cost of instantaneous release (i.e., t = 0) is prohibitively large.
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Given a price and a release time, each customer has an associated utility function

that depends on personal parameters. We look at the problem faced by a profit-

maximizing content provider, starting with a monopolist model.

3.2.1 Linear Decay: Single Release

A monopolist content provider sets price and release time of the product to max-

imize profit. We assume that the demand for content is a certain fraction of the

total market size M , and that this fraction depends on the distribution of customer

preferences. Let S(p, t) = {θ|u(p, t|θ) ≥ 0}, where θ represents a customer-specific

characteristic (details will be discussed later). Thus a value θ is in set S if and only if

the customer having that characteristic has nonnegative utility associated with given

price and release time. We can then define demand as

D(p, t) = M

ˆ
θ∈S

dF (θ), (3.1)

where F (θ) is the cumulative distribution function of θ. Then the profit maximization

problem for monopolist provider can be stated as

max
p,t

Π(p, t) = pD(p, t)− c(t). (3.2)

We use a specific utility function to introduce details to the above problem. Let

u(p, t) = f(t) − p, where f(t) can be viewed as a price each customer is willing to

pay when the content has age t at time of release. We first consider a utility function

which declines linearly with time, with f(t) = R − mt. R is the reservation price

for when the content is released immediately (i.e., t = 0), and m is the impatience

parameter of the customer, which is nonnegative. The higher the value of m, the

faster the customer’s utility decreases as t increases. Hence, R and m are the equiv-

alent of θ defined before, and set S is then defined as S(p, t) = {(R,m)|R ≥ p+mt}.
Figures 3.2a and 3.2b illustrate “Buy Regions,” colored areas representing the set of
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(a) S(10, 1) (b) S(4, 10)

Figure 3.2: Buy Regions for different price-time pairs.

customers (i.e., (R,m) values) who have positive utility given a certain price and

release time.

Let F (R,m) denote the joint cdf of the two parameters, and suppose that cus-

tomers’ reservation price and impatience parameter are independent and are dis-

tributed uniformly from 0 to R̄ and 0 to m̄, respectively. For tractability, we assume

R̄ > k and R̄ > m̄. With p ∈ (0, R̄) and t > 0, we can rewrite equation (3.1) for

demand as

D(p, t) = M

ˆ
dF (R,m) (3.3)

=


M
R̄m̄

(R̄− p+ R̄− p− m̄t)m̄/2 = M(1− 2p+m̄t
2R̄

) when p ≤ R̄− m̄t,
M
R̄m̄

(R̄− p)( R̄−p
t

)/2 = M(R̄−p)2

2R̄m̄t
when p > R̄− m̄t.

We formulate a two-stage problem by separating price and time in the profit

function. Let Vp(t) = maxp[pD(p, t)] represent the maximum revenue for a given

release time t. Then equation (3.2) can be written as

max
p,t

Π(p, t) = max
t

[Vp(t)− c(t)]. (3.4)
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For a given t, we determine the revenue maximizing price p∗(t), which is characterized

in the following proposition.

Proposition 5. For any t > 0, the revenue pD(p, t) is concave in p. If t < 2R̄
3m̄

, the

revenue maximizing price is p∗(t) = 2R̄−m̄t
4

; otherwise, we have p∗(t) = R̄
3
.

Proof. From equation (3.3), when p ≤ R̄−m̄t we have ∂
∂p

(
pD(p, t)

)
= M(1− 4p+m̄t

2R̄
),

and ∂2

∂p2

(
pD(p, t)

)
= −2M

R̄
< 0, which shows that the revenue function is concave in

p in this region. Solving the first order condition gives p∗(t) = 2R̄−m̄t
4

, and if 2R̄−m̄t
4

<

R̄ − m̄t, or equivalently, t < 2R̄
3m̄

, revenue is maximized at p∗(t). On the other hand,

when p > R̄−m̄t we have ∂
∂p

(
pD(p, t)

)
= M(R̄−p)(R̄−3p)

2tR̄m̄
, and ∂2

∂p2

(
pD(p, t)

)
= M(3p−2R̄)

tR̄m̄
,

which shows concavity of revenue function for p ≤ 2R̄
3

. First order condition gives

p∗(t) = R̄
3

. Similarly, if R̄
3
≥ R̄ − m̄t, or t ≥ 2R̄

3m̄
, then revenue is maximized at

p∗(t) = R̄
3

. Note that for t < 2R̄
3m̄

, p > R̄ − m̄t > R̄
3

and first derivative is negative,

which completes the proof that the revenue function is concave in p for any t > 0.

It is interesting to note that for t above a threshold, optimal price does not depend

on t. You can see from Figure 3.2b and the second part of equation (3.3) that when

t is large, the revenue is less, and the derivative of the demand does not depend on

t. By obtaining Vp(t), the problem from equation (3.3) then becomes

max
t

[Vp(t)− c(t)] =


maxt

[
M(2R̄−m̄t)2

16R̄
− F − k

t

]
when t < 2R̄

3m̄
,

maxt

[
MR̄(R̄−R̄/3)2

6tR̄m̄
− F − k

t

]
otherwise,

(3.5)

and we can characterize the profit maximizing t as follows.

Proposition 6. Assuming market size M is sufficiently large, profit Π(t) is convex

decreasing in t for t ≥ 2R̄
3m̄

; and for t < 2R̄
3m̄

,Π(t) is concave for t < 3

√
16kR̄
Mm̄2 and convex

decreasing for t ≥ 3

√
16kR̄
Mm̄2 , and it reaches a maximum in this region.

Proof. Based on equation (3.5), for t ≥ 2R̄
3m̄

, Π
′
(t) = 27m̄k−2MR̄2

27m̄t2
< 0, and Π

′′
(t) =

4MR̄2−54m̄k
27m̄t3

> 0. For t < 2R̄
3m̄

, Π(t) = M(2R̄−m̄t)2

16R̄
− F − k

t
, and we have limt→0+ Π(t) =
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−∞, with limt→0+ Π
′
(t) > 0. Also, Π

′′
(t) = Mm̄2

8R̄
− 2k

t3
, which shows that Π(t) is

concave for t < 3

√
16kR̄
Mm̄2 , and convex thereafter. At the boundary, we have Π( 2R̄

3m̄
) =

2MR̄2−27m̄k
18R̄

> 0 , and Π
′
( 2R̄

3m̄
) = m̄(27m̄k−2MR̄2)

12R̄2 < 0. Thus, maximum profit is obtained

at t∗ < 2R̄
3m̄

satisfying Π
′
(t∗) = Mm̄2t

8R̄
− Mm̄

4
+ k

t2
= 0.

To find t∗, we can solve the first order condition numerically, a cubic equation in

t.

3.2.2 Linear Decay: Multiple Releases

Consider a monopolist provider who now tries to capture different segments of cus-

tomers in the market by introducing multiple releases. For example, a movie distribu-

tion company can first release the movie at theaters (high price and low release time),

and may later release it on DVD at a lower price. The set of customers company

can capture will grow with each additional release, since S1(p1, t1) = {(R,m)|R ≥
p1 + mt1} and S2(p2, t2) = {(R,m)|R ≥ p2 + mt2}, which gives S1 ⊂ S1 ∪ S2, as

shown in Figure 3.3. S1∪S2, the entire shaded area in the figure represents the group

of customers whose (R,m) values fall within the set. Among the group, however,

who will purchase the product at the first release and who will purchase at the next

release is not immediately observed.

We first assume that the provider will announce the times and prices of two

releases to customers, and assume that each customer will buy once to maximize

utility based on the information given. Recall that the definition of utility was

u(p, t) = R −mt− p. Thus, when consumers are well-informed, they will choose to

buy a release (i.e., pick a price-time pair) which gives higher utility. Let R1 and R2

represent the set of customers who purchase at the first release and the set of those

who purchase at the second release, respectively. Given p1, t1, and p2, t2, customers

belong to R1 if (R,m) ∈ S1(p1, t1) and u(p1, t1) ≥ u(p2, t2), or (R,m) ∈ S1(p1, t1) and

m ≥ p1−p2

t2−t1 . Similarly, customers belong to R2 if (R,m) ∈ S2(p2, t2) and m < p1−p2

t2−t1 .
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Figure 3.3: S1(10, 1) ∪ S2(5, 6)

Intuitively, whether they choose to buy at the first or second release depends on the

impatience of customers.

Figure 3.4 shows two segments of customers R1 and R2 as blue and yellow areas,

and we can see that in the case of two releases, some of the customers who belong

to S1 will wait to buy at the second release at lower price p2. Demands from two

segments D1 and D2 can be derived using the general equation (3.1). Let m∗ = p1−p2

t2−t1 ,

and calculating the demands is as follows:

D1(p1, t1) =
M

R̄m̄
(R̄− p1 −m∗t1 + R̄− p1 − m̄t1)(m̄−m∗)/2

=
M

2R̄m̄
(2R̄− 2p1 −m∗t1 − m̄t1)(m̄−m∗), (3.6)
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Figure 3.4: Segmentation of customers into R1 and R2

D2(p2, t2) =
M

R̄m̄

(
R̄− p2 + R̄− p2 −m∗t2)m∗/2

=
Mm∗

2R̄m̄

(
2R̄− 2p2 −m∗t2). (3.7)

Without loss of generality, the demands were derived under the assumption that

t1 < t2, p1 > p2. Also, in this case, m∗ < m̄ and p1 + m∗t1 < R̄. The maximization

problem for the provider is to determine the price and release time of the two different

releases, which is as follows:

max
p1,t1,p2,t2

π(p1, t1, p2, t2) = p1D1(p1, t1) + p2D2(p2, t2)− c(t1)− c(t2), (3.8)

where we assume that cost of time is the same for both releases.

3.2.3 Exponential Decay

Starting with the same setting as in section 3.2.1, we define a utility function

that is not linear. u(p, t) = f(t) − p, where f(t) = Re−mt with definitions for m
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Figure 3.5: S(10, 1), or “Buy Region”

and t unchanged. Now, the set S becomes S(p, t) = {(R,m)|R ≥ pemt}. Figure 3.5

illustrates a “Buy Region,” when p = 10, and t = 1, whose shape is different from

Figures 3.2a and 3.2b.

As before, let F (R,m) denote the joint cdf of the two parameters, and suppose

customers’ reservation price and impatience are independent and are distributed

uniformly from 0 to R̄ and 0 to m̄. Then we can rewrite equation (3.1) for demand
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as

D(p, t) = M

ˆ
dF (R,m)

= M

m̂̄

0

R̂̄

pemt

1

R̄m̄
dRdm

=
M

R̄m̄

m̂̄

0

(R̄− pemt)dm

=
M

R̄m̄

(
R̄m̄− p

t
(em̄t − 1)

)
= M − Mp

R̄m̄t
(em̄t − 1), (3.9)

and the maximization problem from equation (3.2) becomes

max
p,t

Π(p, t) = pD(p, t)− c(t)

= pM − Mp2

R̄m̄t
(em̄t − 1)− (F +

k

t
). (3.10)

We formulate a two-stage problem by separating price and time in the profit

function. Let Vp(t) = maxp[pD(p, t)] represent the maximum revenue for a given

release time t. Then equation (3.2) can be written as

max
p,t

Π(p, t) = max
t

[Vp(t)− c(t)]. (3.11)

For any given t, we determine the revenue maximizing price p∗(t), which is charac-

terized in the following proposition.

Proposition 7. For any t, the revenue pD(p, t) is concave in p. The revenue max-

imizing price is p∗(t) = R̄m̄t
2(em̄t−1)

, which is monotonically decreasing in t.

Proof. ∂
∂p

(
pD(p, t)

)
= M − 2Mp

R̄m̄t
(em̄t − 1), and ∂2

∂p2

(
pD(p, t)

)
= − 2M

R̄m̄t
(em̄t − 1) ≤

0, which shows that the revenue function is concave in p. Solving the first order

condition gives p∗(t), and it is straightforward to show that the revenue maximizing

price is monotonically decreasing in t, as ∂
∂t

(
p∗(t)

)
= − R̄m̄

(
em̄t(m̄t−1)+1

)
2(em̄t−1)2 ≤ 0.
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It is intuitive that the revenue maximizing price as a function of time decreases

as release time increases. By obtaining Vp(t), the problem from equation (3.11) then

becomes

max
t

[Vp(t)− c(t)] = max
t

[
MR̄m̄t

4(em̄t − 1)
− F − k

t

]
. (3.12)

The shape of the profit function varies depending on the values of the constants, but

it is possible to find profit-maximizing t under certain conditions as explained in the

following proposition.

Proposition 8. There exists a t∗ > 0 that generates maximum positive profit Π(t∗)

under the following conditions:

• F < MR̄
4

is a necessary condition for having nonnegative profit.

• A sufficient condition for the existence of t∗ is that for some t > 0, MR̄m̄t
4(em̄t−1)

>

F + k
t
.

Proof. By definition, the domain of Π(t) = MR̄m̄t
4(em̄t−1)

− F − k
t

is t > 0, and it is

continuous in the domain. We first characterize the behavior of the function by

looking at its limits. We see that limt→0+ Π(t) = −∞, and limt→∞Π(t) = −F .

Since Π(t) is continuous and bounded from above, Π(t) > 0 for some t implies that

Π(t) = 0 for at least two distinct values of t in the domain, and therefore there must

exist t∗ with Π′(t∗) = 0, and t∗ yields the maximum profit greater than zero.

Also, MR̄m̄t
4(em̄t−1)

is monotonically decreasing in t, with limt→0
MR̄m̄t

4(em̄t−1)
= MR̄

4
. If

F ≥ MR̄
4

, F + k
t
> MR̄

4
≥ MR̄m̄t

4(em̄t−1)
, which gives Π(t) < 0, proving the necessary

condition.

As expected, a sufficiently high fixed cost or service-rate cost will prevent positive

profit. In Figure 3.6, profit functions under different parameters are illustrated with

R̄ = 20 and m̄ = 2 fixed. We are only interested in situations represented in Figure

3.6a, as it is possible to have no positive profits as in Figures 3.6b or 3.6c. To find

t∗, we can numerically solve the first order condition Π′(t) = 0.
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(a) M = 100, F = 10, k = 3:

t∗ = 0.08, Π(t∗) = 413.6.
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(b) M = 10, F = 55, k = 3:

t∗ = 0.27, Π(t∗) = −28.4.
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(c) M = 10, F = 10, k = 30:

no t∗ <∞.

Figure 3.6: Profit functions under different parameters

3.3 Supplier with Two Distribution Channels

We now consider a monopolist supplier who sells proprietary content to two sep-

arate distributors A and B, who then distribute it to customers. Let pA, tA, and

pB, tB denote the parameters of distributor A and distributor B. The demand for

channel A now depends on the aforementioned four parameters, the price and re-

lease time of channels A and B. We use the same utility function for customers, with

u(p, t) = −mt+R−p, where m and R are impatience parameter and reservation price

of each customer as defined in section 3.2, both uniformly distributed. Customers

will only buy if it generates nonnegative utility, or when R ≥ p + mt. Customers

will buy from channel A if and only if u(pA, tA) ≥ u(pB, tB), or m ≥ pA−pB
tB−tA

. Figure

3.7 illustrates how customers are segmented by their value of m. In this generic

example, pA = 5, pB = 3, tA = 1, and tB = 3. Customers whose (R,m) values fall

in the yellow region will purchase from channel B, and those with values in the blue

region will purchase from channel A. Figure 3.7 is analytical to Figure 3.4, except

that demand is now split between two different distributors.
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Figure 3.7: Segments of customers buying from providers A and B

3.3.1 Channel Competition

We start with a model where the supplier charges fixed price psA and psB to both

distributors, and decides the release times tA and tB for them. In competition be-

tween two channels, the distributors only need to decide on prices to charge the

customers. From equations (3.6) and (3.7), we have the demands for channels A and

B from the end customers given pA,pB and tA, tB. Let vA and vB denote the variable

cost of providing the content for two distributors. The profit for distributors A and

B is calculated as:

Πi(pi) = (pi − vi)Di − psi , (3.13)

for i = A,B, where DA and DB are from equations (3.6) and (3.7). Given the

supplier’s prices and release times, the pricing problem for distributor i is then

maxpi [(pi − vi)Di − psi ], and two channels play a simultaneous game. To solve the

problem, we examine each distributor’s response price as a function of the other’s

price. Without loss of generality, we assume that tA < tB. We first establish the

following Lemmas.
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Lemma 9. For channel B, the optimal response price is 0 when pA is set to 0.

Since pB > 0 will result in zero demand based on our assumption on tA and tB,

the result is straightforward.

Lemma 10. ΠA(pA) is concave and obtains its maximum value for pB below a thresh-

old. For pB greater than the threshold, it is optimal for distributor A to price just

below pB and capture the entire market.

Proof. First order condition for provider A is ∂ΠA
∂pA

= DA+(pA−vA)∂DA
∂pA

= −2(vA−pA)
tB−tA

( tA(pA−pB)
tB−tA

−
R + pA) − (m̄ − pA−pB

tB−tA
)( tA(pA−pB)

tB−tA
+ m̄tA − 2R̄ − 2vA + 4pA), and second order con-

dition gives ∂2ΠA
∂p2
A

= 2∂DA
∂pA

+ (pA − vA)D
′′
A ≤ 0, which indicates concavity. ΠA(pA)

is 0 for pA < pB due to the assumption on tA and tB, so we only examine pA ≥
pB. In order to have an optimal pA > pB, we need ∂ΠA

∂pA

∣∣∣∣
pA=pB

> 0. For pB >

1
2
(−
√

2t2Am̄
2 − 6tAtBm̄2 + 4t2Bm̄

2 + R̄2 − 2R̄vA + v2
A − 2tAm̄+ 2tBm̄+ R̄+ vA) , we

have ∂ΠA
∂pA

< 0 for all pA ≥ pB, which proves that for pB below the threshold, there

exists p∗A > pB maximizing ΠA(pA). For pB greater than the threshold, ΠA(pA) is

concave decreasing in pA.

Lemma 11. p∗A > 0 when pB = 0.

Proof. From Lemma 10, we can use first order condition to obtain p∗A, which then

proves the result.

From the first order condition, we have p∗A(pB) = −B+
√
B2−4AC
2A

, where A = 6 +
3tA

tB−tA
, B = 1

tB−tA
(t2Am̄− tAtBm̄− 4tApB − 2tAvA) + 5tAm̄− 4(tBm̄+ pB + R̄ + vA),

and C = 1
tB−tA

(tAp
2
B + tAtBm̄pB− t2Am̄pB + 2tAvApB) + tAm̄(tAm̄− tBm̄− pB− 2R̄−

2vA) + tBm̄(2R̄ + 2vA) + 2R̄p+ 2vApB + 2vAR̄. We derive the slope of the response

function which has the following property.

Lemma 12. The derivative of the response function for A with respect to PB is not

greater than 1.
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Figure 3.8: Response functions for A and B

Proof. Taking derivative of the response function, we have
∂p∗A(pB)

pB
= tA(pB+2pA−R̄−2vA)+tB(R̄+vA−2pA)

2tA(pA+pB−R̄−vA)+tB(2R̄+vA−3pA)
. It can be shown that

∂p∗A(pB)

pB
≤ 1 ⇐⇒

tBpA − tApB ≤ R̄(tB − tA), and since by assumption R̄ ≥ pA ≥ pB, this completes

the proof.

Thus, we can assume that given sufficiently large R̄, p∗A(pB) will start at a positive

value, increases as pB increases at a slower rate than pB until pB reaches the threshold,

and then will have a slope of 45 degrees, since p∗A(pB) = pB − ε for pB greater than

the threshold, as illustrated by the blue line in Figure 3.8.

Now we can similarly analyze response function p∗B(pA) in order to characterize

equilibrium prices.

Lemma 13. For 2tA ≤ tB and pB ≤ T , and for 2tA ≥ tB and pB ≥ T, ΠB(pB) is

concave, and it achieves a maximum.

Proof. First order condition for provider B is ∂ΠB
∂pB

= DB + (pB − vB)∂DB
∂pB

= ((vB −
pB)(pA− pB)tB + (pA− pB)(2pB − vB − pA)tB)/(tB − tA)2 + ((2R− 2pB)(vB − pB) +

(pA − pB)(2(vB − pB) + 2R − 2pB))/(tB − tA), and second order condition gives
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∂2ΠB
∂p2
B

= (4R(tA− tB)+4tA(pA+vB)+6tBpB−12tApB−2tBvB. Solving for ∂2ΠB
∂p2
B
≤ 0,

we obtain concavity for the two cases: 2tA ≤ tB and pB ≤ T , and 2tA ≥ tB and

pB ≥ T , where the threshold T = 2tA(pA+R+vB)−tB(2R+vB)
6tA−3tB

.

Proposition 14. There exists an equilibrium (p∗A, p
∗
B) pair.

Proof. Unlike ΠA(pA), ΠB(pB) always achieves a maximum. From our original as-

sumption that tA < tB, we have p∗B < p∗A. Combining this with Lemmas 9, 11, and

12, the response functions p∗A(pB) and p∗B(pA) cross, thus completing the proof.

Although closed-form solutions for p∗A and p∗B are not available, we have shown

that when the supplier presets the release times for the distributors, there exist

equilibrium prices for distributors A and B.

3.3.2 Pricing Problem for the Supplier

Now we look at the supplier’s problem of deciding on the prices for the content

sold to distributors A and B. First assume that the release times tA and tB are set in

advance due to technological limits and regulations. The supplier can either charge a

one-time fixed price or a variable price proportional to each channel’s revenue. The

following proposition illustrates the case of fixed prices.

Proposition 15. When the supplier charges a fixed price to the distributors, the

optimal price is ps∗i = (p∗i − vi)D∗i for i = A,B.

Proof. Supplier’s problem is max[psA + psB]. From equation (3.13), distributor’s prob-

lem was maxpi [(pi− vi)Di− psi ], and distributors will not purchase from the supplier

if their expected profit is negative.

If distributors pay the supplier a variable price based on the volume of sales,

assuming fixed release times, the supplier’s problem is

max
psA,p

s
B

[psADA + psBDB] = max
psA,p

s
B

[psADA(p∗A) + psBDB(p∗B)]. (3.14)
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In the case of variable price charged by the supplier proportional to the actual

demand, we start by examining the case of equal price for both distributors, i.e.,

psA = psB. Let ps denote this price. The supplier is solving a profit maximization

problem in which every parameter involved depends on ps, the price it sets for the

distributors. Note that equation (3.13), the profit for distributor A and B, will now

be Πi(pi) = (pi − vi − psi )Di, for i = A,B since distributors do not pay a fixed fee to

the supplier in this case. The following lemmas lead to the analysis of the solution

method.

Lemma 16. The derivatives of the response functions p∗A and p∗B with respect to ps

are nonnegative.

Proof. p∗A and p∗B are optimal solutions to each distributor’s profit maximization

problem. If the optimal price for a distributor decreases when ps goes up, the dis-

tributor’s profit becomes negative for p∗i < psi , which is not optimal.

This says that the prices set by the distributors increase as the supplier charges

higher price, which is intuitive.

Lemma 17. For m̄ sufficiently large, the sum of the demands DA(p∗A) and DB(p∗B)

decreases as ps increases.

Proof. We have equations for demands from equations (3.6) and (3.7). Let p∗
′
Adenote

∂p∗A(ps)

∂ps
for notational purpose. Taking derivative with respect to ps, we have

∂DA

∂ps
=

M

2R̄m̄

[
p∗
′
A − p∗

′
B

tB − tA
(2R̄− 2p∗A − 2m̄tA)− 2m̄p∗

′

A +
2p∗

′
A(p∗A − p∗B)

tB − tA

]
(3.15)

∂DB

∂ps
=

M

2R̄m̄

[
p∗
′
A − p∗

′
B

tB − tA
(2R̄− 2p∗A − m̄tA)− 2p∗

′
A(p∗A − p∗B)

tB − tA

]
. (3.16)

From the sum of the two derivatives, we get ∂DB
∂pd

+ ∂DA
∂pd

< 0 if and only if m̄ >

p∗
′
A−p

∗′
B (4R̄−4p∗A)

2tBp
∗′
A+tA(p∗

′
A−3p∗

′
B )

.
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Figure 3.9: Graph of supplier’s profit on ps

In order to solve the supplier’s problem, maxps [p
s(DA(p∗A) + DB(p∗B))], we first

characterize the first order and second order conditions of the objective function. Let

f(ps) = ps(DA(p∗A) + DB(p∗B)). We have f
′
(ps) = ps(D

′
A + D

′
B) + DA + DB, with

D
′
i = ∂Di

∂ps
. Also, f

′′
(ps) = ps(D

′′
A +D

′′
B) + 2(D

′
A +D

′
B). And the following proposition

partially characterizes the objective function.

Proposition 18. For m̄ sufficiently large, the objective function f(ps) is concave in

ps.

Proof. From equations (3.15) and (3.16), we have ∂2DA
∂(ps)2 + ∂2Db

∂(ps)2 = M
2R̄m̄

[
p∗
′′
A −p

∗′′
B

tB−tA
(2R̄−

2p∗A − 3mtA) − 4(p∗
′
A−p

∗′
B )p∗

′
A

tB−tA
− 2m̄p∗

′′
A

]
. Similar to the proof for lemma 17, we have

D
′′
A +D

′′
B < 0 for m̄ >

p∗
′′
A −p

∗′′
B (4R̄−4p∗A)

2tBp
∗′′
A +tA(p∗

′′
A −3p∗

′′
B )

.

For both equal or different supplier prices, we are able to find the optimal prices

numerically, with different tA and tB values. Figure 3.9 illustrates proposition 18.
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3.4 Conclusion and Future Work

In this chapter we modeled and studied a decision problem faced by a supplier of

information content. In today’s fast-paced digital market, the speed of release of a

new content is as important as its price. A lot of people are willing to pay premium to

receive a new release sooner, although the willingness to pay varies across individuals.

With the assumption that customers are sensitive to both price and release time of

content, we studied the profit maximization problem for a monopolist provider under

different assumptions on customer utility functions, and showed that the optimal

price for the monopolist provider exists when underlying utility function is linear.

Then we considered the case of a supplier with two downstream distribution

channels where the channels have to compete on setting their price and release time

for the identical content to attract more customers. An example would be a movie

provider as a single supplier, with different distributors as their downstream channels

competing on price and release time. When supplier fixes the release time for the

content and charges a one-time fixed price to the channels, we find that there is an

equilibrium pair of prices for the channels to charge the customers. In the case of

the supplier charging variable prices proportional to the customer demand for each

distributor, we show that the objective function for the supplier is concave in the

case of equal pricing structure.

Further research could extend the work to study the characteristics of optimal

price and release times when there is more than one supplier in the market. It would

be interesting to analyze the differences in supplier behavior for other customer utility

models. Another extension would be to examine the channel-level problem of deciding

on their own release times instead of having it fixed by the supplier.

We have so far defined customers with two parameters: impatience and reser-

vation price, and assumed that they will always purchase content that gives them

positive utility. As in August et al. (2013), we could add quality parameters to
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the content to expand the customer utility model for choosing whether to buy con-

tent at certain time, which, though significantly more complex, could model the real

behavior of buyers more closely.
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