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Genetic mapping of microbial and host traits 
reveals production of immunomodulatory 
lipids by Akkermansia muciniphila in the 
murine gut

Qijun Zhang    1,13, Vanessa Linke    2,3,4,13, Katherine A. Overmyer    5,6, 
Lindsay L. Traeger1, Kazuyuki Kasahara1, Ian J. Miller5, Daniel E. Manson2, 
Thomas J. Polaske2, Robert L. Kerby1, Julia H. Kemis1, Edna A. Trujillo2, 
Thiru R. Reddy2, Jason D. Russell2, Kathryn L. Schueler7, Donald S. Stapleton7, 
Mary E. Rabaglia7, Marcus Seldin8,9, Daniel M. Gatti10, Gregory R. Keele    10, 
Duy T. Pham10, Joseph P. Gerdt    11, Eugenio I. Vivas1, Aldons J. Lusis8,9, 
Mark P. Keller7, Gary A. Churchill10, Helen E. Blackwell    2, Karl W. Broman    12, 
Alan D. Attie7, Joshua J. Coon    2,5,6 & Federico E. Rey    1 

The molecular bases of how host genetic variation impacts the gut 
microbiome remain largely unknown. Here we used a genetically diverse 
mouse population and applied systems genetics strategies to identify 
interactions between host and microbe phenotypes including microbial 
functions, using faecal metagenomics, small intestinal transcripts and 
caecal lipids that influence microbe–host dynamics. Quantitative trait 
locus (QTL) mapping identified murine genomic regions associated 
with variations in bacterial taxa; bacterial functions including motility, 
sporulation a nd l ip op ol ys ac charide production and levels of bacterial- 
and host-derived lipids. We found overlapping QTL for the abundance of 
Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up 
in vitro and in vivo studies revealed that A. muciniphila is a major source  
of these lipids in the gut, provided evidence that ornithine lipids have  
i  m m  un  o m  od  u l atory effects and identified intestinal transcripts 
co-regulated with these traits including Atf3, which encodes for a 
transcription factor that plays vital roles i  n m  o d  ul  a t ing metabolism and 
immunity. Collectively, these results suggest that ornithine lipids are 
potentially important for A. muciniphila–host interactions and support the 
role of host genetics as a determinant of responses to gut microbes.

The gut microbiome plays fundamental roles in mammalian physiol-
ogy and human health1–3. Environmental exposures and host genetic 
variation modulate gut microbiota composition4–6 and contribute to 
the large degree of interpersonal variation observed in human gut 

microbial communities. Recent advances in sequencing technologies 
and analytical pipelines have fuelled progress in our understanding of 
the impact of host genetics and the gut microbiome on health. Popula-
tion studies have revealed host genetic-gut microbial trait associations 
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with a focus on gut bacterial functions. Metagenomic analysis revealed 
~1.9 million unique predicted microbial open reading frames (that is, 
metagenes), 2,803 bacterial functions (KEGG orthologues, KOs) and  
187 bacterial taxa across all mice. We also performed metagenomic 
binning to obtain metagenome-assembled genomes (MAGs), corres-
ponding to species-level bacterial genomes (Extended Data Fig. 2, 
Supplementary Tables 1–4 and Supplementary Note 1).

We next used QTL analysis to identify regions of the mouse genome 
associated with the abundance of these traits. We detected 760 associa-
tions for KOs (logarithm of odds (LOD) > 6.87, Pgenome-wide-adj < 0.2), 200 
of which were genome-wide significant (LOD > 7.72, Pgenome-wide-adj < 0.05) 
and 45 associations for bacterial taxa (LOD > 6.87, Pgenome-wide-adj < 0.2), 15 
of which were genome-wide significant (LOD > 7.72, Pgenome-wide-adj < 0.05) 
(Fig. 1a and Supplementary Tables 5 and 6). We identified a QTL hotspot 
on chromosome 15 at 63–64 Mbp; this genomic region was associated 
with 154 microbial traits with LOD score > 6 (Supplementary Table 7). 
We estimated DO founder allele effects as best linear unbiased predic-
tors for the traits that mapped to this locus. Among these, we detected 
two clear groups of traits that exhibited opposite allele effects: a group 
of KOs and taxa showing positive association with the 129 allele, and 
another group of KOs and taxa that were negatively associated with 
the 129 allele (Extended Data Fig. 3). As detailed below, the two most 
abundant gut bacterial phyla, Firmicutes and Bacteroidetes, mapped 
to this locus with opposite allele effects.

Pathway enrichment analysis showed that bacterial ‘motility  
proteins’ and ‘cell growth’ functional categories were significantly 
enriched in the group of KOs associated most strongly with 129 all 
eles (Fig. 1b,c). More specifically, abundances of 14 sporulation func-
tions were negatively associated with 129 alleles (Fig. 1d). Further 
investigation of the KO distribution across all MAGs revealed that 
all bacterial sporulation KOs were only present in MAGs belonging 
to Firmicutes, whereas most of KOs that showed positive 129 allele 
effects were present in MAGs belonging to Bacteroidetes (Extended 
Data Fig. 4a). To assess whether the allele effects observed from QTL 
mapping corresponded to the trait patterns in the DO founder strains, 
we examined previously published 16S ribosomal RNA gene data from 
age-matched mice from the eight founder strains, also fed an HF/HS 
diet13. Consistent with these findings, we found that the 129 mouse 
strain had higher levels of Bacteroidetes and the highest Bacteroidetes/
Firmicutes ratio (Extended Data Fig. 4b). Interestingly, we detected a 
significant positive correlation between the number of sporulation KOs 
in Firmicutes MAGs mapping at this locus and the LOD scores for these 
MAGs (Fig. 1e). Importantly, Firmicutes MAGs commonly detected in 
our dataset that do not contain sporulation KOs (for example, Lactoba-
cillus, Lactococcus) did not exhibit significant association to this QTL. 
These results support the notion that host genetic variation affects 
gut community structure in part by modulating the abundance of 
sporulating bacteria.

Single nucleotide polymorphism (SNP) association analysis within 
the Chr15 QTL hotspot identified six significant SNPs: two intron vari-
ants, SNP rs582880514 in the Gsdmc gene and SNP rs31810445 in the 
Gsdmc2 gene, both with LOD scores of 8.0; four SNPs that were inter-
genic variants (Extended Data Fig. 4c). Gasdermins (Gsdm) are a family 
of pore-forming proteins that cause membrane permeabilization and 

in human7–11 and mouse cohorts12,13. Additionally, studies leveraging 
host genetic information and Mendelian randomization have high-
lighted connections between the gut microbiome and other molecular 
complex traits including faecal levels of short-chain fatty acids14, plasma  
proteins15 and ABO histo-blood group type16 in humans. However,  
most of these studies have focused on microbial organismal compo-
sition and there is currently a major gap in our understanding of the 
impact of host genetic variation on the functional capacity of the gut 
microbiome.

Microbial metabolites are critical nodes of communication 
between microbes and the host. These include small molecules derived 
from dietary components (for example, Trimethylamine N-oxide)17 or 
de novo synthesized by microbes such as vitamins18 and lipids19. Lipids 
including eicosanoids, phospholipids, sphingolipids and fatty acids 
act as signalling molecules to control many cellular processes20–22. 
Gut microbes not only modulate absorption of dietary lipids via regu-
lation of bile acid production and metabolism but are also a major 
source of lipids and precursor metabolites for lipids produced by the 
host23,24. Bacterial cell membrane-associated lipids are also important 
for microbe–host interactions19,25, although our understanding of their 
roles in these dynamics is only emerging for gut bacteria.

Defining the general principles that govern microbe–host interac-
tions in the gut ecosystem is a daunting task. Systems genetic studies 
can generate hypotheses that invoke processes and molecules that have 
no precedent, which can be used for the identification of genes, path-
ways and networks underlying these interactions. To investigate the 
connections between gut microbes, intestinal lipids and host genetic 
variation, we leveraged the Diversity Outbred (DO) mouse cohort, a 
genetically diverse population derived from eight founder strains: 
C57BL/6J (B6), A/J (A/J), 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/
HLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK) and WSB/EiJ (WSB)26,27. 
These eight strains harbour distinct gut microbial communities and 
exhibit disparate metabolic responses to diet-induced metabolic dis-
ease28. The DO population is maintained by an outbreeding strategy 
aimed at maximizing the power and resolution of genetic mapping. 
We characterized the faecal metagenome, intestinal transcriptome 
and caecal lipidome in DO mice and performed quantitative trait locus 
(QTL) analysis to identify host genetic loci associated with these traits. 
We integrated microbiome QTL (mbQTL) and caecal lipidome QTL 
(clQTL) to uncover microbe–lipid associations and identified candi-
date genes expressed in the distal small intestine associated with these 
co-mapping traits. These datasets represent a valuable resource for 
interrogating the molecular mechanisms underpinning interactions 
between the host and the gut microbiome.

Results
Gut microbial features are associated with host genetics
We characterized the faecal microbiome from 264 DO mice fed  
a high-fat high-sucrose (HF/HS) diet for ~22 weeks (Extended Data  
Fig. 1). We and others previously showed that this diet elicits a wide 
range of metabolic responses in the eight founder strains that are 
associated with microbiome changes, and identified loci associated 
with variation in abundance of bacterial taxa in the gut28,29; here we 
examine the role of host genetics in influencing gut microbiome traits 

Fig. 1 | Genetic architecture of QTL for microbial traits in the DO mouse 
cohort. a, QTL mapping results for 2,803 gut microbial KO function traits (top 
panel) and 187 bacterial taxa traits (bottom panel) using sex, days on diet and 
cohort as covariates. Each dot represents a QTL on the mouse genome for a given 
trait. Dashed lines represent significance thresholds for QTL determined by 
permutation tests (LOD > 9.19, Pstudy-wide-adj < 0.05; LOD > 7.72, Pgenome-wide-adj < 0.05; 
LOD > 6.87, Pgenome-wide-adj < 0.2). QTL hotspot at Chromosome 15 is highlighted 
by grey shading and orange colour text. b, Gut microbiome QTL hotspot on 
Chr15 has multiple bacterial sporulation and motility functions mapping to it. 
Protein coding genes are displayed for Chr15: 61–65 Mbp region, Gasdermin 

genes are highlighted in blue. c, Enrichment analysis (Fisher’s exact test) for 
functions mapping at hotspot on Chr15. d, QTL for microbial functions that 
mapped to Chromosome 15 hotspot had negative 129S1/SvImJ allele effects. QTL 
for Firmicutes mapping to Chromosome 15 hotspot had negative 129S1/SvImJ 
allele effects, whereas QTL for Bacteroidetes mapping to this locus had positive 
129S1/SvImJ allele effects. e, Spearman correlation analysis between the number 
of sporulation KOs detected in Firmicutes MAGs mapping at Chromosome 15 
QTL hotspot and the LOD scores for these MAGs (P = 3.87 × 10−3, Spearman’s 
ρ = 0.346).
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pyroptosis30, an inflammatory form of programmed cell death that is 
triggered by intra- and extracellular pathogens31. These results indi-
cate that host genetic variation in Gsdmc/Gsdmc2 is associated with 

abundance of gut bacterial functions and raises the hypothesis that 
these host proteins could modulate the abundance of bacterial taxa 
harbouring motility and/or sporulation functions.
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Caecal lipids are associated with gut microbes and host 
genetics
We employed a broad discovery strategy to agnostically detect lipid 
actors potentially relevant to gut microbiome–host interactions. We 
used liquid chromatography coupled with tandem mass spectrometry 
(LC–MS/MS) to characterize the caecal lipidome of 381 DO mice, includ-
ing all mice used for the metagenomic analysis. We identified 1,048 
lipid species representing 35 lipid classes (Fig. 2a,b) and the four major 
lipid categories: (1) fatty acyls, (2) phospholipids, (3) sphingolipids 
and (4) glycerolipids. The highest numbers of lipids were recorded 
for the classes of triglycerides (TG) and phosphatidylcholines (PC), 
species known to be abundant in the mammalian host32. Of the 3,384 
lipid species detected in DO caecum, 547 (16.2%) were detected at 
higher levels in the caecum of conventionally raised mice compared 
with caecum of germ-free animals (fold-change >10-fold, adjusted 
P < 0.05). Phosphatidylglycerols (PG), for example, which represent 
the second largest phospholipid class in our data, are known to be 

a major component of the bacterial lipidome33. In mammals, on the 
other hand, PG are only a minor component. Similarly, among glyc-
erolipids, monogalactosyldiacylglycerols (MGDG) account for the 
second highest number of lipids detected in this class. While they are 
found at high levels in bacteria and plants, these lipids are only minor 
components of animal tissue34. These findings suggest that our analysis 
of the caecal lipidome captures components of the host and the gut 
microbiome. Correlation analysis between MAGs and caecal lipids 
abundance, plus comparison of the caecal lipidome of conventionally 
raised vs germ-free mice identified taxa that potentially modulate the 
abundance of lipids in the gut (Extended Data Fig. 5a,b, Supplementary 
Tables 8–10 and Supplementary Note 2). Furthermore, QTL mapping 
identified 399 significant QTL associations for caecal lipid features 
(LOD > 7.60, Pgenome-wide-adj < 0.05) (Fig. 2c, Supplementary Table 11 and 
Supplementary Note 3). Altogether these associations provide a wealth 
of information offering potential molecular descriptors of the genetic 
regulation of the microbiome.
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Fig. 2 | Genetic architecture of the caecal lipidome in DO mice. a, A total of 
3,384 caecal lipid features were quantified across 381 DO mice, 1,048 of which 
were identified as lipids from four major classes. Each dot represents a caecal 
lipid feature. Features of each class occupied characteristic regions in the m/z 
– RT space. b, Identified lipids belonged to 35 lipid subclasses, with bacteria-
associated PG and MGDG as common subclasses. c, A total of 3,964 suggestive 
caecal lipid QTL (LOD > 6, Pgenome-wide-adj < 0.2) and 12 QTL hotspots were identified. 

Hotspots are marked with arrows and the corresponding genomic locus 
indicated. Dashed lines represent significance thresholds for QTL as determined 
by permutation tests (LOD > 7.60, Pgenome-wide-adj < 0.05). Of the identified lipids, 
68.2% showed a total of 1,162 QTL (top panel), while a similar portion of 70.1% of 
unidentified features contributed 2,802 QTL (bottom panel). RT, retention time. 
For lipid class abbreviations, see Supplementary Table 16.
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Mediation analysis reveals bacteria–caecal lipids connections
To identify causal links between gut microbial traits and caecal lipid 
traits, we performed mediation analysis between individual gut micro-
bial metagenes and lipid features that co-map (Methods). Mediation 
analysis seeks to determine whether a QTL has separate effects on two 

traits, or if it affects one trait through its effect on another trait, in which 
case the intermediate trait is called a mediator. Figure 3a shows gut 
microbial metagenes mediating the QTL effect on a caecal lipid trait. 
We reasoned that if a microbial trait influenced a caecal lipid that was 
independent from the caecal lipid’s QTL, its inclusion as a covariate 
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identified as ornithine lipids. The dashed lines connecting a and b point to the 
fragmentation patterns of identified ornithine lipids, as shown by the m/z  
values; key fragments are shown in red colour together with their respective 
chemical structures. c, Distribution of LOD score drop when adding individual  
A. muciniphila genes as covariates (Mediation model) or adding individual  
genes not from A. muciniphila as covariates (Null model) for three identified 
ornithine lipids. d, Three ornithine lipids species QTL co-mapped at five  
loci (Chromosome 1, Chromosome 2, Chromosome 7, Chromosome 12, 
Chromosome 15) with A. muciniphila MAGs QTL.QTL with LOD > 5.5 are 
highlighted by red colour. e, Founder allele effects for A. muciniphila MAGs 
and caecal OL were estimated in the DO population from the founder strain 
coefficients observed for the corresponding QTL at each locus from d.
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would be unlikely to affect the caecal lipid QTL signal significantly. 
However, for microbial traits that mediate the QTL effect on the cae-
cal lipid, there would be a large drop in the original caecal lipid QTL 
LOD score. Interestingly, we found three caecal lipid features with QTL 
that were mediated by microbial metagenes. Most of these mediating 
microbial traits were genes belonging to the bacterium Akkermansia 
muciniphila. It is important to note that the direction of the causal effect 
between microbial trait and caecal lipid cannot be directly inferred 
from the data. These results suggest that A. muciniphila levels and 
the abundance of these lipid species in the gut are modulated by the 
same loci and that the two traits are potentially connected (Fig. 3b,c).

We further tested whether these caecal lipids and A. muciniphila 
mapped to the same loci. Mapping of the 46 reconstructed A. mucin-
iphila MAGs to the host genome revealed multiple QTL including Chr1: 
92.9 Mbp, Chr2: 79.4 Mbp, Chr7: 129.8 Mbp, Chr12: 59.4 Mbp, and Chr15: 
75.9 Mbp (Fig. 3d). Interestingly, the three caecal lipids also showed 
QTL at the same loci and exhibited similar founder allele effect patterns 
(Fig. 3e). These founder allele effects on A. muciniphila abundance are 
consistent with a previous study of gut bacterial abundance in the DO 
founder strains13. Although these lipid features were not initially iden-
tified by our lipidomic analysis pipeline, they appeared to be closely 
related to each other. Further analysis of their fragmentation spectra 
suggested that these unidentified features were ornithine lipids (OL) 
(Fig. 3b and Supplementary Note 4). This was confirmed with a syn-
thetic OL (see below). The three features would have the sum composi-
tions of OL 30:0, OL 31:0 and OL 32:0, detected as [M+H]+ ions. In OL, a 
3-hydroxy fatty acid is connected via an amide linkage to the ornithine 
amino acid that serves as the headgroup. A second fatty acid is then 
connected to the first via an ester linkage35. OL are bacteria-specific 
non-phosphorus glycolipids that are found in the outer membranes 
of selected Gram-negative bacteria36,37.

A. muciniphila produces OL in the mouse and human gut
A. muciniphila is a Gram-negative bacterium that has been associated 
with many beneficial effects on host metabolic health38,39. While previ-
ous research suggests that OL are important for microbe–host interac-
tions25,40, the occurrence of these lipids in gut bacteria was not known. 
To test whether A. muciniphila produces OL, we first profiled lipids 
in A. muciniphila and two other Gram-negative species, Bacteroides 
thetaiotaomicron and Escherichia coli grown under anaerobic condi-
tions. We found similarly high levels of all three targeted OL species in 
extracts from A. muciniphila but not in the other species, which were 
indistinguishable from the solvent blank (Fig. 4a). Since phosphate 
limitation triggers production of OL in some bacterial species25, in 
follow-up experiments we tested whether phosphate levels modulated 
abundance of OL in A. muciniphila grown in vitro. We examined three 
different levels of phosphate (0.02 mM (growth limiting), 0.2 mM (ade-
quate) and 2 mM (excess)). LC–MS/MS analysis confirmed that OL are a 
dominant lipid species detected in A. muciniphila cell extracts regard-
less of the phosphate levels included in the growth media (Extended 
Data Fig. 6a,b). Furthermore, OL were detected in extracellular vesicles 
isolated from A. muciniphila grown in vitro (Extended Data Fig. 6c and 
Supplementary Note 6). These results suggest that OL are probably 
localized in the A. muciniphila outer membranes and provide insights 
into how these lipids may interact with the host.

We further profiled lipids produced by A. muciniphila coloniz-
ing the gut of gnotobiotic mice. Five groups of adult germ-free B6 
mice were mono-colonized with each of the species mentioned above, 
bi-associated with E. coli and A. muciniphila or kept germ-free (n = 3–5 
per group). Mice were maintained in the same HF/HS diet used for the 
DO study for two weeks after inoculation. LC–MS/MS analysis of cae-
cal contents from these mice showed that only mice colonized with 
A. muciniphila had detectable levels of OL in their caecum (Fig. 4b). 
Altogether, these results confirm that A. muciniphila gut colonization 
is causally linked with high levels of OL.

We examined whether A. muciniphila colonization is associated 
with the presence of OL in the human gut. We analysed lipid content in a 
subset of faecal samples from a previously characterized cohort of old 
adults41 spanning a wide range of A. muciniphila relative abundances 
(not detectable to 39.8%). LC–MS/MS analysis of these human faecal 
samples detected a broader range of OL species than axenic cultures 
or mice colonized with A. muciniphila, but the levels of the three pre-
viously identified OL 15:0_15:0, OL 16:0_15:0 and OL 17:0_15:0 were all 
significantly correlated with A. muciniphila levels (Fig. 4c). Together, 
these results suggest that A. muciniphila is a major producer of OL  
in the mouse and human gut.

OL modulate lipopolysaccharide (LPS)-induced cytokine 
responses
To test whether A. muciniphila-derived OL elicit immune responses 
on the host, we first chemically synthesized the most abundant OL 
detected in the DO mouse gut, that is, OL_15:0_15:0. Because of the gen-
erally beneficial effects of A. muciniphila on host health as previously 
documented in both human and mouse studies, and on the basis of the 
structural similarity between OL and lipid A from LPS, we speculated 
that the OL might function as antagonists of lipid A. We examined the 
effects of the OL preparation in the absence and presence of LPS on 
cytokine production by bone-marrow-derived-macrophages (BMDM). 
Treatment with LPS induced a significant increase in the production of 
TNF-α and IL-6 by BMDM obtained from B6 and 129 mice (Extended Data 
Fig. 7a). In contrast, treatment with OL preparation did not stimulate 
significant production of TNF-α and IL-6 by these cells (Extended Data 
Fig. 7b), except for a modest increase at 500 ng ml−1 and 1,000 ng ml−1. 
However, we observed that pretreatment of macrophages with OL had 
an inhibitory effect on LPS-induced TNF-α and IL-6 in both B6 and 129 
mice without causing significant changes in cell viability (Extended 
Data Fig. 7c,d). These results suggest that A. muciniphila-derived OL can 
prevent LPS-induced inflammation response. Furthermore, we meas-
ured other cytokines secreted by LPS-treated BMDM and observed that 
the OL preparation inhibited the production of IL-1β, MCP-1, MIP-1α, 
GM-CSF, IL-12 and RANTES (Fig. 5), although there were differences in 
the responses to LPS and OL as a function of BMDM genetic background. 
In addition, OL increased the levels of anti-inflammatory cytokine IL-10 
in these cells (Fig. 5), suggesting that OL may modulate inflammation 
by altering the levels of both pro-inflammatory and anti-inflammatory 
cytokines. Interestingly, production of IL-12 in the presence of LPS was 
more than ten times higher in 129 mice than in B6 mice, and OL had a 
larger inhibitory effect in these mice (Fig. 5). These results indicate that 
A. muciniphila-derived OL may influence host innate immune responses 
and their effects may vary as a function of host genetics.

Intestinal genes co-map with A. muciniphila and OL QTL
We sought to generate regulatory maps of gene expression regulation 
in the small intestine and to identify overlapping SNPs associated with 
gut microbiome. We reasoned that identifying genes whose expression 
demonstrate shared genetic architecture with bacterial taxa/genes/
lipids would not only narrow the list of candidate genes at each locus but 
would also provide invaluable insights into the biology underlying the 
microbe–host interactions. Furthermore, the power of expression QTL 
(eQTL) mapping to connect genetic polymorphism and complex traits 
has been well documented by others42,43. We profiled transcript levels in 
the distal small intestines of 234 DO mice using RNA-seq. We detected 
8,137 transcripts with a minimum of ten counts per million (CPM)  
in at least 10% of DO mice. We identified 4,462 local eQTL with an  
average LOD score of 21.2 and 10,894 distal eQTL with an average 
LOD score of 7.1 (Supplementary Table 12). By comparing eQTL allele 
effects with those for the co-mapping mbQTL and clQTL, we identified  
gut microbial features and caecal lipids that were potentially 
co-regulated with intestinal transcripts (Extended Data Fig. 8 and 
Supplementary Note 7).
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We searched the support intervals for the five co-mapping QTL 
regions for A. muciniphila and OL (Chr1, Chr2, Chr7, Chr12 and Chr15) 
for candidate host genes of interest using the eQTL data. By comparing 
the allele effects between co-mapping eQTL and the A. muciniphila/
OL QTL, we identified several candidate host genes whose eQTL allele 
effects were correlated with A. muciniphila/OL (Fig. 6, Extended Data 
Fig. 9 and Supplementary Table 13). At the Chr1 QTL region, there 
were four candidate genes: (1) Gene Activating transcription factor 
3 (Atf3) had a distal eQTL at Chr1: 92.96 Mbp with QTL LOD score of 
6.55. ATF3 plays an important role during host immune response 
events by negatively regulating the transcription of pro-inflammatory 
cytokines induced by the activation of toll-like receptor 444. (2) The gene 
TRAF-interacting protein with a forkhead-associated domain (Tifa) had 
a distal eQTL at Chr1: 90.95 Mbp with LOD score of 6.19. TIFA has been 
reported to sense bacterial-derived heptose-1,7-bisphosphate—an 

intermediate in the synthesis of LPS—via a cytosolic surveillance path-
way triggering the NF-kB response45,46. Additionally, TIFA interacts 
with TRAF6 to mediate host innate immune responses. (3) The gene 
Jumonji domain-containing protein 8 (Jmjd8) had a distal eQTL at 
Chr1: 92.14 Mbp with LOD score of 6.72. JMJD8 functions as a positive 
regulator of TNF-induced NF-kB signalling47. A recent study showed that 
JMJD8 is required for LPS-mediated inflammation and insulin resistance 
in adipocytes48. (4) The gene Gcg had a distal eQTL at Chr1: 92.36 Mbp 
with LOD score of 7.11. Gcg encodes multiple peptides including gluca-
gon, glucagon-like peptide-1(GLP-1). GLP-1 levels are induced by a 
variety of inflammatory stimuli, including endotoxin, IL-1β and IL-649. 
The finding that these genes with distal eQTL that co-map with A. 
muciniphila and OL QTL on Chr1 are involved in host immune responses 
to microbial-associated molecular patterns (MAMPs) such as LPS sug-
gests that expression of these genes contributes to the regulation of 
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Fig. 4 | A. muciniphila produces OL in the mouse and human gut. a, OL 
abundance for the three major species detected in mice in cell pellets collected 
from A. muciniphila (A. m), B. thetalotamicron (B. t) and E. coli (E. c) grown in 
vitro (n = 3 biologically independent samples per organism). b, OL detected 
in caecal contents from gnotobiotic mice colonized with A. muciniphila, B. 
thetaiotaomicron, E. coli and A. muciniphila plus E. coli for two weeks (n = 3–4 
mice per treatment). c, Detection of prominent OL species in human faecal 

samples is significantly correlated with A. muciniphila abundance as determined 
by two-sided Spearman correlation (n = 16 independent faecal samples). Box 
and whisker plots denote the interquartile range, median and spread of points 
within 1.5 times the interquartile range; data beyond the end of the whiskers are 
plotted individually. Statistical difference between treatment groups was tested 
by unpaired two-sided Welch’s t- test.
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host responses to OL and/or potentially modulates the abundance of 
A. muciniphila.

Dissecting the link between A. muciniphila and Atf3
We investigated whether the co-mapping between A. muciniphila/OL 
QTL and Atf3 gene eQTL could be explained by ATF3 impacting the 
abundance of these traits. To address this question, we measured the 
abundance of this taxon in wild-type (WT) mice and animals lacking 
the Atf3 gene consuming HF/HS diet for four weeks. We observed that 
Atf3−/− and WT mice had comparable levels of A. muciniphila in faeces 
as detected by qPCR. Abundance of A. muciniphila was ~15% lower in 
faecal samples from Atf3−/− mice compared with wild type (n = 7 per 
genotype), yet the differences did not reach significance (Extended 
Data Fig. 10a). These results suggest that Atf3 does not play a major role 
in A. muciniphila fitness. It might also act in combination with other 
factors, which would align with the observation that the abundance of 
gut A. muciniphila is a polygenic trait.

An alternative explanation for the observed co-mapping is that 
A. muciniphila/OL modulate expression of Atf3. To examine this idea, 
we assessed expression profiles of B6 and 129 BMDM stimulated with 
LPS or a combination of the OL preparation and LPS. DESeq2 analysis 
identified 674 genes differentially expressed in cells from B6 mice 
treated with OL (420 genes were upregulated and 254 genes downregu-
lated), whereas 384 genes (304 genes were upregulated and 80 genes 
downregulated) were impacted by OL in BMDM derived from 129 mice. 
While differences in gene expression of some of the cytokines discussed 
above (Extended Data Fig. 10b) were consistent between genotypes, 
the overall overlap of differentially expressed genes between geno-
types was relatively low (Extended Data Fig. 10c) and the responses 
to the OL varied significantly by genotype (Extended Data Fig. 10e). 
As mentioned above, ATF3 is a negative regulator of TLR4 signalling. 
We observed that OL upregulated Atf3 expression for both B6 and 129 
BMDMs (Extended Data Fig. 10d). Furthermore, a previous study50 iden-
tified 30 genes downregulated by ATF3 in BMDMs (B6 background). 
Consistent with this result, we found that OL downregulated the expres-
sion of these genes in BMDM derived from B6 mice. In contrast, we 
found that 18 out of these 30 genes were upregulated by OL in BMDM 
from 129 mice (Extended Data Fig. 10f). These results suggest that the 
observed co-mapping between A. muciniphila/OL QTL and Atf3 eQTL 

could be explained by the effect of OL on Atf3 gene expression and that 
increased expression of this gene may trigger distinct programmes 
as a function of host genotype potentially impacting immune and 
metabolic responses differently.

Altogether, the work supports the notion that A. muciniphila 
is the major producer of caecal OL in the distal gut and that A. 
muciniphila-produced OL can negatively regulate host LPS-induced 
inflammation by upregulating Atf3 expression.

Discussion
We applied a systems genetics approach to identify relationships 
between gut microbes, their encoded functions, caecal lipids and 
host intestinal gene expression. We identified bacterial functions 
influenced by host genetic variation and discovered that the bacte-
rium A. muciniphila produces immunoactive OL that are detected in  
faecal samples from humans and mice colonized with this bacterium.  
A. muciniphila has been previously associated with host genetic varia-
tion at several loci in both mice and humans11,12,51,52; however, environ-
mental conditions including diet, which is a major known determinant 
of microbiome composition, differ dramatically among these studies. 
The associations described in the present study differ from the ones 
previously reported in other mouse studies using different diets12,51. 
We also examined whether gut microbiome traits acted as mediator 
to previously published metabolic traits for the same cohort of DO 
mice53; however, no significant mediation was detected, possibly due 
to the limited statistical power of our study to infer the influence of the 
gut microbiome on complex metabolic traits.

Previous work suggested that some Gram-negative bacteria pro-
duce OL under phosphate-limiting conditions54–56. In contrast, we 
observed that OL levels were consistently high across a 100-fold phos-
phate level range, suggesting that phosphate is not a major driver of 
OL synthesis in A. muciniphila. Notably, a recent study showed that 
increased OL production by the bacterial pathogen Pseudomonas 
aeruginosa makes its cellular surface more hydrophobic, and resulted 
in lower virulence and higher resistance to antimicrobials and host 
immune defences25. A. muciniphila consumes host glycans present  
in the mucus layer, which is in proximity to the host epithelium.  
While mucin carbohydrates and amino acids serve as substrates for  
A. muciniphila, there are also soluble host defence molecules trapped in 

B6 129 B6 129 B6 129 B6 129 B6 129

B6 129 B6 129 B6 129 B6 129

+ ++–
0.5 100

+ ++–
0.5 100

LPS
OL (µg ml–1)

0

20

40

60

pg
 m

l–1

0

10,000

20,000

30,000

+ ++–
0.5 100

+ ++–
0.5 100

0

50

100

+ ++–
0.5 100

+ ++–
0.5 100

0

100

200

300

+ ++–
0.5 100

+ ++–
0.5 100

2,500

5,000

7,500

0

+ ++–
0.5 100

+ ++–
0.5 100

IL-1 β IL-6 IL-10 IL-12 TNFα

+ ++–
0.5 100

+ ++–
0.5 100

0

pg
 m

l–1

MCP-1 MIP-1α GM-CSF RANTES

500

1,000

1,500

2,500

0

10,000

20,000

30,000

40,000

+ ++–
0.5 100

+ ++–
0.5 100

+ ++–
0.5 100

+ ++–
0.5 100

+ ++–
0.5 100

+ ++–
0.5 100

0

400

800

1,200

1,000

2,000

3,000

4,000

0

LPS
OL (µg ml–1)

Fig. 5 | OL modulate LPS-induced production of cytokines from BMDM. Levels 
of IL-1β, IL-6, IL-10, IL-12, TNF-α, MCP-1, MIP-1α, GM-CSF and RANTES detected in 
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different concentrations of OL. Box and whisker plots denote the interquartile 
range, median and spread of points within 1.5 times the interquartile range; data 
beyond the end of the whiskers are plotted individually.
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this layer that prevent invasion of microbes to the underlying mucosal 
epithelial cells. We speculate that membrane OL impact interactions of 
A. muciniphila with the intestinal milieu and may represent an adapta-
tion critical to its niche and important for its interactions with the host. 
Development of tools to genetically manipulate A. muciniphila will be 
needed to test these hypotheses.

The inhibitory effects of OL on LPS-induced cytokines that we and 
others have observed57,58 may represent an important aspect of how 
A. muciniphila impact host physiology. Previous studies identified 
both natural and synthetic molecules that can inhibit TLR4-mediated 
LPS signalling—compounds that prevent septic shock, and have 
anti-inflammatory and anti-neuropathic pain activities in vivo59. One 
group of LPS antagonist molecules targeting CD14 shares structural 
features with A. muciniphila OL including a glucose unit linked to two 
hydrophobic chains and a basic nitrogen on C-660, supporting the 
potential anti-inflammatory effects of OL. Although the precise mecha-
nisms of how OL inhibit LPS signalling are unknown, our study suggests 
that A. muciniphila-derived OL may modulate inflammatory responses.

Remarkably, three host innate immunity genes—Atf3, Tifa and 
Jmjd8—were co-regulated with A. muciniphila. Tifa is located in the 
‘cytokine-dependent colitis susceptibility locus’ (Cdcs1) region, a criti-
cal genetic determinant of colitis susceptibility in 129 and B6 strains61. 
TIFA is an important modifier of innate immune signalling through its 
regulation of TRAF proteins, leading to the activation of NF‐κB and 
inflammation. Considering the importance of TIFA-dependent immu-
nity to Gram-negative bacteria45, and the differential effects of OL on 
LPS-treated BMDM from 129 and B6 strains, our results suggest that this 
gene could be a key player in A. muciniphila-OL–host interactions. Previ-
ous studies suggested that ATF3 modulates inflammatory responses by 
suppressing the expression of TLR4 or CCL4 in macrophages44,62 and 
revealed a critical role of microbiota in ATF3-mediated gut homoeosta-
sis63. These studies showed that ATF3 negatively regulates Il6 and Il12 
gene expression levels44. In line with this, we found that OL negatively 
influence these cytokines in LPS-treated BMDM, and their abundance 
is associated with the same locus that influences Atf3 expression. Previ-
ous studies also showed that ATF3 positively regulates host expression 
of antimicrobial peptides64 and suggested that the production of OL 
makes the bacterium P. aeruginosa more hydrophobic and resistant 
to cationic antimicrobial peptides25. However, we observe neither 
co-mapping of A. muciniphila with expression of antimicrobial pep-
tides nor pronounced differences in A. muciniphila colonization levels 

between Atf3−/− mice and WT littermates. Instead, the co-mapping of 
A. muciniphila and Atf3 could be explained by our findings suggesting 
that (1) A. muciniphila is a major producer of OL in the gut and (2) OL 
upregulate expression of this key regulator. Although the molecular 
mechanisms underlying these observations warrant further investiga-
tion, these results suggest that A. muciniphila and OL levels are linked 
to central players of the host immune defence system and support the 
predominant role of host genetics as a determinant of responses to gut 
microbes, in particular to A. muciniphila.

In summary, the work presented here links the presence of OL in 
the human and mouse gut with A. muciniphila and suggests that these 
lipids are key players in A. muciniphila–host interactions. Our work 
highlights the importance of bacterial functions and lipids as mediators 
of the influence of host genetics on the gut microbiome.

Methods
Animal studies
Animal care and study protocols were approved by the 
AAALAC-accredited Institutional Animal Care and Use Commit-
tee of the College of Agricultural Life Sciences at the University of 
Wisconsin-Madison (UW-Madison). All experiments with mice were 
performed under protocols approved by the UW-Madison Animal 
Care and Use Committee (Protocol number A005821 for the DO mice, 
Protocol number M00559 for gnotobiotic and Atf3 KO mice).

DO mouse model. DO mice were obtained from the Jackson Laboratory 
at ~four weeks of age and maintained in the Department of Biochemis-
try vivarium at the UW-Madison. DO mice were allocated in waves of 100 
animals, each with an equal number of males and females. All mice were 
maintained in a temperature (22.2 °C) and humidity (60%) controlled 
environment under a 12 h light/dark cycle (lights on at 6:00 and off at 
18:00). All mice were fed an HF/HS diet (TD.08811, Envigo Teklad, 44.6% 
kcal fat, 34% carbohydrate and 17.3% protein) and received sterilized 
water ad libitum upon arrival at the facility. Mice were kept in the same 
vivarium room and were individually housed to monitor food intake 
and prevent cross-inoculation via coprophagy. DO mice were killed at 
22–25 weeks of age. Faecal samples were collected immediately before 
euthanasia after a four h fast. Caecal contents and additional tissues 
were collected promptly after killing and all samples were immedi-
ately flash frozen in liquid nitrogen and stored at −80 °C until further 
processing. Other studies have been published with these mice13,53,65,66.
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LOD score in y axis represents significance of QTL for each trait. b, Spearman 
correlation of allele effects between Tifa, Atf3, Jmjd8 and Gcg gene eQTL and  
A. muciniphila/OL QTL.
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Gnotobiotic studies. C57BL/6J germ-free mice were bred and housed in 
the gnotobiotic mouse facility at the UW-Madison. Male mice were used 
for the ornithine lipid study. All mice were maintained in a controlled 
environment (22.2 °C, 60% humidity) in plastic flexible film gnotobiotic 
isolators under a strict 12 h light/dark cycle (lights on at 6:00 and off 
at 18:00) on standard chow diet (LabDiet 5021). At eight weeks of age, 
mice were switched to a western-style HF/HS diet (44.6% kcal fat, 34% 
carbohydrate and 17.3% protein) from Envigo Teklad (TD.08811) and 
orally gavaged with 200 µl of bacterial cultures. At two weeks after 
colonization, mice were euthanized and caecal contents collected.

DO founder mice. C57BL6J (B6) and 129S1/SvImJ (129) male mice (five 
weeks old) were obtained from the Jackson Laboratory. All mice were 
maintained in a controlled environment (22.2 °C, 60% humidity) under 
a strict 12 h light/dark cycle (lights on at 6:00 and off at 18:00). All mice 
were fed a standard chow diet (LabDiet 5021) and received sterilized 
water ad libitum for 1 week. At six weeks of age, all mice were euthanized 
to collect bone marrow cells.

Atf3 mouse studies. Atf3 heterozygous mice (B6.129X1-Atf3tm1Dron/
HaiMmnc) were obtained from the Mutant Mouse Resource and 
Research Center at University of North Carolina. Age- and sex-matched 
littermates of Atf3-deficient whole body knockout mice (Atf3−/−) and WT 
mice were generated by crossing Atf3 heterozygous mice. Mice were 
maintained in a controlled environment under a strict 12 h light/dark 
cycle (lights on at 6:00 and off at 18:00) at 22.2 °C and 60% humidity. 
Animals were fed an HF/HS diet (TD.08811, Envigo Teklad, 44.6% kcal fat, 
34% carbohydrate and 17.3% protein) and received sterilized water ad libi-
tum after weaning. Faecal samples were collected at seven weeks of age.

Metagenomic shotgun DNA sequencing. Faecal DNA was extracted 
from individual pellets collected from DO mice using previously 
described methods28,67. Following DNA extraction, Illumina paired-end 
(PE) libraries were constructed using a previously described protocol68, 
with a modification of gel selecting DNA fragments at ~450 bp length. 
PE reads (2 × 125) were generated using a combination of MiSeq and 
HiSeq 2500 platforms.

Metagenomic reads processing. Raw reads were preprocessed using 
Fastx Toolkit (v0.0.13) as follows: (1) for demultiplexing raw samples, 
fastx_barcode_splitter.pl with –partial 2, mismatch 2 was used; (2) 
when more than one forward and reverse read file existed for a single 
sample (due to being run on more than one lane, more than one plat-
form or at more than one time), read files were concatenated into one 
forward and one reverse read file; (3) barcodes were trimmed to form 
reads (fastx_trimmer -f 9 -Q 33) and (4) reads were trimmed to remove 
low-quality sequences (fastq_quality_trimmer -t 20 -l 30 -Q33). Fol-
lowing trimming, unpaired reads were eliminated from the analysis 
using custom Python scripts. To identify and eliminate host sequences, 
reads were aligned against the mouse genome (mm10/GRCm38) using 
bowtie269 (v2.3.4) with default settings, and microbial DNA reads that 
did not align with the mouse genome were identified using samtools 
(v1.3) (samtools view -b -f 4 -f 8).

Metagenomic de novo assembly and gene prediction. After remov-
ing low-quality sequences and host contaminating DNA sequences, 
each metagenomic sample was de novo assembled into longer DNA 
fragments (contigs) using metaSPAdes70 (v3.11.1) with multiple k-mer 
sizes (metaspades.py -k 21, 33, 55, 77). Contigs shorter than 500 bp were 
discarded from further processing. Open reading frames (ORFs) (that 
is, microbial genes, also called metagenes) were predicted from assem-
bled contigs via Prodigal71 (v2.6.3) using Hidden Markov Model (HMM) 
with default parameters. All predicted genes shorter than 100 bp were 
discarded from further processing. To remove redundant genes, all 
predicted ORFs were compared pairwise using the criterion of 95% 

identity at the nucleotide level over 90% of the length of the shorter 
ORFs via CD-HIT72 (v4.6.8). In each CD-HIT cluster, the longest ORF was 
selected as representative. This final non-redundant (NR) microbial 
gene set was defined as the DO gut microbiome NR gene catalogue.

Metagenomic annotation. Gene taxonomic annotation was per-
formed using DIAMOND73 (v0.9.23) by aligning genes in the DO gut 
microbiome NR gene catalogue with the NCBI NR database (down-
loaded 21 December 2018) using default cutoffs: e-value <1 × 10−3 and 
bit score >50. Taxonomic assignment used the following parameters: 
‘–taxonmap prot.accession2taxid.gz–taxonnodes nodes.dmp’ in DIA-
MOND command and was determined by the lowest common ancestor 
(LCA) algorithm when there were multiple alignments. Gene functional 
annotation was done using the KEGG orthology and links annotation 
(KOALA) method via the KEGG server (https://www.kegg.jp/ghost-
koala/), using 2,698,820 prokaryote genus pan-genomes as reference. 
The bit score cut-off for K-number assignment was 60.

Microbiome trait quantification. Quantification of microbial genes 
was done by aligning clean PE reads from each sample with the DO gut 
microbiome NR gene catalogue using Bowtie2 (v2.3.4) and default 
parameters. RSEM74 (v1.3.1) was used to estimate microbial gene abun-
dance. Relative abundances of microbial gene CPM were calculated 
using microbial gene expected counts divided by gene effective length, 
then normalized by the total sum. We focused the taxonomic analysis 
on bacteria since these represented the vast majority of annotated 
metagenes. We detected 1,927,034 total metagenes and from these, 
1,636,209 were annotated as bacterial genes, 195 as archaeal genes, 
17,372 as eukaryotic genes and 946 as viruses. There were also 272,312 
genes that were unclassified. To obtain abundance information for 
microbial functions, the CPM of genes with the same KO annotation 
were summed together. In case there were multiple KO annotations 
for a single gene, we used all KO annotations. To obtain taxonomic 
abundance, the CPM of genes with the same NCBI taxa annotation were 
summed together at phylum, order, class, family and genus levels, with 
a minimum of ten genes per taxon.

MAGs reconstruction. To reconstruct bacterial genomes, we clustered 
assembled contigs with the density-based algorithm DBSCAN using fea-
tures of two reduced dimensions of contigs 5-mer frequency and contig 
coverage. The binning process was performed by the pipeline Autometa75 
(docker image: ijmiller2/autometa:docker_patch) and allowed deconvo-
lution of taxonomically distinct microbial genomes from metagenomic 
sequences. The quality of reconstructed metagenomes was evaluated 
using CheckM76 (v1.1.3); genome completeness >90% and genome con-
tamination <5% were required to assign high-quality MAGs. MAGs quan-
tification was done by aligning all clean PE reads from each sample with 
MAGs from the same sample. Genome coverage was calculated using the 
bedtools (v2.29.2) ‘genomecov’ command, followed by normalization by 
library size across all samples. To further remove redundant MAGs, we 
clustered high-quality MAGs on the basis of whole-genome nucleotide 
similarity estimation (pairwise average nucleotide identity (ANI)) using 
Mash software77 (v2.2) with 90% ANI. From high-quality MAGs, we also 
annotated predicted ORFs from each MAG against the KEGG database 
and compared the functional potential encoded among different taxa. 
A. muciniphila MAG IDs are included in Supplementary Table 14.

Sample preparation for caecal lipidomic analysis. Caecal contents 
(30 ± 7.5 mg) along with 10 µl SPLASH Lipidomix internal standard mix-
ture were aliquoted into a tube with a metal bead and 270 µl methanol 
(MeOH) were added for protein precipitation. Control samples com-
prised 30 ± 7.5 mg of bead beat-combined DO founder strain caecum 
(NZO, PWK, NOD, B6, 129, AJ) extracted with each batch. To each tube, 
900 µl methyl tert-butyl ether (MTBE) and 225 µl of water were added as 
extraction solvents. All steps were performed at 4 °C on ice. The mixture 
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was homogenized by bead beating for eight min at 25 Hz. Finally, the 
mixture was centrifuged for eight min at 11,000 × g at 4 °C, after which 
240 µl of the lipophilic upper layer were transferred to glass vials and 
dried by vacuum centrifuge for 60 min.

The dried lipophilic extracts were re-suspended in 200 µl 
MeOH:toluene (9:1 v/v) per 10 mg dry weight (minimum of 100 µl) 
to account for varying water content in the samples. The dry weight 
was determined by drying down the remaining mixture including all 
solid parts.

LC–MS/MS analysis of DO mouse caecal samples. Sample analysis 
by LC–MS/MS was performed in randomized order on an Acquity CSH 
C18 column held at 50 °C (2.1 mm × 100 mm × 1.7 µm particle diam-
eter; Waters) using an Ultimate 3000 RSLC binary pump (400 µl min−1 
flow rate; Thermo Fisher) or a Vanquish binary pump for validation 
experiments. Mobile phase A consisted of 10 mM ammonium acetate 
in acetonitrile/H2O (70:30 v/v) containing 250 µl l−1 acetic acid. Mobile 
phase B consisted of 10 mM ammonium acetate in isopropanol/ace-
tonitrile (90:10 v/v) with the same additives. Mobile phase B was ini-
tially held at 2% for two min and then increased to 30% over three min; 
further increased to 50% over one min and 85% over 14 min; and then 
raised to 95% over one min and held for seven min. The column was 
re-equilibrated for two min before the next injection.

DO lipid extracts (20 µl) were injected by an Ultimate 3000 RSLC 
autosampler (Thermo Fisher) coupled to a Q Exactive Focus mass 
spectrometer by a HESI II heated electrospray ionization (ESI) source. 
Both source and inlet capillary were kept at 300 °C. Sheath gas was 
set to 25 units, auxiliary gas to ten units and the spray voltage was set 
to 5,000 V (+) and 4,000 V (−), respectively. The MS was operated in 
polarity switching mode, acquiring positive and negative mode MS1 
and MS2 spectra (Top2) during the same separation. MS acquisition 
parameters were 17,500 resolving power, 1 × 106 automatic gain control 
(AGC) target for MS1 and 1 × 105 AGC target for MS2 scans, 100 ms MS1 
and 50 ms MS2 ion accumulation time, 200- to 1,600 Th MS1 and 200- 
to 2,000 Th MS2 scan range, 1 Th isolation width for fragmentation, 
stepped HCD collision energy (20, 30, 40 units), 1.0% under fill ratio 
and ten s dynamic exclusion.

QTL mapping. Genetic QTL mapping was performed using the R/qtl2 
(v0.24) package78 which fit a linear mixed effect model that included 
accounting for overall genetic relationship with a random effect, that 
is, kinship effect. The leave one chromosome out (LOCO) method was 
used, which accounts for population structure without reducing QTL 
mapping power. For each gut microbiome trait and caecal lipidome 
traits, sex, days on diet and mouse cohort (wave) were used as additive 
covariates as described previously13. For gut microbiome traits and 
caecal lipidome traits, normalized abundance/coverage was trans-
formed to normal quantiles. The mapping statistic reported was the 
log10 likelihood ratio (LOD score). The QTL support interval was defined 
using the 95% Bayesian confidence interval78. Significance thresholds 
for QTL were determined by permutation analysis (n = 1,000). We 
included 2,803 gut microbiome function traits, 197 gut microbiome 
taxon traits and 3,384 caecal lipid feature traits for our QTL mapping. 
The reported genome-wide P values were not adjusted for the multiple 
phenotypes to avoid overly declaring QTL in the initial analysis. We 
used genome-wide P < 0.05 for significant QTL and used genome-wide 
P < 0.2 to find concordant QTL mapping and hotspots.

Mediation analysis. Mediation analysis was carried out as previously 
described79. Mediation analysis was used to relate individual gut micro-
bial metagenes and lipid features by scanning all 136,200 identified 
metagenes with at least ten CPM in 20% of the samples to all 3,963 
caecal lipid features. We used the subset of animals for which both 
gut metagenomic and caecal lipid data were available (n = 221). We 
first defined gut microbial traits with suggestive QTL as the outcome 

variable; we then included candidate caecal lipid mediators as additive 
covariates in the suggestive mbQTL mapping model and re-ran the QTL 
analysis. We performed the same analysis with caecal lipid features 
as the outcome and gut microbial features as candidate mediators. A 
mediatory role was supported by a significant decrease in LOD score 
from the original outcome QTL. Significance of the LOD score drop for 
a given candidate gut microbial metagene mediator on a given caecal 
lipid QTL was estimated by z-score scaled by LOD score drop, and a 
conservative z-score ≤ −6 was recorded as a potential causal media-
tor. The mean of fitted distributions for a given gut bacterial taxon, 
for example all metagenes from A. muciniphila gut, was scaled to the 
corresponding z-score to evaluate the mediation significance for this 
gut bacterial taxon.

Bacterial culturing and bacterial extracellular vesicle isolation. 
A. muciniphila was grown anaerobically in defined medium (Sup-
plementary Table 15). To test for the effects of phosphate condition, 
the concentration of phosphate in the medium was adjusted to 0.02, 
0.2 or 2 mM. E. coli MS200-1 strain was grown in LC medium (10 g l−1 
bacto-tryptone, 5 g l−1 bacto-yeast extract, 5 g l−1 NaCl). B. thetaiotaomi-
cron strain VPI-5482 was grown in CMM medium. All bacterial strains 
were grown at 37 °C. Cells for lipid analyses from the three strains were 
obtained by centrifugation. Isolation of A. muciniphila extracellular 
vesicles used a previously described method80.

Human faecal samples. Stool samples were obtained from a previous 
study41. Samples were collected from participants of the Wisconsin 
Longitudinal Study. Briefly, participants collected stool samples directly 
into sterile containers, then samples were kept at ~4 °C until arrival 
(48 h or less) at the processing laboratory. Upon arrival, sterile straws 
were filled with the faecal material and stored at −80 °C as previously 
described41. 16S rRNA gene sequencing data for these samples were pre-
viously published. The use of the Wisconsin Longitudinal Study faecal 
samples was approved by the Institutional Review Board at UW-Madison. 
Consent from participants was obtained via a process involving both 
verbal and written components by trained interviewers, and records 
were archived both digitally and physically at UW-Madison. This effort 
did not include collection of samples from vulnerable populations or 
from minors.

Sample preparation for OL validation experiments. For caecal con-
tents, 30 ± 6 mg caecal contents were aliquoted into a tube with a metal 
bead and 280 µl MeOH were added for protein precipitation. To each 
tube, 900 µl MTBE and 225 µl of water were added as extraction sol-
vents. All steps were performed at 4 °C on ice. The mixture was homog-
enized by bead beating for eight min at 25 Hz. For bacterial cultures, 
~75 µl of bacterial culture were aliquoted into a tube and 280 µl MeOH 
were added for protein precipitation. After the mixture was vortexed 
for 10 s, 900 µl MTBE were added as extraction solvent and the mixture 
was vortexed for ten s and mixed on an orbital shaker for six min. Phase 
separation was induced by adding 225 µl of water followed by 20 s of 
vortexing. All steps were performed at 4 °C on ice. Finally, each mixture 
was centrifuged for eight min at 11,000 × g at 4 °C, after which 240 µl 
of the lipophilic upper layer were transferred to glass vials and dried 
in a vacuum centrifuge for 60 min. The dried lipophilic extracts were 
re-suspended in 200 µl MeOH:toluene (9:1 v/v).

LC–MS/MS analysis of OL validation experiments. Sample analysis 
by LC–MS/MS was performed in randomized order on an Acquity CSH 
C18 column held at 50 °C (2.1 mm × 100 mm × 1.7 µm particle diameter; 
Waters) using an Ultimate 3000 RSLC binary pump (400 µl min−1 flow 
rate; Thermo Fisher) or a Vanquish binary pump. The same mobile 
phase and gradient as for the DO samples were used.

For the validation experiments, 10 µl of caecal or culture  
extract were injected by a Vanquish Split Sampler HT autosampler 
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(Thermo Fisher) coupled to a Q Exactive HF mass spectrometer by a 
HESI II heated ESI source. Both source and inlet capillary were kept at 
350 °C (Thermo Fisher). Sheath gas was set to 25 units, auxiliary gas to 
15 units and spare gas to five units, while the spray voltage was set to 
3,500 V and the S-lens RF level to 90. The MS was operated in polarity 
switching dd-MS2 mode (Top2), acquiring positive and negative mode 
MS1 and MS2 spectra during the same separation. MS acquisition 
parameters were 30,000 resolution, 1 × 106 AGC target for MS1 and 
5 × 105 AGC target for MS2 scans, 100 ms MS1 and 50 ms MS2 ion accu-
mulation time, 200 to 2,000 Th MS1 scan range, 1.0 Th isolation width 
for fragmentation and stepped HCD collision energy (20, 30, 40 units).

Lipidomic analysis. All resulting LC–MS lipidomics raw files were con-
verted to mgf files via MSConvertGUI (ProteoWizard, Dr Parag Mallick, 
Stanford University) and processed using LipiDex81 and Compound 
Discoverer 2.0 or 2.1.0.398 (Thermo Fisher) for DO and validation 
experiments, respectively. All raw files were loaded into Compound 
Discoverer with blanks marked as such to generate two result files 
using the following workflow processing nodes: Input Files, Select 
Spectra, Align Retention Times, Detect Unknown Compounds, Group 
Unknown Compounds, Fill Gaps and Mark Background Compounds for 
the so called ‘Aligned’ result and solely Input Files, Select Spectra and 
Detect Unknown Compounds for an ‘Unaligned’ Result. Under Select 
Spectra, the retention time limits were set between 0.4 and 21 min, MS 
order as well as unrecognized MS order replacements were set to MS1. 
Further replacements were set to FTMS Mass Analyzer and HCD Activa-
tion Type. Under Align Retention Times, the mass tolerance was set to 
ten ppm and the maximum shift according to the data set to 0.6 min 
for the DO and 0.5 min for the validation experiments. Under Detect 
Unknown Compounds, the mass tolerance was also set to ten ppm, with 
an S/N threshold of five (DO) or three (validation), and a minimum peak 
intensity of 5 × 106 (DO) or 1 × 105 (validation).

For the DO samples, [M+H]+1 and [M−H]−1 were selected as ions 
and a maximum peak width of 0.75 min as well as a minimum number 
of scans per peak equalling seven were set. For the validation sam-
ples, [M+H]+1 and [M−H+TFA]−1 were selected as ions and a maximum 
peak width of 0.75 min as well as a minimum number of scans per peak 
equalling five were set. Lastly, for Group Unknown Compounds as 
well as Fill Gaps, mass tolerance was set to ten ppm and retention time 
tolerance to 0.2 min. For best compound selection, rules #1 and #2 
were set to unspecified, while MS1 was selected for preferred MS order 
and [M+H]+1 as the preferred ion. For everything else, the default set-
tings were used. Resulting peak tables were exported as Excel files in 
three levels of Compounds, Compound per File and Features ( just 
Features for the ‘Unaligned’) and later saved as csv. In LipiDex’ Spectrum 
Searcher ‘LipiDex_HCD_Acetate’, ‘LipiDex_HCD_Plants’, ‘LipiDex_Splash_
ISTD_Acetate’, LipiDex_HCD_ULCFA’ and ‘Ganglioside_20171205’ were 
selected as libraries for the DO, and ‘Coon_Lab_HCD_Acetate_20171229’, 
‘Ganglioside_20171205’ and ‘Ornithine-Lipids_20180404’ for the valida-
tion experiments. For all searches, the defaults of 0.01 Th for MS1 and 
MS2 search tolerances, a maximum of one returned search result and 
an MS2 low mass cut-off of 61 Th were kept. Under the Peak Finder tab, 
Compound Discoverer was chosen as peak table type, and its ‘Aligned’ 
and ‘Unaligned’ results, as well as the MS/MS results from Spectrum 
Researcher were uploaded. Features had to be identified in a minimum 
of one file while keeping the defaults of a minimum of 75% of lipid spec-
tral purity, an MS2 search dot product of at least 500 and reverse dot 
product of at least 700, as well as a multiplier of 2.0 for FWHM window, 
a maximum of 15 ppm mass difference, adduct/dimer and in-source 
fragment (and adduct and dimer) filtering and a maximum RT M.A.D 
Factor of 3.5. As post-processing in the DO, all features that were only 
found in one file and had no ID were deleted, and duplicates were also 
deleted. Peak areas of the three targeted ornithine lipid species were 
obtained via TraceFinder v3.3.350.0 (Thermo Fisher). Details of the lipid 
classes searched for in these databases with their respective adducts are 

shown in Supplementary Table 15. Lipids ID matching was performed 
at <±5 ppm between runs.

OL synthesis
Chemicals and methods. All chemicals were obtained from 
Chem-Impex, Sigma-Aldrich, Agros Organics or TCI America. All rea-
gents and solvents were used without further purification except 
for hexane, ethyl acetate and dichloromethane, which were distilled 
before use. Analytical thin-layer chromatography (TLC) was performed 
on 250 µm glass-backed silica plates with F-254 fluorescent indicator 
from Silicycle. Visualization was performed using UV light and iodine.

General instrumentation information. Nuclear magnetic resonance 
(NMR) spectra were recorded in deuterated solvents at 400 MHz on 
a Bruker-Avance spectrometer equipped with a BFO probe, and at 
500 MHz on a Bruker-Avance spectrometer equipped with a DCH cryo-
probe. Chemical shifts are reported in parts per million using residual 
solvent peaks or tetramethylsilane (TMS) as a reference. Couplings 
are reported in hertz (Hz). ESI–exact mass measurement (ESI–EMM) 
mass spectrometry data were collected on a Waters LCT instrument.

OL synthesis. Tridecanoic acid (compound 1, 3.2 g, 15 mmol)  
was dissolved in dichloromethane (150 ml, 0.1 M) in a round- 
bottom flask equipped with a stir bar. 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride (EDC-HCl) (4.3 g, 22.5 mmol), 
4-dimethylaminopyridine (DMAP) (273 mg, 2.25 mmol) and Meldrum’s 
acid (3.2 g, 22.5 mmol) were added to the flask, and the reaction was 
stirred overnight at room temperature. The next day, the reaction mix-
ture was washed with 1 M HCl (3 × 75 ml), saturated NaHCO3 (3 × 75 ml) 
and brine (3 × 75 ml). The mixture was then dried over magnesium 
sulfate and concentrated under reduced pressure. The resultant oil 
was then dissolved in benzene (19 ml) in a round-bottom flask with a stir 
bar, and benzyl alcohol (45 mmol, 4.7 ml) was added. The reaction was 
heated to 95 °C for three hours and then concentrated under reduced 
pressure. The crude reaction mixture was purified by silica gel flash 
chromatography (5–10% ethyl acetate in hexane as eluent), yielding 
3.6 g of compound 2 as an oil (69% yield over two steps).

1 2

Compound 2 (3.6 g, 10.4 mmol) was added to a round-bottom flask 
equipped with a stir bar and dissolved in a 2:1 mixture of tetrahydro-
furan (16 ml) and ethanol (8 ml). The round-bottom flask was cooled in 
an ice bath, and sodium cyanoborohydride (1.6 g, 26 mmol) was added 
to the mixture. One M aqueous HCl (26 ml, 26 mmol) was added via 
addition funnel, and the reaction was allowed to stir to room tempera-
ture and monitored by TLC. Upon consumption of starting material, the 
aqueous portion of the reaction was extracted with dichloromethane 
(3 × 20 ml) and combined with the organic portion. The combined 
organic portions were washed with brine (3 × 20 ml), dried over MgSO4 
and concentrated under reduced pressure to yield 3.26 g of compound 
3 (93% crude). The material was used without further purification.

2 3
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Pentadecanoic acid (1.93 g, 9 mmol) was added to a round-bottom 
flask equipped with a stir bar and dissolved in dichloromethane (80 ml). 
To the flask was added EDC-HCl (2.68 g, 14 mmol), DMAP (974 mg, 
8 mmol) and compound 3 (2.78 g, 8 mmol). The reaction mixture was 
allowed to stir overnight at room temperature. The next day, the mix-
ture was washed with 1 M HCl (3 × 50 ml), saturated NaHCO3 (3 × 50 ml) 
and saturated brine (3 × 50 ml). The mixture was then dried over mag-
nesium sulfate and concentrated under reduced pressure. The crude 
material was purified by silica gel flash chromatography (5–10% ethyl 
acetate in hexane as eluent), yielding 4.3 g of compound 4 (94% iso-
lated yield).

3 4

To a flame-dried round-bottom flask equipped with a stir bar was 
added Pd/C (798 mg, 0.75 mmol Pd). Dry dichloromethane was added 
to the flask to make a slurry, and the atmosphere was exchanged for 
nitrogen. Compound 4 (4.3 g, 7.5 mmol) was dissolved in anhydrous 
methanol and added to the reaction vessel. The atmosphere was then 
exchanged for hydrogen (balloon pressure), and the reaction was 
allowed to proceed overnight. The next day, the reaction was diluted 
with ethyl acetate and filtered over celite. The mixture was concentrated 
under reduced pressure to yield compound 5 as a white solid (3.5 g, 
97% crude yield). The material was used without further purification.

4 5

Compound 5 (256 mg 0.5 mmol) was added to a round-bottom 
flask equipped with a stir bar and dissolved in dimethylformamide 
(DMF) (5 ml). To the flask was added N,N-Diisopropylethylamine 
(DIPEA) (277 µl, 1.6 mmol) and hexafluorophosphate azabenzotriazole 
tetramethyl uronium (HATU) (216 mg, 5.5 mmol), and the mixture was 
stirred for 15 min. Protected ornithine (250 mg, 0.6 mmol) was added 
to the mixture, which was stirred at room temperature and monitored 
by TLC. When starting material was no longer observed by TLC, the 
mixture was diluted in diethyl ether (20 ml) and washed with 1 M HCl 
(3 × 20 ml), saturated NaHCO3 (3 × 20 ml) and brine (3 × 20 ml). The 
mixture was dried over magnesium sulfate and concentrated under 
reduced pressure to yield a white solid (376 mg crude). This sample 
was combined with an additional sample of the same crude material 
that appeared identical by 1H NMR analysis and was then purified by 
silica gel flash chromatography (25% ethyl acetate in hexane as eluent) 
to yield 131 mg of compound 6.

5 6

To a flame-dried round-bottom flask equipped with a stir bar 
was added Pd/Cn (17.0 mg, 0.16 mmol Pd). Dry dichloromethane was 

added to the flask to make a slurry, and the atmosphere was exchanged 
for nitrogen. The protected ornithine lipid (compound 6, 131 mg, 
0.160 mmol) was dissolved in a mixture of 4 ml anhydrous methanol/
dichloromethane (DCM) (1:1) and added to the reaction vessel. The 
atmosphere was then exchanged for hydrogen (balloon pressure), 
and the reaction was allowed to proceed overnight. The next day, the 
reaction was filtered over celite. The mixture was concentrated under 
reduced pressure to yield OL as an off-white solid (82.2 mg, 86% crude 
yield). Deprotected OL was identified using LC and ESI-EMM ([M]+ 
calculated 597.5207, measured 597.5188, 0.002 ppm) in the resultant 
mixture and the material was used without further purification in the 
experiments described herein.

6 OL 

RNA-seq and eQTL analysis. Samples of flash-frozen distal ileum 
from DO mice were homogenized with Qiagen Tissuelyser (two step 
two min at 25 Hz, with flipping plate homogenization with five min 
ice incubation). Total RNA was extracted from homogenized samples 
using Qiagen 96 universal kit (Qiagen). RNA clean-up was performed 
using Qiagen RNeasy mini kit (Qiagen). DNA was removed by on-column 
DNase digestion (Qiagen). Purified RNA was quantified using a Nan-
odrop 2000 spectrophotometer and RNA fragment analyzer (Agi-
lent). Library preparation was performed using the TruSeq Stranded 
mRNA sample preparation guide (Illumina). IDT unique dual indexes 
(UDIs), Illumina UDIs or NEXTflex UDIs were used as barcodes for each 
library sample. RNA sequencing was performed on an Illumina NovaSeq 
6000 platform. Raw RNA-seq reads quality control was performed 
using Trimmomatic82 (v0.39) with default parameters. Genotype-free 
genome reconstruction and allele specific expression quantification 
were performed using the GBRS tool (http://churchill-lab.github.io/
gbrs/). Genes with at least ten transcripts per million in at least 10% of 
DO mice were used for downstream analyses. For eQTL mapping, sex, 
RNA-seq index, RNA-seq wave and mouse cohort (wave) were used as 
additive covariates. eQTL analysis was otherwise the same as previ-
ously described53.

BMDM assay and cell viability measurement. Bone marrow was 
isolated from femur and tibia from ~six-week-old B6 and 129 mice fed 
with chow diet. Bone marrow cells were re-suspended into single-cell 
suspensions and cultured in complete DMEM medium supplemented 
with 10% fetal calf serum (FCS), 2 mM l-glutamine, 1% penicillin/strep-
tomycin and 20 ng ml−1 mouse macrophage colony stimulating factor 
(M-CSF) (BioLegend) for the purpose of differentiation. BMDM cells 
were randomly allocated into treatment groups. BMDMs were col-
lected at day seven and treated with LPS, OL or LPS + OL for 6 hours 
in media supplemented with 1% fetal bovine serum (FBS), then super-
natants were collected for measurement of cytokines. For optimiza-
tion, cytokine (TNF-α and IL-6) production from LPS- or OL-treated 
BMDM was performed using mouse TNF-α ELISA MAX Deluxe kit and 
mouse IL-6 ELISA MAX Deluxe kit (BioLegend), respectively. Follow-up 
cytokine (IL-1β, IL-6, IL-10, IL-12, MCP-1, TNF-α, MIP-1α, GM-CSF  
and RANTES) production assays in response to LPS + OL co-cultured 
BMDM were performed using Q-Plex Mouse Cytokine Screen 16-Plex 
(Quansys). Cell viability was determined by flow cytometry (Thermo 
Fisher Attune NxT) after staining with 7-amino-actinomycin D 
(eBioscience).

http://www.nature.com/naturemicrobiology
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RNA-seq of BMDM. Frozen BMDM were homogenized with Qiagen Tis-
suelyser (two min at 20 Hz) and total RNA was extracted using Qiagen 
96 universal kit (Qiagen). RNA clean-up was performed using Qiagen 
RNeasy mini kit (Qiagen). DNA was removed by on-column DNase diges-
tion (Qiagen). Library preparation was performed using the TruSeq 
Stranded mRNA sample preparation guide (Illumina). RNA sequencing 
was performed on an Illumina NovaSeq 6000 platform. Raw RNA-seq 
reads quality control was performed using Trimmomatic82 (v0.39) with 
default parameters. Gene quantification was performed using RSEM74 
(v1.3.1). DESeq283 (v1.26.0) was used to identify differentially expressed 
genes between groups.

Akkermansia-specific qPCR for mouse faecal samples. To quan-
tify Akkermansia abundance in mouse faecal samples, previously 
validated primers specific for A. muciniphila were used (forward CAG 
CACGTGAAGGTGGGGAC and reverse CTTGCGGTTGGCTTCAGAT)84. 
A. muciniphila genomic DNA isolated from a pure culture was used to 
generate a standard curve encompasing seven points (range: 1 ng µl−1–
0.015625 ng µl−1). The PCR reaction contained SsoAdvanced Universal 
SYBR Green Supermix (Bio-Rad). Faecal A. muciniphila abundance was 
normalized by faecal weight.

Data analysis and statistical analysis
All data integration and statistical analysis were performed in R (v3.6.3). 
Data collection and analysis were not performed blind to the condi-
tions of the experiments. No data were excluded from the analysis. No 
statistical methods were used to pre-determine sample sizes, but our 
sample sizes are similar to those reported in previous publications13. 
Differences between groups were evaluated using unpaired two-tailed 
Welch’s t-test. Enrichment analysis was performed with Fisher’s exact 
test using a custom R function. Correlation analysis was performed 
with two-sided Spearman’s correlation using the R function ‘cor.test()’. 
For multiple testing, Benjamini-Hochberg false discovery rate (FDR) 
procedure was used to adjust P values. Data integration was performed 
using R packages dplyr (v1.0.6), tidyr (v1.1.3), reshape2 (v1.4.4) and 
data.table (v1.14.0). Heat maps were plotted using the R package pheat-
map (v1.0.12). Other plots were created using the R packages ggplot2 
(v3.3.3), gridExtra (v2.3), RcolorBrewer (v1.1-2) and ggsci (v2.9).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
DO metagenomic WGS data are available from the Sequence Read 
Archive (SRA) under accession PRJNA744213. RNA-seq data are avail-
able from the Sequence Read Archive (SRA) under accession numbers 
PRJNA772743 and PRJNA896574. Mass spectrometry data files are 
available on Chorus (chorusproject.org) under accession with project 
ID 1681 (direct links to DO caecum lipidomics: https://chorusproject.
org/anonymous/download/experiment/10cb106716da44cd924a3c
73ac30083d and founder strains caecum lipidomics: https://chorus-
project.org/anonymous/download/experiment/ad7566e8f45942d-
2ba0f579857629b55). Genotypes data and additional phenotype 
data associated with DO mouse are available at Dryad (https://doi.
org/10.5061/dryad.pj105). SNP associations data cc_variants.sqlite 
are available at https://ndownloader.figshare.com/files/18533342 and 
mouse genes data mouse_genes_mgi.sqlite used for QTL mapping are 
available at https://ndownloader.figshare.com/files/17609252. Source 
data are provided with this paper.

Code availability
All code used in this study is available in GitHub (https://github.com/
qijunz/Zhang_DO_paper) or in the corresponding software package 
websites.
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Extended Data Fig. 1 | Overview of the study. Fecal metagenomes (n = 264 
animals), caecal lipidomes (n = 381 animals) and distal small intestine 
transcriptomes (n = 234 animals) were generated from Diversity Outbred mice. 
Quantitative trait loci (QTL) analysis identified genomic regions associated 

with variations in bacterial taxa, bacterial functions, levels of bacterial- and 
host-derived lipids and small intestine transcript levels. Mediation analysis and 
co-mapping comparisons were used to identify causal links between traits.
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Extended Data Fig. 2 | DO metagenomic analysis. a, Average percent of 
assembled reads across all samples. b, Comparison of percent of reads mapping 
to our generated assembly vs. public database (n = 297 animals). c, Microbial 
functions detected for KEGG pathways across all metagenomes. KEGG Orthology 
(KO) numbers were identified by annotating predicted ORFs to the KEGG 

database. d, Top 20 gut microbial genera detected across all DO mice (n = 264 
animals). e, Quality of metagenome-assembled genomes. f, Two variants of A. 
muciniphila MAGs detected in the DO mice. Box and whisker plots denote the 
interquartile range, median and spread of points within 1.5 times the interquartile 
range, data beyond the end of the whiskers are plotted individually.
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Extended Data Fig. 3 | DO gut microbiome QTL hotspot at Chr15: 61–65Mbp. Founder allele effects of KO and taxa trait QTL at Chr15 hotspot (LOD > 6).
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Extended Data Fig. 4 | DO gut microbiome QTL hotspot and SNP associations. 
a, Presence/absence of KOs that mapped to Chr15 hotspot across all MAGs. 
Sporulation functions were not detected in Bacteroidetes. b, Estimated founder 
allele effects for Bacteroidetes and Firmicutes, and Bacteroidetes/Firmicutes 
ratio (left panel). Observed abundance of Bacteroidetes Firmicutes and 
Bacteroidetes/Firmicutes ratio in founder strains as determined by Kemis et al. 

(right panel, n = 9-12 animals/founder strain). c, SNPs significantly associated 
with these traits in Chr15 hotspot include two intron SNPs in Gsdmc and Gsdmc2 
genes. Box and whisker plots denote the interquartile range, median and spread 
of points within 1.5 times the interquartile range, data beyond the end of the 
whiskers are plotted individually.
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Extended Data Fig. 5 | Correlation between gut bacterial MAGs and caecal 
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Extended Data Fig. 6 | Detection of ornithine lipids (OL) in Akkermansia 
muciniphila. a, Heatmap showing relative abundance of all OL species detected 
in cell pellets from A. muciniphila grown in vitro in defined media supplemented 
with different levels of phosphate: 20 µM, 200 µM and 2000µM. b, Relative 
abundance of lipid features detected in cell pellets from A. muciniphila grown in 

defined media with different levels of phosphate. Top 200 most abundant lipids 
features are shown. c, Relative abundance of OL features detected extracellular 
vesicles (AmEVs) purified from A. muciniphila grown in defined medium with the 
comparison to A. muciniphila cells.
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Extended Data Fig. 7 | Cytokine production by BMDM. a,b, (a) TNF-α and (b) 
IL-6 levels detected in supernatants from BMDM cells in B6 and 129 mice treated 
for six hours with different concentrations of LPS or OL. c, Cell viability of BMDM 
cells in B6 and 129 mice treated for six hours with 10 ng/mL LPS and different 

concentrations of OL. d, Flow cytometry gating strategy for BMDM cell viability 
assays. N = 3 biological replicates/treatment group. Box and whisker plots 
denote the interquartile range, median and spread of points within 1.5 times the 
interquartile range, data beyond the end of the whiskers are plotted individually.
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Extended Data Fig. 8 | Examples of co-mapping QTL. a, At Chr8: 10.5-14.5 Mbp, 
co-mapping of gut bacterial lipopolysaccharide cholinephosphotransferase 
function with Pglyrp1 eQTL was observed. b, At Chr4: 50 Mbp, co-mapping of 
an unidentified caecal feature and a local Acnat1 eQTL was observed. c, The 
knowledge of Acnat1 conjugating taurine to fatty acids guided the identification 

of the feature as an N-acyl taurine. d, Fragmentation pattern of identified N-acyl 
taurine. e, At Chr17: 30-34 Mbp, several unidentified features co-mapped which 
subsequently could be identified as tocopherols and exemplarily shown for the 
most significant feature alpha-tocopherol glucuronide. f, Fragmentation pattern 
of identified alpha-tocopherol glucuronide.
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Extended Data Fig. 9 | Founder allele effects on co-mapping traits associated with A. muciniphila levels. A. muciniphila, caecal OL and eQTL genes co-mapping at 
Chr1: 90-95 Mbp, Chr2: 77-81 Mbp, Chr7: 126-131 Mbp, Chr12: 55-63 Mbp and Chr15: 75-79 Mbp.
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Extended Data Fig. 10 | Expression of genes in BMDM treated with OL/LPS.  
a, Abundance of A. muciniphila in faecal pellets from Atf3-/- mice and WT mice 
(n = 7 mice/genotype; four females, three males for both genotypes). b, Gene 
expression level of Il1b, Il6 and Il12a from BMDM cells derived from B6 and 
129 mice treated for six hours with LPS (10 ng/ml) or with LPS (10 ng/mL) 
and OL (1 µg/mL). N = 3 biological replicates/treatment group. c, Number of 
differentially expressed genes in BMDM derived from B6 and 129 mice. d, Gene 
expression levels of Atf3 in BMDM from B6 and 129 mice treated for six hours with 

LPS (10 ng/mL) or LPS (10 ng/mL) and OL (1 µg/mL). N = 3 biological replicates/
genotype/treatment group. e, Differentially expressed genes in BMDM from B6 
and 129 mice. f, Previously reported ATF3 regulated genes in BMDM50. Impact 
of OL on these genes in B6 and 129 mice. Box and whisker plots denote the 
interquartile range, median and spread of points within 1.5 times the interquartile 
range; data beyond the end of the whiskers are plotted individually. Statistical 
difference between treatment groups was tested by two-sided Welch’s t- test.
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