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ABSTRACT OF THE DISSERTATION 

 

Integrating Physical and Genetic Interaction Networks for Biological 

Pathway Discovery 

 

by 

Sourav Bandyopadhyay 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California, San Diego 2010 

 

Professor Trey Ideker, Chair 

Professor Vineet Bafna, Co-chair 

 

The goal of understanding complex biological systems and how they are 

perturbed to cause disease has long been a central focus of biology. The past decade has 

seen the creation and maturation of a number of new technologies designed to study 

biological pathways on a genome-wide scale.  Rather than obtaining information about 

the function of one gene or protein at a time, such approaches can offer insight into the 

activity of every gene and protein in the cell all in the context of one experiment.   

 One fundamental mode of gathering biological insight is through identifying 

which proteins in the cell interact physically, such as those which form protein complexes 

or biochemical pathways. Techniques such as yeast-two hybrid and co-
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immunoprecipitation followed by mass spectrometry allow the determination of a 

physical interaction map which details binding interactions between proteins on a large 

scale.  Another fundamental mode of biological discovery is through assaying genetic 

interactions which arise when mutations in two genes produce a phenotype that is 

surprising in light of each mutation’s individual effects. For example a synthetic lethal 

genetic interaction is indicated when deletions in two genes which are not essential for 

viability cause lethality when deleted together. Genetic interaction maps can be 

determined in high-throughput via SGA (Synthetic Genetic Array) technology. 

In Chapter 2 we derive and analyze a large physical protein interaction map 

centered on a set of human protein kinases and show how biological insight can be 

derived from such large-scale screens. In Chapter 3, we develop methods for the 

comparison of such physical protein interaction maps between species in order to identify 

proteins whose function is conserved throughout millions of years of evolution. 

In Chapter 4 we develop algorithms to integrate both physical and genetic 

interactions together for the purpose of biological pathway discovery. Moreover, our 

approaches create maps of genetic interactions that provide a picture of the global 

organization of pathways and complexes within the cell, which we apply to create a map 

of functional relationships among protein complexes involved in chromosomal biology. 

In Chapter 6, we apply this approach in two different yeast species and discover that 

while physical protein interactions are largely conserved across species, many genetic 

interactions are rewired which gives us valuable insight into pathway architecture. Finally 

in Chapter 7, we focus on the discovery of genetic interactions involved in the DNA 

damage response by assaying how different gene mutants respond to a drug which causes 
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DNA damage and then demonstration how this elucidates pathways involved in this 

process.



 
 

1 
 

Chapter 1. Introduction 

A central goal of biology is to understand the web of molecular interactions which 

give rise to cellular form and function. Our understanding of biology took a great leap 

forward with the elucidation of the central dogma of molecular biology. DNA forms an 

inherited genetic code delineating thousands of genes which are transcribed into mRNA 

which are then ultimately translated to make proteins. This discovery has served to unify 

several disciplines of biology which focus on different aspects of this dogma. On the 

level of DNA, genetics is the study of genes and heredity to understand how variations in 

DNA can give rise to particular phenotypes such as disease. Molecular biology seeks to 

understand the complex web of interactions between molecules and proteins which 

govern cellular function. While the fields may be distinct disciplines, they are highly 

intertwined. For example, mutations in the DNA sequences of genes can be reflected in 

mutations in their protein products which affect their molecular function through changes 

in interactions with other molecules. In the worst case, such changes in the function of 

proteins through mutations in DNA can ultimately lead to disease and even lethality. 

In the post-genomic era, mapping of physical and genetic networks have become 

an effective approach for understanding cellular function. Physical interactions dictate the 

architecture of the cell in terms of how direct associations between molecules constitute 

protein complexes, signal transduction pathways, and other cellular machinery.  Genetic 

interactions define functional relationships between genes, which give insight into how 

this physical architecture translates into phenotype.  Genetic interactions report the extent 

to which a phenotype caused by one mutation is affected by another mutation, indicating 
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pairs of genes which jointly affect a phenotype.  The complementarities between physical 

and genetic interactions has been strikingly demonstrated in yeast, for which less than 1% 

of genetic interactions of the synthetic lethal type are also observed physically1.  It has 

also been exploited numerous times in classical genetics and biochemistry, in which a 

great many pathways have been understood only through integration of both physical and 

genetic interactions (the LIN-12/Notch signaling pathway2 and the actin cytoskeleton3 are 

excellent examples). The modes by which genetic and physical interactions complement 

one another have not yet been fully elucidated; however, a growing body of work has 

begun to reveal a complex but concrete set of principles governing their relationships.  

The work in this dissertation illustrates how interactions of these different types can be 

combined to assemble a more comprehensive picture of biological systems.   

Protein-protein interactions mediate most all of the processes in the cell.  In most 

cases, proteins act in concert with each other as part of pathways or larger molecular 

assemblies called complexes.  Systematic discovery of these physical associations can 

expand our knowledge base and our understanding of cellular behavior in terms of 

outlining all the possible reactions or catalytic steps in the cell.  Until recently, protein 

interactions were mainly discovered by small-scale methods such as co-

immunoprecipitation and FRET microscopy which reveal only a small number of protein 

interactions in one experiment. Now, high-throughput techniques like yeast two-hybrid 

(Y2H)4 and tandem affinity purification coupled with mass spectrometry (TAP-MS)5 

reveal protein interactions at the level of the whole proteome resulting in the generation 

of a large number of proteins interactions.  In TAP-MS studies proteins are used as bait in 

a co-immunoprecipitation assay and the pulled down proteins are separated and identified 
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using mass spectrometry.  Y2H is a technique which is based on the functional 

reconstitution of an intact transcription factor that activates reporter gene expression 

(Figure 1.1).  Y2H has been widely used to map interactomes of eukaryotic species such 

as that of S. cerevisiae6,7, C. elegans8 , D. melanogaster9, and H. sapiens10,11.   

In Chapter 2 I describe the generation and analysis of a large scale Y2H network 

focused on human Mitogen Activated Protein Kinase (MAPK) pathways which form the 

backbone of signal transduction within the mammalian cell. I applied a systematic 

experimental and computational approach to map thousands of interactions among human 

MAPK-related proteins and assemble them into functional modules. Using this physical 

mapping approach I was able to predict a number of proteins which function in the 

MAPK pathway. Using a genetic technique of siRNA interference, I was able to show 

Figure 1.1: The yeast two-hybrid system.  

The bait protein (X) is fused to the DNA binding 
domain (DB) of the transcription factor GAL4. The prey 
protein (Y) is fused to the transcription activation domain 
(AD) of a transcription factor.  An interaction between 
bait and prey hybrid proteins (X-Y) results in the 
assembly of a functional transcription factor which drives 
the expression of a reporter gene (either HIS3, URA3, or 
lacZ).  



4 
 

 
 

that many of these proteins function in the MAPK pathway.  This study illustrates an 

approach for probing signaling pathways based on functional refinement of 

experimentally-derived protein interaction maps. 

Evolutionary conservation is a fundamental principle in biology that is widely 

used to infer functional relationships among species.  For example, conservation of 

protein/gene sequences across species is used to make function and domain 

assignments12.  In the same vein, comparing protein interaction networks across species 

can highlight evolutionarily conserved and diverged pathways.  In the MAPK study I was 

able to identify hundreds of human protein interactions which were conserved across 

species. A conserved interaction is identified if the two interacting human proteins have 

significant homology with two proteins in another species which have also been reported 

to interact. Based on a conserved interaction, one possible conclusion is that the two 

proteins encompass the same function in the two species. In Chapter 3, I describe an 

approach to compare interaction maps across different species in order to identify genes 

which are operating in a functionally identical fashion (i.e. functional orthologs). This 

approach is able to identify functional orthologs among large gene families where 

sequence-based information might not be adequate to identify which proteins across 

species are the most similar functionally. 

In contrast to physical interactions, genetic interactions represent functional 

relationships between genes, in which the phenotypic effect of one gene is modified by 

another13,14.  Genetic interactions are identified by comparing the effect of mutating each 

gene individually to the effect of the double mutant.  For example, “synthetic sickness” 

(or in the extreme, “synthetic lethality”) is a negative genetic interaction in which the 
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measured phenotype is growth, and mutating both genes results in slower growth than 

expected from either mutation alone (termed SSL, or synthetic sick/lethal).  In yeast, 

large networks of genetic interactions are being measured using homozygous gene 

knockouts based on Synthetic Genetic Arrays (SGA)15, diploid-based Synthetic Lethality 

Analysis on Microarrays (dSLAM)16.  All of these methods allow the phenotypic 

consequences of double-mutant combinations to be assayed in high-throughput formats17.   

In its simplest form, Synthetic genetic array analysis involves a series of replica-

pinning procedures, in which mating and meiotic recombination are used to convert an 

input array of single mutants into an output array of double mutants. The final transfer 

step results in an ordered array of double-mutant haploid strains, the growth rates of 

which can be quantitatively assessed.  The SGA screening method has recently been 

complemented by a method termed E-MAP (Epistatic Miniarray Profile), which can 

quantify the wider spectrum of possible genetic relationships13,14.  As outlined in Figure 

1.2 and 1.3, epistasis also includes positive interactions where the double mutant grows 

better than expected from the growth of the two single mutants.  Positive interactions (in 

addition to negative interactions) can provide valuable information about pathway 

organization based on pairwise genetic relationships.  The full pattern of genetic 

interactions for a particular mutation can also provide more information13,18-20 than 

individual SSL interactions, as it consists of measurements of the mutant phenotype in 

many different mutant backgrounds.  These patterns of interactions can provide high-

resolution phenotypic signatures which can be used to identify genes whose mutation has 

similar impact on cellular physiology. E-MAPs have been used to study genetic 

interactions in yeast among discrete subsets of proteins involved in the secretory  
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Figure 1.3: Uncovering Genetic Interactions 

 (A) The continuous spectrum of genetic interactions identified in E-MAP experiments.  A 
neutral interaction is obtained when the growth of the double mutant corresponds to the product of the 
growth of the two single mutants.  Negative (or synthetic sick/lethal) genetic interactions, represented 
in blue, arise when the double mutant grows at a rate that is less than the product of the two single 
mutants. Positive (epistatic or suppressive) interactions, represented in yellow, correspond to cases 
when the double mutant grows better than is expected based on growth of the two single mutants. (B) 
A representative plate of double mutant colonies pinned in duplicate.  Examples of both positive 
(yellow circles) and negative (blue circles) interactions are highlighted.  (C) Distribution of the sizes of 
the double mutant strains that we have collected to date. Negative and positive values correspond to 
negative and positive genetic interactions, respectively.  

 

Figure 1.2: Pathways and Genetic Interactions 

The various classes of E-MAP interactions can be illustrated in terms of two functionally 
distinct pathways responsible for cell function, one linear (blue) and one bifurcated (black).  In this 
scenario, product Z is not essential for cell viability whereas product P is.  In the wild type cell, both 
pathways are functional (A).  When genes Z and A are mutated (B), this would manifest itself as a 
neutral genetic interaction since the pathways are unrelated. However, if both arms of this second 
pathway are impaired (C), cell growth is affected, resulting in a negative interaction. When two genes 
from the same pathway (or arm of a pathway, or protein complex) are mutated, the result is often a 
positive interaction (D).  An E-MAP can detect all of these classes of genetic interaction. 
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pathway13 and chromosomal biology21. 

Although an E-MAP provides a great deal of information about the genes within 

it, it is difficult to immediately organize this information into cellular pathways. Previous 

work has shown that genetic interactions fall predominantly ‘within’ and ‘between-

pathways’18 (Figure 1.3). a notion which I have used in Chapter 4 to create an algorithm 

which partitions genetic interaction maps into maps of complexes and pathways. Not 

only is this approach effectively able to summarize genetic network information and 

identify functional connections between known pathways, it can also be used to discover 

novel pathways based on a combination of physical and genetic interaction evidence.  

 Just as conservation of protein-protein interaction networks can be used to 

identify genes which act through similar mechanisms across species, genetic interactions 

can be used to probe the conservation and divergence of gene functions. While nearly all 

previous genetic interaction screening has been performed in the budding yeast, S. 

cereviasiae, myself and others have pioneered a system for the rapid generation of such 

maps in the fission yeast S. pombe22.  Chapter 5 describes the generation of a large 

genetic interaction map in fission yeast centered around chromosomal biology. A 

comparison of genetic interactions between the two yeasts revealed that while genetic 

interactions were significantly conserved between the two species, they were not as 

conserved as physical interactions were. Furthermore, among protein complexes we 

found significant rewiring of their genetic interaction inter-connections. This study had 

both positive and negative aspects. On a positive note, I discovered that genetic 

interactions were significantly conserved between species, an observation which supports 

a model of discovery of genetic interaction networks in human based on mapping in 
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model organisms. The downside was that, given the similarity of the two species, the 

level of conservation was much less than we expected suggesting that this model of 

discovery might not be as effective as we had hoped.  

 The rewiring of genetic interaction networks between species led to questions 

about how these networks were rewired by different stresses in the same species. Chapter 

6 describes the generation of a conditional genetic interaction map in budding yeast. By 

perturbing the cell with the DNA damaging agent methyl methanesulfonate (MMS),  I 

sought to identify genetic interactions which point to pathways required for growth in 

response to DNA damage. This study puts forth a wealth of information about the genetic 

interactome of kinases, phosphatases and transcription factors in the cell and highlights 

their functional interdependencies. Since DNA damage is the primary driving event in the 

development of cancer, the goal is to uncover pathways which reveal mechanisms 

governing DNA damage and repair and could make future targets for anti-cancer drugs.  

In addition, I was able to establish a general framework through conditional interaction 

maps to probe cellular pathways which are critical for drug and stress responses. 

 With the emergence of physical and genetic interactions maps for a variety of 

species, my work points to new ways in which these maps can be constructed and used to 

create models of biological function which subsequently be tested in the laboratory. 

These methods include comparing networks across species, generating maps of 

complexes and pathways and their inter-relationships, and understanding the role of 

perturbations to these networks for pathway discovery. It is my hope that my systems-

level contributions to this field will enable the greater understanding of the architecture of 

cellular networks and that my biological contributions spur on further research for years 
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to come. 
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Chapter 2. A Core Network of Human MAPK Interactions 

Abstract 

Mitogen Activated Protein Kinase (MAPK) pathways form the backbone of signal 

transduction within the mammalian cell. Here, we apply a systematic experimental and 

computational approach to map 2,269 interactions among human MAPK-related proteins 

and assemble them into functional modules. A core network of 641 interactions is 

supported by multiple lines of evidence including conservation with yeast. Using siRNA 

knockdowns, we interrogate novel members of the network to identify those that can 

functionally modulate signaling through p38 or AP-1. We uncover the Na-H exchanger 

NHE1 as a scaffold for a novel set of MAPKs, link HSP90 chaperones to MAPK 

pathways, and identify MUC12 as the human analogue to the yeast signaling mucin 

Msb2. This study illustrates an approach for probing signaling pathways based on 

functional refinement of experimentally-derived protein interaction maps. 

Introduction 

The MAPK pathways are a collection of protein signaling cascades stimulated by 

a wide variety of extra-cellular signals, including growth factors, cytokines, and 

environmental stress 1,2.  Upon activation, MAPK pathways regulate a large number of 

fundamental cellular functions, including differentiation, proliferation, and apoptosis, 

through the activation of specific transcription factors and other regulatory proteins5.  

Because of this central role in signal transduction, MAPK pathways have been repeatedly 

implicated in the pathogenesis of cancer and autoimmune diseases, leading to their 

selection as targets for drug development6.  MAPK pathways are also well conserved 
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over the eukaryotic kingdom from yeast to man, enabling study of their structure and 

kinetics through genetic analysis of model organisms2. 

A MAPK pathway minimally consists of three sequentially-activated MAPK 

family members: a MAPK kinase kinase (MAP3K) which activates a MAPK kinase 

(MAP2K) which, in turn, activates a MAP kinase (MAPK).  However, the situation can 

be further complicated by inhibitor proteins, alternate MAPK and scaffold protein 

functions, and by extensive cross-talk between the individual MAPK cascades8.  

Therefore, it has been suggested that a systems-level approach will ultimately be 

necessary to map the complete MAPK network and to unravel its function5,9. 

To help unravel the complexity of MAPK signaling, we developed a combined 

experimental and computational approach based on mapping and functional exploration 

of protein interaction networks. We screen for physical interactions involving MAPK 

signaling proteins, establish several benchmarks of data quality, derive a high-confidence 

network based on evolutionary conservation, and begin developing this network into a 

compendium of signaling modules. The interactions guide the discovery of components 

of novel kinase scaffolds, including NHE1, as well as identify a conserved signaling 

cascade mediated by the signaling mucin, MUC12. 

Results and Discussion 

Characterization of a MAPK interactome 

We assembled a human MAPK network comprised of protein interactions 

identified through a two-stage yeast two-hybrid (Y2H) screen.  A Y2H network was 

derived from 86 MAPK-related bait proteins (Supplementary Figure S1) selected by 
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literature curation (see Methods).  Included in these baits were 46 kinases (of which 27 

were known MAP-family kinases), 14 MAP-activated transcription factors downstream 

of MAPK signals, and four proteins associated with membrane receptors (Figure 2.1A).  

This effort yielded 1,496 protein examined 21 secondary baits that had been detected as 

preys in the first stage (based on their availability as bait cDNA clones).  This round 

identified an additional 786 interactions for a total of 2,269 unique interactions among 

1,468 proteins (termed the MAPK Y2H network) (Supplementary Table S1).  

Analysis of the MAPK Y2H network revealed 313 interactions involving MAP-

family kinases and 422 involving other kinases.  After removing the original baits, the 

MAPK Y2H network was enriched for protein families known to be critical in MAPK 

signaling such as membrane proteins and transcription factors suggesting numerous 

possible upstream and downstream components of MAPK cascades (Figure 2.1A).  The 

network was also highly enriched for proteins involved in cytoskeletal organization and 

RNA binding and processing. The significant number of cytoskeletal proteins identified 

in this study suggests the active regulation of microtubule dynamics by MAP kinases or 

the use of the cytoskeleton as an organizational scaffold in MAPK signaling; it has been 

postulated that up to one third of MAP-family kinases are associated with the 

microtubule cytoskeleton10.   

-
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Figure 2.1: Functional Properties of the MAPK Network.   

(A) Breakdown of network proteins (columns 1-3) and protein interactions (columns 4-10) by 
functional category. Enrichment p-value is based on the probability of identifying an equal or greater 
number of proteins in the same category at random assessed via the hypergeometric test with a background 
of 30,000 genes. (B) Different human protein interaction data sets were analyzed to assess their relative 
precision versus coverage. Protein interactions supported by additional evidence (filled triangles) were 
combined to form the core network. 
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protein interactions among 1,096 proteins.  As follow-up to this primary screen, we  

As a first method for evaluating the quality of the human MAPK Y2H network, 

we scored its enrichment for a reference set of literature-curated interactions over a 

random set of interactions (Methods). We analyzed this network in comparison to 

previous Y2H networks for human in Rual et al.11 and Stelzl et al.12.  The entire MAPK 

Y2H network was within the range of quality seen in the two previous human Y2H 

studies, with precision approximately three-fold higher than Stelzl et al. and 83% that of 

Rual et al. (Figure 2.1B).  The coverage of the MAPK Y2H was approximately the same 

as for Rual et al. and approximately four-fold higher than that of Stelzl et al.  

As an independent test of network quality, we determined the extent to which 

members of the MAPK network had been previously shown to function in MAPK 

signaling.  In this regard, we found that the network (with 86 original baits removed) was 

highly enriched for proteins that were shown to be phosphorylated in response to 

stimulation of HeLa cells with epidermal growth factor3 (EGF; 429 of 2,089 

phosphorylated proteins; P<10-170).  Second, the MAPK network contained 734 genes 

with homologs in Drosophila, 92 of which were shown to be required for the activation 

of extracellular signal-regulated kinases (ERK) by an unbiased RNAi screen in fly 13 

(P<10-13). 
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Figure 2.2: Protein Subnetworks Reveal Known and Putative MAPK Scaffolds. 

A screen for proteins whose network neighborhoods are enriched for kinases reveals a number 
of novel and known scaffolding proteins. Such neighborhoods are shown for (A) Filamin protein FLNA, 
(B) the Na-H exchanger NHE1, (C) RAN binding protein RANBP9, and (D) the kinesin family member 
KIF26A. Newly-identified Y2H interactions (red) and interactions from literature are shown (blue). 
Proteins are colored based on their annotation as membrane (green), MAP-family kinase (blue), 
transcription factor (red), or phosphorylated when stimulated with EGF (yellow border) 3. (E) Binding 
of invitro-translated MAP3K7 (TAK1) (metabolically labeled with 35S-methionine) to GST tagged C-
terminus of NHE1 or GST alone. N-moesin, a previously identified NHE1 binding partner is used as a 
positive control 4. Expressed input proteins used for in-vitro binding assays are marked with asterisks. 
(F) Phosphorylated (pp38) and total levels of p38, assayed with and without PMA stimulation and two 
different siRNA knockdowns of NHE1. The bars quantify the pp38 / p38 ratio in each case by image 
analysis of the two bands in the Western blot. Both NHE1 knockdowns markedly reduce the pp38 / p38 
ratio. As a negative control, we observed nearly equal amounts of pp38 to p38 in the absence of PMA 
stimulation (PMA ). As a positive control, PMA stimulation with a scrambled siRNA message induced 
the majority of p38 towards the phosphorylated state (Scramble, PMA +). (F) Using a luciferase reporter 
fused to the AP-1 gene, we tested the ability of various siRNAs to reduce AP-1 activation when 
stimulated with PMA 7. As a negative control, we observed that scrambled siRNAs resulted in maximal 
AP-1 transcription (“Scramble”). As positive controls, siRNAs targeted directly to luciferase showed a 
large reduction of luminescence (“Luciferase”), and siRNAs directed directly to p38, upstream of AP-1, 
reduced signal intensity by 10-50%. Error bars represent standard errors over six replicate assays.   
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Kinase subnetworks identify NHE1 as a novel kinase scaffold 

We next analyzed the network for evidence of novel MAPK scaffold proteins, 

which form a signaling apparatus through the simultaneous binding of kinases and their 

substrates14.  To identify such scaffolds, we selected proteins that interact with multiple 

MAPK levels and have at least 40% of their interactions with kinases, yielding a total of 

10 candidate scaffolds (Figure 2.2A-D, Supplementary Table S2).  As a positive control, 

this strategy detected a well-established human MAPK scaffold, the actin-binding protein 

FLNA, which has been postulated to organize kinase signaling between the membrane 

and cytoskeleton and to regulate transcription factors such as AP-115.  Of the 11 

interactions involving FLNA, seven are with kinases or transcription factors (Figure 

2.2A).   

We found that the plasma membrane Na-H exchanger NHE1 interacted with a 

total of seven MAPK family proteins, spanning all four levels of the MAPK hierarchy 

including MAP4K4, two MAP3Ks (MAP3K7 and RAF1), MAP2K2, and three MAPKs 

(ERK1, ERK2, and JNK3) (Figure 2.2B).  NHE1 also interacted with the Rho GTPase 

Rac1, which can NHE1 activity16.  In addition to its known role in ion exchange, we 

postulated that NHE1 may function as a plasma-membrane scaffold for the assembly of 

signaling complexes17.  Using tagged NHE1 we confirmed the interaction between the C-

terminal cytoplasmic domain of NHE1 and MAP3K7 (TAK1) in vitro (Figure 2.2E).  We 

also identified two independent siRNAs targeted to NHE1 that were able to significantly 

reduce phosphorylation levels of p38 in response to phorbol-12-myristate-13-acetate 

(PMA), an established assay of MAPK pathway function (Figure 2.2F).   

Thus, based on the new protein interactions and functional siRNA screening data, 
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it is likely that the cytoplasmic tail of NHE1 promotes the assembly of a GTPase and 

MAP-family kinases into (possibly multiple) signaling complexes.  Because we 

previously showed that NHE1 binds to and is phosphorylated by MAP4K4 in response to 

external growth factors18, a similar mechanism might govern the activity of the other 

interactions identified here. Since MAP3K7 is activated by the transforming growth 

factor β (TGF-β) receptor19 and we have previously identified an NHE1-immune 

complex containing the type II TGF-β receptor, the new interaction data suggests that 

NHE1 can act as a regulatory molecule for processing various cell stimuli in union with 

the TGF-β receptor, MAP3K7 and other MAPKs20. 

A number of novel interactions involving RANBP9 were also detected (Figure 

2.2C).  Of particular interest is an interaction between RANBP9 and the RAPGEF2 

guanine exchange factor, which is a member of the Ras subfamily of GTPases.  RANBP9 

was originally characterized as binding to the Ras GTPase-binding protein RAN and has 

been shown to activate the Ras signaling pathway21.  Based on the Y2H evidence, we 

postulate that RANBP9 functions as a scaffold for RAPGEF2 and various MAPK 

kinases, including ERK3, and promotes activation of the transcription factors MAX, 

MEF2C, and JUN (a component of the AP-1 transcription factor).  We found that siRNAs 

directed to RANBP9 significantly reduced AP-1 transcription in response to PMA 

(Figure 2.2G), confirming that RANBP9 influences MAPK signaling upstream of AP-1.   

Identification of a core set of high-confidence interactions and modules 

MAPK pathways are well-conserved among eukaryotes2. As a means of further 

validating and enhancing the identified set of MAPK interactions, we searched for 
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overlap between this protein network and that of budding yeast. A total of 140 MAPK 

Y2H interactions (~6%) were found to be conserved among close homologs in yeast (see 

Methods).  Using the same reference set of literature-curated interactions discussed 

earlier, we determined that the set of conserved Y2H interactions was approximately 1.6-

fold more precise than the entire MAPK Y2H network, at the expense of an approximate 

one-fourth reduction in coverage (Figure 2.1B; the reduction was expected since the 

conserved network is a subset of the entire network).  We also observed that precision 

increased nearly 1.5-fold for interactions that were observed more than once by Y2H 

screening (Figure 2.1B, Supplementary Figure S2).  Thus, we combined the 137 

conserved Y2H interactions with the 551 multiply-sampled interactions to form a “core 

MAPK network” of 641 unique high-confidence interactions (including 47 interactions 

selected by both criteria) (Figure 2.3A, Supplementary Table S3).   

To shed light on the structure and function of this core MAPK network, we 

organized the network into conserved and/or species-specific modules (Methods). We 

found that the conserved modules formed six connected components, highlighting 

potential conserved mechanisms of signaling and regulation (Figure 2.3B-G).   

One of these modules shows interactions of the MUC12 protein with p38 and 

Cdc42  (Figure 2.3B), suggesting that MUC12 might function in a CDC42-responsive 

signaling cascade.  This hypothesis is supported through conservation with yeast, in 

which Cdc42 is found to interact with mucin family member Msb2 whose function in 

kinase signaling has already been established22.   
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Figure 2.3: Functional Modules in the Core Network.  

 (A) Bird’s eye view of the core MAPK Y2H network. (B-G) High confidence conserved 
functional modules. Red edges correspond to core MAPK Y2H interactions which were conserved with 
yeast. Grey edges indicate core interactions not conserved with yeast. Thickness of the edge increases 
with the number of observations. (H) AP-1 luciferase activation assay for various siRNAs targeting 
members of conserved modules. (I) p38 phosphorylation levels are decreased with siRNAs targeting 
members of conserved modules. (J-L) Novel modules not conserved with yeast. 
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To elucidate the role of MUC12 in human MAPK signaling we found that multiple 

distinct siRNA constructs against MUC12 significantly reduce both AP-1 activation 

(Figure 2.3H) and p38 phosphorylation (Figure 2.3I) in response to PMA.  Together, the 

Y2H interaction and siRNA results suggest the existence of a novel human signaling 

mucin acting in an analogous fashion to the yeast mucin Msb2. 

Another conserved module suggests a role for HSP90 members HSP90B1 and 

HSP90AB1 in the function of MAPK6 (ERK3, Figure 2.3C), perhaps to stabilize it in 

much the same way as HSP90B1 has been shown to stabilize ERBB223.  These 

interactions are plausible since HSP90 proteins are known to associate with kinases that 

mediate multiple inputs24.  To further investigate this hypothesis, we screened multiple 

siRNA constructs directed to HSP90AB1 and HSP90B1.  We observed a reduction in 

levels of AP-1 transcription (Figure 2.3H) for HSP90AB1 and HSP90B1 as well as 

phosphorylated p38 (Figure 2.3I) for HSP90AB1, suggesting a critical role for these 

HSP90 members in MAPK-mediated signaling. 

We also identified three distinct network modules (Figure 2.3J-L) which were not 

conserved with yeast and either indicate missing interactions in yeast or machinery that 

may be present only in higher eukayotes.  The modules highlight evidence for an 

interaction between RANBP2, the GTP-binding protein at the nuclear pore, and the APC 

tumor suppressor gene which is known to promote the association of the nuclear pore 

with microtubules25.  Furthermore, they reveal a novel high-confidence interaction 

between APC and the catenin CTNNA1 (Figure 2.3J). Since interaction of APC with 

other β-catenin pathway members has been shown to be critical for WNT signaling, 

interactions of CTNNA1 with APC may play a role in this pathway as well.  Because 
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WNT signaling is conserved among metazoans but not yeast, these examples illustrate 

the power of network mapping on a species-specific basis. 

Conclusions 

This study demonstrates a combined experimental and computational approach 

for the systematic expansion and refinement of MAPK signaling based on high-

throughput interaction mapping seeded by a core set of known protein components.  We 

have reported the discovery of over 2,000 protein interactions related to MAPK proteins.  

The quality of this network is comparable to previously-published Y2H datasets and can 

be substantially increased by cross-species comparative methods. Analysis of core 

interactions highlight kinase scaffolds and diverse signaling components.  Other large-

scale technologies such as gene expression profiling, co-affinity purification, and 

phospho-proteomics may add complementary facets of information to these data, yielding 

a more complete understanding of MAPK signaling in humans and yeast.  Future studies 

may focus on the activity of the reported kinase interaction pathways in terms of their 

condition-specificity or crosstalk via shared components.  

Materials and Methods 

Y2H Screening 

Yeast strains and expression vectors for Y2H screening are as previously 

described26. Human protein baits were screened against preys derived from 22 different 

human cDNA libraries.  The original 86 baits were selected based on BioCarta 

(http://www.biocarta.com/pathfiles/m_p38mapkPathway.asp) as well as27. Full 

experimental and computational details are provided in the Supplementary Methods.  
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Quality Assessment of Interactions 

A reference set of literature-curated interactions was assembled from 23,975 

human protein interactions deposited in public databases including known interactions 

involving MAPKs (Supplementary Table S4).  For comparison, a random set of 

interactions was formed by selecting 100 times as many protein pairs at random 

(2,397,500 pairs), excluding interactions that were already in the reference.  Networks 

were evaluated with regard to their relative precision and coverage: Precision was defined 

as the percent of measured interactions confirmed by reference positives (True Positives / 

[True Positives  + False Positives]), and coverage was defined as the percent of all 

reference positives recovered (True Positives / [True Positives + False Negatives]) by the 

measured interactions.  Note that these figures are relative, not absolute, since the 

reference set may contain some proportion of false interactions, and the random set may 

contain a few real protein interactions that have yet to be discovered.   

AP-1 luciferase and p38 siRNA assay 

The HEK293 cell line stably expresses an AP-1 responsive luciferase reporter as 

previously described7.  An aliquot of 8x103 HEK293 cells was plated into 96-well tissue 

culture plates and each well transfected with 25 ng of indicated siRNA by using 

Lipofectamine2000 reagent (Invitrogen).  After 72 h of transfection, cells were stimulated 

with 10ng/ml of PMA for 8 hours, and luciferase activity was measured by using Bright 

Glow (Promega) according to the manufacturer’s instructions.  Cell titer was measured 

by the CellTiter-Glo Luminescent Cell Viability Assay (Promega).  Both cell titer and 

luciferase activity counts were normalized by the median of the scramble siRNAs28. All 
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siRNA sequences are given in Supplementary Table S7.  

Western blotting for phospho-p38 and in-vitro binding assays 

HeLa cells were transfected using RNAiMAX according to the manufactured 

protocol (Invitrogen Life Technologies).  After 72 h of transfection, cells were stimulated 

with 10ng/ml of PMA for 8 hours. Cells were lysed in buffer containing 25 mM Tris-HCl 

pH 7.6, 150 mM NaCl, 1% NP-40, 1% Sodium deoxycholate, 0.1 % SDS, and 

phosphatase inhibitors (Sigma Aldrich). A 10 ng amount of cell lysate was resolved by 

SDS-PAGE, and blots were immunoblotted with the antibodies detecting the 

phosphorylated form of p38 (Promega). All blots were developed with HRP-conjugated 

secondary antibodies and ECL (Amersham Biosciences). In-vitro binding assays for N-

terminal tagged NHE1 were performed as described previously4. 

Identification of conserved interactions 

A yeast MAPK network was assembled from both literature-curated and 

experimental sources (listed in Supplementary Methods). A human protein interaction 

was considered “conserved” if both proteins had homologs that interacted in yeast.  

Human/yeast homologs were defined using a strict BLAST E-value < 1010, and to avoid 

spurious matches due to large gene families we allowed no more than 10 yeast homologs 

for each human protein (10 best E-values).   

Module finding 

We combined core interactions with a reference set of human protein interactions 

(see ‘Quality Assessment of Interactions’ above as well as Supplementary Table S4).  We 
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identified network modules as all complete interacting triplets of proteins (i.e., triangles) 

for which at least two interactions were from the core MAPK network.  We hypothesized 

that dense network clusters such as triangles might signify functional modules whose 

interactions are more reliable owing to their inter-connectivity. In total, 134 triplets were 

found covering 195 core MAPK Y2H interactions (Supplementary Table S5).  Conserved 

modules were formed by combining triangles for which at least two of the interactions 

were conserved with yeast.  The quality of these interactions were high, over 1.8 fold 

more precise than the MAPK Y2H network using the reference set described earlier 

(Figure 2.1B).   
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Supplemental Figures and Methods 

 

The 86 original baits and the 20 additional baits are shown. Image adapted from BioCarta 
“MAPKinase signaling pathway” (http://www.biocarta.com/pathfiles/h_mapkPathway.asp) 

 

   

Supplemental Figure 2.1: Simplified signaling diagram of baits used in the MAPK Y2H network.  
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Highly sampled interactions are of higher quality 

Based on the network quality assessment framework, we investigated the effect of 

biological sampling on the quality of the derived interaction network. We found a 

consistent increase in precision (percent of interactions confirmed by reference positives 

versus negatives) with the number of observations of an interaction within the Y2H 

screening process. The performance is the best at 3 or more observations with a relative 

precision nearly three-fold higher than those interactions sampled only once (fig S2). 

Although the quality of highly sampled interactions is high, their occurrence is low, with 

only 551 interactions occurring more than once (table S2.1). 

 

 
 

Supplemental Figure  2.2: Yeast two-hybrid interactions observed multiple times are of enhanced 
quality.  

Precision is shown relative to the set of all measured interactions (>1 on the x-axis). 
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Y2H network generation 

Both bait and prey were cloned as double fusions in plasmids pOBD.111 and 

pOAD.102 and the Y2H procedure is as described in LaCount et al. 26. The cDNA was 

cloned between the 2-hybrid domain on the 5' end of the insert and an in-frame selection 

marker on the 3' end of the insert.  Bait cDNA were cloned between the GAL4 binding 

domain and the TRP1 coding region and prey between the GAL4 transcriptional 

activation domain and URA3.  Both bait and prey cDNA libraries were prepared by 

random primed cDNA synthesis from polyA-selected RNA isolated from the human 

tissues outlined Table S6 followed by the PCR addition of yeast recombination tails.  

These cDNAs were then cloned into linearized expression vectors by recombination in 

yeast.  Transformed bait yeast were plated on medium lacking tryptophan to select for in-

frame TRP1 fusions and prey were selected without uracil for in-frame URA3 fusions.  

Y2H screens were performed in 96-well plates by mating in each well 5x106 cells of a 

yeast clone expressing a single bait with 5x106 clonally diverse cells from a prey library.  

After mating overnight the well contents were plated on medium that selected 

simultaneously for successful mating, the expression of the ORF-selection markers, and 

the activity of the metabolic reporter genes, ADE2 and HIS3 (fig S3A,B).  Two-hybrid-

positive diploids were counted and up to 48 colonies per mating were picked and 

transferred to liquid medium (fig. S3C).  Searches that yielded more than 200 positives 

were considered to be self activators i.e. resulting from bait plasmids that activated 

transcription in the absence of specific protein-protein interactions, and were not 

analyzed further.  The liquid cultures were then used as template for separate PCR 

reactions to amplify insert sequence from bait and prey plasmids for subsequent sequence 
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determination.  Sequence information was processed to prepare the protein-protein 

interaction data set.  After vector and adaptor clipping, read assembly, repeat masking 

and contamination filtering, sequences were BLASTed against RefSeq and the top hit 

used for identification and Entrez Gene mapping. 

 

Supplemental Figure  2.3: High-throughput Y2H screening process.   

(A) Plating of mated Y2H clones. (B) View of plated colonies (C) image analysis of Y2H positive 
colonies for automated picking. 
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Supplemental Table 2.1: List of cDNA sources used in this study. 
 Human Tissue 
1 Adipose 
2 Brain 
3 Brain, caudate nucleus 
4 Brain, cerebellum 
5 Brain, hippocampus 
6 Colon 
7 Colorectal adenocarcinoma 
8 Fetal Brain 
9 Fetal lung 
10 Kidney 
11 Leukocyte 
12 Liver 
13 Lung 
14 Lung carcinoma 
15 Mammary Gland 
16 Melanoma 
17 Pancreas 
18 Placenta 
19 Prostate Gland 
20 Spinal Cord 
21 Spleen 
22 Testis 

 
 

Incorporation of other networks and identification of network modules  

Human protein interactions were obtained from BIND29 and HPRD30 and curated 

interactions including those in the BioCarta Database31 (table S2, November 2006 

download). To identify conserved human interactions, yeast literature curated protein-

protein interactions were taken from Reguly et al.32 and combined with Ptacek et al.33, 

Gavin et al.34, Ito et al.35, Ho et al.36 and Uetz et al.37.  

Network quality assessment using a reference set 

Note that we focus on relative comparisons of precision and coverage between 

data sets; the absolute values of these measures are less reliable because of their 

dependence on the particular choice of reference data set and its assumptions.  For 
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instance, many studies implicitly assume that the contents of the literature-curated 

databases are 100% true, that negatives are orders of magnitude in excess of the positives, 

and that negatives are adequately modeled by random protein pairs38,39.  The absolute 

coverage could be higher if some interactions recorded in the public databases were false, 

or conversely, the absolute precision could be lower if the proportion of positives was 

less than 1 in 100. For these reasons, we report relative quality measures in the main 

manuscript. 
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Chapter 3. Systematic identification of functional orthologs based on protein 

network comparison 

Abstract 

Annotating protein function across species is an important task which is often 

complicated by the presence of large paralogous gene families. Here, we report a novel 

strategy for identifying functionally related proteins that supplements sequence-based 

comparisons with information on conserved protein-protein interactions. First, the protein 

interaction networks of two species are aligned by assigning proteins to sequence 

homology groups using the Inparanoid algorithm. Next, probabilistic inference is 

performed on the aligned networks to identify pairs of proteins, one from each species, 

that are likely to retain the same function based on conservation of their interacting 

partners. Applying this method to D. melanogaster and S. cerevisiae, we analyze 121 

cases for which functional orthology assignment is ambiguous when using sequence 

similarity alone. In 61 of these cases, the network supports a different protein pair than 

that favored by sequence comparisons. These results suggest that network analysis can be 

used to provide a key source of information for refining sequence-based homology 

searches.  
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Introduction 

The idea that similar protein sequences imply similar protein functions has long 

been a central concept in molecular biology.  With each new completed genome, an 

increasingly complex array of sequence alignment and comparative modeling tools are 

used to annotate functions for the typically thousands of encoded proteins, based largely 

on similarity to proteins that are well characterized in other species2,3.  Ambiguities in the 

functional annotation process arise when the protein in question has similarity to not one 

but many paralogous proteins4, making it harder to distinguish which of these is the true 

ortholog—that is, the protein that is directly inherited from a common ancestor.  

Especially in the genomes of mammals and other higher eukaryotes, large protein 

families are typically not the exception but the rule.   

The difficulty of assigning protein orthology depends largely on the evolutionary 

history.  Protein families for which speciation predates gene duplication are particularly 

challenging; in these cases, every cross-species protein pair is technically orthologous but 

it is still necessary to distinguish which protein pairs play functionally equivalent roles, 

i.e. are functional orthologs5.  Conversely, when gene duplication predates speciation, the 

family can often be subdivided into orthologous pairs which have higher sequence 

similarity to each other than to other members.  However, evolutionary processes such as 

gene conversion serve to homogenize paralogous sequences over time, making these 

cases problematic as well6.  To complicate matters even further, protein function may be 

lost between distant organisms or conserved across multiple proteins within a single 

species. 

A variety of sequence-based approaches have been proposed to address these 
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challenges.  The COGs approach (Clusters of Orthologous Groups)7 defines orthologs 

using sets of proteins that contain reciprocal best BLAST matches 8 across a minimum of 

three species.  Also available are phylogenetic methods that explicitly address an 

evolutionary tree, as reviewed in9.  Recent approaches such as Inparanoid5 and 

OrthoMCL6 try to achieve higher sensitivity through sequence clustering techniques 

which consider a range of BLAST scores beyond the absolute best hits.  For Inparanoid, 

BLAST E-values from the proteins of two species are clustered according to a fixed set 

of rules which divide proteins into ortholog groups, each of which contains similar-

sequence proteins drawn from both species.  Within each group, pairs of proteins (cross-

species only) can be assigned an overall score reflecting the likelihood they are functional 

orthologs.   

Other than gene and protein sequences, several large-scale data types have 

recently become available that provide complementary information on functional 

conservation.  For instance, several groups have used correlated patterns of gene 

expression across species as evidence for functional relatedness10,11. Networks of protein-

protein interactions are also being generated for a variety of species, through technologies 

such as the two-hybrid assay12 or co-immunoprecipitation followed by mass 

spectrometry13.  Such networks can be compared to identify “interologs”, i.e., interactions 

that are conserved across species14.  Beyond comparison of interactions individually, 

methods such as PathBLAST15,16 and that of17 create a global alignment between 

networks to identify conserved network regions.  These approaches can successfully infer 

conserved components of the cellular machinery and use those components to predict 

new protein functions and interactions. In addition, interactions that are conserved across 
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species are less likely to represent false positives. 

Here, we investigate whether it is possible to use protein network information to 

predict functionally orthologous proteins across species.  While previous tools such as 

Interolog mapping and PathBLAST have used orthology to identify conserved protein 

interactions, our approach aims to reverse this logic and use conserved protein 

interactions to predict functional orthology.   It is built on the concept that a protein and 

its functional ortholog are likely to interact with proteins in their respective networks that 

are themselves functional orthologs.  This type of network-based approach is related to 

methods for predicting other protein properties based on the interaction network, such as 

functional annotation of a protein based on the annotations of its neighbors18-21.  In our 

case, the orthology relation between each pair of proteins is modeled as a probabilistic 

function of the orthology relations of their immediate network neighbors, and orthology 

relationships are inferred using Gibbs sampling.  We apply this approach to refine the set 

of functional orthologs between the budding yeast Saccharomyces cerevisiae and the fruit 

fly Drosophila melanogaster: not only are these species among the most important model 

eukaryotes, they are also associated with the largest numbers of experimentally-measured 

protein interactions to date.   

Results 

Motivation: Interaction conservation is related to orthology.   

Protein-protein interaction networks for yeast and fly were obtained from the 

Database of Interacting Proteins22 (December 2004 download).  These contained 14,319 

interactions among 4,389 proteins in yeast and 20,720 interactions among 7,038 proteins 
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in fly.  First, we applied the Inparanoid5 algorithm to the complete sets of proteins from 

S. cerevisiae and D. melanogaster to define sequence-similar clusters.  A total of 2,244 

clusters were generated, covering 2,834 yeast and 3,881 fly proteins overall.  Of these, 

1,552 clusters contained only a single yeast/fly protein pair and were assumed to 

represent unambiguous or “definite” functional orthologs (orthologs we take to be 

functionally equivalent because of direct ancestry).  The remaining 692 clusters contained 

multiple proteins from yeast and/or fly, leaving the functional orthologs ambiguous. 

   To determine the extent to which proteins and their functional orthologs had 

conserved protein interactions, we examined the network neighborhoods of definite 

functional orthologs and compared them to the neighborhoods of less related protein pairs 

(Figure 3.1).  As a measure of local network conservation, we computed the conservation 

index of each protein pair as proportional to the fraction of interactions that were 

conserved across the two species.  For example, in Fig. 3.2b the orthologous pairing B/B′ 

has a higher conservation index (4/9) than the alternative pairing B/B′′ (2/9). 
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Figure 3.1: Network neighborhood conservation for definite orthologs versus other yeast/fly protein 
pairs.  

[a] The distribution of the conservation index (c) is shown for definite functional orthologs (sole 
members of an Inparanoid group); ambiguous functional orthologs (in a group with multiple members); 
homologs (different groups but similar sequences); and random protein pairs. Definite functional orthologs 
show a shift towards higher conservation of protein interactions between the yeast and fly protein networks. 
Mean c=0.1512, 0.1171, 0.0870, 0.0615 for definite functional orthologs, ambiguous functional orthologs, 
homologs, and random pairs, respectively. [b] Logistic function relating conservation index to probability of 
functional orthology.  Logistic regression was performed using the “definite functional ortholog” and 
“homolog” pairs as positive vs. negative training data, respectively. The resulting function is shown. 
 

 

Figure 3.2: Overview of the method.   

[a] Protein-protein interaction networks for yeast and fly are combined with clusters of orthologous 
yeast and fly protein sequences as determined by the Inparanoid algorithm. [b] Networks are aligned into a 
merged graph representation. In this example, a gene duplication results in two proteins B′ and B′′ in species 
2 that are orthologous to protein B in species 1. One of these proteins may experience a gain and/or loss of 
interactions to enable new functional roles 1; however, only conserved interactions are represented in the 
alignment graph. [c] The logistic function shown in Fig. 1b is used to compute the probability of functional 
orthology for a protein pair i given the states of functional orthology for its network neighbors. [d] This 
probability is updated for each pair over successive iterations of Gibbs sampling. [e] The final probabilities 
confirm 60 of the best BLAST match pairings. The network supports a different hypothesis for 61 pairings. 
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Fig. 3.1a shows the set of conservation indices for definite functional orthologs 

versus those of ambiguous functional orthologs, non-orthologous homologs (best cross-

species BLAST matches not assigned to the same Inparanoid group), and random pairs of 

proteins chosen independent of sequence similarity.  As expected, the set of definite 

functional orthologs had the highest occurrence of conserved interactions.  Moreover, the 

mean conservation index was related to the stringency of the pairing: definite functional 

orthologs tended to have higher conservation indices than ambiguous functional 

orthologs, ambiguous functional orthologs higher indices than homologs, and homologs 

higher indices than random protein pairs.  Beyond the mean conservation index, there 

were also significant differences among the four distributions (Supplemental Table 1).  

These findings confirm that yeast/fly proteins classified as definite functional orthologs 

are more likely to have equivalent functional roles in the protein network and, 

conversely, that conserved network context could be used to help discriminate functional 

orthology from general sequence similarity.  

Network-based identification of functional orthologs.   

To capture these trends to identify functional orthologs, we formulated a 

procedure to estimate the likelihood of functional orthology for each ambiguous 

functional ortholog given its conservation index.  By this method, the probability of 

functional orthology for a pair of proteins is influenced by the probabilities of functional 

orthology for their network neighbors, which in turn depend on their network neighbors, 

and so on.  This type of probabilistic model is known as a Markov random field23.  Exact 

inference in this model is not tractable because of the complex interrelationships between 
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network nodes.  Rather, approaches such as clustering, conditioning, and stochastic 

simulation have been used to derive estimates for the posterior probabilities of node 

properties.  Here, we implemented a method based on Gibbs sampling for its 

computational tractability and accuracy in densely connected networks24.  An overview 

of the approach is given in Figure 3.2, with full details provided in the Methods. 

Application to yeast and fly identifies new putative orthologous pairs.   

We applied this approach to resolve ambiguous functional orthology relationships 

in the yeast and fly protein networks.  Of the 692 ambiguous Inparanoid clusters, 121 

contained protein pairs for which at least one pair had conserved interactions between 

networks.  Application of our Gibbs sampling procedure yielded estimates of probability 

of functional orthology for each protein pair in these 121 ambiguous clusters.  In 60 of 

these clusters, the highest probability was assigned to the protein pair that was also the 

most sequence-similar via BLAST.  These cases reinforced the intuition that the best 

sequence matches are also the most functionally similar. The remaining 61 clusters 

showed the opposite behavior, i.e., the highest probability pair was not the most sequence 

similar pair.  Of these 61 cases, 15 were supported by two or more conserved interactions 

(Table 1).  Because the yeast and fly networks are incomplete (i.e., they contain false 

negatives), in some of these cases we cannot rule out the possibility that conserved 

interactions with the best BLAST matches have been missed (see Discussion).  A 

complete listing of the results can be found on the supplemental website 

(http://bioinf.ucsd.edu/~sbandyop/GR/). 
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Inparanoid 
Cluster 

Yeast / Fly Pairings 
in Cluster 

Total Protein 
Interactions in 

Yeast / Fly 
BLAST E-

value 

Number of 
Conserved 
Interactions P(z) 

35 
Ssa3 / Hsc70-4 3/29 1E-277 0 -- 
Ssa2 / Hsc70-4 10/29 7E-275 4 53.22% 
Ssa1 / Hsc70-4 13/29 2E-275 4 48.10% 

94 

Act1 / Act5c 38/48 9E-201 3 39.56% 
Act1 / Act42a 38/3 3E-200 1 39.24% 
Act1 / Act87e 38/11 1E-199 3 43.53% 

Act1 / CG10067 38/9 1E-198 2 38.20% 
Act1 / Act88f 38/2 9E-198 2 40.17% 

126 
Vph1 / CG7678 12/0 2.E-174 0 -- 
Vph1 / CG18617 12/13 3.00E-170 2 41.87% 
Stv1 / CG18617 11/13 1.00E-148 1 38.44% 

246 
Kap104 / Trn 47/7 9E-128 2 40.64% 

Kap104 / CG8219 47/20 7E-96 5 46.78% 

376 
Pda1 / CG7024 8/1 9E-101 0 -- 

Pda1 / L(1)g0334 8/13 6E-99 2 57.90% 

425 
Gpa1 / G-iα65a 14/2 1E-90 0 -- 
Gpa1 / G-oα47a 14/12 5E-67 2 41.53% 

707 
Rpl12b / Rpl12 0/11 2.E-63 0 -- 
Rpl12a / Rpl12 6/11 2.00E-63 2 48.39% 

917 
Cmd1 / Cam 61/19 1E-49 1 35.90% 
Cmd1 / And 61/26 4E-40 6 44.39% 

1236 
Fkh2 / CG11799 5/14 4E-31 0 -- 
Fkh1 / CG11799 29/14 3E-18 2 42.34% 

1550 
Kel2 / CG12081 3/16 3E-19 0 -- 
Kel1 / CG12081 16/16 1E-17 2 45.41% 

1562 
Egd1 / Bcd 3/16 2E-19 1 47.19% 
Btt1 / Bcd 3/16 2E-13 1 40.86% 

Btt1 / CG11835 3/2 2E-09 2 70.50% 

1643 
Ngr1 / CG12478 1/1 6E-16 0 -- 

Nam8 / Aret 22/10 7E-06 2 45.06% 

1687 
Tpm2 / Tm1 1/7 3E-15 0 -- 
Tpm1 / Tm2 3/17 2E-14 2 43.98% 

1740 
Mig2 / Opa 0/31 5.E-13 0 -- 
Mig3 / Opa 2/31 1.00E-09 2 40.42% 

2037 
Gid8 / CG18467 3/0 8.E-03 0 -- 
Gid8 / CG6617 3/8 0.001 2 76.51% 

 

Supplemental Table 3.1: Inparanoid clusters for which the network suggests different functional 
pairings than BLAST.   
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Validation.  

A straightforward validation of the approach would be to analyze its accuracy in 

recapitulating a “gold standard” set of protein functional annotations. However, databases 

of functional annotations are based directly on sequence similarity, and they typically 

lack the specificity to discriminate among subtle functional differences across large gene 

families.  As an alternative approach, we used the technique of cross validation to test the 

ability of the approach to reclassify protein pairs in the definite functional ortholog set 

(positive test data) versus the non-orthologous homolog set (negative test data).  In each 

cross-validation trial, 1% of these assignments were hidden (declassified) and monitored 

during Gibbs sampling to obtain probabilities of functional orthology for positive and 

negative examples.  Reclassification was judged successful if the probability of 

Figure 3.3: Estimated accuracy of the method.   

[a] The Receiver Operating Characteristic (ROC) curve shows the true positive rate (percent of 
true data predicted correctly as positive) vs. the false positive rate (percent of false data predicted 
incorrectly, i.e. positive) of the method.  [b] Dependence of predictions on number of available training 
examples.  Percent recall (true positive rate) vs. precision (percent of positive predictions that were correct) 
is plotted as the probability cutoff ranges from [0-1]. Different color plots correspond to different percents 
of declassification of training examples. 
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functional orthology exceeded a particular cutoff value. These statistics were compiled 

over 100 trials.  Figure 3.3a charts cross-validation performance over a range of 

probability cutoffs.  At a probability cutoff of 0.5, we observed a 50% true positive rate 

and a 15% false positive rate. This shows marked improvement over a random predictor 

where we would expect to see the same true positive rate as false positive rate. 

Declassifying 1% of the known functional orthologous and non-orthologous pairs 

reduces the amount of information available to the algorithm and, thus, can reduce its 

predictive ability.  To assess the severity of this effect, we repeated the cross-validation 

analysis at varying percentages of declassification of positive and negative data (ranging 

from 1% to 100%) (Fig. 3.3b).  For instance, changing the amount of declassification of 

available training data from 1% to 25% reduced the maximum precision from 83 to 75%.  

Further declassification yielded more marked reductions in precision and recall. 

Discussion 

Specific examples of yeast/fly functional orthologs resolved by the network-based 

approach are shown graphically in Figure 3.4.  In Fig. 3.4a, yeast transportin (Kap104) is 

orthologous to both Trn and CG8219 in fly with highly significant sequence homology 

(BLAST E-values 9x10-128 and 7x10-96, respectively).  Transportin is a member of a 

complex responsible for the nuclear import of mRNA binding proteins and is known to 

be highly conserved among diverse organisms25.  Drosophila Trn was identified using 

sequence homology based on human transportin126.  Both Trn and CG8219 in fly interact 

with orthologs of members of the Kap104- associated complex in yeast27 suggesting that 

both of these fly proteins may participate in the functionally similar complex in fly.  Our 

analysis suggests that CG8219 retains more of the original functions of Kap104 
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(probability of functional orthology of 47% versus 41% for the Kap104/Trn pairing) due 

to their conserved interactions with members of the spliceosome complex (Yju2, Ssa1, 

and Ssa2 in yeast). This result is a case in which the most sequence-similar protein does 

not appear to be the most functionally-related protein in an orthologous group given the 

current network data. 

 

Figure 3.4: Example orthologs resolved by network conservation.  

Each node represents a putative functional match between a yeast/fly protein pair (with names 
shown above/below the line, respectively). Links between nodes denote conserved interactions (thick 
black, direct interactions in both species; thin gray, indirect interaction in one of the species). Diamond- vs. 
oval-shaped nodes represent definite vs. ambiguous functional orthologs. Oval nodes of the same color 
represent ambiguous protein pairs belonging to the same Inparanoid cluster. The mean probability of 
functional orthology is given next to each ambiguous pair. Cluster 246 [a], 1439 [b], 211 [c], 917 [d], and 
1104 [e] show examples of clusters that were disambiguated by conserved network information; the cluster 
resolved in each panel is outlined by a black rectangle. 
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The cluster in Fig. 3.4c contains two alternative catalytic alpha subunits of the protein 

phosphatase type 2A family (yeast Pph21 and Pph22).  Both alternatives interact with a 

member of the beta subunit (Rts1) and have high sequence similarity to the fly Mts 

protein (75% identity for Pph21, 76% for Pph22).  Since Pph21 and Pph22 are at least 

partially redundant [disruption of both genes in combination is synthetic lethal28], it 

appears that the array of interactions carried out by Mts is conserved across the two yeast 

orthologs.  For instance, based on the available protein interaction data, Pph22 alone has 

conserved interactions with the proteasome (Pre2/Pros5 and Pre4/CG12000), which has 

been shown to be important for the role of the Pph21/22 complex in degradation of 

Swe1p29.  

As a final example, Fig. 3.4d shows evidence that the yeast Calmodulin (Cmd1) 

protein is functionally orthologous to fly Androcam (And) rather than to the more 

sequence-similar fly Calmodulin (Cam1; 60% identity versus 51% for And).  The 

existence of many conserved interactions for the Cmd1/And pair, compared to only one 

for Cmd1/Cam1, does not appear to be a result of incomplete coverage: Cmd1 has a total 

of 61 interactions in the yeast network, and Cam1 and And have 19 and 26 interactions, 

respectively, in the fly network (most of these do not appear in Fig. 3.4 because the 

network alignment only shows interactions that are conserved).  Furthermore, multiple 

sequence alignment and phylogenetic analysis of these genes over a larger number of 

organisms, including worm and mammals, indicates a closer phylogenetic relationship for 

yeast Cmd1 and fly And, supporting our hypothesis that they are the true functional 

orthologs (Supplemental Figure 1).  This apparent discrepancy between functional and 

sequence similarity is probably a result of the large amount of sequence variability 
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among the calmodulin family of proteins 30 and would have been difficult to probe 

without protein network information.  

In future work, it is possible that incorporating additional types of conserved 

linkages, such as transcriptional interactions31, synthetic-lethal interactions32, and co-

expression relations10 will allow a more complete and multi-faceted view of protein 

function.  Second, this method would benefit from a more accurate understanding of 

network evolution.  At the core of our approach is a model for measuring the divergence 

of orthologous proteins by means of a network “conservation index”.  It encapsulates the 

notion that shorter evolutionary distances correspond to greater relative numbers of 

conserved interactions.  However, a more sophisticated metric might represent explicit 

mechanisms of network evolution, such as formation of new interactions through gene 

mutation or duplication1.  It should also be noted that comparative methods rely on the 

conservation of function between evolutionarily related proteins, and that this functional 

similarity may be lost among orthologs due to large evolutionary distance; thus, network-

based methods which search for the absence of a functional ortholog may also be useful.  

Finally, further work is also needed to analyze the impact of data quality, i.e., numbers of 

false-positive and false-negative interactions33.  False positives are largely mitigated by 

the focus on only those interactions that are conserved across species, because spurious 

interactions are typically not reproducible 17.  False negatives are a larger concern, 

because they might cause a functionally orthologous pair to be wrongly rejected due to 

lack of conserved interactions.  Certainly, a preponderance of conserved interactions for 

one particular pair of proteins versus others provides evidence that these proteins are 

indeed functional orthologs.  Although the expected number of false negative interactions 
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will decrease with forthcoming interaction datasets, future approaches may explicitly 

incorporate the false negative rate into the probabilistic model.  

In summary, we have presented an algorithm that incorporates protein interaction 

measurements to achieve more specific discrimination of functional orthologs than is 

possible with sequence-based methods alone.  It is built on the concept that conserved 

proteins typically do not function independently but rely on interactions with other 

proteins to form conserved pathways, and that the specific patterns of conservation of 

these pathways are informative for determining which cross-species protein pairs have 

similar functional roles.  As these methods mature and as ever greater numbers of protein 

interactions become available across species, comparative network analysis will play an 

increasingly central role as a bridge between protein sequence, evolution, and function. 

Methods 

Inparanoid clusters generation. 

The complete sets of 5,878 yeast and 18,746 fly protein sequences were 

downloaded from Saccharomyces Genome Database34 and Flybase35, respectively.  

Protein sequences for both species were clustered together into orthology groups using 

the Inparanoid algorithm5 with default parameters (overlap threshold=0.5; 

confidence=0.05).  Inparanoid optionally allows a third genome to be used as an 

outgroup, which can detect missing sequences and thus improve ortholog detection.  

However, use of E. coli as an outgroup had a negligible impact on our analysis. 

Network alignment. 

A global network alignment between yeast and fly was constructed as described 
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in 16, with the difference that Inparanoid clusters were used instead of BLAST E-values 

for pairing proteins between the two networks.  Briefly, the network alignment is 

represented as a graph of nodes and links (Fig. 3.2b).  Each node denotes a pair of 

putatively orthologous proteins a and a′.  Each link between a pair of nodes a/a′ and b/b′ 

denotes a conserved protein interaction, i.e., an interaction observed for both (a, b) and 

(a′, b′).  To tolerate a certain amount of missing interaction data, “indirect” links are also 

defined if a pair of proteins interacts in one species (e.g., a and b interact) and the other 

pair of proteins (e.g., a′ and b′) are at most distance two in their corresponding interaction 

maps.  Links involving network distances greater than two, or for which the proteins of 

both species are at distance two, are not allowed 15.  The yeast/fly network alignment 

contains 388 nodes (spanning 348 yeast and 256 fly proteins) linked by 308 conserved 

interactions (110 direct and 198 indirect). 

Each node in the alignment graph is associated with a state z, indicating whether 

that protein pair represents true functional orthology (z=1) or not (z=0).  Links between 

nodes that are each associated with true functional orthology are said to be “strongly 

conserved”. To compute the frequencies shown in Fig. 3.1a, the protein pair in each 

Inparanoid group having the lowest BLAST E-value is set to z=1; all others to z=0.  

Conservation index. 

We define the conservation index c of node i (representing protein pair a/a′) as 

twice its number of strongly conserved interactions divided by its total number of 

interactions over both species: 
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where d(i) denotes the number of strongly conserved links involving node i, while d(a) 

and d(a′) denote the degrees (numbers of interactions) of proteins a and a′ in their 

respective single-species networks. 

Probabilistic model.   

We model the orthology relations for two species using a Markov random field 23. 

This model is specified by an undirected graph G=(V, E) corresponding to a network 

alignment, and conditional probability distributions which relate the event that a given 

node represents a functionally orthologous pair with those events for its neighbors.  A 

Markov random field model is specified in terms of potential functions on the cliques in 

the graph: 

    zU
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where z


 is some assignment to the states of all nodes in the graph, U(·) is an “energy” 

function which integrates the potentials over all cliques in the graph, and Z is a 

normalizing constant.  It is not necessary to compute the normalization constant, since all 

that is required are the conditional probabilities for each node given its neighbors (rather 

than the joint distribution).  For computational efficiency, we used the common auto-

logistic model23 which assigns zero potential to cliques of size > 2.  Under this model, the 

energy takes the form: 
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which, when substituted into the equation for )(zP


 above, reduces to a logistic function.  

Based on our initial observation that the functional orthology of a node is a function of its 
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conservation index (well approximated by a logistic function—see Fig. 3.1a and Results), 

we set i =  and ij = i = 2β / [d(ai) + d(ai′)] to obtain the following: 
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where N(i) is the set of neighbors of node i, and zN(i) denotes the set of all zj such that 

jN(i).  Note that i and ij could be set to accommodate other equations for conservation 

index, as long as they are linear in the number of strongly conserved neighbors d(i). 

Fitting the logistic function. 

To provide a set of training data for fitting the parameters  and   of the logistic 

function, 100 of the 212 definite functional orthologs having at least one conserved 

interaction were randomly chosen as positive examples, and their states set to z=1.  

Negative examples of “non-orthologs” were generated by randomly selecting 100 yeast 

proteins and pairing each with its best BLAST matching fly protein not in the same 

cluster; their states were set to z=0 (ideally, the negative training data would consist of 

orthologs that are not functional orthologs, but few such examples exist).  Parameters 

and were optimized by maximizing the product of P(zi | zN(i)) over all positive and 

(1  P(zi | zN(i))) over all negative training data using the method of conjugate gradients36.  

The optimal logistic function is shown in Fig. 3.1b.  Note that the equal numbers of 

positive and negative training data assume a prior probability of 0.5 of observing a true 

functional ortholog.  Although the actual prior is unknown and may differ from this 

value, P(zi | zN(i)) remains monotonically related to the true probability of functional 

orthology. 
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Orthology inference. 

We used the above model to estimate the final posterior probabilities P(zi) using 

the method of Gibbs sampling37.  In this approach, nodes representing ambiguous 

functional orthologs are each assigned a temporary state z=0 or 1, initially at random.  At 

each iteration, a node i is sampled (with replacement) and its value of zi is updated given 

the states of its neighbors, zN(i).  The new value of zi is set to 0 or 1 with probability 

P(zi | zN(i)).  Over all iterations, the nodes designated as definite functional orthologs and 

“non-orthologs” are forced to states of 1 and 0, respectively.  This process is illustrated in 

Figs. 3.2c and 3.2d. 

The Gibbs sampling procedure was carried out for an initial period of 2·106 

“burn-in” iterations.  From this point onward, 2·107 additional iterations were performed 

and statistics computed on the fraction of iterations in which each node acquires a 

“functionally orthologous” z=1 state.  The final probabilities of functional orthology for 

each node, P(zi), were estimated as this fraction.  The above numbers of iterations were 

chosen to ensure stabilization of the probability estimates such that results were stable 

across multiple runs of random initialization configurations (standard deviations for each 

P(zi) are available on the website).  Compiled results were aggregated over one hundred 

separate runs of the algorithm and mean probabilities reported. 
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Supplemental Figures 

 

   

 

Supplemental Figure 3.1: Phylogenetic analysis of Calmodulin orthologs 

Analysis of yeast, CMD1 (Sc-CMD1), and fly, AND and CAM (Dm-AND and 
Dm-CAM respectively). Although Sc-CMD1 is more sequence similar to Dm-CAM based 
on BLAST-similarity, our algorithm predicted Dm-AND to be the more functionally 
similar ortholog. The tree built on a multiple sequence alignment from related 
yeast,fly,worm, mouse and human sequences shows that in the context of related 
sequences, Sc-CMD1 and Dm-AND are more similar. 
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Chapter 4. Functional maps of protein complexes from quantitative genetic 

interaction data 

Abstract 

Recently, a number of advanced screening technologies have allowed for the 

comprehensive quantification of aggravating and alleviating genetic interactions among 

gene pairs. In parallel, TAP-MS studies (Tandem Affinity Purification followed by Mass 

Spectroscopy) have been successful at identifying physical protein interactions which can 

indicate proteins participating in the same molecular complex. Here, we propose a 

method for the joint learning of protein complexes and their functional relationships by 

integration of quantitative genetic interactions and TAP-MS data. Using three 

independent benchmark datasets, we demonstrate that this method is >50% more accurate 

at identifying functionally related protein pairs than previous approaches.  Application to 

genes involved in yeast chromosome organization identifies a functional map of 91 

multimeric complexes, a number of which are novel or have been substantially expanded 

by addition of new subunits. Interestingly, we find that complexes that are enriched for 

aggravating genetic interactions (i.e., synthetic lethality) are more likely to contain 

essential genes, linking each of these interactions to an underlying mechanism.  These 

results demonstrate the importance of both large-scale genetic and physical interaction 

data in mapping pathway architecture and function.  
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Introduction 

Genetic interactions are logical relationships between genes that occur when 

mutating two or more genes in combination produces an unexpected phenotype1-3.  

Recently, rapid screening of genetic interactions has become feasible using Synthetic 

Genetic Arrays (SGA) or diploid Synthetic Lethality Analysis by Microarray 

(dSLAM)4,5.  SGA pairs a gene deletion of interest against a deletion to every other gene 

in the genome (in turn).  The growth / no growth phenotype measured over all pairings 

defines a genetic interaction profile for that gene, with no growth indicating a synthetic-

lethal genetic interaction.  Alternatively, all combinations of double deletions can be 

analyzed among a functionally-related group of genes6-8.  A recent variant of SGA termed 

E-MAP7 has made it possible to measure continuous rates of growth with varying degrees 

of epistasis (based on imaging of colony sizes).  “Aggravating” interactions are indicated 

if the growth rate of the double gene deletion is slower than expected, while for 

“alleviating” interactions the opposite is true9,10. 

One popular method to analyze genetic interaction data has been to hierarchically 

cluster genes using the distance between their genetic interaction profiles.  Clusters of 

genes with similar profiles are manually searched to identify the known pathways and 

complexes they contain as well as any genetic interactions between these complexes.  

This approach has been applied to several large-scale genetic interaction screens in yeast 

including genes involved in the secretory pathway8 and chromosome organization6.  

Segré et al.11 extended basic hierarchical clustering with the concept of 

“monochromaticity”, in which genes were merged into the same cluster based on 

minimizing the number of interactions with other clusters that do not share the same 
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classification (aggravating or alleviating). 

Another set of methods has sought to interpret genetic relationships using 

physical protein-protein interactions12.  Among these, Kelley and Ideker13 used physical 

interactions to identify both “within-module” and “between-module” explanations for 

genetic interactions.  In both cases, modules were detected as clusters of proteins that 

physically interact with each other more often than expected by chance.  The “within-

module” model predicts that these clusters directly overlap with clusters of genetic 

interactions.  The “between-module” model predicts that genetic interactions run between 

two physical clusters that are functionally related.  This approach was improved by 

Ulitsky et al.14 using a relaxed definition of physical modules.  In related work, Zhang et 

al.15 screened known complexes annotated by the Munich Information Center for Protein 

Sequences (MIPS)  to identify pairs of complexes with dense genetic interactions 

between them. 

One concern with the above approaches, and the works by Kelley and Ulitsky in 

particular, is that they make assumptions about the density of interactions within and 

between modules which have not been justified biologically.  Ideally, such parameters 

should be learned directly from the data.  Second, between-module relationships are 

identified by separate, independent searches of the network seeded from each genetic 

interaction.  This “local” search strategy can lead to a set of modules that are highly 

overlapping or even completely redundant with one another.  Finally, genetic interactions 

are assumed to be binary growth / no growth events while E-MAP technology has now 

made it possible to measure continuous values of genetic interaction with varying degrees 

of epistasis.  Here, we present a new approach for integrating quantitative genetic and 
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physical interaction data which addresses several of these shortcomings.  Interactions are 

analyzed to infer a set of modules and a set of inter-module links, in which a module 

represents a protein complex with a coherent cellular function, and inter-module links 

capture functional relationships between modules which can vary quantitatively in 

strength and sign.  Our approach is supervised, in that the appropriate pattern of physical 

and genetic interactions is not predetermined but learned from examples of known 

complexes.  Rather than identify each module in independent searches, all modules are 

identified simultaneously within a single unified map of modules and inter-module 

functional relationships.  We show that this method outperforms a number of alternative 

approaches and that, when applied to analyze a recent EMAP study of yeast chromosome 

function, it identifies numerous new protein complexes and protein functional 

relationships.  

Results 

Characterization of Genetic and Physical Networks. 

We first sought to quantitatively confirm whether, and to what degree, physical 

and genetic interactions could indicate common membership in a protein complex.  To 

provide genetic data for analysis, we obtained the previously-published results from a 

large E-MAP of yeast chromosomal biology6.  This study consisted of genetic 

interactions measured among 743 genes (including 74 essential genes), yielding 

quantitative values for 182,669 gene pairs (66% of all possible pair-wise measurements).  

Each gene pair was assigned an S-score, where positive scores indicate protein pairs for 

which the double mutant grows better than expected (i.e., an alleviating interaction) and 
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negative scores indicate pairs for which the double mutant grows worse than expected 

(i.e., a synthetic sick/lethal or aggravating interaction) where the expectation is that the 

double-deletion of unrelated proteins will have a growth rate equivalent to the 

multiplicative product of the two individual growth rates16.  In all, 14,237 gene pairs 

(8%) showed strong genetic interactions with |S| > 2.5.  Physical interactions were taken 

from a recent computational integration of two large datasets measured by co-

immunoprecipitation followed by mass spectrometry17.  This study assigned to each 

pairwise interaction a Purification Enrichment (PE) score, with larger values representing 

a greater likelihood of true binding. 

 

Figure 4.1. Combining physical and genetic interactions to define protein complexes. 

Correspondence of the physical interaction score (A) and the genetic interaction score (B) with the 
known small-scale, manually annotated protein complexes in MIPS. To compute the enrichment over 
random (y-axis), one first computes the fraction f of interactions at each score x that fall inside a MIPS 
small-scale complex (bin size of 1.5). The enrichment is the ratio f/r, where r is the fraction of random 
protein pairs within MIPS complexes. (C) Proteins are grouped into physically interacting sets called 
modules (gray ovals; m1–m6). Pairs of modules may be linked to indicate a functional relationship (dotted 
lines; b1–b6). The assignment of proteins to modules along with the list of inter-module links comprises the 
state of the system. 
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Figurea confirms that protein pairs with higher PE-scores are more likely to 

operate in a known small-scale protein complex recorded in the MIPS database18 (versus 

protein pairs chosen at random).  This result is expected considering that PE-scores were 

trained based on these complexes17.  Figureb shows that protein pairs with both positive 

and negative S-scores are more likely to operate within a known complex.  Positive 

(alleviating) interactions are well-known to occur between subunits of a complex6. 

Negative (aggravating) interactions are to a lesser degree so, although the mechanism has 

not been as clear as for the alleviating case19.  By comparing the magnitudes of 

enrichment between Figurea and b, it is apparent that extreme S-scores are at least as 

indicative of co-complex membership as strong PE-scores, if not more so (~100-fold 

enrichment versus ~50-fold enrichment, respectively).  Together, these exploratory 

findings suggest that the physical and genetic information can indeed provide a basis for 

the identification of protein pairs involved in the same complex. 

Functional maps of protein complexes involved in yeast chromosomal biology. 

To capture these trends, we formulated an approach to classify a protein pair as 

operating either within the same module or between functionally-related modules given 

its genetic and physical interaction scores.  This approach seeks to categorize interactions 

supported by both strong genetic and physical evidence as operating within a module 

(i.e., complex).  Interactions with a strong genetic but weak physical signal are better 

characterized as operating between two functionally-related modules.  Given within-

module and between-module likelihoods for individual interactions, an agglomerative 

clustering procedure seeks to merge these interactions into increasingly larger modules 
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and to identify pairs of modules interconnected by bundles of many strong genetic 

interactions (Figurec).  Full details are provided in the 

Methods.

 

Applying this method, we identified 91 distinct modules with an average size of 

4.1 proteins per module.  Figure 4.2 gives an overview of a subset of the identified 

modules and inter-module links.  Complete results are catalogued at 

http://www.cellcircuits.org/Bandyopadhyay2008/html/.  Overall, these results suggest ten 

novel complexes not recorded in either the small-scale or high-throughput MIPS 

compendium, covering 23 proteins in total.  The results also identify 84 new subunits of 

Figure 4.2. Global map of protein complexes involved in yeast chromosome biology. 

Each node represents a predicted multimeric protein complex, while each link represents a 
significantly alleviating or aggravating bundle of genetic interactions between complexes, indicative of an 
inter-complex functional relationship. Node colors indicate enrichment for alleviating or aggravating 
genetic interactions among members of the same complex. Node sizes are proportional to the number of 
proteins in the complex. When known, nodes are labeled with the common name of the complex. For 
complexes that are newly identified by our study and thus unnamed, the constituent proteins are listed. For 
clarity, the co-chaperone prefoldin complex (PFD1, PAC10, YKE2, GIM3, GIM4, GIM5, BUD27) and the 
25 links associated with it have been removed. 



72 
 

 
 

known complexes (Supplemental Materials).  Through permutation testing, 19 versus 9 

of the identified modules could be categorized as enriched for alleviating or aggravating 

genetic interactions, respectively.  A total of 313 significant genetic relationships were 

identified between modules, 94 versus 219 of which were enriched for alleviating or 

aggravating interactions. 

Comparison to related approaches. 

The method of choice for interpreting quantitative genetic interactions has been 

hierarchical clustering (HCL) of genes based on pair-wise distances between their genetic 

interaction profiles6,8.  We compared the clusters obtained using HCL to the modules 

obtained with our present approach (Bandyopadhyay et al.) using three gold-standard 

metrics: gene co-expression (Figure 4.3a), co-functional annotation (Figure 4.3b), or 

membership in the same previously-identified complex (Figure 4.3c).  To ensure a fair 

comparison between the two approaches, HCL and Bandyopadhyay et al.  were evaluated 

across a range of coverages (number of gold-standard gene pairs recovered by the 

predicted clusters/modules; see Methods).  For all three benchmarks, our performance 

was substantially higher than that of the HCL-based approach at most levels of coverage 

(and at a level of coverage corresponding to the 91 modules reported above; dotted 

vertical line in Figure 4.3). 



73 
 

 
 

 

 

Figure 4.3. Performance of complex identification. 

The proposed approach is compared to several competing methods of discovering protein 
complexes within genetic interaction networks: HCL implements hierarchical clustering with a distance 
measure computed from the genetic interaction profiles only (S-scores), while HCL-PE extends HCL by 
merging clusters only if there is a physical interaction between them (PE-score>1). For the modules defined 
by each method, accuracy versus coverage is plotted over a range of values for tuning the module size (see 
Methods). Accuracy is estimated as the fraction of protein pairs in a predicted module that are in a gold-
standard set; coverage is estimated as the number of gold-standard pairs that fall in the same predicted 
module. Gold-standard sets are defined by protein pairs that are either (A) co-expressed, (B) functionally-
related, or (C) assigned to the same complex in high-throughput data sets (as annotated in MIPS). The 
performance at the chosen parameter setting (α = 1.6) is indicated by the dotted vertical line. The 
performance of the method of Kelley et al. is reported for the same level of coverage as the present 
approach (asterisk). Since it operates on binary interaction data, we converted quantitative genetic and 
physical interaction scores to binary values based on a threshold of |S|>2.5 and PE>1. 
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We considered that one reason why HCL performed less favorably might be that 

it was not given access to the same information (i.e., the physical network).  This is 

especially true for the metric based on previously-identified complexes, in which 

complexes were annotated based on the same high-throughput protein interactions used 

here.  To investigate this possibility, we extended HCL to incorporate physical 

interactions in a straightforward fashion, by merging only those clusters which share a 

physical interaction between them (HCL-PE). Although this approach outperformed 

hierarchical clustering without physical interactions, it was outperformed by the present 

approach by at least 50% across the three metrics.  Finally, our method also shows 

improvement over the previous approach of Kelley and Ideker13 for integrating genetic 

and physical interactions (Figure 4.3).  

Aggravating complexes tend to be essential. 

Nineteen versus nine of the learned modules had significant enrichment for 

alleviating versus aggravating genetic interactions, respectively.  Identification of 

“alleviating” modules is expected, since subunits of a complex operate together and the 

phenotypic effect of removing any pair of proteins in a complex should be no worse than 

removing any single protein individually.  The presence of aggravating interactions 

within modules was more intriguing.  One way in which aggravating interactions could 

occur among the subunits of a complex is if its function is essential, i.e., the loss of the 

complex’s function causes a lethal phenotype.  In these cases, some protein subunits 

should be encoded by essential genes, while other subunits might be redundant and thus 

essential in pairwise combinations19.  
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To test the hypothesis that essential genes are more likely in aggravating modules, 

we analyzed both MIPS small-scale complexes and our learned modules for the presence 

of essential genes (Figure 4.4).  We found that 80% of aggravating MIPS complexes 

contained an essential gene, compared to only 20% of alleviating MIPS complexes (a 

four-fold increase).  Similarly, of the aggravating modules determined by our approach, 

55% contained an essential gene compared to only 21% of alleviating modules (a 2.6-fold 

increase).  These results are not correlated with module size, as the median size of 

aggravating learned modules is less than the median size of alleviating learned modules.  

 

Figure 4.4. Aggravating complexes are more likely to contain essential genes. 

The percentage of complexes that contain at least one essential gene is shown, for various groups 
of complexes defined within small-scale complexes in MIPS (left three bars) or complexes identified in this 
study (right three bars). In MIPS, approximately 80% of “aggravating” complexes (see text) contain an 
essential gene, versus 20% for “alleviating” complexes. The trend is similar for the complexes reported in 
this study, with 55% versus 22% of aggravating versus alleviating complexes containing an essential gene. 
The list of all essential genes was taken from (http://www-
sequence.stanford.edu/group/yeast_deletion_project/deletions3.html). 
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They suggest that, regardless of the technique for identifying complexes, those containing 

essential genes tend to be composed of primarily aggravating genetic interactions.  

Mechanistically, this might occur through a variety of means, including proteins with 

separate but functionally-redundant roles in maintaining complex integrity, or subunit 

substitution by paralogous proteins.  

Discussion 

Figure 4.5 presents detailed diagrams of example functional relationships 

elucidated by our module mapping method.  Figure 4.5a shows the alleviating 

relationship between the RTT109-VPS75 histone acetyltransferase complex6,20,21 and 

Elongator, a complex that is associated with RNA Polymerase II and is involved in 

transcriptional elongation22.  Since several subunits both of Elongator and 

RTT109/VPS75 have been shown to be involved in histone acetylation levels21,23, these 

two complexes may operate together to effectively clear histones from actively 

transcribed regions.  To identify further mechanisms of their cooperation, future studies 

may search for specific residues of histone H3 whose acetylation levels are modulated by 

both complexes.  This example highlights the utility of an integrated approach, since 

although RTT109 and VPS75 are known to form a complex their genetic interaction 

profiles are not congruent (correlation of profiles of -0.1) and had been missed by 

hierarchical clustering.  Figure 4.5b highlights non-essential components (LRP1 and 

RRP6) of the exosome, which contributes to the quality-control system that retains and 

degrades aberrant mRNAs in the nucleus24.  These components have alleviating 

interactions with a complex composed of Lsm proteins involved in mRNA decay. 



77 
 

 
 

 

Figure 4.5c centers on BRE1/LGE1, subunits of the Rad6 Histone Ubiquitination 

Complex (RAD6-C; the Rad6 protein itself was not covered by the original E-MAP 

screen)25,26.  RAD6-C is functionally connected with two other complexes, SWR-C and 

COMPASS.  SWR-C functions to regulate gene expression through the incorporation of 

transcriptionally-active histone variant H2AZ27-29, while COMPASS is involved in 

Figure 4.5. Pathway models identify novel functional associations among cellular machinery. 

Each panel represents complexes and between-complex links taken from Figure 2. Physical 
interactions with PE>1 are shown and strong genetic interactions (|S|>2.5) are shown with increased 
thicknesses corresponding to stronger genetic interactions. (A) Histone acetyltransferase complex RTT109 
– VPS75 showing strong alleviating interactions with the Elongator transcription elongation factor 
complex. (B) Between-complex model highlighting alleviating interactions between the LRP1 – RRP6 
nuclear exosome complex and an mRNA degradation complex. (C) Complexes associated with the RAD6-
C histone ubiquitination complex (BRE1/LGE1). 
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mediating transcriptional elongation and silencing at telomeres through methylation of 

histone H330.  Interactions between RAD6-C and SWR are aggravating, suggesting 

synergy or redundancy towards an essential cellular function.  Interactions between 

RAD6-C and COMPASS are alleviating, suggesting they operate in a potentially serial 

fashion.  Consistent with this analysis, it has been shown that histone H2B ubiquitination 

by RAD6-C is a prerequisite for histone H3 methylation by COMPASS31,32.   

Several trends emerge from the performance analysis in Figure 4.3.  First, genetic 

interaction data alone can yield substantial information about molecular pathways.  

Functionally similar proteins often have similar profiles of genetic interaction, a feature 

we have previously exploited to identify functional interactions between complexes as 

well as to identify new members of complexes based on a combination of weak physical 

and genetic data13.  On the other hand, the ability to detect complexes can be greatly 

improved by adding information about protein physical interactions.  Even the 

straightforward HCL-PE method was able to greatly improve the accuracy and coverage 

according to most metrics, while the greatest performance was achieved by the improved 

probabilistic framework we have presented in this study.  This framework has led to the 

inclusion of YKL023W as a potential new member of the SKI complex and YGR071C in 

a complex with VID22/TBF1 (Figure 4.2), for a total of 84 novel protein subunit 

assignments to complexes (Supplemental Data).  Both of these examples have both 

physical and genetic support and would have been missed by an approach based on either 

type of interaction alone. 

Future work may seek to incorporate yet additional types of linkages such as 

protein-DNA interactions33,34, kinase-substrate phosphorylations35, or other genetic 
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perturbation data such as eQTLs36.  There are also opportunities to refine the modeling 

framework further.  Here, a gold-standard set of complexes was used to explicitly learn 

the relationship between physical interactions, genetic interactions, and module 

membership.  This supervised approach could be extended to also learn which features 

best indicate the inter-module functional relationships, perhaps through curation of a 

gold-standard set of interacting complexes.  

Methods 

Problem definition. 

We analyze the interaction data to infer a set of protein modules and a set of inter-

module links.  A protein module is defined as a set of proteins that are connected through 

protein-protein interactions and are likely to represent a protein complex with a coherent 

cellular function.  Inter-module links capture functional relationships between modules 

and may be of two types, aggravating or alleviating.  The complete state of the system is 

described by a set M of modules, each module defining a set of proteins, and a set N of 

pairs of modules that are functionally linked.   

Scoring module co-membership. 

For each pair of proteins (a,b) we compute a log ratio W of the likelihood that a 

and b fall within the same module versus the likelihood that they are unrelated (i.e., occur 

in the background).  The function uses two sources of information that are indicative of 

protein complex co-membership: the strength of protein-protein physical interaction (PE) 

and the strength of genetic interaction (S): 

  )1(),(),(, baLLRbaLLRbaW SPE   
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For a given data type (PE or S) the log likelihood ratio (LLR) is defined as: 

)2(
),(
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log),(
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baP
baLLR

background

within  

The probability Pwithin is determined using logistic regression training on 217 

complexes curated from small-scale studies in MIPS18.  Pbackground is the probability of 

randomly observing the observed value (PE or S) for the pair (a,b) in the background of 

all gene pairs.  As shown in Figure and 1b, it is clear that higher values of PE are 

predictive of MIPS complex membership.  As both positive and negative values of S are 

predictive, LLRS(a,b) is trained on the absolute value of S.  A third predictor based on the 

correlation of genetic interaction profiles was also evaluated but did not result in any gain 

in performance (Supplemental Figure). 

Scoring inter-module links. 

A similar function B() is formulated to assess the likelihood that two proteins fall 

between modules that are functionally linked.  The function inputs the same two sources 

of information on protein-protein and genetic interactions (PE and S).  Unfortunately, 

there is no curated set of functionally-related complexes that can be used as positive 

training examples for regression.  Instead, B() is derived from the within-module LLRs, 

assuming that between-module interactions have a similar pattern of genetic interactions 

but lack physical interactions: 

      )3(,,, baLLRbaLLRbaB SPE   

This function captures both aggravating and alleviating genetic interactions 

between two functionally-related modules.  It also ensures such modules are physically 
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separate—if not, they would be better considered as a single module. 

Global optimization of module memberships and links. 

Given the above functions W() and B(), we compute the likelihood of the 

complete system (i.e., given a particular choice M of modules and N of inter-module 

links): 
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The first term accumulates the within-module scores among gene pairs assigned 

to the same module. The second term accumulates the inter-module scores for gene pairs 

spanning any two modules.  Gene pairs spanning unlinked modules do not contribute to 

L.  The final term is a tunable reward which scales with module size.  Larger values of α 

result in fewer, larger complexes.  The final module map shown in Figure 4.2 was 

generated using α=1.6, based on its good coverage and performance across all three 

metrics in Figure 4.3. 

Module search. 

Assignment of gene to modules and of inter-module links is performed using a 

simple variant of UPGMA hierarchical clustering37: (a) Initially, each gene is assigned to 

a separate module; (b) Each pair of modules (m1, m2) is evaluated for merging into a 

single module m = m1  m2; the pair-wise merging that results in the largest increase in L 

is chosen; (c) Repeat step b until no module merge operation increases L. 

At each iteration of step b, L is optimized over all possible ways of assigning 

inter-module links (i.e., module pairs are linked whenever the second term in Eqn. 4 is 
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positive).  Because each inter-module link is scored independently, additions or deletions 

of links from the system need only be evaluated for modules that are under evaluation for 

merging.   

Subsequent to the above procedure, each between-module link is evaluated to 

assess its significance and whether it represents predominantly aggravating or alleviating 

genetic interactions.  A two-tailed p-value is computed by indexing the sum of S-scores 

for gene pairs falling across the two modules against a distribution of 106 sums of equal 

numbers of S-scores drawn from random gene pairs.  To account for multiple testing, we 

use the distribution of between-module p-values to compute a local false discovery rate 

(FDR)38.  All reported between-module links have an inferred FDR of <10% with the 

global map in Figure 4.2 constrained to links with an FDR of <1%.  Module maps in 

Figure 4.2 and Figure 4.5 are visualized using the Cytoscape package39,40. 

To label modules as “aggravating” or “alleviating” (Figure 4.2), the sum of S-

scores for gene pairs assigned to the same module is compared to a distribution of sums 

of equal numbers of randomly drawn S-scores.  Modules with a two-tailed p-value < 0.05 

are labeled as either alleviating (right tail) or aggravating (left tail). 

Validation using co-expression, co-function, or co-complex annotations. 

Co-expressed gene pairs were defined using gene expression datasets culled from 

the Stanford Microarray Database covering ~790 conditions41.  The validation set was 

taken as the top 5% (13,014) of pairs ranked by Pearson correlation coefficient.  The co-

function set was based on yeast Gene Ontology annotations from November 2005 which 

predates the publication of large scale TAP-MS studies that were used to generate the PE-
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score.  This set was taken as the top 5% (13,052) most functionally similar gene pairs 

covered in the E-MAP. Functional similarity was determined by comparison to the 

background probability of picking two genes with the same shared functional annotation 

from the entire yeast genome (via a hypergeometric test).  Similar analysis using current 

Gene Ontology annotation was also performed (Supplemental Figure).  The co-complex 

validation set was defined as gene pairs from 846 MIPS complexes annotated using high-

throughput approaches (with interactions also appearing in small-scale studies removed) 

for a total of 2,885 gold-standard pairs. 

The size and number of final modules was varied by altering the α parameter (see 

above).  To assess performance at low coverage we ran the method with no reward 

contribution (remove the third term in eq. 4 by setting  = ) and plotted the 

performance of the algorithm at each merge step, which ultimately connects with the 

performance of the method as  is increased.  For HCL and HCL-PE methods, the size 

and number of modules were varied by changing the level at which the hierarchy was cut.   
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Supplemental Figures 

 

 

Supplemental Figure 4.1. Addition of congruence as a predictor of pathway membership. 

A variant of this algorithm which includes congruence (measured as the pearson correlation of 
genetic interaction profiles) was included as a third predictor (beyond pairwise physical and genetic 
interaction scores). The results indicate that, especially in determining co-complex membership, the 
addition of congruence does not help to find functionally related modules. A possible rationale for this 
result is that by scoring between-complex interactions explicitly, the method is already rewarding for 
similarity of genetic interaction profiles so that the addition of the third congruence predictor results in 
overfitting and no additional gain in performance. 
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Supplemental Figure 4.2. A current version of the Gene Ontology shows similar performance. 

The figure is the same as Figure 4.3 using the current version of the Gene Ontology (March 2007).
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Chapter 5. Functional maps of protein complexes from quantitative genetic 

interaction data Conservation and Rewiring of Functional Modules Revealed by an 

Epistasis Map (E-MAP) in Fission Yeast 

Abstract 

An epistasis map (E-MAP) was constructed in the fission yeast, 

Schizosaccharomyces pombe, by systematically measuring the phenotypes associated 

with pairs of mutations. This high-density, quantitative genetic interaction map, focused 

on various aspects of chromosome function, including transcription regulation and DNA 

repair/replication. The E-MAP uncovered a novel component of the RNAi machinery 

(rsh1) and linked the RNAi pathway to several other biological processes. Comparison of 

the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that 

while negative interactions were conserved between genes involved in similar biological 

processes, positive interactions and overall genetic profiles between pairs of genes coding 

for physically associated proteins were even more conserved.  Hence, conservation 

occurs at the level of the functional module (i.e. protein complex), but the genetic cross-

talk between modules can differ significantly. 

Introduction 

Genetic interactions report on the extent to which the function of one gene 

depends on the presence of a second. This phenomenon, known as epistasis, can be used 

for defining functional relationships between genes and the pathways in which the 

corresponding proteins function. Two main categories of genetic interactions exist: 

negative (e.g. synthetic sickness / lethality) and positive (e.g. suppression).  We have 
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developed a quantitative approach, termed E-MAP, allowing us to measure the whole 

spectrum of genetic interactions, both positive and negative1,2. In budding yeast, S. 

cerevisiae, it has been demonstrated that positive genetic interactions can identify pairs of 

genes whose products are physically associated and/or function in the same pathway 1,2 

while negative interactions exist between genes acting on parallel pathways4,5.    

We developed the Pombe Epistasis Mapper (PEM) approach6 that allows high-

throughput generation of double mutants in the fission yeast, S. pombe.  Fission yeast is 

more similar to metazoans than is S. cerevisiae, in its large complex centromere structure, 

the restriction of spindle construction to mitotic entry, gene regulation by histone 

methylation and chromodomain heterochromatin proteins, gene and transposon 

regulation by the RNAi pathway, and the widespread presence of introns in genes. To 

further study these processes and to try to understand how genetic interaction networks 

have evolved7, we generated an E-MAP in S. pombe that focuses on nuclear function, 

designed to be analogous to one we created in budding yeast2.  

Results and Discussion 

An E-MAP in S. pombe 

Using our PEM system6, we generated a quantitative genetic interaction map in S. 

pombe, comprising approximately 118,000 distinct double mutant combinations among 

550 genes involved in various aspects of chromosome function (Figure 5.1a, Tables S1, 

S4). The genes on the map were chosen based on a previous budding yeast E-MAP 1,2 

and also included factors present in human (but not in S. cerevisiae), including the RNAi 

machinery. Colony size measured from high-density arrays was used as a quantitative 
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phenotypic read-out to compute a genetic interaction score (S-score) and previously-

described quality control measures were utilized to ensure a high quality dataset8 (Fig. 

S1A).   

We have previously observed two prominent general trends between genetic 

interactions and protein-protein interactions: a propensity for positive genetic interactions 

and strong correlations of genetic interaction profiles between genes coding for proteins 

participating in protein-protein interactions8.  Using a high-confidence set of 151 protein-

protein interaction pairs from S. pombe9 (Table S2), we observed the same trends in this 

organism (Figure 5.1B, C). Thus, it appears these relationships are evolutionarily 

conserved and may represent a general feature of biological networks. 

 

 

Figure 5.1: Data set overview.  

(A) Functional classification of the genes contained within the S. pombe E-MAP. The map 
contains 550 genes that were classified into 11 functional categories (table S4). (B) Distribution of 
interaction scores for pairs of genes corresponding to physically interacting proteins (green) and 
noninteracting proteins (black). (C) Distribution of Pearson correlation coefficients of the genetic 
interaction profiles for the same set of genes used in (B). For a complete list of PPIs used in this 
analysis, see table S2. 
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Exploring Nuclear Function in Fission Yeast 

A highly structured representation of the genetic map was generated by subjecting 

the data to hierarchical clustering (Figure 5.2). By scrutinizing several interaction-rich 

regions, we were able to recapitulate known and identify novel functional relationships.  

Genes required for DNA repair / recombination and various checkpoint functions 

form clusters enriched in negative interactions (Figure 5.2, region 1). The rad9-hus1-rad1 

(9-1-1) checkpoint complex10 clusters together with rad17 (the homolog of budding yeast 

RAD24) which loads it onto DNA11. We find two genes linked to tRNA biogenesis, sen1 

and trm1, within the DNA repair cluster. tRNA regulation has been linked to the DNA 

damage response pathway in S. cereviaise12, and these genetic patterns suggest a similar 

mechanism may exist in fission yeast. To genetically interrogate the function of essential 

genes, we used the DAmP strategy for generating hypomorphic alleles1 (Table S1) and 

found that the DAmP allele of mcl1, involved in DNA replication control and repair, is 

highly correlated with components of the replication checkpoint (mrc1 and csm3). 

The fission yeast homologs of the components of the SWR complex (SWR-C), 

which in budding yeast incorporates the histone H2A variant Htz1 (Pht1 in fission yeast) 

into chromatin13-15, form a highly correlated group (Figure 5.2, region 2). A jumonji 

domain containing protein, Msc1, whose S. cerevisiae ortholog ECM5 is not part of the 

budding yeast’s SWR-C, is found within the fission yeast SWR-C cluster, consistent with 

the demonstration that Msc1 acts through Pht1 to promote chromosome stability16.  

The E-MAP reveals functional specialization of the fission yeast Set1 histone H3 

lysine 4 methyltransferase complex (SET1-C, COMPASS)17-19 20. In S. pombe, five of its 

subunits (core SET1-C: set1, spp1, swd1, swd21, swd3) are indispensable for H3-K4 
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methylation 19 and form a highly correlated cluster on the E-MAP (Figure 5.2, region 3). 

In budding yeast, another component of COMPASS, Swd2, is essential and part of two 

distinct complexes: SET1-C and the CPF (Cleavage and Polyadenylation Factor)17 21. S. 

pombe contains two non-essential paralogs of SWD2 (swd21 and swd22), previously 

shown to act independently in the S. pombe SE T1-C and CPF, respectively22. Consistent 

with this, on our map, swd21 is part of the core SET1-C while swd22 is strongly 

correlated with the SSU72 ortholog, a part of CPF21,23 (Figure 5.2, region 3). The Ash2-

Sdc1 heterodimer within the SET1-C also behaves differently. In S. cerevisiae, its 

orthologous pair (Bre2p-Sdc1p) is exclusively found in the SET1-C17, while in fission 

yeast it is shared between the SET1-C and LID2-C19. Consistent with this, the dimer does 

not cluster next to core Set1-C, which is what is observed in budding yeast2, but is more 

similar to snt2, a member of LID2-C (Figure 5.2, region 3).    

Genetic Dissection of the RNAi pathway 

The RNAi pathway in S. pombe comprises several components, including CLR4-

C, RDR-C, RITS, dicer (Dcr1) and the HP1 homolog, Swi624. All known components of 

the RNAi machinery that were analyzed cluster next to each other and primarily display 

positive genetic interaction with one another (Figure 5.3A). Within this cluster are 

subclusters corresponding to the different protein complexes. Consistent with previous 

reports, we find positive genetic interactions between the RNAi machinery and epe1, an 

anti-silencing factor involved in the transcription of heterochromatic regions by 

RNAPII25 and required for RNAi-mediated heterochromatin assembly24. Conversely, we 

find negative interactions between RNAi components, involved in posttranscriptional 
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silencing (PTGS), and factors implicated in transcriptional silencing (TGS) of repeat 

sequences and other loci. In particular, clr3, a histone deacetylase and catalytic subunit of 

the SHREC complex26, involved in TGS at centromeric repeats24 and Tf2 

retrotransposons27,28, shows negative interactions with RNAi components (Figure 5.3A).   

  

 

Figure 5.2. The S. pombe chromosome function E-MAP. 

A section of the E-MAP with specific regions of interest annotated. Further highlighted 
are the factors involved in DNA repair/recombination (1), as well as two complexes contained 
within the chromatin remodeling/modification region: the SWR-C chromatin remodeling 
complex (2) and the Set1, Lid2, and CPF complexes (3). The names of the budding yeast 
orthologs are shown in parentheses (table S3). The final data set consists of 118,575 
measurements and contains 5772 negative (S score –2.5) and 1812 positive (S score 2) 
interactions. 
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Within the RNAi cluster, we also found a previously unknown component of the 

RNAi pathway, SPCC1393.05, which we named rsh1 (involved in RNAi silencing and 

heterochromatin formation) (Figure 5.3A). The gene encodes a 110 kDa protein with no 

obvious homologs or apparent sequence motifs. Chromatin immunoprecipitation 

determined that Rsh1 is localized to heterochromatic centromeic regions and its absence 

causes a significant reduction of silencing at these loci and loss of siRNAs expressed 

from the centromeric dg/dh repeats (Figure 5.3B-F). Additionally, rsh1 leads to a 

marked reduction of H3-K9 di-methylation and Swi6/HP1 binding  

that correlates with lowered levels (>6 fold decrease) of Ago1, component of 

RITS, recruitment to the outer (otr) centromeric repeat region (Figure 5.3G, H). 

We also observe positive interactions between the RNAi machinery and homologs 

of factors involved in the transition between transcriptional initiation and elongation, 

including rpb9 and iwr1, components of RNA polymerase II21,29, and the Mediator 

complex (pmc2, rox3, pmc5, med2)30,31. Indeed, deletions of rpb9, rox3, pmc5 or pmc2 

lead to moderate loss of silencing at the centromere (Figure 5.3I, J).  

Numerous negative genetic interactions between the RNAi machinery and other 

cellular complexes and processes were observed (Figure 5.3A) including the spindle-

checkpoint pathway (mad1, mad2, bub3, alp14)32, components of the DASH complex33 

(dad1, dad2, ask1, spc34), and mal3, tub1 and alp31  involved in microtubule stability34, 

consistent with the involvement of RNAi / heterochromatin apparatus in proper 

chromosome segregation34. The acetyltrasferase complex, Elongator35, interacts 

negatively with the RNAi machinery and clusters next to factors regulating spindle 

function consistent with the observation that Elongator may be responsible for tubulin 
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acetylation, required for microtubule-based protein trafficking36. Finally, components of 

the DNA repair, checkpoint and recombination apparatus display negative genetic 

interactions with the RNAi machinery, suggesting the RNAi pathway is also involved in 

maintaining genomic stability.  

Conservation of modular organization of genetic interaction networks 

The large evolutionary distance between S. cerevisiae and S. pombe (ca. 400 

million years37) allowed us to study the evolution of genetic interactomes.  We directly 

compared the data from this S. pombe E-MAP to an analogous dataset from S. 

cerevisiae2. The overlap of one to one annotated orthologs38 between the two E-MAPs 

encompasses 239 genes (Table S3). First, we analyzed individual negative pair-wise 

interactions in the two organisms. Recently, it has been suggested7 that negative 

interactions between yeast and C. elegans were not conserved. Although not strong, we 

did find a conservation of negative interactions (17.3% for S-score  -2.5), which became 

more pronounced (33%) when the analysis was restricted to genes that shared the same 

functional annotations (Figure 5.4A, S2B). To confirm this observation we used an 

independent dataset from BioGRID9 and observed similar conservation rates (18% for all 

and 31% among functionally related genes). Part of the discrepancy seen in C. elegans 

could be due to functional redundancy, multicellularity, or incomplete knock-downs by 

RNAi. Furthermore, this comparison was not restricted to functionally related genes7. In 

our analysis, we also found a very strong conservation (> 50%) of positive interactions 

(S-score  2.0) (which were not considered by7) between pairs of genes whose 

corresponding proteins are physically associated (Figure 5.4A, Fig. S2A-D). 
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Figure 5.3: Characterization of genes involved in the RNAi pathway.  

(A) Genetic profiles for genes involved in RNAi with individual protein complexes or 
processes annotated. (B) Schematic of the centromeric region of chromosome 1 with the position of 
the ura4+ reporter gene within the otr1 region. (C) Loss of Rsh1p abolishes heterochromatic silencing 
of the ura4+ reporter gene inserted at the outer repeat region of centromere 1 (otr1::ura4+). NS, 
nonselective; FOA, counterselective; -URA, uracil-deficient media. (D) Levels of dh transcripts 
analyzed by reverse transcription polymerase chain reaction (RT-PCR) using RNA prepared from 
indicated strains. (E) Loss of siRNAs derived from dg/dh repeats in rsh1  detected by Northern 
blotting. nt, nucleotides. (F) Rsh1 localizes to outer (otr) centromeric repeats. An epitope-tagged 
version of Rsh1 (mycRsh1) was used to perform chromatin immunoprecipitation (ChIP). wce, whole-
cell extract. (G) Rsh1 is required for localization of Ago1. Localization of mycAgo1 at otr1::ura4+ in 
wild-type and rsh1  cells was assayed using ChIP. leu1 is an internal loading control for ChIP 
experiments. (H) Effect of rsh1  on heterochromatin assembly at centromeric repeats. Levels of 
histone H3 lysine 9 dimethylation (H3K9me2) and Swi6/HP1 at otr1::ura4+ were assayed using 
ChIPs. (I and J) Loss of Mediator and RNAPII subunits affects centromeric silencing. The levels of 
transcripts corresponding to dh centromeric repeats were analyzed by RT-PCR. leu1 and act1 are used 
as internal loading controls. 
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The set of genetic interactions for a given gene provides a sensitive phenotypic 

signature or profile. Although global comparison of all correlations of genetic profiles 

between orthologous pairs in each species (Table S3) revealed a weak overall 

conservation (r=0.14) (Figure 5.4B), pairs corresponding to PPIs were much more highly 

correlated (r=0.60) (Figure 5.4B). An aggregate measure for the likelihood of two 

proteins to carry out a common function, many of which correspond to PPI pairs, is the 

COP score8, which integrates the individual genetic interaction score and correlation 

coefficient of genetic interaction profiles.   Pairs of genes displaying high COP scores in 

both organisms almost exclusively correspond to PPIs (Fig. S2E).  

To further explore the extent of conservation of genetic networks, the profiles of 

each of the 239 orthologs in both species were compared to all profiles from the other 

organism (Fig. 4C). We found some conservation between direct orthologs (p=8x10-20) 

 

Figure 5.4: Modular conservation of genetic interaction patterns.  

A set of 239 one to one orthologs was used for the analysis. (A) Conservation of positive and 
negative genetic interactions based on comparison with S. cerevisiae. Conservation rates are higher for 
the subset of negative interactions between genes with the same functional annotation and the subset of 
positive interactions corresponding to known protein-protein interactions in S. cerevisiae. P-values 
were determined using a two-sided Student’s t-test. (B)  Scatter plot of Pearson correlation coefficients 
of genetic interaction profiles. (C) Distribution of the cross-species Pearson correlation coefficient of 
genetic profiles. 
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suggesting that genetic interaction profiles of orthologs across species tend to be similar 

(Fig. S2F). There is, however, a stronger conservation of genetic profiles between a gene 

and the ortholog of its interacting partner when only co-complex members were 

considered (Figure 5.4C) (p=9x10-51). Thus, genetic profiles of members of protein-

protein interaction pairs tend to correlate better not only to their interaction partners 

within the same species but also to the orthologs of their interaction partner in an 

evolutionary distant organism.  

Collectively, these data demonstrate that genetic interactions between specific 

subsets of genes are conserved between S. cerevisiae and S. pombe.  Specifically, we find 

conservation of negative interactions when genes involved in the same cellular process 

are considered. Better conserved are positive interactions and genetic profiles of genes 

whose products are physically associated. Therefore, we argue that conservation 

primarily exists at the level of the functional module (i.e. protein complex), and perhaps 

protein-protein interactions pose a constraint on functional divergence in evolution.  
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Re-Wiring of Conserved Functional Modules  

Biological modules can be defined as highly interconnected groups of physically 

or functionally associated factors and often correspond to protein complexes. In addition 

to identifying functional modules, high-density genetic interaction data reports on the 

functional relationships between modules (i.e. the wiring of the network). 

To compare the genetic cross-talk between modules in the two organisms, we 

 

Figure 5.5: Re-wiring of the conserved functional modules 

(A) Comparison of genetic interaction profiles of the SWR-C in S. cerevisiae and S. 
pombe. Analogous sets of genetic interactions from the two organisms are shown (Dataset S2). 
(B) Genetic cross-talk between functional modules. Modules are represented as circles or boxes 
(in yellow if the interactions within the module are primarily positive). Negative and positive 
interactions between modules are represented as blue and yellow lines, respectively. The 
diagram was generated using the method described in 3. 
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merged and clustered the genetic interaction matrix of S. pombe with that of S. cerevisiae 

for the 239 1:1 orthologs (Dataset S2). Inspection of this dataset revealed a partial 

overlap of negative interactions between protein complexes (Figure 5.5A).  For example, 

in both organisms SWR-C display negative genetic interactions with the SET1-C and the 

histone deacetylatase (HDAC) complex, SET3-C.  However, substantial differences were 

found as well. For instance, in only budding yeast are there negative interactions between 

SWR-C and components of the spindle checkpoint, the chaperone complex Prefoldin, the 

HDAC complex, Rpd3C(L) and Mediator (Figure 5.5A). 

Several possible explanations can be offered.  First, the additional subunit unique 

to the fission yeast SWR-C, Msc1, may alter the function of the complex. Also, species-

specific post-translational modifications may result in different genetic behavior. Msc1 

has been shown to harbor ubiquitin ligase activity39 and may be involved in 

ubiquitinating proteins related to the function of SWR-C. Another reason could be to the 

presence or absence of particular cellular machinery. For example, the re-wiring of the 

genetic space surrounding the SWR-C in S. pombe may be due to the presence of the 

RNAi machinery, which shows negative interactions with the complex (Figure 5.5B).  

Consequently, dramatic alterations in the network topology of budding yeast may have 

been necessary to compensate for the absence of the RNAi pathway. We cannot rule out 

the possibility that many of the interactions do exist under different environmental 

conditions. Nonetheless, a significant re-wiring of other complexes (e.g. the HIR 

chromatin assembly complex and Prefoldin, Fig. S3) was also observed under the 

conditions used.  

The modularity of biological networks is believed to be one of the main 
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contributors to their robustness, as it implies enhanced functional flexibility. Much like 

an electronic circuit, such modular architecture allows different tasks to be accomplished 

with the same minimal set of components by changing the wiring (or flow of 

information) between them. Re-wiring due to addition or removal of modules allows for 

economical design of sophisticated networks that are able to adapt to different conditions 

and environmental niches at low cost. We observe this behavior derived from high-

density genetic interaction data from two evolutionary distant species. Our data strongly 

support the idea that functional modules are highly conserved, but the wiring between 

them can differ significantly. Thus, using model systems to make inferences about 

biological network topology may be more successful for describing modules than for 

describing the cross-talk between them.  
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Chapter 6. DNA-damage induced rewiring of protein signaling revealed by a 

conditional epistatic interaction map (cE-MAP) 

Abstract 

Damage to DNA triggers major cellular responses including cell-cycle arrest, 

chromatin remodeling, and DNA repair. However, how signaling pathways orchestrate 

this response remains unclear. To uncover these pathways, we developed a conditional 

epistasis mapping approach, termed cE-MAP, which we use to examine double gene 

knockouts among a set of 418 signaling genes in yeast including most kinases, 

phosphatases, and transcription factors with and without the DNA damaging agent, 

MMS. Analysis of the difference between the two static maps revealed 1,161 conditional 

interactions which are extremely effective at identifying DNA-damage response genes 

and pathways. The cE-MAP identifies roles for MAPKs in DNA-damage signaling, for 

Cbf1 regulation by the DNA-damage phosphatase Pph3, and a functional connection 

between the checkpoint kinase Mec1 and histone variant Htz1. Thus, cE-MAPS are a 

valuable tool for mapping pathways that are stimulated under a specific condition and for 

probing a previously unexplored space of the genetic interactome.
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Introduction 

Detection and repair of DNA damage is critical for the proper replication and 

function of every organism. DNA damage is sensed by a highly conserved mechanism 

involving the two protein kinases: Ataxia-Telangiectasia-Mutated (ATM) and Ataxia-

Telangiectasia-and-Rad3-related (ATR) corresponding to yeast Mec1 and Tel1, 

respectively2. These aggregate at DNA lesions and activate signal transduction cascades 

that include the CHK protein kinases (yeast Chk1, Rad53, and Dun1) which trigger a 

variety of transcriptional and transcription-independent responses, including activation of 

DNA repair machinery, cell-cycle arrest, chromatin and cytoskeletal remodeling, RNA 

and protein turnover, and in some cases apoptosis4.  However, a global view of the 

interrelationships among the many response pathways is still lacking and many new 

processes and pathways involved in the DNA Damage Response (DDR) remain to be 

identified. Here, we describe a systems approach to mapping DNA-damage signaling 

pathways based on the generation of a quantitative genetic interaction map in yeast 

induced by the DNA alkylating agent methyl-methanesulfonate (MMS). 

Given such a wide and complex cellular response, a number of genome-scale 

methodologies have been applied to uncovering the components of DDR pathways. Yeast 

has been the proving ground for these technologies, which include single gene deletion 

profiling to identify genes required for response to various damaging agents3,5,6, 

expression profiling to identify the transcriptional programs associated with the DDR7, 

chIP-chip to identify targets of active transcription factors8, and phosphoproteomic 

screening to identify post-translational modifications governed by major checkpoint 

kinases9. Genome-scale technologies have also been applied in humans, including siRNA 
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screening to identify genes whose knockdown confers sensitivity to MMS10, factors 

impinging on the activation of H2AX11 and phosphoproteomic profiling to identify 

substrates of ATM and ATR12. Despite these technological advances, our understanding 

of the mechanisms which govern DNA repair processes remains limited. 

Genetic interactions report the extent to which two genes have an effect on the 

same phenotype and can indicate genes functioning in the same or similar pathway13. 

Positive interactions can occur in cases where the double mutant is either healthier 

(suppressive) or no sicker (epistatic) than the sickest single mutant14-16.  Such interactions 

commonly indicate genes functioning in the same pathway or complex17,18. Negative 

genetic interactions (synthetic sick/lethal interactions) indicate genes whose individual 

mutants are viable whereas their mutation in combination results in a stronger growth 

defect than expected by either mutation alone. Such interactions are thought to identify 

pairs of genes which are functionally related but have a parallel or redundant function18.   

Genetic interaction screening has been predominately performed through two 

approaches, synthetic genetic array (SGA) technology19 and diploid synthetic lethality 

analysis on microarrays (dSLAM)20, the latter has been used to define a genetic 

interaction network underlying DNA integrity under nominal conditions21.  Recently, 

these methods have been complemented by a method termed Epistatic Miniarray Profiles 

(E-MAP), which is able to quantitatively sample the full spectrum of positive and 

negative genetic interactions15,22,23. 

Because the pathways which are most essential for growth under  DNA damage 

differ from those that might be required for growth on other conditions, we hypothesized 

that genetic interaction mapping under an alternative condition might illuminate 
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pathways which are most essential for growth under that condition. In this regard, 

conditional genetic interactions among genes involved in DNA repair have been shown to 

exist24. However, the widespread prevalence of such interactions and whether such 

interactions can identify new and novel pathways have yet to be determined.  To further 

elucidate the role of signaling, transcription and DNA maintenance in DDR, we used the 

E-MAP approach to create all possible pairs of deletion mutations among 418 of these 

genes and profiled their growth in both rich media as well as in the presence of the DNA 

alkylating agent, MMS. This systematic approach reveals that tracking the way that these 

genetic interaction networks change can indicate pathways which are formed dynamically 

in response to perturbation and are critical for growth, many of which have no known 

role in DNA repair. The resulting conditional genetic interaction map, derived from the 

difference of the two static maps, reveals hundreds of compensatory and serial pathways 

as well as detail single proteins and multi-protein modules which undergo significant 

rewiring in response to MMS. Our results indicate that conditional genetic interaction 

maps probe a radically different space of the genetic interactome and provide a new 

model for the exploration of the mode of action of drugs and cellular stimuli. 

Results and Discussion 

A conditional epistasis map centered on DNA damage signaling and transcription 

We assembled a DNA damage cE-MAP based on a core set of 418 yeast genes, 

designed to provide near global coverage of the signaling and transcriptional apparatus in 

the damage response. This core set included 122 kinases, 40 phosphatases, 194 DNA-

binding transcription factors representing the vast majority of all genes annotated with 
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these functions. In addition we included 35 and 31 genes involved in chromatin 

maintenance and DNA repair, to further map functional relationships in relation to these 

processes (Figure 6.1A, Table S1). Finally, hypomorphic alleles were generated for 

essential kinases, including CDC28, MEC1 and RAD53 16. To screen for genetic 

interactions, approximately 80,000 double gene deletion strains were generated 

representing all pairwise combinations of these core genes. Double mutant combinations 

were evaluated under two growth conditions: growth in rich media and growth in rich 

media under exposure to DNA damage by the alkylating agent methane-

methanosulfonate (MMS at 0.02%). Analysis of each condition independently revealed 

two static genetic interaction maps: a network of 367 positive (S ≥ 2) and 1,562 negative 

interactions (S ≤ 2.5) for the untreated map, and 595 positive and 1,744 negative 

interactions under MMS (Table S2).  

Analysis of the untreated interaction map showed strong association with physical 

interaction networks of various kinds.  For example, as has been previously 

described22,25, known protein-protein interactions were highly enriched for gene pairs 

with both positive and negative genetic interactions; and known kinase-substrate and 

phosphatase-substrate relationships were enriched for positive but not negative 

interactions26. Interestingly, known transcription factor / DNA interactions were enriched 

for negative but not positive genetic interactions, suggesting significant redundancy in the 

organization of the transcriptional apparatus (Figure S1).   
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Figure 6.1: Characterization of the DNA damage signaling cE-MAP.  

(A) Composition of the genes in the cE-MAP organized by functional categories. (B) 
Difference between untreated and MMS static maps were determined to identify conditional 
interactions. (C) Scatter of S-scores between untreated and MMS maps and identification of 
conditional positive and negative interactions (cS≥3 and cS≤−3, respecitvely). (D) Enrichment of 
interactions involving genes functioning in DNA damage repair among various static and 
conditional networks. Static networks consist of positive (S≥2) and negative (S≤−2.5) interactions. 
For the last bar, all dynamic interactions overlapping with the Static MMS dataset were removed. 
(E) Enrichment of interactions involving genes in various functions among static and conditinal 
networks. For each function, enrichment was determined via hypergeometric test based on 
comparing the proportion of identified versus total possible interactions to the same proportion for 
all 418 genes in the E-MAP.  
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We next developed a sensitive metric to detect conditional genetic interactions, 

i.e., those which are dynamically altered between conditions (Figure 6.1B). For this 

purpose, we established a null model for the expected difference in genetic interaction 

score when comparing two independent E-MAP screens performed under identical 

conditions. Based on departures from this null model, we assigned a p-value of 

significance for the change in interaction between untreated and MMS conditions (Figure 

6.1C, Experimental Procedures). This method identified 1,161 conditional interactions 

(p < 0.001) (Table S2). Of these, 522 were ‘conditional negative’ (cS-score ≤ ), 

indicating double mutant hyper-sensitivity to MMS resulting in conditional lethality or 

sickness. The remaining 639 interactions were ‘conditional positive’ (cS-score ≥ ), 

indicating cells were less sensitive to MMS than expected from the sensitivity of the 

single mutants alone.  

Remarkably, we found that only 38% of conditional interactions were called 

positive or negative in either condition individually. Thus, the network of conditional 

interactions is largely distinct from either of the two static networks from which it is 

derived. This difference occurs since many genetic interactions are too weak to detect in 

one condition alone but become very clear considering the change in interaction strength 

between two conditions (e.g., interactions that are weakly negative in untreated 

conditions but become weakly positive after MMS exposure).  

Next, we investigated which interpretation of genetic interactions, static or 

conditional, was more effective at identifying components of the DNA damage response. 

Strikingly, genes involved in the DNA damage response were no more likely than 

random sets of genes to appear in either the static untreated or the static MMS networks 
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(Figure 6.1D). In contrast, conditional interactions were highly enriched for DNA 

damage response genes, even when the interactions held in common with the static MMS 

map were removed. A more general survey of functional groups indicated that 

interactions within both of the static networks were highly enriched for genes involved in 

chromatin organization (Figure 6.1E).  This strong genetic signal from chromatin 

components has been greatly exploited in the past to create rich maps of chromosome 

function 22,27.  In the conditional network, however, the chromatin contribution has 

effectively “cancelled out” allowing only differentially-represented pathways to surface 

such as DNA repair.  Beyond DNA repair pathways, the conditional network was highly 

enriched for genes involved in cell cycle progression, a major component of the DNA 

damage response that is halted to repair damaged DNA before replication (Figure 6.1E)4.  

Thus, conditional genetic interaction networks explore a fundamentally different 

landscape of genetic interactions. 

Conditional genetic interaction ‘hubs’ identify mediators of the DNA damage 

response 

‘Hubs’ in a genetic network are genes with very large numbers of interactions— 

i.e., for which mutation enhances the phenotypic consequences of mutations in many 

other diverse pathways.  Similarly, in a conditional genetic network, hubs might indicate 

critical components whose presence is required to modulate many dynamic events in 

response to the stimulus.  In support of this hypothesis, we found that the number of 

interactions per gene in the DNA damage conditional network was correlated with the 

severity of growth defect of the gene deletion on MMS (r=0.35, p=, Figure S3)3.  We 
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also observed that most genes with large numbers of positive or negative conditional 

interactions had previously defined roles in the DNA damage response (Figure 6.2).   

However, some genes with many conditional interactions had not been previously linked 

to DNA damage suggesting novel functions worthy of further investigation.  For 

example, the iron-sensing transcription factor RCS1 had among the largest number of 

conditional negative interactions, suggesting a novel role in the transcriptional response 

to MMS that is corroborated by its reported role in chromosome segregation and 

stability28 . Critically, deletion of RCS1 alone does not confer sensitivity to MMS— 

hence, the conditional genetic network highlights novel pathway components which 

would otherwise be missed through more traditional genetic screening techniques. 

A global module map of DNA damage signaling 

A preliminary examination of the conditional genetic network suggested 

substantial modular structure, with strong clustering of genetic interactions around 

functionally-related groups of genes. Three well known DNA-damage response modules 

are the damage signaling cascade, the alternative Replication Factor C (aRFC) complex 

required for sister chromatid cohesion, and the RAD52 epistasis group involved in DNA 

repair via homologous 
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recombination (HR). In untreated conditions, genetic interactions among these three 

modules were largely unremarkable.  However after MMS, we observed a shift to 

overwhelmingly positive genetic interactions among nearly all components of the three 

modules (Figure 6.3A), suggesting the alignment of these modules under a common 

pathway in response to DNA-damage stress.  Consistent with these observations, 

previous reports have linked members of the aRFC with proper activation of the DNA-

damage checkpoint kinase Rad53 in MMS21 as well as demonstrated that the Mec1 

kinase regulates the recruitment of Rad52 to sites of DNA damage29. One interpretation 

of these data is that following detection of DNA damage, aRFC establishes a replication 

block through activation of the checkpoint cascade which ultimately activates a cadre of 

 

Figure 6.2: Identification of conditional Interaction ‘hubs’. 

 Distribution of the number of conditional positive and negative interactions associated with genes 
in the cE-MAP. The 30 most sensitive MMS sensitive genes in the cE-MAP are indicated, excluding those 
which function in DNA repair (Table S1) 3. Starred genes indicate MAPKs. Node positions were perturbed 
randomly to avoid overlap. 
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DNA repair machinery including the establishment of Rad51/52 at sites of DNA damage 

(Figure 6.3B). 

To form a global picture of the functional modules revealed by the cE-MAP, 

conditional genetic interactions were integrated with databases of known protein-protein 

physical interactions, protein complexes, and pathways (Table S3). For this purpose, we 

employed a previously-published method30 which identifies ‘modules’ as clusters of 

genes defined by both genetic and physical interaction data. We identified pairs of 

functionally-related modules as those which are interconnected by bundles of many 

strong conditional genetic interactions (see Experimental Procedures).  Using this method 

we identified 56 multigenic modules and 66 significant module-module genetic 

interactions conditioned on DNA damage (Figure 6.3C, Table S4).  An example of 

connections between modules includes the previously observed conditional interactions 

between the damage signaling, RAD52 epistasis group and aRFC modules (Figure 6.3A). 

Many conditional positive interactions were observed involving the CTK-C complex 

(Ctk1/2/3), which has been previously shown to phosphorylate RNA polymerase II 

(Mediator) to regulate transcription31 and catalyze DNA-damage-induced transcription32.  

The module map suggests that CTK-C plays many additional roles in the DDR together 

with chromatin regulatory complexes such as SWR-C, RPD3, and RSC, which is 

consistent with reports that it can regulate the positioning of COMPASS-mediated 

histone methylation boundaries along genes33,34.  Conditional negative interactions in the 

module map also suggest a role for the Elm1/Hsl1 septin checkpoint kinases in regulation 

of INO80, an ATP-dependent chromatin remodeling complex 35. Such regulation may 

regulate bud morphogenesis, potentially through phosphorylation of INO80 subunit 
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Nhp10 by Hsl1 as has been shown to occur in vitro36. Critically, permutation analysis 

revealed that even finding one significant link between two modules rarely happens by 

chance alone (p < 0.01, Figure S4), confirming the modular organization of the network. 

Thus, at the level of protein modules and complexes, conditional genetic interactions 

highlight functional connections between modules and complexes which occur in a 

condition-dependent context. 

 

 

 

Figure 6.3: Module-based interpretation of the conditional genetic interactions.  

(A) Static genetic interactions between module members. (B) Pathway interpretation of 
conditional positive genetic interactions. (C) Module map of selected protein complexes and pathways 
connected by bundles of condition-specific genetic interactions. Node colors represent the most severe 
phenotype among members of a module. 
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MAPK pathways play a vital role in signaling DNA damage 

The Mitogen-Activated Protein Kinases (MAPK) form a series of signal 

transduction pathways that mediate the response of cells to a variety of extracellular 

stimuli and stress.  We observed three MAPK proteins in particular— Bck1, Fus3, and 

Slt2— that were implicated as hubs of conditional genetic interactions (Figure 6.2) and 

also appeared as a prominent component of the module map (Figure 6.3C, blue labels). 

Two of these proteins, Bck1 and Slt2, are members of the PKC1-mediated cell integrity 

pathway required for cell wall remodeling and budding in response to stress37.  We 

observed conditional negative genetic interactions between these MAPKs and members 

of the canonical DNA damage checkpoint kinase cascade including TEL1 (ortholog of 

human ATM) and DUN1 (ortholog of human CHK2), suggesting significant crosstalk 

between this pathway and MAPK pathways (Figure 6.4A).  Although MAPK regulation 

of the DNA damage response has not yet been reported in yeast, it is in agreement with 

preliminary reports in human in which PKC proteins may regulate poly(ADP-ribose) 

polymerase-1 (PARP-1)38 and activate apoptotic caspases in response to cisplatin39.  

Furthermore, human p38/MAPK pathways have been suggested to regulate the cell cycle 

in response to UV damage in a parallel pathway to CHK1/CHK240. 

To further study the role of MAPK pathways in signaling DNA damage, we 

examined both the expression and the cellular localization of the Slt2 MAPK in 

increasing concentrations of MMS.  These experiments indicated that Slt2 is dramatically 

induced upon exposure to MMS (Figure 6.4B-C) and that it also trans-locates to the 

nucleus (Figure 6.4C-D). Further analysis revealed a role for Slt2 in the recovery from 

DNA damage revealed by monitoring the phosphorylation status of the checkpoint kinase 
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Rad53 (Figure 6.4E). Since MAPK pathways often regulate transcriptional responses41, 

we next measured the effect of Slt2 on expression of the ribonucleotide reductase (RNR) 

complex subunits in response to MMS. Induction of RNR is a useful marker for the DNA 

damage response, as it is a key component which catalyzes production of nucleotide 

pools needed for DNA replication and repair and is under both positive and negative 

control by a number of DNA repair proteins42,43. We found that the expression levels of 

all four RNR subunits, which are strongly induced by MMS, were hyper-induced by 4- to 

8-fold in a slt2∆ gene deletion mutant (Figure 6.4F). 

One interpretation of these results was that Slt2 directly regulates the transcription 

of RNR subunits, either alone or through interactions with transcription factors44. An 

alternative explanation was that the link between Slt2 and RNR was indirect, with lack of 

Slt2 increasing sensitivity to DNA damage which, in turn, causes an increase in RNRs.  

To distinguish between these two possibilities, we used the technique of chromatin 

immunoprecipitation followed by microchip analysis (ChIP-chip) to determine whether 

Slt2 binds genomic DNA in the neighborhood of RNR genes and, if so, its precise 

binding sites at these loci.  This technique has been used previously to show that some 

MAPKs precipitate with genomic DNA through their occupancy at defined target 

genes45.  The ChIP experiment showed that the 5’ genomic regions of the RNR1 and 

RNR2 loci were among the most heavily bound by Slt2 (occurring in the top 99.5% 

percentile) (Figure 6.4G, Figure S5).  Interestingly, we observed binding of Slt2 to the 

RNR1 and RNR2 loci, the two essential genes in the regulon, but not to loci encoding 

non-essential genes RNR3 and RNR4 (Figure S6).  Taken together, our data suggest that 

MAPK pathways play a vital role in the DNA damage response which may function in 
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parallel to the canonical DNA damage checkpoint kinase pathway  converging at the 

level of RNR transcription (Figure 6.4H). 

  

Figure 6.4: Crosstalk between MAPK and DNA repair pathways. 

(A) Representative conditional genetic interactions with BCK1 and SLT2. (B) Immunoblot of 
GFP tagged Slt2 indicated an increase in abundance in response to MMS treatment for 1 hour. 
Hexokinase is used as a loading control. (C) Fluorescence microscopy of Slt2-GFP cells before and after 
exposure to 0.1% MMS. (D) Nuclear accumulation of Slt2 in response to MMS. Cytoplasmic versus 
nuclear fluorescent intensity was quantified for random cells in each condition. Error bars are s.e.m. (E) 
Phosphorylation status of checkpoint kinase Rad53 in response to MMS and after 1 hour recovery in 
YPD. pph3∆ is used as control and is defective in recovery from MMS. (F) Induction of RNR subunit 
expression in response to MMS using real-time PCR in wild-type and a slt2∆ mutant. (G) Occupancy of 
the RNR1 and RNR2 genes by Slt2p after 1 hour exposure to 0.03% MMS based on ChIP-chip analyses. 
The genomic positions of probe regions and their enrichment ratios are displayed on the x and y axes, 
respectively. Open reading frames are depicted as gray rectangles, and arrows indicate the direction of 
transcription (H) Schematic illustration of the uncovered role of MAPK pathways in the response to 
DNA damage based on conditional negative interactions. 
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The DNA damage phosphatase Pph3 regulates Cbf1, a component of the 

kinetochore 

Pph3 is the catalytic subunit of a conserved phosphatase complex required for 

dephosphorylation of the DNA damage checkpoint kinase Rad53 and resumption of 

replication during damage recovery46,47. PPH3 was identified as a major hub of 

conditional genetic interactions in our DNA damage cE-MAP (Figure 6.2). The spectrum 

of genetic interactions observed with pph3 changed substantially under MMS (Figure 

6.5A), with the strongest positive interactions occurring with DNA repair proteins 

RAD17 and RAD52, the G1/S cyclin CLN1, and a transcription factor and component of 

the inner kinetochore CBF1.  We also examined the entire genetic interaction profile of 

PPH3, i.e., the vector of genetic interaction scores pairing PPH3 with each of the genes 

on the cE-MAP.  Similarity between the genetic interaction profiles of two genes has 

been termed ‘genetic congruence’ and suggests a close functional relationship 23,48,49.  As 

expected, PPH3 was highly congruent with other members of its phosphatase complex 

(Psy2, Psy4)47 in both untreated and MMS-treated conditions (Figure 6.5B). In untreated 

conditions only, PPH3 was highly congruent and showed a strong negative interaction 

with the DNA checkpoint gene RAD17. Rad17 is an early DNA damage sensor which 

binds chromatin before damage occurs in order to efficiently recruit repair machinery50. 

Thus, Pph3 may also have a role in recruitment of repair machinery prior to damage, 

potentially through Rad17. In MMS only, PPH3 became highly congruent with the TEL1 

kinase (Pearson correlation of to ).  This observation is consistent with the 

role of Tel1 and Pph3 in the phosphorylation and de-phosphorylation of Rad53 and the 

histone variant γH2AX during DNA damage response and recovery47,51 and suggests that 
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these factors may have more targets in common. 

A gene with an unknown role in DNA repair which became highly congruent with 

PPH3 after DNA damage was CBF1(Figure 6.5B).  This congruence, along with the 

strong conditional positive interaction between PPH3 and CBF1 (Figure 6.5A), suggested 

a role for Pph3 in the regulation of Cbf1 during the DNA damage response.  Like PPH3, 

CBF1 itself was also identified as a conditional interaction hub (Figure 6.2). Further 

investigation revealed that Cbf1 is phosphorylated in response to MMS (Figure 6.5C).

 Moreover, we found that Cbf1 was hyperphosphorylated in a pph3∆ strain 

independent of the treatment condition, suggesting that damage-dependent 

phosphorylation of Cbf1 is counteracted by the Pph3 phosphatase (Figure 6.5C) . In 

addition, using a quantitative mass spectroscopy approach based on phospho-proteome 

profiling we found that Cbf1 is the most hyperphosphorylated protein detected in a 

pph3∆ strain (Figure 6.5D-E, Table S5). Furthermore, the observed hyper-

phosphorylation occurred at Serine-145 followed by Glutamine— this is the canonical 

SQ phosphorylation motif of Mec1 and Tel1 DNA damage kinases which have also been 

shown to target Cbf19.  To further validate the relationship between PPH3 and CBF1, we 

compared the expression profiles of pph3 and cbf1 mutants using whole yeast genome 

DNA microarrays. This revealed a very significant overlap in the set of differentially 

expressed genes, both in untreated conditions (p=) as well as after treatment with 

MMS (p=) providing further evidence that the two genes function together in vivo 

(Figure S7, Table S6).  
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In addition to its role as a transcription factor, Cbf1 is a component of the inner 

kinetochore indicating that it may have a role in cell division. Thus, we hypothesized that 

it might participate in one of the several damage-dependent cell-cycle checkpoints, 

including the G1/S, G2/M and intra-S checkpoints which are largely controlled by Mec1 

and Tel1 kinases4. We found that after arresting cells in G1, cbf1∆ cells progressed 

 

Figure 6.5: Conditional Genetic interactions with Pph3 identify a novel substrate Cbf1 which 
functions in the DNA damage checkpoint. 

(A) Full spectrum of PPH3 genetic interactions. Genes with the strongest positive and 
negative genetic interactions in MMS are highlighted. (B) Scatter plot of correlation coefficients for 
each mutant compared to the profile of PPH3.For PPH3 in each condition, the correlation of profile is 
shown for each mutant in the same condition. (C) Phos-tag gel shift analysis of TAP tagged Cbf1. 
PPase indicates phosphatase treatment to remove protein phosphorylation. MMS treated cells were 
exposed to 0.03% MMS for 1 hour. (D) Comparison of abundance of protein phosphorylation sites in 
pph3∆ cells versus wild-type by phospho-proteomic profiling. (E) Effect of deletion of CBF1 on cell-
cycle progression in arrested cells released into media with or without 0.02% MMS. Facs was 
performed as described 1. (F) Effect of over-expression of CBF1 on cell cycle progression. Cells were 
shifted to galactose media for three hours before alpha-arrest and released into media containing 
galactose as carbon source. (G) γH2AX-activation levels for wild-type, CBF1 over-expression and 
pph3∆ cells. PGK1 is used as a loading control. 
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through the cell cycle similar to wild-type cells in untreated conditions (Figure 6.5E). For 

cells released into MMS-containing media, the progression of wild-type cells was almost 

completely halted by checkpoint activation; however, cbf1∆ mutant cells progressed 

freely through the cell cycle, indicating a defect in DNA damage dependent checkpoints. 

Cells ultimately accumulated in S-phase suggesting failure to complete replication of 

damaged DNA. Furthermore, overexpression of CBF1 resulted in cell cycle arrest in G1. 

(Figure 6.5F). Hence, the regulation of Cbf1 by Pph3 likely plays a key role in the 

activation and de-activation of cell-cycle checkpoints in response to MMS.  In support of 

this hypothesis, the two strongest positive interactions in untreated conditions with CBF1 

were the cell cycle transcription factor SWI4 (S=+4.6) and cyclin PHO80 (S=+3.8).  

In response to DNA double-strand breaks, histone H2A is rapidly phosphorylated 

by the checkpoint kinases Mec1 and Tel1 to form γH2AX, which signals the recruitment 

and accumulation of DNA repair proteins52. In both humans and yeast, Pph3-containing 

complexes are directly associated with and responsible for the dephosphorylation of 

γH2AX which is a signal for recovery from the DNA damage checkpoint47. Due to the 

similar mechanisms of regulation, we tested for a relationship between the processes 

which activate Cbf1 and γH2AX. Intriguingly, over-expression of CBF1 resulted in 

nearly complete failure of cells to activate γH2AX in response to MMS (Figure 6.5G). 

This suggests functional cross-talk between pathways leading to the activation of γH2AX 

and cell cycle arrest mediated through Cbf1 regulation by Mec1/Tel1 and Pph3. Further 

work will be required to reveal the mechanistic details of this connection between these 

two substrates in common between Mec1/Tel1 and Pph3. 
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Histone variant H2A.Z is regulated by MMS and the checkpoint kinase Mec1 

Another means of identifying new DNA-damage response factors is to look for 

genes with genetic interaction profiles that change dramatically between untreated and 

MMS-treated conditions.  For instance, the genetic interaction profile most altered by 

MMS treatment was that of RAD52, a critical factor in repair of damaged DNA via HR53.  

Another highly-altered profile was that of Htz1 (Figure 6.6A), a histone H2A variant 

known in metazoans as H2A.Z whose role in DNA repair has not been well established. 

In untreated conditions, we observed extremely strong congruence of the Htz1 profile 

with members of the SWR-C complex (SWR1, SWC5, VPS71, VPS72), which is 

responsible for incorporating Htz1 into chromatin54-56. In MMS, this congruence was 

almost completely lost, suggesting a functional disassociation with SWR-C (Figure 

6.6B). For instance, correlation of the profiles of HTZ1 and SWR1, the catalytic subunit 

of SWR-C, fell from 0.65 to 0.00 after MMS exposure. Conversely, in MMS HTZ1 

became highly congruent with DNA-damage checkpoint kinases MEC1 (correlation from 

-0.04 to 0.34) and RAD53 (0.04 to 0.25) suggesting active regulation of Htz1 by 

checkpoint kinases after DNA damage (Figure 6.6B).  In MMS, HTZ1 also acquired 

positive interactions with members of the RAD52 epistasis group (RAD52-EG) (Figure 

6.6C).  

We further tested the function of HTZ1 in combination with the essential kinase 

MEC1. To support the genetic interactions uncovered using the MEC1 hypomorphic 

allele in the cE-MAP, we suppressed the lethality of mec1 by simultaneous deletion of 

SML1, an inhibitor of ribonucleotide reductase57.  Using a sml1∆ background, we 

observed that the deletion of htz1mec1sml1 together was synthetically sick when 
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Figure 6.6: The checkpoint kinase, Mec1, associates with and regulates the histone H2A variant 
Htz1.  

(A) Histogram of correlation coefficients of the genetic interaction profile of each mutant 
compared between untreated and MMS. (B) Scatter plot of correlation coefficients for each mutant 
compared to the profile of HTZ1. For HTZ1 in each condition, the correlation of profile is shown for 
each mutant in the same condition. Four members of the SWR-C complex are highlighted. (C) 
Representative genetic interactions that are in common with HTZ1 and members of the SWR-C in 
untreated conditions and are in common with HTZ1 and MEC1 in MMS. (D) Synthetic sickness of 
htz1∆ with mec1∆sml1∆ in MMS. Plates were grown for 3 days at 30 degrees with 0.02% MMS. (E) 
Coimmunoprecipitations of Myc-Mec1 with Htz1-3HA. The indicated strains were 
immunoprecipitated with HA antibody either with or without prior MMS treatment (0.03% for 1 
hour), and the blot was cut and probed with a monoclonal MYC antibody to detect Mec1. The input 
represents 1/200th of the sample for the IPs (F) Htz1 acetylation is dramatically reduced in MMS. 
Total acetylation of Lysine 14 was monitored in a Htz1-3HA strain for two independent replicates 
(T1,T2). HA represents total amount of Htz1, Rpn8 serves as loading control. (G) Same as in F but 
with a mec1∆sml1∆ strain, the γH2AX, a Mec1 substrate, serves to verify the deletion of MEC1. (H) 
Quantification of F and G. K14 acetylation channel was compared to the HA channel. Error bars 
represent standard deviation. (I) Proposed model of Htz1 function in response to DNA damage. 
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grown on MMS (Figure 6.6D). Previous observations have shown that while two 

mutations in a nonessential pathway or complex often result in a positive genetic 

interaction, the introduction of two mutations into an essential pathway is very likely to 

have a synthetic negative effect on growth25,30. This phenomenon could reflect a situation 

where mutations in essential genes leave the cell in a vulnerable state and that further 

insults in the pathway mediated by this essential gene lead to a significant negative effect 

on growth.  Hence, both the conditional correlation and negative genetic interaction 

suggest a direct functional connection between Mec1 and Htz1. 

We therefore tested whether the Htz1 and Mec1 proteins could physically interact 

in vivo. Via coimmunoprecipitations of an N-terminal MYC tagged Mec1 (Myc-Mec1) 

and Htz1-3HA tagged strain, we found a significant physical association between Htz1 

and Mec1 which was increased in the presence of MMS (Figure 6.6E). To further 

understand both the dramatic change in genetic interaction profile (Figure 6.6A) and the 

condition specific correlation with Mec1 (Figure 6.6B), we monitored Htz1 acetylation 

levels in response to MMS. After incorporation into chromatin by the SWR-C complex, 

Htz1 is acetylated on Lys 14 (K14) by the NuA4 histone acetyltransferase complex which 

has been observed to impact DNA repair processes as well as chromosome transmission 

and telomeric silencing 58. We found that while the total amount of Htz1 was nearly 

unaltered, Htz1-K14 acetylation levels were dramatically reduced in response to a 1 hour 

treatment with MMS (Figure 6.6F). Consistent with condition specific congruence and 

genetic interactions with Mec1, we found that the deacetylation of Htz1 in response to 

MMS was abrogated in a mec1∆ mutant (Figure 6.6G-H), suggesting that Htz1 

deacetylation in response to MMS is at least partly mediated through the activity of 
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Mec1.  

The reduction in acetylation could be due to the deacetylation of already 

incorporated Htz1, or a reduction of Htz1-containing nucleosomes.  Sub-cellular 

fractionation indicated that while the total level of acetylated Htz1 in response to MMS 

was diminished nearly 95%, there was only a 50% loss of acetylation on chromatin-

bound Htz1 (Figure S9). In addition, there was nearly a 30% reduction in the total 

amount of chromatin-bound Htz1, indicating that the observed reduction in acetylation is 

due to reduction in the amount of chromatin-bound Htz1 (Figure S9). Consistent with this 

model and our genetic data, previous reports have indicated that Htz1 - containing 

nucleosomes are cleared from DNA double-strand break regions by the INO80 complex 

in a manner independent of the SWR-C, while γH2AX accumulates in these regions59,60. 

In addition, both γH2AX and the INO80 subunit, Ies4, are damage-dependent substrates 

of Mec161. Taken together, our data supports a model where Mec1 physically associates 

with incorporated Htz1 catalyzing its deacetylation in response to MMS via eviction of 

htz1-containing nucleosomes from chromatin near sites of damage (Figure 6.6I).  

Perspective 

By monitoring the dynamics of genetic interactions in response to DNA damage 

by MMS, we were able to specifically reveal the genetic architecture of signaling 

underlying the DNA damage response. In contrast to static genetic interactions, we found 

that a large proportion of conditional genetic interactions specifically mapped 

components of the damage response. These interactions were able to highlight dynamic 

functional connections between various pathways and complexes as well as identify new 
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pathways that are specifically activated under DNA damage stress. Critically, we found 

that the comparison of untreated and MMS maps was much more sensitive in the 

identification of dynamic genetic interactions than analysis of either condition alone; 

suggesting a new paradigm for exploring the mechanism of action of drugs and other 

external stimuli.  

Genetic interactions uncovered by exposure to MMS reveal a plethora of new 

pathways which we begin to describe here. For example, conditional interactions 

highlighted a role for the Slt2 MAPK in the transcriptional response to DNA damage. We 

also identified Cbf1 as a component of the damage dependent cell-cycle checkpoint and 

as a new target of the major DNA-damage dependent phosphatase, Pph3. Lastly, 

conditional interactions pointed to a novel role for the DNA-damage checkpoint kinase, 

Mec1, in the regulation of Htz1 in response to MMS.  Furthermore, the map of the 

relationships between multimeric modules (Figure 6.3C) serves as a roadmap for 

functional inference of the interconnectivity of modules after DNA damage. However, 

because most kinases and transcription factors do not operate in multimeric modules, 

other methods might be developed to highlight pathways implicated in the function of 

single genes. Such methods include the identification of network motifs which are 

common in the genetic interaction data and can identify shared pathway membership26.   

Synthetic lethality has been exploited for the discovery of parallel pathways 

required to compensate for oncogenic mutations and is an emerging paradigm for the 

discovery of new therapautics (Reinhardt et al, 2009).  A potential use of conditional 

negative genetic interactions might be used to suggest pathways working in parallel with 

genes involved in DNA repair and oncogenesis which might then be targeted with drugs 
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to specifically sensitize cancer cells to chemotherapeutic agents such as MMS. This 

approach has been exploited using the synthetic lethal relationship between the DNA 

repair protein Poly (ADP-Ribose) Polymerase (PARP) and genes commonly mutated and 

defective in breast and ovarian cancer, BRCA1 and BRCA2. PARP and BRCA genes 

function in a redundant fashion, where PARP inhibition results in the generation of 

double strand breaks (DSB) which are then repaired via BRCA1/262. For BRCA1/2 

mutated cancers, PARP inhibitors are able to specifically sensitize cancer cells to DNA 

damage (Farmer et al, 2005). In such a manner, the data in yeast suggests a variety of 

conserved pathways which might be targeted to specifically inhibit replication in cells 

with mutations or other aberrations in oncogenic pathways. 

The cE-MAP in budding yeast quantitatively maps pairwise genetic interactions 

among nearly all kinases, phosphatases, transcription factors and chromatin and DNA 

damage machinery. This dataset provides a launching point to further study the genetic 

architecture between a critical interface in biology, signaling and transcription. For 

example, we have noted that kinases and their substrates tend to share positive genetic 

interactions and have correlated genetic interaction profiles. Integrating this information 

alone or with other high throughput datasets can aid in the identification of novel kinase-

substrate relationships including those which are DNA damage dependent. Future work 

might examine the effects of other drugs on focused sets of genes such as rapamycin on 

RNA Processing and benomyl on spindle function or probe mechanism of action of 

uncharacterized compounds using more unbiased gene sets. In addition, comparison with 

similar data from other species such as S. pombe can reveal conserved and diverged 

interactions between species63 providing evolutionary insight into the drug response and 
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point to which interactions which might be conserved in humans.  
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Methods 

E-MAP experiments.   

Strain construction, plating of mutants, mutant selection, and scoring of genetic 

interactions in each condition were performed as previously described15,16.  For the MMS 

map, double mutants were grown under the appropriate drug selection and 0.02% MMS. 

This protocol resulted in a quantitative S-score assigned to each gene deletion pair, in 

which S ≤  is considered a significant negative interaction, and S ≥ 2.0 is considered 

a significant positive interaction15. 

Conditional interaction scoring system.   

Conditional interactions were evaluated by first computing the difference in S-

score (S1 – S2) of a double gene deletion strain grown in two conditions 1 and 2.  To 

estimate the null distribution of this difference, replicate S-scores were obtained from a 

set of 8018 double deletions assayed in identical conditions in both of two previously 

published E-MAPs (Figure S2)22,26.  We found that this null distribution had a standard 

deviation that increased non-linearly with the magnitude of S-score (Figure S2).  This 

deviation was estimated as a non-parametric function (S1 + S2) of the sum of S-scores 

using a sliding window. The conditional S-score was then computed as:  

ܿܵ ൌ ሺ݊݃݅ݏ ଵܵെܵଶሻ ൈ logଵ଴ ൬1 െ Φ ฬ ଵܵെܵଶ
σ

ฬ൰ 

where  is the cumulative distribution function of the standard normal 

distribution. The cS score reflects the log p-value of the normalized difference in S-score 

between conditions (i.e., cS = 3 reflects a p-value of 0.001) with the sign reflecting the 

direction of change in S-score of condition 1 relative to condition 2. In our study, 
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condition 1 was set to MMS-treated cells and condition 2 was set to untreated cells. An 

interaction with cS-score ≥ 3 was considered ‘conditional positive’ in MMS, and an 

interaction with cS-score ≤  was considered ‘conditional negative’ (Table S2).  

Assembly of the module map. 

 The module map in Figure 3C was generated as previously described 30 with the 

following modifications. A physical protein-protein interaction network was downloaded 

from the Biogrid database (interactions annotated as genetic were excluded) and filtered 

to those interactions supported by two or more publications (Table S3). This was 

combined with interactions based on tandem affinity purification followed by mass 

spectrometry having PE-score ≥ 264. Members of the same module were required to be 

connected in this physical network. Modules were initially identified using the maximum 

absolute value of the S-score in either condition using a cluster reward of 5. Within-

module scores were calculated using both the genetic interaction strength as well as 

correlation of genetic interaction profiles. Links between modules were determined based 

on the hypergeometric enrichment for either conditional positive of negative interactions 

among all possible pairs of members between modules. Modules links with enrichment p-

value < 0.001 are shown (Table S4).  
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Supplemental Figures 

 

 
 

Supplementary Figure 6.1: Analysis of physical interactions overlapping with the untreated E-MAP. 

 (A) Enrichment of positive and genetic interactions for various physical interaction datasets. 
Sources: Collins et al Mol. Cell. Proteomics 6(3):439-50 (Protein-Protein), Fielder et al. Cell 136(5):952-
63. (Kinase-substrate), Monteiro et al. Nuc. Acids. Res. 36:D132-D136 (Protein-DNA). (B) Subnetwork 
highlighting negative genetic interactions among cell-cycle transcription factors and downstream target 
genes. Thickness of edge corresponds to strength of negative interactions. 
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Supplementary Figure 6.2: Determination of condition-specific genetic interactions. 

When comparing two untreated E-MAPs, we found that the difference in S-Score over the same 
gene pair was linked with the magnitude of the genetic interaction score. (A) Comparison of genetic 
interaction S-scores for 8,018 double mutants in common in two E-MAPs. Pearson correlation of scores is 
shown. (B) Same data plotted as the sum of S-scores on the x-axis and the difference between them on the 
y-axis. Along a sliding window, the observed mean difference was near zero but the variance increased 
with stronger negative and positive S-scores (red line). (C) Scatter of untreated versus MMS S-scores in 
this cE-MAP. (D) Sum versus difference for pairs in the cE-MAP. Red line is the same as in (B). Double 
deletions whose difference in S-score between conditions was significantly greater than expected based on 
comparisons in (B) are indicated (green and black, p<0.01; black, p<0.001).  
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Supplemental Figure 6.3: The number of conditional genetic interactions associated with a gene is 
linked to the severity of growth defect of the gene–knockout upon MMS exposure.  

(A) All genes in the E-MAP were binned based on the severity of their defect (Begley et al, Mol. 
Cancer Research 2002). (B) For genes identified as sensitive to MMS, quantitative estimates of the severity 
of growth defect in MMS are significantly correlated with the number of conditional genetic interactions 
for a give gene (solid line). The number of conditional genetic interactions expected at random is shown 
(dotted line). 
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Supplemental Figure 6.4: There are more between-module links than expected at random. 

 The number of between-module links between a set of well-characterized, curated modules was 
evaluated (Table S1). The number of between-module links expected at random (black bars) was 
established by permuting the genetic interaction data and evaluating the number of between module links 
identified in the permuted dataset over a total of 100 trials. In most cases, the number of between-module 
links expected by chance was ≤1. Error bars represent the 95th percentile. 
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Supplemental Figure 6.5: The 3’ region of RNR1 and the 5’ region of RNR2 are among the most 
heavily bound genomic regions by Slt2p.  

Histogram of the mean enrichment of binding for each consecutive three-probe region in the 
genome is shown. Both RNR1 and RNR2 were in the top 0.5% of bound regions. 
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Supplemental Figure 6.6: Slt2 binds the genomic segments proximal to RNR1 and RNR2 but not 
RNR3 and RNR4.  

Occupancy of the genes by Slt2p after 1 hour exposure to 0.03% MMS based on genome-wide 
ChIP-Chip analyses. The genomic positions of probe regions and their enrichment ratios are displayed on 
the x and y axes, respectively. Open reading frames are depicted as gray rectangles, and arrows indicate the 
direction of transcription 
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Supplemental Figure 6.7: Microarray analysis of PPH3 and CBF1  

(A) Overlap of genes differentially expressed in a CBF1 and PPH3 knockout based on comparison 
of microarrays measuring cbf1∆ vs wt and pph3∆ vs wt. P-values represent significant overlap between the 
sets of differentially expressed genes (Table S6). (B) Comparison of genes differentially expressed in a 
CBF1 and PPH3 knockout based on comparison of microarrays as in (A) except all samples were treated 
with 0.02% MMS for 1 hour. (C) Comparison of the percent overlap of differentially expressed genes. 
Overlap is calculated as the number of genes in common over the total number of unique genes 
differentially expressed in both samples.  The number of overlapping genes expected at random is shown 
for comparison. P-values were assessed using a hypergeometric test with a background of 6,000 genes.   
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Supplementary Figure 6.8: Fractionation indicates that chromatin-bound Htz1 is not deacetylated in 
response to MMS.  

(A) Cells containing Htz1-HA3 were separated into total (T), cytoplasmic (C), nuclear (N) and 
chromatin (Ch) fractions and immunoblotted with the indicated antibodies. (B) Quantification of blots in A 
using Rpn8 as loading control. The total amount of Htz1 is reduced ~30% in total, nuclear and chromatin 
fractions in response to MMS. (C) The total level of acetylated Htz1 is reduced ~90% upon exposure to 
MMS. In both nuclear and chromatin fractions this reduction is only ~30-50% indicating that the 
deacetylation of Htz1 is due to decreased  levels of Htz1 in chromatin rather than deacetylation of existing 
chromatin-bound Htz1. 
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Chapter 7. Conclusion 

 With the emergence of physical and genetic interactions maps for a variety of 

species, my work points to novel ways in which these maps can be constructed and used 

to create biological models which can be used to generate hypotheses which can 

subsequently be tested in the laboratory. These methods include comparing networks 

across species, generating maps of pathways and their inter-relationships, and 

understanding the role of perturbations to these networks for pathway discovery.  

In chapter 2 I demonstrated a method for pathway mapping using the yeast two-

hybrid (Y2H) system. While Y2H screening is the most popular method for creating 

interaction maps, other methods such as mammalian two-hybrid1 and TAP-MS2 are also 

emerging methods. Each experimental method can be better suited for different types of 

interactions. For example, mammalian two-hybrid is reported to uncover molecular 

interactions that are dependent on the specific cellular environment in mammalian cells 

and TAP-MS techniques are better suited to uncover stable stoichiometric interactions 

such as those which exist in protein complexes. With more and more screening 

technologies better techniques will be required to synthesize the flood of data into 

coherent pathways.   

 While genetic interactions I have described are limited to two yeast species, there 

is currently much interest in adapting these approached to multi-cellular organisms such 

as C. elegans and even humans. These are primarily via high-throughput siRNA 

screening where pairs of genes can be knocked-down and their effects on cellular 

phenotype and development can be measured. These approaches will surely use the
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lessons learned mapping pathways in yeast to develop siRNA screening into a predictive 

biological tool for identifying genetic interactions.  

Finally, the conditional genetic interaction screen in chapter 6 points to a general 

framework for the discovery of drug-induced pathways in a variety of species. These 

maps have the potential not only discover numerous biological pathways as I have shown 

but also point to novel drug targets in fighting diseases such as cancer.  The primary 

treatment of most cancers is to kill proliferating cancer cells through DNA damage.  

However, the efficacy of DNA damaging agents in humans is limited by their toxicity to 

normal tissue. Accordingly, there has been significant interest in development of DNA-

damage sensitizers which act specifically on cancer cells via synthetic lethal interactions3. 

A number of sensitizers have been or are currently being investigated.  Most notably, 

much attention has been given to a new class of sensitizers known as PARP inhibitors4.  

These drugs target a gene involved in the BER pathway, which is synthetic lethal with 

HR pathway genes such as BRCA1 and BRCA2 which accrue cancer mutations. In 

effect, one potential use of the conditional genetic interaction data is to identify and target 

proteins encoded by genes that are synthetic lethal with cancer-causing mutations.   

With the emergence of many high-throughput techniques for mapping protein 

interactions it is expected that new paradigms for the understanding of cellular function 

will be established in the future. The utility of these techniques is firmly based on their 

ability to generate models and hypotheses of biological function which can ultimately be 

tested experimentally. My work presents what I believe are the initial steps in 

synthesizing vast amounts of physical and genetic network data to create such models. 
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