
UC Berkeley
UC Berkeley Previously Published Works

Title
Vector Symbolic Architectures as a Computing Framework for Emerging Hardware.

Permalink
https://escholarship.org/uc/item/3fj10657

Journal
Proceedings of the IEEE, 110(10)

ISSN
0018-9219

Authors
Kleyko, Denis
Davies, Mike
Frady, E
et al.

Publication Date
2022-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fj10657
https://escholarship.org/uc/item/3fj10657#author
https://escholarship.org
http://www.cdlib.org/

Vector Symbolic Architectures as a Computing Framework for
Emerging Hardware

Denis Kleyko,
Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA
94720, USA and also with the Intelligent Systems Lab at Research Institutes of Sweden, 16440
Kista, Sweden.

Mike Davies,
Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA 95054, USA.

E. Paxon Frady,
Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA 95054, USA.

Pentti Kanerva,
Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA
94720, USA.

Spencer J. Kent,
Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA
94720, USA.

Bruno A. Olshausen,
Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA
94720, USA.

Evgeny Osipov,
Department of Computer Science Electrical and Space Engineering, Luleå University of
Technology, 97187 Luleå, Sweden.

Jan M. Rabaey,
Department of Electrical Engineering and Computer Sciences at the University of California at
Berkeley, CA 94720, USA.

Dmitri A. Rachkovskij,
International Research and Training Center for Information Technologies and Systems, 03680
Kyiv, Ukraine, and with the Department of Computer Science Electrical and Space Engineering,
Luleå University of Technology, 97187 Luleå, Sweden.

Abbas Rahimi,
IBM Research – Zurich, 8803 Rüschlikon, Switzerland.

Friedrich T. Sommer

Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/
publications/rights/index.html for more information.

denis.kleyko@ri.se .

HHS Public Access
Author manuscript
Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

Published in final edited form as:
Proc IEEE Inst Electr Electron Eng. 2022 October ; 110(10): 1538–1571.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.ieee.org/publications_standards/publications/rights/index.html

Neuromorphic Computing Lab, Intel Labs, Santa Clara, CA 95054, USA and also with the
Redwood Center for Theoretical Neuroscience at the University of California at Berkeley, CA
94720, USA.

Abstract

This article reviews recent progress in the development of the computing framework Vector
Symbolic Architectures (also known as Hyperdimensional Computing). This framework is well

suited for implementation in stochastic, emerging hardware and it naturally expresses the types

of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article

that the field-like algebraic structure of Vector Symbolic Architectures offers simple but powerful

operations on high-dimensional vectors that can support all data structures and manipulations

relevant to modern computing. In addition, we illustrate the distinguishing feature of Vector

Symbolic Architectures, “computing in superposition,” which sets it apart from conventional

computing. It also opens the door to efficient solutions to the difficult combinatorial search

problems inherent in AI applications. We sketch ways of demonstrating that Vector Symbolic

Architectures are computationally universal. We see them acting as a framework for computing

with distributed representations that can play a role of an abstraction layer for emerging computing

hardware. This article serves as a reference for computer architects by illustrating the philosophy

behind Vector Symbolic Architectures, techniques of distributed computing with them, and their

relevance to emerging computing hardware, such as neuromorphic computing.

Index Terms—

computing framework; hyperdimensional computing; vector symbolic architectures; emerging
hardware; distributed representations; data structures; Turing completeness; computing in
superposition

I. Introduction

The demands of computation are changing. First, Artificial Intelligence (AI) and other novel

applications pose a host of computing problems that require a search over an immense space

of possible solutions, with many approximately correct answers, but rarely a single correct

one. Second, future emerging hardware platforms, operating at ultra-low voltages to reduce

energy consumption and to support continued process scaling, are destined to be noisy

and, hence, operate stochastically [1]. These observations expose the need for a computing

framework that supports both deterministic computation in the presence of noise as well as

the approximate and parallel nature of algorithms used in AI.

By emerging hardware, we refer to the broad class of new hardware designs that are

highly parallel, fabricated at ultra-small scales, utilize novel components, and/or operate at

ultra-low voltages, thus consisting of unreliable, stochastic computational elements.

The conventional (à la von Neumann) computing architecture is not well adapted to these

demands, as it was designed assuming precise computational elements for tasks that require

exact answers. Conventional computing architectures will continue to play an important

Kleyko et al. Page 2

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

role in technology, but there is a growing amount of computational demands that are

better served by new computing designs. Thus, hardware engineers have been looking at

distributed and neuromorphic computing as a way of meeting these demands.

Many of the emerging computational demands come from cognitive or perceptual

applications found within the realm of AI. Examples include image recognition, computer

vision, and text analysis. Indeed, large-scale deep learning neural network modeling

dominates discussions about modern computing technology, pushing innovations in

hardware design towards parallel, distributed processing [2]. While widely used, deep

learning neural networks still have limitations, such as lacking the transparency of learned

representations and the difficulties in performing symbolic computations. In order to support

more sophisticated symbolic computations, researchers have been embedding conventional

data structures, such as graphs and key-value pairs, into neural network models [3]–[5].

However, it is not yet clear whether the sub-symbolic pattern recognition and learning

capabilities of deep neural networks can be augmented to handle the rich control flow,

abstraction, symbol manipulation, and recursion of existing computing frameworks.

Work on developing emerging computing hardware is accelerating. There are many

showcase demonstrations [6]–[9] but so far:

• these demonstrations have mostly lacked a unifying theoretical framework that

can bring sufficient composability, explainability, and versatility;

• many demonstrations still depend on hand-crafted elements that would be prone

to errors;

• most of the demonstrations have been sub-symbolic in nature and resort to

support from the conventional computing architecture to implement the symbolic

and flow control elements.

While these points are valid in general, there are some exceptions which we discuss in

Section VI-B. Nevertheless, all of these demonstrate the need for a unifying computing

framework that can serve as an abstraction layer between hardware and desired functionality.

Ideally, such a framework should be flexible enough to provide interfaces to emerging

hardware with various features, such as stochastic components, asynchronous spiking

communication, or devices with analog elements.

For the following reasons, we propose Vector Symbolic Architectures (VSA) [10] or,

synonymously, Hyperdimensional Computing (HDC) [11] as such a computing framework.

First, HDC/VSA can represent and manipulate both symbolic and numerical data structures

with distributed vector representations to solve, e.g., cognitive [12]–[14] or machine

learning [15] tasks. HDC/VSA is a suitable framework for integration with neural network

computations for solving problems in AI. It extends beyond typical AI tasks as an approach

capable of performing symbolic manipulations with distributed representations. Second,

the design of HDC/VSA, which was inspired by the brain, lends itself to implementation

in emerging computing technologies [16] because it is highly robust to individual device

variations. Third, HDC/VSA is a framework with two interfaces, one towards computations

and algorithms and one towards implementation and representations (cf. Fig. 1). There are

Kleyko et al. Page 3

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

different HDC/VSA models that all offer the same operation primitives but differ slightly in

terms of their implementation of these primitives. For example, there are HDC/VSA models

that compute with binary, bipolar, continuous real, and continuous complex vectors. Thus,

the HDC/VSA concept has the flexibility to connect to a multitude of different hardware

types, such as analog in-memory computing architectures [16] for binary-valued HDC/VSA

models or spiking neuron architectures [17], [18] for complex-valued ones.

HDC/VSA is a relatively new concept. The key idea goes back to the 1990s, but computers

of the day were not ready to handle large numbers of high-dimensional vectors. Now they

are, and so the framework deserves to be looked into anew. Not as a complete substitute for

conventional computing, but as a concept complementing it in a specific niche. For example,

human and animal-like perception and learning have eluded our attempts to be programmed

into computers. HDC/VSA is a strong candidate for such tasks because of their suitability

for both statistical learning and symbolic reasoning.

This article provides three main contributions. First, we review the principles of HDC/VSA

and how they provide a generic computing framework for implementing the primitives of

conventional data structures and deterministic algorithms. Second, we highlight pros and

cons of a non-traditional mode of computing in HDC/VSA, “computing in superposition,”

which can leverage distributed representations and parallelism for efficiently solving

computationally hard problems. Finally, we present two proposals (see Appendix A) that

show the universality of HDC/VSA by using them to represent systems known to be Turing

complete.

Guide to the article

The article is written with both newcomers to HDC/VSA and seasoned readers in mind.

Section II provides some motivation for using HDC/VSA in the context of emerging

computing hardware. This section sets up the context for the article. Section III offers

a deep dive into the fundamentals of HDC/VSA, recommended primarily to readers not

yet familiar with the framework. Section IV explains different aspects of computing with

HDC/VSA, including a “cookbook” for the representation primitives for numerous data

structures (Section IV-A) as well as introducing an idea of computing in superposition

and its existing applications (Section IV-B). Current hardware realizations of HDC/VSA

models are considered in Section V. Section VI provides the discussion. Finally, Appendix A

describes proposals for implementing two Turing complete systems with HDC/VSA.

II. Motivation

The exponential growth of Big Data and AI applications exposes fundamental limitations of

the conventional computing framework. One problem is that energy efficiency is stagnating

[20] – training and fine-tuning a neural network for a Natural Language Processing

application consumes energy and computational resources equivalent to several hundred

thousand US dollars [21] or more [22]. Conventional computing hardware is also highly

susceptible to errors and energy is often “wasted” attempting to maintain low error rates.

Kleyko et al. Page 4

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Data-intensive applications illustrate the scale of the problem and make energy efficiency

the grand challenge of computer engineering. To solve this challenge, alternative hardware

is required that can work with imprecise and unreliable computational elements [1].

Operating at ultra-low voltages with stochastic devices that are prone to errors has the

potential to greatly increase computing power and efficiency. For example, the recent

advances in materials science as well as in device manufacturing make it possible to design

computing hardware that accommodates computational principles of biological brains or

exploits physical properties of the substrate material. For certain classes of problems,

computing hardware such as neuromorphic processors [23]–[25] and in-memory computing

architectures [16] consumes only a fraction of the energy compared to current technology.

For certain tasks, existing neuromorphic platforms can be 1, 000 times more energy efficient

[24] than the conventional ones.

There is currently a focus on implementing AI capabilities in emerging computing hardware

[25], with the aim of providing an energy-efficient implementation of a selected class

of AI functionalities (mainly neural networks). However, we see the opportunity for a

computational framework exceeding neural networks in scope, which could empower an

unprecedented breakthrough in emerging computing technology. First, while neural network

algorithms serve a rather small subset of computation problems extremely well, they are

unable to address a large class of problems that require conventional algorithms and data

structures. A computing framework with a broader application scope than neural networks

could boost the adoption of emerging computing by several orders of magnitude. Second,

despite many promising applications for emerging computing hardware, the programming of

any new functionality is far from trivial. Emerging computing hardware currently lacks

a holistic software architecture, which would streamline the development of the new

functionality. Current development strategies resemble those of assembly programming,

where the developer is left with the entire job – from coming up with the algorithmic idea to

designing the actual machine instructions to be executed by a central processing unit. Thus,

the impressive recent emerging hardware development [16], [26] needs to be complemented

with the creation of computing frameworks for such hardware, which can abstract and

simplify the implementation of new functionalities, including the design of programs. Last

but not least, most emerging hardware differs fundamentally from traditional computer and

neural network accelerator hardware in that the enabled computations are unreliable and

stochastic. Thus, a computing framework is required in which error correction and error

robustness are achieved.

There is ample work demonstrating that HDC/VSA possesses a rich computational

expressiveness, from the functionality of neural networks [27]–[30] to machine learning

tasks [31]–[35] and cognitive modeling [13], [14], [36]–[39]. Further, HDC/VSA can

express conventional algorithms, for example, finite state automata [40], [41] and context-

free grammars [42].

In this article, we explore whether HDC/VSA can serve as a computing framework for

taking emerging computing to the next level. We argue that HDC/VSA provide a framework

to formalize and modularize algorithms and, at the same time, bridge the computation and

implementation levels in Marr’s framework [19] for information processing systems (see

Kleyko et al. Page 5

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1). Our proposal generalizes earlier suggestions to apply HDC/VSA for implementing

specific machine learning algorithms on emerging hardware [43], [44].

III. FUNDAMENTALS OF HDC/VSA

HDC/VSA [10], [11], is the term for a family of models for representing and manipulating

data in a high-dimensional space. It was originally proposed in cognitive psychology and

cognitive neuroscience as a connectionist model for symbolic reasoning [45]. In HDC/VSA,

data objects are represented by vectors of high (but fixed) dimension N, sometimes called

hypervectors or HD vectors. The encoded information is distributed across all components

of a hypervector. Such distributed representations [46] are distinct from localist and semi-

localist representations [47], where single or subsets of components encode individual data

objects.

Distributed representations are, in and of themselves, not the full story. As argued by

[48], distributed representations must be productive and systematic. Productivity refers

to massive expressiveness generated by simple primitives, while systematicity means that

representations are sensitive to the structure of the encoded objects. These desiderata

were one of the drivers for developing HDC/VSA. One major advantage of HDC/VSA

as the algorithmic level in the Marr hierarchy (Fig. 1) is that it embraces distributed

representations, which are robust to local noise.

The idea of computing with random hypervectors as basic objects rather than Boolean

or numeric scalars was developed by Kussul as part of Associative-Projective Neural

Networks [49] and independently in seminal works by Smolensky on Tensor Product

Variable Binding [50] & Plate on Holographic Reduced Representation [51]. HDC/VSA

can be formulated with different types of vectors, namely those containing real, complex, or

binary entries, as well as with the multivectors from geometric algebra. These HDC/VSA

models come under many different names: Holographic Reduced Representation (HRR)

[52], [53], Multiply-Add-Permute (MAP) [54], Binary Spatter Codes [55], Sparse Binary

Distributed Representations (SBDR) [56], [57], Sparse Block-Codes [58], [59], Matrix

Binding of Additive Terms (MBAT) [60], Geometric Analogue of Holographic Reduced

Representation (GAHRR) [61], etc. All of these different models have similar computational

properties – see [30] and [62]. For clarity, we will use the Multiply-Add-Permute model in

the remainder of this article.

A. Basic elements of HDC/VSA

1) High-dimensional space: HDC/VSA requires a high-dimensional space. The

appropriate choice of dimensionality N is somewhat dependent on the problem, but there

are simple rules of thumb (N > 1, 000, for example), and the representation of particular

data structures in the given problem is much more important. As mentioned above, there are

HDC/VSA models defined for different types of spaces (see Section V-A for more details).

In this article, we will use a variation of the Multiply-Add-Permute model (MAP-I, see, e.g.,

[62]) that operates in integer vector spaces ℤN . Operations and properties that have proven

useful are presented below (Appendix B provides the summary). It is worth pointing out that

Kleyko et al. Page 6

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the superposition and binding of hypervectors form an algebraic structure that resembles a

field, and that permutations extend the algebra to all finite groups up to size N.

2) Quasi-orthogonality: HDC/VSA uses random (strictly speaking, pseudo-random)

vectors as a means for data representation. By using random vectors as representations,

HDC/VSA can exploit the concentration of measure phenomenon [63], [64], which implies

that with high probability random vectors become almost orthogonal in high-dimensional

vector spaces. This phenomenon is sometimes called progressive precision [65] or the

blessing of dimensionality [64]. In the case of HDC/VSA, it means that when, e.g., two

objects are represented by random vectors, with high probability their representations will be

almost orthogonal to each other. Multiply-Add-Permute uses bipolar random vectors where

the i-th component of a vector a is generated i.i.d. random from the Bernoulli distribution: ai

~ 2(0.5)−1. In the HDC/VSA literature, dissimilar representations are described by various

adjectives such as unrelated, uncorrelated, approximately-, pseudo-, or quasi-orthogonal.

Unlike exact orthogonality, the dimension N is not a hard limit on the number of quasi-

orthogonal vectors one can create.

3) Similarity measure: Processing in HDC/VSA is based on similarity between

hypervectors. The common similarity measures in HDC/VSA are the dot (scalar, inner)

product, cosine similarity, overlap, and Hamming distance. In Multiply-Add-Permute, it is

common to use either the cosine similarity or the dot product. Therefore, we will be using

the dot product (denoted as ⟨·, ·⟩) as the similarity measure below.

4) Seed hypervectors: When designing an HDC/VSA algorithm for solving a problem,

it is common to define a set of the most basic concepts/symbols for the given problem and

assign hypervectors to them. Such seed hypervectors are defined as the representations

of concepts that are irreducible. All other hypervectors occurring in the course of a

computation are therefore reducible, that is, they are composed of seed hypervectors. Here

we will focus on symbolic structures, i.e., symbols from some alphabet with size D, which

are represented by i.i.d. random seed hypervectors (see Section III-A2). As mentioned

above, in Multiply-Add-Permute, seed hypervectors are bipolar and so any hypervector

a ∈ {−1, 1}N. The process of assigning seed hypervectors, usually (but not always) by

i.i.d. random generation of vectors, is referred to as mapping, encoding, projection, or

embedding. We reiterate that representations in an HDC/VSA algorithm need not always

be quasi-orthogonal. For example, for representing real-valued variables one might use a

locality-preserving representation scheme, in which representations of similar values are

systematically correlated and not quasi-orthogonal [66]–[68], or where the hypervectors are

learned [31], [69]. Thus, one should keep in mind that i.i.d. randomness is not the only tool

for designing seed representations.

5) Item memory: Seed hypervectors are stored in the so-called item memory (or cleanup

memory), a content-addressable memory which can be just a matrix or an associative

memory [70]–[72] that stores the hypervectors as point attractors.

Kleyko et al. Page 7

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B. HDC/VSA operations and compound representations

Seed hypervectors are the building blocks for compound HDC/VSA representations, which

are built from operations performed on the seed vectors. For example, a compound

hypervector representing edges of a graph (compound entity) can be constructed (Section

IV-A7) from seed hypervectors representing its nodes (basis symbols). This compositional

formation of data structures in HDC/VSA is akin to conventional computing and very

different from the modern neural networks in which activity vectors, especially in hidden

layers, often can not be readily parsed.

Two key HDC/VSA operations are dyadic vector operations between hypervectors that

are referred to as superposition and binding. Like the corresponding operations between

ordinary numbers, they form, together with the representation vector space, a field-

like algebraic structure. Another important HDC/VSA operation is the permutation of

components within a hypervector.

The component-wise addition operation is used for bundling or superposing and in

the Multiply-Add-Permute model it is implemented as a component-wise addition of

hypervectors. The binding operation is used for variable binding. In the Multiply-Add-

Permute model, the binding operation is implemented via component-wise multiplication,

i.e., via the Hadamard product. The permutation operation, as its name suggests, shuffles

the components of a hypervector according to a pre-defined permutation that can be, e.g.,

chosen randomly. In practice, a rotation of components, i.e., a cyclic shift of the hypervector

component index, is used frequently.

In what follows, we describe each operation and its properties in more detail. It is important

to stress that various HDC/VSA models differ in the particular details of realizing their

operations. As a consequence, the operations’ properties presented below are relevant for the

Multiply-Add-Permute model but are not valid for each and every HDC/VSA model. For the

sake of focus, we will not discuss differences between different HDC/VSA models in depth

here, but we encourage interested readers to consult recent studies [62], [73].

Note also that the seed hypervectors referred to in this section are pseudo-random i.i.d.

Because high-dimensional representation tolerates errors, the conditions listed below need

only be satisfied approximately or with high probability. Due to the concentration of

measure phenomenon, the operations – and computations based on them – become ever

more reliable, dependable, and predictable as the dimensionality N of the space increases.

1) Binding: a dyadic operation mapping two hypervectors to another hypervector. It is

used to represent an object formed by the binding of two other objects. This operation is

an important ingredient for forming compositional structures with distributed representations

(see, e.g., a discussion on its importance in the context of deep learning in [74]). Formally,

for two objects a and b, represented by the hypervectors a and b, the hypervector that

represents the bound object (denoted by m) is:

m = a ⊙ b . (1)

Kleyko et al. Page 8

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the Multiply-Add-Permute model, ⊙ denotes the component-wise multiplication

(Hadamard product). Multiple application of binding is denoted by ∏, enabling the

formation of a hypervector representing the product of more than two hypervectors.

Consider the example of representing a database for trivia about countries [75]. The database

record for a country contains the name, the capital, and the currency. The first step is to form

hypervectors that represent key-value pairs, which can be done by binding: country⊙USA,

capital⊙Washington, currency ⊙ USD. To create a single hypervector that represents

the entire data record for a country, we need another operation to combine the different

key-value pairs (see below).

2) Superposition: a dyadic operation mapping two hypervectors to another hypervector.

It is denoted with + and, in the Multiply-Add-Permute model, implemented via component-

wise addition, which sometimes can be thresholded to keep bipolar representations (not

used in this article). The superposition operation combines several hypervectors into a single

hypervector. For example, for a and b the result z of the superposition of their hypervectors

is simply:

z = a + b . (2)

The superposition of more than two hypervectors is denoted by Σ. Often, superposition

is followed by a thresholding operation to produce a resultant hypervector that is of the

same type as the seed vectors. For example, in the Multiply-Add-Permute model the

seed hypervectors are bipolar vectors, but the arithmetic sum-vector is not. Therefore, in

the bipolar variant (MAP-B, see [62]) a thresholding operation, using the signs in each

component, can map the sum vector back to a bipolar hypervector. This type of thresholding

is sometimes called the majority rule/sum and denoted by brackets: [a + b]. For the sake of

consistency, the examples below use the non-thresholded sum, unless mentioned otherwise.

The non-thresholded sum has the advantage of being invertible since individual elements

in the sum can be removed by subtraction (denoted as −) without interfering with the rest.

Using the example above:

a = z − b . (3)

Continuing the database example, the superposition operation can be used to create a single

hypervector from hypervectors representing all key-value pairs of the record. Thus, the

compound hypervector for the whole record will be formed as: country ⊙ USA + capital ⊙
Washington + currency ⊙ USD.

3) Permutation: a unary operation on a hypervector that yields a hypervector. Akin

to the binding operation, permutation is often used to map into an area of hypervector

space that does not interfere strongly with other representations. However, unlike binding

in Multiply-Add-Permute, the same permutation can be used recursively, projecting into

previously unoccupied space with every iteration. Note that the number of possible

permutations grows super-exponentially with the dimensionality (N!) and that permutations

Kleyko et al. Page 9

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

themselves are not elements of the space of representations. In most HDC/VSA algorithms,

a single one or a small set of permutations are fixed at the onset of computation. We

continue with a simple example, and more examples follow in the subsequent sections.

Permutation can be seen as an alternative approach to binding when there is only one

hypervector as the operand [54]. The permutation operation can also be used to represent

sequence relations and other asymmetric relations like “part-of”. For example, a fixed

permutation (denoted as ρ(·)) can be used to associate, e.g., a symbol hypervector with the

position of a symbol in a sequence, resulting in a hypervector representing the symbol in that

position. The single application of the permutation is:

r = ρ1(a) = ρ(a) . (4)

To associate a with the i-th position in a sequence, the permutation is applied i times. The

result is the hypervector:

r = ρi(a) .

Note that permutation is an example of a more general unary operation, matrix-vector

multiplications (see, e.g., [60] for a proposal on using matrix-vector multiplications to

implement the binding operation).

4) Properties of HDC/VSA operations and their interaction: Here we summarize

the properties of the basic HDC/VSA operations and how they interact:

a) Superposition:

• Superposition can be inverted with subtraction: a + b + c − c = a + b;

• In contrast to the binding and permutation operations, the result of the

superposition z = a + b (often called the superposition hypervector) is similar

to each of its argument hypervectors, i.e., the dot product between z and a or b is

significantly more than 0: ⟨z, a⟩ ≈ ⟨z, b⟩ > 0;

• Arguments of binding can be approximately recovered from the superposition

hypervector: b⊙(a⊙b+c⊙d) ≈ a;

• Superposition is commutative: a + b = b + a;

• Thresholded superposition is approximately associative: [[a + b] + c] ≈ [a + [b +

c]].

Note that if several instances of any hypervector are included (e.g., z = 3a + b), the resultant

hypervector is more similar to the dominating hypervector than to other arguments.

b) Binding:

• Binding is commutative: a ⊙ b = b ⊙ a;

• Binding distributes over superposition: c ⊙ (a + b) = (c ⊙ a) + (c ⊙ b);

Kleyko et al. Page 10

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Binding is invertible, for m = a ⊙ b: a ⊙ m = b. The inversion process is often

called releasing or unbinding. In the case of the component-wise multiplication

of bipolar vectors, the unbinding operation is performed with the same operation.

Therefore, we do not introduce a separate notation for unbinding here;

• Binding is associative: c ⊙ (a ⊙ b) = (c ⊙ a) ⊙ b;

• The result of binding is dissimilar to each of its argument hypervectors, e.g., m is

dissimilar to the hypervectors being bound, i.e., the dot product between m and a
or b is approximately 0: ⟨m, a⟩ ≈ ⟨m, b⟩ ≈ 0;

• Binding preserves similarity (for similar a and a′): ⟨a ⊙ b, a′ ⊙ b⟩ ≫ 0;

• Binding is a “randomizing” operation (since ⟨a ⊙ b, a⟩ ≈ 0) that preserves

similarity (because ⟨a ⊙ b, c ⊙ b⟩ = ⟨a, c⟩).

c) Permutation:

• Permutation is invertible, for r = ρ(a): a = ρ−1(r);

• In Multiply-Add-Permute, permutation distributes over both binding (ρ(a ⊙ b) =

ρ(a) ⊙ ρ(b)) and superposition (ρ(a + b) = ρ(a) + ρ(b));

• Similar to the binding operation, the result r of a (random) permutation is

dissimilar to the argument hypervector a: ⟨r, a⟩ ≈ 0;

• Permutation is a “randomizing” operation (since ⟨ρ(a), a⟩ ≈ 0) that preserves

similarity (because ⟨ρ(a), ρ(b)⟩ = ⟨a, b⟩);

It is worth clarifying what we mean by “similarity preserving” in the case of binding and

permutation vs. superposition above: For binding, the similarity between two hypervectors

is the same before and after binding with a third hypervector, i.e., ⟨a ⊙ b, c ⊙ b⟩ = ⟨a,

c⟩, and for permutation, the similarity between two hypervectors is also the same before

and after the operation, i.e., ⟨ρ(a), ρ(b)⟩ = ⟨a, b⟩. However, for superposition, the similarity

between two hypervectors is generally lower before vs. after superimposing them to a third

hypervector, i.e., ⟨a + b, c + b⟩ > ⟨a, c⟩, since the sum moves them in a common direction b.

On the other hand, since the superposition hypervector is similar to each of the vectors in the

sum, ⟨a + b, a⟩ ≈ ⟨a + b, b⟩ > 0, it is also sometimes referred to as “similarity preserving,”

in contrast to binding and permutation, which generally create a dissimilar hypervector. One

should keep this distinction in mind when referring to the similarity preserving properties of

these operators.

C. Parsing compound representations

HDC/VSA offer the possibility to encode data structures into compound hypervectors and

to manipulate the hypervectors with the operations described above to perform computation

on the data structures. In conventional computing, data structures are always exposed and

the algorithm queries or modifies individual elements within them. In contrast, the vector

operations in HDC/VSA can search or transform many or all elements of a data structure in

parallel, which we call “computing in superposition” (see Section IV-B). All data structures

are hypervectors and can be manipulated immediately and in parallel, regardless of how

Kleyko et al. Page 11

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

complicated a structure they possess. But this also means that the data structure of a

compound hypervector is not immediately decodable from the item memory. To query

element(s) of a compound hypervector, it first needs to be analyzed or “parsed”. We

borrow the term parsing from linguistics because the parsing of HDC/VSA hypervectors

is somewhat similar. To understand a sentence, one needs to divide the sentence into

its parts and assign their syntactic roles, which involves comparing the parts with the

stored information about their meaning and syntactic roles. Similarly, to extract the result

of a HDC/VSA computation, one has to parse the resultant hypervector. The parsing of

HDC/VSA hypervectors involves the decomposition and comparison of the resulting parts

with the stored information.

Like with the sum or product of ordinary numbers, the parsing of hypervectors requires

additional information, such as the operations used to form the compound representation

and the set of seed vectors. Parsing a compound hypervector first entails the operation

inverse that used to encode the wanted element in the data structure. However, the result is

almost always approximate because of crosstalk noise coming from all the other elements

in the compound hypervector. To single out the correct result, the noisy vector has to be

compared to the original seed vectors in terms of similarity. Probing is the process of

retrieving the best-matching hypervector (i.e., the nearest neighbor) among the hypervectors

for a given query hypervector. This is done in the item memory, which contains all the seed

hypervectors. For example, consider the compound hypervector:

s = a ⊙ b + c ⊙ d .

In order to know which hypervector has been bound to, e.g., b we have to unbind (inverse

binding) b from s:

s ⊙ b = b ⊙ (a ⊙ b + c ⊙ d) =
= a + b ⊙ c ⊙ d = a + noise ≈ a .

The resultant hypervector contains the correct answer a and a crosstalk noise term b ⊙ c
⊙ d, which is dissimilar to any of the items in the item memory. The query hypervector a
+ noise will be highly similar to the hypervector a stored in the item memory, which will

be successfully retrieved by the nearest neighbor search with high probability. Thus, the

probing operation removes (or cleans up) the noise and returns the correct result.

Cleanup via probing is a critical part of HDC/VSA computations and has the advantage

that its operation is intrinsically noise resilient and the degree of noise robustness can be

easily controlled by the dimension N. In essence, probing is a signal detection problem.

The number of hypervectors that can be correctly retrieved from the superposition is called

capacity. The capacity increases roughly linearly with the hypervector dimension and is

quite insensitive to the details of a particular HDC/VSA model. The signal detection theory

for HDC/VSA [30] enables one to determine the dimension of the hypervector space that is

sufficient for a given computation and a given precision of the hardware.

Kleyko et al. Page 12

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Parsing hypervectors with multiple bindings: In the example above, it was assumed

that one argument (i.e., b) of the key-value pair was known. This, however, is not always the

case. Moreover, there exist representations where several hypervectors are being bound (e.g.,

a ⊙ b ⊙ c). Parsing compound hypervectors with such elements is challenging due to the

fact that the binding operation in the Multiply-Add-Permute model produces a hypervector

dissimilar to its arguments (cf. Section III-B4b). This means that the most obvious way

to parse hypervectors of the form a ⊙ b ⊙ c is by brute force, through checking all

possible combinations of the arguments. The number of such combinations, however, grows

exponentially with the number of arguments involved. Therefore, a mechanism called a

resonator network has been proposed [76], [77], which addresses this problem by a parallel

search in the space of all possible combinations.

The resonator network assumes that none of the arguments are given, but that they are

contained in different item memories, which should be known to the resonator network.

Fig. 2 illustrates an example of a resonator network for factoring the hypervector s =

a⊙b⊙c. In a nutshell, the resonator network is a novel recurrent neural network design that

uses HDC/VSA principles to solve combinatorial optimization problems. As shown in the

example, it factors the arguments of the input vector s representing the binding of several

hypervectors. To do so it uses hypervectors a(t), b(t), c(t), each storing the prediction for a

particular argument of the product forming s. Each prediction communicates with the input

hypervector (s) and all other predictions using the following dynamics:

a(t + 1) = sign AA⊤ (s ⊙ b(t) ⊙ c(t)) ;
b(t + 1) = sign BB⊤ (s ⊙ a(t) ⊙ c(t)) ;
c(t + 1) = sign CC⊤ (s ⊙ a(t) ⊙ b(t)) ,

(5)

where A, B, and C denote the corresponding item memories containing a, b, and c
arguments, respectively, and sign(·) denotes a step that projects the predictions back to

the bipolar values. Note that the resonator network does not have to work with only

bipolar hypervectors. Rather, the usage of the sign(·) function is determined by the fact

that the seed hypervectors in the Multiply-Add-Permute model are bipolar. Thus, other types

of nonlinearity functions can be used to make a resonator network compatible with the

desirable format of the seed hypervectors. Note also that these item memories will contain

other hypervectors as well, but hypervectors stored in A, B, and C differ from each other.

The size of each item memory depends on a task but it will affect the performance of the

resonator network as larger item memories imply a larger search space.

The key insight into the internals of the resonator network is that it iteratively tries to

improve its current predictions of the arguments constituting the input hypervector s.

In essence, at time t each prediction might hold multiple weighted guesses from the

corresponding item memory. The current predictions for other arguments are used to invert

the input vector and infer the current argument (e.g, s ⊙ b(t) ⊙ c(t)). The cost of using

the superposition for storing the predictions is crosstalk noise. To clean up this noise,

the predictions are projected back to their item memories (e.g., A⊤ (s ⊙ b(t) ⊙ c(t))), which

provides weights for different seed hypervectors stored in the item memory and, therefore,

Kleyko et al. Page 13

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

constrains the predictions to only to the valid entries in the item memory. These weights

are then used to form a new prediction, which is a weighted superposition of all seed

hypervectors. Successive iterations of the process in Eq. (5) eliminate the noise as the

arguments become identified and find their place in the input vector. Once the arguments are

fully identified, the resonator network reaches a stable equilibrium and the arguments can

be read. For the sake of space, we do not go into the details of applying resonator networks

here. Please refer to [76] for examples of factoring hypervectors of data structures with

resonator network and to [77] for their comparison with other standard optimization-based

methods.

D. Generality and utility

Currently, there are several known areas where HDC/VSA have been employed.

Hypervectors serve as representations for cognitive architectures [37], [38]. They are used

for the approximation of conventional data structures [40], [41], [78], distributed systems

[79], [80], communications [81]–[83], for forming representations in natural language

processing applications [31], [84] and robotics [85]–[89]. The fact that it is possible to

map real-valued data to hypervectors allows one to apply HDC/VSA in machine learning

domains. Most of these works were connected to classification tasks (see a recent overview

in [15]). Examples of domains that have benefited from the application of HDC/VSA

modeling are biomedical signal processing [34], [90], gesture recognition [33], [91], seizure

onset detection and localization [92], physical activity recognition [93], and fault isolation

[94]. However, HDC/VSA modeling can also be useful for very generic classification tasks

[29], [95]. The common feature of these works is a simple training process, which does not

require the use of iterative optimization methods, and transparently learns with few training

examples.

IV. COMPUTING WITH HDC/VSA

A. Computational primitives formalized in HDC/VSA

In the previous section, we have introduced the basic elements of HDC/VSA. To provide

the algorithmic level in the Marr computing hierarchy in Fig. 1, one needs to combine

elements of HDC/VSA into primitives of HDC/VSA computing, i.e., something akin to

design patterns in software engineering. For instance, a set of HDC/VSA templates has been

proposed for tasks in the domain of personalized devices covering different multivariate

modalities such as electromyography, electroencephalography, or electrocorticography [34].

Here we summarize best practices for representing well-known data structures with

HDC/VSA – this section can be thought of as a “HDC/VSA cookbook”. All examples

in this section are available in an interactive Jupyter Notebook1. After providing some basic

rules for representing data structures with HDC/VSA, we present a collection of primitives

from prior work that has been done along these lines. We do not go into an advanced

topic of how distributed representations of data structures can be used to construct or learn

single-shot transformation between data structures that share symbols. It is, however, worth

noting that this property differentiates distributed representations from conventional data

1https://github.com/denkle/HDC-VSA_cookbook_tutorial.

Kleyko et al. Page 14

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/denkle/HDC-VSA_cookbook_tutorial

structure manipulations and the interested readers are referred to, e.g., [96], [97] for more

details. A well-known example of this property has been presented in [98] where a mapping

between the “mother-of” relation to the “parent-of” relation was constructed with simple

vector operations and using only a few examples. It was shown later in [39] that such a

mapping can be used to easily form associations between observed structures and decisions

caused by these structures.

It is worth noting that in this article we do not cover the representation of real-valued data

(see, e.g., [66], [99]–[102]) or solving machine learning problems (see, e.g., [15]) as it has

been covered elsewhere and is outside the immediate scope of the article.

1) The rules of thumb: We should point out that the HDC/VSA implementations we

describe are not the only possibilities and other solutions may be possible/desirable in a

particular design context. The solutions provided are, however, the most common/obvious

choices, based on several “rules of thumb”:

• Superposition is used to combine individual elements of a data structure into a

set;

• Binding is used to make associations between elements, e.g., key-value pairs;

• Permutation is used for tagging data elements to put them into a sequential order,

such as in time series;

• Permutation is used for protection from the self-inverse property of the binding

operation since the hypervector will not cancel out when bound with its

permuted version.

We will follow these rules most of the time when forming hypervectors for different data

structures.

2) Sets: A set (denoted as S) represents a group of elements, for example, S = {a, b,

c, d, e}. In order to map a set to a hypervector, two steps are required. First, an item

memory storing random hypervectors for each element of a set is initialized. We will use

bold font in notations of hypervectors (e.g., a for “a”) but a more general notation is via the

mapping function ϕ(i) ↦ i, i ∈ S. Second, a single hypervector (denoted as s) is formed that

represents the set as the superposition of hypervectors for the set’s elements, e.g., for the set

above:

s = a + b + c + d + e,
s = ∑

i ∈ S
ϕ(i) . (6)

The hypervector s is a distributed representation of the set S. This mapping preserves

the overlap between elements of the sets. For example, set membership can be tested

by calculating the similarity between s and the hypervector corresponding to the element

of interest. If the similarity score is higher than that expected between two random

hypervectors, then most likely the element is present in the set. This mapping is very

similar to a Bloom Filter [103] (in particular, to Counting Bloom Filter [104]), which

Kleyko et al. Page 15

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is a well-known randomized data structure for approximate membership query in a set.

Bloom Filters have been recently shown to be a subclass of HDC/VSA [78], where the

superposition operation is implemented via OR and seed hypervectors are sparse, as in the

Sparse Binary Distributed Representations [56] model. While conceptually representation

of sets via distributed representations is a simple idea, it is very influential as it has been

applied in myriads of engineering problems (see, e.g., a survey in [105]).

Note that the limitation of the described mapping of sets is that it does not have a simple

and exact way of obtaining distributed representations of the intersection or union of two

sets. The exact results can, obviously, be obtained by first parsing distributed representations

of the corresponding sets, reconstructing the symbolic versions, computing the union or

intersection in the symbolic domain, and finally forming the distributed representation

of the result. There are, however, simple approximations of the operations the require

fewer interactions with the symbolic domain. Both approximations are obtained by the

superposition operation on the corresponding set’s hypervectors (e.g., s1 and s2):

s = s1 + s2

The difference is in the way the parsing of the result in s is done. In order to parse the

intersection of two sets, only the elements with the largest dot products should be retrieved.

So, if the result of the intersection is stored in I, which is initially empty (I = ∅), then for

element i with the corresponding entry Hi in the item memory:

I =
I ∪ i , if His ≥ Θi

I ∪ ∅ , otherwise

where Θi denotes the corresponding threshold.

To retrieve the union (U = ∅ at start), the elements with the dot products sufficiently

different from the noise level should be considered:

U =
U ∪ i , if His ≥ Θn

U ∪ ∅ , otherwise

where Θn denotes the noise level threshold. Thus, the subtlety for the intersection is that

elements present in both sets will have higher similarity then the ones present in only one of

the sets (see Section III-B2). This property of the superposition operation is in fact used in

the next section for representing multisets.

3) Multisets/Histograms/Frequency distributions: Let us consider how to form a

single hypervector of a multiset or a frequency distribution in the form of counts of the

occurrences of various elements in some source. The mapping is essentially the same as in

the case of sets in Section IV-A2 with the only difference that a hypervector of an element

can be present in the result of the superposition operation several times. For example, given

S = (a, a, a, b, b, c), hypervector representing the frequency of elements is formed as:

Kleyko et al. Page 16

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

s = a + a + a + b + b + c =
= 3a + 2b + c .

Thus, the number of times a hypervector is present in the superposition determines the

frequency of the corresponding element in the sequence. Using s it is possible to estimate

either the frequency of an individual element or compare to the frequency distribution

of another sequence. Both operations require calculating the similarity between s and the

corresponding hypervector.

Usually, s is used as an approximate representation of the exact counters of a histogram. Fig.

3 demonstrates Pearson correlation coefficient between the histogram and its approximate

version retrieved from a compound hypervector s where the approximate version was

obtained as the dot product between s and symbols’ seed hypervectors. The simulations

were done for different sizes of histogram and varying the dimensionality of hypervectors.

The results are characteristic for HDC/VSA – the quality of approximation improved with

the increased dimensionality of hypervectors.

This mapping shall be seen as a particular instance of a count-min sketch [106] that is a

randomized data structure for obtaining frequency distributions from sequences. The count-

min sketch is used in a plethora of applications where data are of streaming nature (see, e.g.,

some examples in [106]). Below, in Section IV-A6 we will also see that the representation

of multisets is an essential primitive for representing n-gram statistics that in turn is used

for solving classification tasks (see, e.g., [107]–[109]). The limitation of the presented

mapping is that due to the usage of bipolar hypervectors the resultant representation could

both overcount and undercount the frequency. This limitation is partially addressed by the

standard count-min sketch that could only overcount the frequency.

4) Cross product of two sets: A particularly interesting case is when we have

hypervectors representing two different sets (e.g., {a, b, c, d, e} and {x, y, z}). Then a

mapping based on the binding operation is used to create a hypervector corresponding to the

cross product of two sets as follows:

(a + b + c + d + e) ⊙ (x + y + z) =
= (a ⊙ x + a ⊙ y + a ⊙ z) + (b ⊙ x + b ⊙ y + b ⊙ z) +
+ (c ⊙ x + c ⊙ y + c ⊙ z) + (d ⊙ x + d ⊙ y + d ⊙ z) +
+ (e ⊙ x + e ⊙ y + e ⊙ z) .

In essence, here occurs (due to the superpositions) a simultaneous binding between all the

elements in the two sets. The cross product set, thus, consists of all possible bindings of

hypervectors representing elements of the original sets (e.g., a ⊙ x). In the example above,

when starting first with the representations of sets, only 7 operations (6 superpositions and

1 binding) were necessary to form the representation. The brute force way for forming

the cross product set hypervector would require 29 operations (14 superpositions and 15

binding). It is clear that this shortcut works due to the fact that the binding operation

distributes over the superposition operation (Section III-B4b). Note that using the Tensor

Product Variable Binding [50] model, the outer product of vector representations of the two

Kleyko et al. Page 17

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sets will be a tensor with the number of dimensions determined by the number of sets in

the cross-product. In contrast, the HDC/VSA representation of a cross-product is given by a

hypervector of the same dimension as the individual set hypervectors. Note also that while

it is simple to form a hypervector corresponding to the cross product of two sets with the

binding operation, computing the cross product in the symbolic domain might still require

lower computational costs as it does not require high-dimensional representations. Another

potential issue of such a representation is the required dimensionality of hypervectors

for the situation when all the elements of the cross product should be retrievable from

the distributed representation. In this case, the dimensionality of hypervectors should

be proportional to the product of the sets’ cardinalities; so even moderately sized sets

require large number of components in hypervectors to provide high accuracy of retrieving

individual elements of their cross product from the corresponding hypervector.

5) Sequences: A sequence is an ordered set of elements. For example, the set from the

previous section is now a sequence (a, b, c, d, e), which is not the same as, e.g., (b, a, c, d, e)

since the order of elements is different. Note that a finite sequence with k elements is called

k-tuple, with an ordered pair being the special case for k = 2.

Clearly, plain superposition of hypervectors works for representing sets but not for

sequences, as the sequential order would be lost. Many authors have proposed the following

idea to represent sequences with permutation, e.g., in [11], [30], [44], [110]–[112]. Before

combining the hypervectors of sequence elements, the order i of each element is associated

by applying some specific permutation k − i times to its hypervector (e.g., ρ2(c)). The

advantage of this recursive encoding of sequences is that extending a sequence can be done

by permuting s and superimposing or binding it (see below) with the next hypervector in

the sequence, hence, incurring a fixed computational cost per symbol. The last step is to

combine the sequence elements into a single hypervector representing the whole sequence.

There are two common ways to combine sequence elements. The first way is to use the

superposition operation, similar to the case of sets. For the sequence above the resultant

hypervector is:

s = ρ4(a) + ρ3(b) + ρ2(c) + ρ1(d) + ρ0(e) .

In general, a given sequence S of length k is represented as:

s = ∑
i = 1

k
ρk − i ϕ Si , (7)

where Si is the ith element of sequence S. The advantage of the mapping with the

superposition operation is that it is possible to estimate the similarity of two sequences

by measuring the similarity of their hypervectors. Here the similarity of sequences is defined

by the number of the same elements in the same sequential positions, where the sequences

are aligned by their last elements. Evidently, this definition does not take into account the

same elements in different positions, in contrast to, e.g., an edit distance of sequences [113].

Kleyko et al. Page 18

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that the edit distance can be approximated by vectors of n-gram frequencies and their

randomized versions akin to hypervectors (see, e.g., [114], [115]).

Another advantage of sequence representation with superposition is that it allows easily

probing the distributed representation s. For example, one can check, which element is in

position i by applying inverse permutation i times to the resultant hypervector. Note that

permutation of a sequence representation is a general method for shifting an entire sequence

by a single operation. It produces a shifted sequence where the ith element is now at the first

position, and thus it can be used to probe the hypervector of element i from the sequence

representation. For example, when inverting position 3 in s:

ρ−2(s) = ρ2(a) + ρ1(b) + ρ0(c) + ρ−1(d) + ρ−2(e) =
= c + noise ≈ c .

Probing ρ−2(s) with the item memory containing hypervectors of all sequence elements will

return c as the best match (with high probability).

The second way of forming the representation of a sequence involves binding of the

permuted hypervectors, e.g., the sequence above is represented as (denoted by p):

p = ρ4(a) ⊙ ρ3(b) ⊙ ρ2(c) ⊙ ρ1(d) ⊙ ρ0(e) .

In general, a given sequence S of length k is represented as:

p = ∏
i = 1

k
ρk − i ϕ Si . (8)

The advantage of this sequence representation is that it allows forming unique hypervectors

even for sequences that differ in only one position. Section IV-A6 provides a concrete

example of a task where this advantage is important.

Both mappings allow replacement of an element at position i in the sequence if the

current element at the ith position is known. When the superposition operation is used,

the replacement requires subtraction of the permuted hypervector of the current element

followed by superposition of the permuted hypervector of the new element. For example,

replacing “d” to “z” in position 4 is done as follows:

s − ρ1(d) + ρ1(z) = ρ4(a) + ρ3(b) + ρ2(c) + ρ1(z) + ρ0(e) .

When the binding operation is used in the mapping, replacement requires application of

the unbinding operation between the permuted hypervector of the current element and s,

followed by binding with the permuted hypervector of the new element. For the example

above:

s ⊙ ρ1(d) ⊙ ρ1(z) = ρ4(a) ⊙ ρ3(b) ⊙ ρ2(c) ⊙ ρ1(z) ⊙ ρ0(e) .

Kleyko et al. Page 19

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Another feature of both sequence mappings is that the permutation operation distributes over

both binding and superposition operations. This means that in both mappings the whole

sequence can be shifted relative to the initial position by applying the permutation operation

required number of times. For example, when applying the permutation operation 3 times to

s for (a, b, c, d, e) we obtain:

ρ3(s) = ρ7(a) + ρ6(b) + ρ5(c) + ρ4(d) + ρ3(e) .

Thus, ρ3(s) is the shifted version of the original sequence. This feature can be used for

sequence concatenation. For example, to concatenate (a, b, c, d, e) and (x, y, z), we can use

already calculated s for (a, b, c, d, e) as follows:

ρ3(s) + ρ2(x) + ρ1(y) + ρ0(z) = ρ7(a) + ρ6(b) +
+ ρ5(c) + ρ4(d) + ρ3(e) + ρ2(x) + ρ1(y) + ρ0(z) .

This feature was applied in [116] for searching the best alignment (shift) of two sequences

that results in the maximum number of coinciding elements. Other examples of using

distributed representation of sequences include modeling human perception of word

similarity [115], [117]–[119], modeling human working memory [120]–[125], DNA string

matching [126], and spell checking [118], [127].

An evident limitation of the above mappings is that due to the usage of a random

permutation ρ, elements of the sequence in the nearby positions are dissimilar (even if

the elements are the same). A possible way to handle this limitation is by using locality-

preserving representations to encode positions; see some proposals in [117]–[119], [128].

Generally, for a given problem, it might be useful to consider alternative representations

that bind element and position hypervectors. Another limitation is that the representations of

the element’s order here used hypervector transformation by the permutation corresponding

to its absolute position in a sequence. Thus, the resultant hypervector does not reflect the

information about, e.g., successor/predecessor information. Some ways of using relative

positions when representing sequences in HDC/VSA are investigated in [115].

6) n-gram statistics: The n-gram statistics of a sequence S is the histogram of all

length n substrings occuring in the sequence. The mapping of n-gram statistics to a single

hypervector was presented in, e.g., [84], and includes two steps using the primitives above:

First, forming hypervectors of n-grams, and second, forming a hypervector of the frequency

distribution. The hypervectors of n-grams are formed as in Section IV-A5 using the chain of

binding operations, i.e., each n-gram is treated as an n-tuple. The hypervectors of n-grams

and their counters are then used to form a single hypervector for the frequency distribution

as in Section IV-A3. Thus, in essence this is a frequency distribution with compound

symbols.

The advantage of this mapping is that in order to create a representation for any n-gram,

we only need to use a single item memory and several simple operations where the number

of operations is proportional to n. In other words, with the fixed amount of resources

Kleyko et al. Page 20

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the appropriate use of operations allows forming a combinatorially large number of new

representations.

The mapping, obviously, inherits the limitations of its intermediate steps. That is, due to the

usage of the chain of binding operations (Section IV-A5) similar n-grams are going to be

mapped to dissimilar hypervectors (assuming that all n-gram are assigned with random seed

hypervectors). And due to the representation of the frequency distribution (Section IV-A3),

the retrieved values of individual n-grams can be either overcount or undercount.

This mapping has been found useful in several applications: in language identification [84],

news article classification [129], and biosignal processing [34] that leveraged its hardware-

friendliness [130]. Distributed representations were also used to untie the dimensionality of

the hypervector representing n-grams statistics from the possible number of n-grams, which

grows exponentially with n and would dictate the size of a localist representation of the

n-grams statistics. The same property was also leveraged for constructing more compact

neural networks using the distributed representation of n-grams statistics as their input [108],

[131], [132].

7) Graphs: A graph (denoted as G) consists of vertices and edges. Edges can either be

undirected or directed. Fig. 4 presents examples of both directed and undirected graphs.

Following earlier work on graph representations with hypervectors, e.g., in [56], [133],

[134], we consider the following very simple mapping of graphs into hypervectors [133].

A random hypervector is assigned to each vertex of the graph, according to Fig. 4 vertex

hypervectors are denoted by letters (i.e., a for vertex “a” and so on). An edge is represented

via the binding operation applied to the hypervectors of the connected vertices, for instance,

the edge between vertices “a” and “b” is represented as a⊙b. The whole graph G is

represented simply as the superposition of hypervectors representing all edges in the graph,

e.g., the undirected graph in Fig. 4 is:

g = a ⊙ b + a ⊙ e + b ⊙ c + c ⊙ d + d ⊙ e .

Note that if an edge is represented as the result of binding of two hypervectors for vertices,

it has no information about the direction of the edge and, therefore, the representation

above will not work for directed graphs. The direction of an edge can be added applying a

permutation to the hypervector of the incidental node, the directed edge from the vertex “a”

to “b” in Fig. 4 is represented as a ⊙ ρ(b). Note that this is just the mapping of an ordered

pair (2-tuple in this case) based on binding described in Section IV-A5. Thus, the directed

graph in Fig. 4 is represented by the hypervector:

g = a ⊙ ρ(b) + a ⊙ ρ(e) + c ⊙ ρ(b) +
+ d ⊙ ρ(c) + e ⊙ ρ(d) .

The described graph representations g can be queried for the presence of a particular edge.

For graphs that have the same vertex hypervectors, the inner product is a measure of the

number of overlapping edges. When it comes to the usage of the described mappings, [133]

propose an HDC/VSA based algorithm for graph matching. For two graphs for which the

Kleyko et al. Page 21

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

correspondence between their vertices is unknown, graph matching finds the best match

between the vertices so that the graph similarity can be assessed. In [135], a similar mapping

is applied on the task of inferring missing links of knowledge graphs. The mapping can

also be extended to the case when some of its part is learned from the training data; in

[136] representations of knowledge graphs are constructed with hypervectors of nodes and

relations that are learned from data.

The described mappings have a number of limitations. First, they do not work for sparse

graphs in which vertices can be entirely isolated because those vertices are not represented

at all. One way to address it is by also superimposing to g the hypervectors representing

the vertices, or to keep a separate hypervector with the superposition of all the vertices.

Another limitation is that one could come up with operations that cannot be done directly on

the representation in g. One example of such an operation is the computation of composite

edges in a directed graph (see details in [137]).

8) Binary trees: A binary tree is a well-known data structure where each node has at

most two children: the left child and the right child. Fig. 5 depicts an example of a binary

tree, which will be used to demonstrate the mapping of such a data structure into a single

hypervector. We describe a mapping process [76] that involves all the three basic HDC/VSA

operations and two item memories. One item memory stores two random hypervectors

corresponding to roles for the left child (denoted as l) and the right child (denoted as r).

Another item memory stores random hypervectors corresponding to symbols of the alphabet,

which are associated with the leaves. The example below uses letters so these hypervectors

are denoted correspondingly (i.e., a for “a” and so on).

The permutation operation is used to create a unique hypervector corresponding to the

association of the left or right child with its level in the tree. For example, the left child at

the second level is represented as ρ2(l). In general, the level of the node equals the number of

times the permutation operation is applied to its role hypervector.

The chain of the binding operations is used to create a hypervector corresponding to the

trace from the tree root to a certain leaf, associated with the leaf’s symbol. For instance, to

reach the leaf “a”, it is necessary to traverse three left children. In terms of HDC/VSA, this

trace will be represented as: a ⊙ l ⊙ ρ(l) ⊙ ρ2(l). In such a way, traces to all leaves can be

represented.

Finally, the superposition operation is used to combine hypervectors of individual traces in

order co create a single hypervector (denoted as t) corresponding to the whole binary tree.

Combining all steps together, the single hypervector for the tree depicted in Fig. 5 will then

look like:

Kleyko et al. Page 22

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

t = a ⊙ l ⊙ ρ(l) ⊙ ρ2(l) +
+ b ⊙ l ⊙ ρ(r) ⊙ ρ2(l) +
+ c ⊙ r ⊙ ρ(r) ⊙ ρ2(l) +
+ d ⊙ r ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(l) +
+ e ⊙ r ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(r) +
+ f ⊙ l ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(l) ⊙ ρ4(l) +
+ g ⊙ l ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(l) ⊙ ρ4(r) .

Thus, the information about the tree in Fig. 5 is stored in a distributed way in the compound

hypervector t, which in turn can be queried with HDC/VSA operations. For example, given

a trace of children, we can extract the symbol associated with the leaf at this trace. Assume

that the trace is right-right-left, then its hypervector is r ⊙ ρ(r) ⊙ ρ2(l). This hypervector

can be unbound from t as:

t ⊙ r ⊙ ρ(r) ⊙ ρ2(l) = c + noise .

The result is c + noise because r ⊙ ρ(r) ⊙ ρ2(l) cancels out itself in t and, thus, releases c,

which was bound with this trace. Since there were other terms in the superposition t, they

act as crosstalk noise for c, hence, denoted as noise. Thus, when c + noise is presented to

the item memory, the item memory is expected to return c as the closest alternative, with

high probability. The inverse task of querying the trace with a given leaf symbol is more

challenging because the resultant hypervector corresponds to a chain of binding operations,

e.g., for c we get:

t ⊙ c = r ⊙ ρ(r) ⊙ ρ2(l) + noise .

In order to interpret the resultant hypervector one has to query all hypervectors

corresponding to all possible traces in a binary tree of the given depth, where the number

of the traces grows exponentially with the depth of the tree. This is a significant limitation

of the representation. This limitation can, however, be addressed in part by the resonator

network [76], [77] (see Section III-C).

We do not cover the details of factoring trees with the resonator network here, but the

interested readers are referred to Section 4.1 in [76]. It should, of course, be noted that

resonator networks are not limitless in their capabilities, since as reported in [77], for the

fixed dimensionality of hypervectors their capacity decreases with the increased number of

factors (i.e., tree depth in this case). Nevertheless, they still seem to be the best alternative to

tackle the problem (cf. Fig. 3 in [77]) – their search space scales quadratically with N.

The presented mapping is, of course, not the only possible way to represent binary trees. For

example, in [44] it was proposed to use two different random permutations for representing

nested structures. This mechanism can be applied to trees as well by using these different

random permutations instead of l and r.

Kleyko et al. Page 23

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Last but not least, note that the mapping for binary trees can be easily generalized to trees

with nodes having more than two children by superimposing additional role hypervectors in

the item memory. Also, filler hypervectors for the leaves do not have to be seed hypervectors

– they could represent any compound structure.

9) Stacks: A stack is a memory in which elements are written or removed in a last-in-

first-out manner. At any given moment, only the top-most element of the stack can be

accessed and elements written to the stack before are inaccessible until all later elements are

removed. There are two possible operations on the stack: writing (pushing) and removing

(popping) an element. The writing operation adds an element to the stack – it becomes

the top-most one, while all previously written elements are “pushed down”. The removing

operation allows reading the top-most element of the stack. Once read, it is removed from

the stack and the remaining elements are moved up.

HDC/VSA-based representations of a stack were proposed in [138] and [41]. The

representation of a stack is essentially the representation of a sequence with the addition

of an operation that always moves the top-most element to the beginning of the sequence.

For example, if “d”, “c”, and “b” were successively added to the stack than the hypervector

for the current state of the stack is:

s = b + ρ(c) + ρ2(d) .

Thus, the pushing operation is implemented as the concatenation of two sequences (i.e.,

a new element to be written and the current state of the stack) using their corresponding

hypervectors (Section IV-A5). In particular, the hypervector of the newly written element is

added to the permuted hypervector of the current state of the stack. For instance, writing “a”

to the current state s is done as follows:

s = a + ρ(s) = a + ρ(b) + ρ2(c) + ρ3(d) .

The popping operation includes two steps. First, s is probed with the item memory of

elements’ hypervectors in order to get the closest match for the seed hypervector of the

top-most element. Once the hypervector of the top-most element is identified (e.g., a in the

current example), it is removed from the stack and the hypervector representation of the

stack with the remaining elements is moved back by the permutation operation:

ρ−1(s − a) = ρ−1 ρ(b) + ρ2(c) + ρ3(d) =
= b + ρ(c) + ρ2(d) .

When it comes to limitations of this representation, there are several things to keep in mind.

First, the popping operation will not work well if the hypervector representing the stack is

normalized after each writing operation, so the operations described above assume that s is

not normalized. Second, the size of the stack that can be retrieved reliably from s depends

on the dimensionality of s. Third, if the alphabet of symbols that can be stored in the stack

is large, then the probing process for the popping operation might be a computationally

Kleyko et al. Page 24

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

demanding step. Fourth, if the stack is going to store compound hypervectors, then the

popping operation would be more complicated as it either would require the item memory

storing all compound hypervectors (this option quickly expand the item memory) or would

need to incorporate retrieval procedure assuming the knowledge of the structure of the

compound hypervectors so that they could be parsed.

The main foreseen application of the presented representation is within some control

structures as a part of HDC/VSA systems. For example, it was used in [41] in a proposal

for implementing stack machines and in [138] as a part of HDC/VSA implementation of a

general-purpose left-corner parsing with simple grammars.

10) Finite-state automata: A deterministic finite-state automaton is an abstract

computational model; it is specified by defining a finite set of states, a finite set of allowed

input symbols, a transition function, the start state, and a finite set of accepting states. The

automaton is always in one of its possible states. The current state can change in response

to an input. The current state and input symbol together uniquely determine the next state

of the automaton. Changing from one state to another is called a transition. The transition

function defines all transitions in the automaton.

Fig. 6 presents an intuitive example of a finite-state automaton, the control logic of a

turnstile. The set of states is { “Locked”, “Unlocked” } and the set of input symbols is

{ “Push”, “Token” }. The transition function can be easily derived from the state diagram in

Fig. 6.

HDC/VSA-based implementations of finite-state automata were proposed in [40], [41].

Similar to binary trees, the mapping involves all three HDC/VSA operations and requires

two item memories. One item memory stores seed hypervectors corresponding to the set of

states (denoted as l for “Locked” and u for “Unlocked”). Another item memory stores seed

hypervectors corresponding to the set of input symbols (denoted as p for “Push” and t for

“Token”). The hypervectors from the item memories are used to form a single hypervector

(denoted as a), which represents the transition function. Note that the state diagram of

a finite-state automaton is essentially a directed graph in which each edge has an input

symbol associated with it. Therefore, the mapping for the transition function is very similar

to the mapping of the directed graph in Section IV-A7. The only difference is that the

binding of the hypervectors for the vertices, (i.e., states) involves, as an additional factor, the

hypervector for the input symbol, which causes the transition. For example, the transition

from “Locked” state to “Unlocked” state, contingent on receiving “Token”, is represented as:

t ⊙ l ⊙ ρ(u) .

Given the distributed representations of all transitions of the automaton, the transition

function a of the automaton is represented by the superposition of the individual transitions:

a = p ⊙ l ⊙ ρ(l) + t ⊙ l ⊙ ρ(u) + p ⊙ u ⊙ ρ(l) + t ⊙ u ⊙ ρ(g) .

Kleyko et al. Page 25

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In order to calculate the next state, we query a with the binding of the hypervectors of the

current state and input symbol followed by the inverse permutation operation applied to the

result. Calculated in this way, the result is the noisy version of the hypervector representing

the next state. For example, if the current state is l and the input symbol is p then we have:

ρ−1(a ⊙ p ⊙ l) = l + noise .

As usual, this hypervector should be passed to the item memory in order to retrieve the

noiseless seed hypervector l.

The same mapping can be used to create a hypervector representing a nondeterministic

finite-state automaton [139]. The main difference from deterministic finite-state automata

is that the nondeterministic finite-state automaton can reside simultaneously in several of

its states. The transitions do not have to be uniquely determined by their current state

and input symbol, i.e., there can be several valid transitions from a given current state

and input symbol. The nondeterministic finite-state automaton can assume a so-called

generalized state, defined as a set of the automaton’s states that are simultaneously active.

The generalized state corresponds to a hypervector representing the set of the currently

active states with (6). Similar to the deterministic finite-state automata, the hypervector for

the generalized state is used to query the automaton to get a hypervector for next generalized

state. This corresponds to a parallel execution of the automaton from all currently active

states. It should also be noted that in the case of the nondeterministic finite-state automaton,

due to the potential presence of several active states, the cleanup procedure (Section III-C)

has to search for several nearest neighbors. Please see Section IV-B2 for an example of such

a procedure.

In the next subsection, we will see an example of how to compute with hypervectors

representing automata, but the most obvious application of the presented representation is to

execute the automaton in the presence of noise in hypervectors. Fig. 7 presents the accuracy

of the correct recall of a next state from a bipolarized hypervector representing an automaton

with 22 states and 29 symbols. The figure shows how the accuracy changed with the

dimensionality of hypervectors for different values of noise in a. As expected, we see that

for every amount of noise, there is eventually a dimensionality that allows a perfect recall –

an elegant property that can be simply leveraged for executing a deterministic behavior in a

very stochastic environment.

While currently there are not many HDC/VSA applications that use finite-state automata

(but we will see one in Section IV-B2), there is a potential in such a mapping as it naturally

allows using HDC/VSA as a medium for executing programs that can be formalized via

automata. Moreover, the primitives for stacks and finite-state automata can be combined

to create richer computational models such as deterministic pushdown automata or stack

machines; see, e.g., [41] for a sketch of a stack machine operating with hypervectors.

An alternative representation for pushdown automata and context-free grammars has been

recently presented in [42].

Kleyko et al. Page 26

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finally, it should be noted that the presented mapping is designed for executing an

automaton, however, it is limited in the sense that it cannot be used directly to modify it

or to perform composition operations (e.g., combining it with another automaton).

11) Deeper hierarchies: Finally, it is important to touch upon constructing data

structures encoding deep hierarchies. In the previous subsections, we concentrated mainly

on data structures with a single level hierarchy. In fact, this is what most of the current

studies in the area used. Therefore, we will not go into technical details of existing

proposals. HDC/VSA, however, are well-suited for representing many levels of hierarchy

and representation of hierarchical data structures was a part of the original motivation right

from the start (see, e.g., [51]). The representation of binary trees in Section IV-A8 can

already be seen as a hierarchy, since a tree has several levels and the representation should

be able to discriminate between different levels. In the presented mapping, this was done

using powers of permutation to protect different levels of hierarchy. This can be done in

some other ways by, e.g., assigning special role hypervectors for each level. Currently, the

usage of representations for hierarchies in HDC/VSA is relatively uncommon. We mainly

attribute this fact to the nature of applications which are being explored, rather than to the

capabilities of HDC/VSA. The use-cases, which relied on the representation the hierarchical

representations, are representation of analogical episodes [36], [53], distributed orchestration

of workflows [79], and representation of hierarchies in WordNet concepts [140]. It has

also been argued that the representation of hierarchical data structures via HDC/VSA is

an important feature for modular learning where modules at different levels of hierarchy

can communicate with such representations [37], [141]. Finally, there is a recent proposal

that suggests that the JSON format with several levels of hierarchy can be represented in

hypervectors [142].

B. Computing in superposition with HDC/VSA

1) Simple examples of computing in superposition: A well-known data structure

– Bloom filter [103] – is the simplest case of computing in superposition. Bloom filter

is a sketch as a fixed-size memory footprint is used to represent a set of elements. A

Bloom filter encodes a set as a superposition of its elements’ sparse binary vectors, which,

in essence, corresponds in HDC/VSA to a compound hypervector representing sets. Thus,

Bloom filter directly corresponds to the primitive for representing sets as described in

Section IV-A2. With Bloom filters, the algorithm for searching an element in a set is a

single operation of comparing the similarity of the distributed representation of the query

element to the Bloom filter instance. In other words, all elements of the set are tested in

one shot, i.e., the search is performed as a computation in superposition. It enables solving

the approximate membership query task instantaneously. This illustrates a simple instance

of computing in superposition. Bloom filters are highly specialized for one particular

task. In contrast, HDC/VSA constitute a broad framework for computing in superposition,

containing Bloom filters as a subclass [78]. We have already seen other examples in Section

IV-A for computing in superposition with HDC/VSA, such as the primitives for recursive

construction of sequence representations (see equations (7) and (8)) and in Section IV-A4

the forming of a representation for the cross product of two sets via a single binding

Kleyko et al. Page 27

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

operation. In these examples, the distributivity of HDC/VSA operations (see Section III-B4)

played an important role.

2) Computing in superposition for substring search: Finding a substring within a

larger string is a standard computer science problem with numerous algorithms (e.g., [143]–

[145]) that have a linear complexity on the total length of the base and the query strings.

Recently, an algorithm based on nondeterministic finite-state automata was formulated

with HDC/VSA [146]. It nicely demonstrates how HDC/VSA can solve computer science

problems, so we briefly explain it here.

Each position of a symbol in the base string is modeled as a unique state of the

nondeterministic finite-state automaton S = {s0, s1, s2, …, sn}. For example, the string

“hello” generates an automaton with six states: s0 through s5. The transitions between states

are defined by the base string’s (denoted B) symbols bi from B = {b1, b2, …, bn}. Fig. 8

illustrates the automaton for the string “hello.” The nondeterministic finite-state automaton

is then defined by tuple < S, s0, B, T >, where s0 is the start state of the automaton and T
is the set of transition tuples of the form ti =< si−1, bi, si >, where si−1 and si are the start

and end states of a particular transition caused by symbol bi. The elements of sets B and S
are represented by i.i.d. random hypervectors (denoted in bold). The hypervector β of the

automaton for the base string is constructed as (cf. Section IV-A10):

β = ∑
i = 1

B
si − 1 ⊙ bi ⊙ ρ1 si . (9)

Thus, β is the superposition of all the automaton’s transitions caused by sequential input of

symbols of the base string. Note that this representation corresponds to the primitive for the

finite-state automata as described in Section IV-A10.

The algorithm for finding whether a query string Q = {q1, …, ql} is a part of the base string

B is a sequential retrieval of the next state of automaton β, for each symbol of the query

string qj. In terms of hypervectors, this is:

pj = ρ−1 pj − 1 ⊙ β ⊙ qj , (10)

where pj denotes the hypervector that includes the hypervector(s) of the next generalized

automaton state (given symbol qj), as well as crosstalk noise. Equation (10) is also a

primitive from Section IV-A10. Note, however, that generalized state may include one or

several states si. The set of valid (i.e., permitted) previous generalized states is initialized as

p0 = ∑si ∈ S si, which is a superposition of all the states of the base string. Since the operation

in (10) is performed on the superimposed set of all states, it is qualified as computing in

superposition.

While the algorithm presented in [146] works in principle (confirmed experimentally but

not reported here), the required dimensionality of hypervectors grows extremely fast with

the length of strings since every step of (10) introduces additional crosstalk noise to pj.

Crosstalk noise can be reduced by a cleanup procedure on pj after every execution of (10):

Kleyko et al. Page 28

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

pj = SS⊤pj, (11)

where S ∈ [N, n + 1] denotes the item memory storing hypervectors for the unique states of

the base string, S = {s0, s1, s2, …, sn}. This primitive uses the idea of projecting predictions

back onto the item memory and it was introduced in Section III-C as a part of resonator

network (see equation (5)).

We simulated the modified algorithm for searching a fixed length query substring (30

symbols) in the base string of four different lengths (see Fig. 9). Average accuracy in 30

simulation runs is plotted against the varying dimensionality of hypervectors. In in every

simulation run, 100 different random base strings were used. In approximately half of the

searches, the query substring was present in the base string, so a single simulation run

determines the accuracy of correctly detecting when a substring is present and when it

is not (thus, the accuracy of a random guess is 0.5). With increasing dimensionality of

hypervectors, the accuracy of detecting a substring increases and eventually approaches 1.

For longer base strings, it would require larger dimensions of the hypervectors to achieve

high accuracy. Nevertheless, it scales much better than the original algorithm for which

we were not able to simulate large enough dimensionalities that would provide reasonable

accuracy.

The substring search provides lessons for computing in superposition with HDC/VSA.

Both algorithms use it; the original one requires a large dimensionality to reduce crosstalk

sufficiently, while the modified one includes an extra cleanup step to reduce the required

dimensionality significantly – but it also increases the algorithmic complexity. In particular,

the asymptotic computational complexity of the query algorithm in HDC/VSA operations

is O(|Q|) for the original algorithm versus (O(|Q||B|) for the modified algorithm. But in

terms of hypervector dimensionality, the original algorithm required much more space

than the modified algorithm. Another consequence of long hypervectors required by the

original algorithm is that despite not requiring an extra cleanup step (11), the total number

of operations would be higher due to much shorter hypervectors used by the modified

algorithm. Moreover, with appropriate implementation of the HDC/VSA algorithm on

parallel hardware, the cleanup step in (11) can be parallelized2 using, e.g., in-memory

computing architectures with massive phase-change memory devices [147]. When executed

on such hardware, the time complexity of the modified algorithm also becomes O(|Q|).3

Thus, computing in superposition in HDC/VSA is natural but can require very high

dimensionality for managing crosstalk. Steps to manage the crosstalk can be added in

the algorithm at no compute time costs, if the algorithm is properly mapped on parallel

hardware (see, e.g., [126] for acceleration of DNA string matching with HDC/VSA).

Last, it is important to note that we do not claim that the substring search will be

a practically useful application of computing in superposition, since its computational

complexity exceeds that of the conventional algorithms optimized for the problem. However,

2For the sake of fairness, it should be noted that the conventional substring search algorithms could also be parallelized.
3Of course, the size of the chip places limitations on the dimensionality of hypervectors and the number of hypervectors in the item
memory.

Kleyko et al. Page 29

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

we think that this example has a didactic value as it clearly demonstrates how the primitives

for representing data structures from Section IV-A can be connected to a well-known

computer science problem. Thus, it serves as an important illustration of the lines along

which one should think to utilize computing in superposition. Below, we elaborate on

more practical (but not always explicit) contemporary examples of using computing in

superposition.

3) Applications of computing in superposition: In a long-term, we anticipate the

resonator networks [76], [77] (see Section III-C) to become a pivotal mechanism in many

solutions based on computing in superposition since they use the idea of removing crosstalk

noise from the predictions represented in the superposition. In particular, we believe that

this idea would be important to efficiently solve non-trivial combinatorial search problems.

There are already a couple of proposals for, e.g., scene decomposition [148] and prime

factorization [149], but they are yet to be demonstrated at scale.

In a short-term, there is another practical direction for the application of computing in

superposition that is already being used to tackle a large problem – enhancement of

capabilities of machine learning algorithms (often neural networks)4. Below, we briefly

explain the role computing in superposition plays in approaches proposed within this

direction, since, in our opinion, it is a unifying theme that will, hopefully, inspire more

approaches for machine learning algorithms enhancement.

A recent connection, introduced in [102], [150], between a method for representation of

numeric data as hypervectors [51], [67], [68] and kernel methods allowed representing

functions as compound hypervectors of weighted sets (Section IV-A2). This finding, in turn,

allowed one-shot evaluation of kernel machines since the whole model can now be stored

in the superposition as a compound hypervector. The one-shot evaluation principle was

demonstrated on probability density estimation [102], [150], [151], kernel regression [102],

[150], Gaussian processes-based mutual information exploration [152], and rules search in

superposition [153]. The distributed representations of numeric data can also be very useful

even without formal links to the kernel methods. They can be used to store in superposition

multiple locations of interest on a 2D grid that has been shown to be important for, e.g.,

implementing agent’s memory for cognitive maps [154], navigation in 2D environments

[67], [154], and reasoning on 2D images [67], [148], [155].

When it comes to approaches for augmenting neural networks, in [156], the weights

of multiple deep neural networks trained to solve different tasks were stored jointly in

superposition using a single compound hypervector. This approach addressed the so-called

“catastrophic forgetting” phenomenon by using a unique random permutation assigned to

each task that allow networks to co-exist in the compound hypervector without much

interference. These permutations were used as keys to extract the corresponding network’s

weights from the superposition hypervector. A big leap of such an approach is that new

networks can be added gradually into the superposition hypervector without significant

degradation of the performance of the previously included networks.

4We additionally review some of these works in the context of connections to hardware realizations of HDC/VSA in Section V-B2.

Kleyko et al. Page 30

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Another approach combining computing in superposition and neural networks was presented

in [157]. There, activations of network’s layers from a single data sample were used in place

of value hypervectors. They were bound to the corresponding random key hypervectors and

all hypervectors of the key-value pairs were aggregated in a single compound hypervector.

Since the compound hypervector simultaneously keeps all the activations, calculating

the similarity between two such hypervector corresponds to an aggregate similarity

score between two data samples. This property was leveraged successfully to detect

out-of-distribution data. In a similar way, in [158], [159], activations of multiple neural

network-based image descriptors were combined together into a compound hypervector

simultaneously representing the aggregated descriptor. Such hypervectors allowed an

efficient image retrieval for visual place recognition task. A different combination of a

neural network and a compound hypervector of the key-value pairs was reported in [160],

where the compound hypervector was used to simultaneously represent the output of a

neural network when solving multi-label classification tasks.

From the descriptions above, one can notice a striking pattern – most of the approaches

relied on the primitive for representing sets, in general, and sets of key-value pairs, in

particular. This is likely because the latter is a simple yet non-trivial data structure. We, thus,

anticipate that more new approaches can be conceived by expanding to more sophisticated

data structures.

V. Hardware realizations of HDC/VSA

A. HDC/VSA models for different types of hardware

The computational primitives of HDC/VSA connect the algorithmic level of Marr’s

computing hierarchy (Fig. 1) to the computational level. At the same time, a HDC/VSA

placed at the algorithmic level also interfaces with the implementation level. While the

computational primitives are generic across different HDC/VSA models, the model choice

can become critical when it comes to interfacing with a particular physical substrate.5 This

suggests a general design pattern when designing a HDC/VSA system to be implemented

on emerging hardware: the desired computation is formalized in terms of the generic
HDC/VSA computational primitives, and then the specific HDC/VSA variant best suited for
this emerging hardware is used in implementing these primitives. Here, we describe some of

the existing HDC/VSA models and examples of how they can be implemented in different

hardware. Different HDC/VSA models can be distinguished in terms of the properties of

seed hypervectors and corresponding algebraic operations.

1) Dense binary vectors: The Binary Spatter Codes [55] model uses dense binary

vectors. Superposition is done by the component-wise majority rule followed by tie-

breaking, and binding is by the component-wise XOR. Due to its discrete nature, Binary

5It should be noted that there exist subtleties when it comes to computational primitives of different HDC/VSA models (see, e.g., [62]
for a discussion). So, strictly speaking, model choice may not be only influenced by a physical substrate but also by the nature of the
task at the computational level. To put it simply, not all HDC/VSA models are interchangeable. This is not entirely unexpected since,
if a framework can provide tight matches between computation and hardware to enable efficiency, the separation between abstraction
and physical realization cannot be perfect. Thus, for the sake of narration in this section, we focus on the availability of an efficient
mapping between some physical substrate and some HDC/VSA model.

Kleyko et al. Page 31

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spatter Codes is highly suitable for conventional digital application-specific integrated

circuit (ASIC). The first ASIC design [130] was made in 65 nm CMOS for the language

recognition, followed by more programmable designs in 28 nm [161] and 22 nm [162].

It has been also mapped on a 28 nm FD-SOI silicon prototype with four programmable

OpenRISC cores operating in near-threshold regime (0.7 V−0.5 V) [163]. Overall, in the

Binary Spatter Codes model, the hypervectors are stationary and robust, and related binary

operations are local and simple. This provides a natural fit for implementing the model on

non von Neumann architectures (a.k.a. in-memory computing) using emerging technologies

such as carbon nanotube FETs and resistive RAM [26], [164], [165], and phase-change

memory [16], [147]. Specifically, [16] describes how to organize computational memories

for storing and manipulating hypervectors whereby the operations are implemented inside,

or near, computational memory elements.

2) Integer vectors: The Multiply-Add-Permute model [54], the HDC/VSA model

we have used in the examples so far as the default, employs bipolar (+1s and −1s)

hypervectors, component-wise multiplication, and superposition with possible thresholding.

Multiply-Add-Permute model will usually suit the same technologies as Binary Spatter

Codes. For example, it was recently implemented on an FPGA for hand gesture recognition

[166].

3) Real-valued vectors: The Holographic Reduced Representation model [52] was

originally done with N-dimensional real-valued hypervectors whose components are i.i.d.

normal with zero mean and 1/N variance. Superposition is done by the normalized vector

sum, and binding is done by circular convolution. It has been shown how to map real-

valued hypervectors onto spiking neurons using the principles from the Neural Engineering

Framework [167] with the help of spike-rate coding. For example, the Spaun cognitive

architecture [38] has been implemented in such a way. Most of the studies were done

using simulations in Nengo [168], which is a Python-based package for simulating large-

scale spiking neural networks. Nevertheless, Nengo has compilers to popular neuromorphic

platforms such as SpiNNaker and Loihi, therefore, it is straightforward to deploy a model

built in Nengo on the neuromorphic platforms.

4) Complex vectors: In the Fourier Holographic Reduced Representations [53], vector

components are random phasors, superposition is by component-wise complex addition

followed by normalization, and binding is by component-wise complex multiplication

(addition of phasors) [53]. This HDC/VSA model should be suited for implementations

on coupled oscillator hardware [169], however, we are not aware of any concrete

hardware realizations as of yet. Another alternative is mapping complex HDC/VSA to

the neuromorphic hardware [24], by representing phasors with spike times [170]. This

implementation is particularly interesting because the neuromorphic hardware scales up

more easily than the current approaches to coupled oscillator hardware. However, no

neuromorphic implementation of a full complex HDC/VSA has been reported to date.

5) Sparse vectors: Traditional HDC/VSA models use dense distributed representations.

However, sparsity is an important ingredient of energy efficient realizations in hardware.

Kleyko et al. Page 32

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thus, HDC/VSA models that use sparse representations are important for mapping

HDC/VSA operations efficiently onto hardware. We are aware of two such models: Sparse

Binary Distributed Representations [56], [57] and Sparse Block-Codes [58], [59]. In the

Sparse Binary Distributed Representations model, the hypervectors are sparse patterns

without any restrictions on placing the active components, while in Sparse Block-Codes

the hypervectors are divided into blocks of the same size (denoted as K) with just

one single active component per block. The Sparse Binary Distributed Representations

model was implemented around 1990 in specialized hardware – “associative-projective

neurocomputers” [49]. This hardware was designed to operate efficiently with sparse

representations [56] by using simple bit-wise logical operations and a long word processor

with 256 bits (later with 512 and 2048 bits, implemented by Wacom, Japan). For cleanup

memory, it used Willshaw-like associative memories, following earlier ideas to implement

such memory networks [171] and motivated by theoretical results suggesting high memory

capacity [70], [71], [172]–[175]. Concerning HDC/VSA with Sparse Block-Codes, in

particular with complex-valued sparse vectors, they seem to be the most amenable for

implementations on neuromorphic and coupled oscillator hardware. Currently, there are two

proposals for implementing binary Sparse Block-Codes in spiking neural network circuits

[17], [18]. The proposal in [17] has been implemented on Intel’s Loihi [24] while the one

from [18] has not been realized in hardware yet, but it has been implemented in the Brian 2

simulator [176].

B. Mapping algorithms to hardware

1) Hardware implementations of pure HDC/VSA: How do implementations of

HDC/VSA in existing conventional hardware produce gains over conventional machine

learning methods? On a dedicated digital ASIC design, it has been demonstrated that

HDC/VSA-based classification can lower the energy by about 2× compared to a k-nearest

neighbors classifier for the European language recognition task [130]. By running these

classifiers on the Nvidia Tegra X2 GPU, HDC/VSA exhibited over 3× lower energy per

prediction [161]. Considering a wide range of biomedical signal classifications, HDC/VSA

achieved at least the same level of accuracy compared to the baseline methods running

on the conventional programmable hardware, however, at: 2× lower power compared to

the fixed-point SVM for EMG classification on the embedded ARM Cortex M4 [163];

2.9× lower energy compared to SVM, and over 16× compared to CNN and LSTM for

iEEG classification on the Nvidia Tegra X2 [107]. More details for this benchmarking

is available in [34]. Using PageRank centrality metric, HDC/VSA achieved comparable

accuracy with 2× faster inference compared to the graph kernels and neural networks for

graph classifications on the Intel Xeon CPUs [177]. These improvements are due to the

fact that the HDC/VSA-based solutions mostly use basic bit-wise operations, instead of

fixed-point or floating point operations.

Another appealing property of HDC/VSA-based solutions is their great robustness, for

example, they tolerate 8.8× higher probability of failures with respect to intermittent

hardware errors [130], and 60× higher probability of failures with respect to permanent

hardware errors [26]. This robustness makes HDC/VSA ideally suited to the low signal-

to-noise ratio and high variability conditions in the emerging hardware as discussed in

Kleyko et al. Page 33

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

more detail in [43]. Among them, as a large-scale experimental demonstration [16] of HDC/

VSA, it was implemented on 760, 000 phase-change memory devices performing analog

in-memory computing with 10, 000-dimensional binary hypervectors for three different

classification tasks. The implementation not only achieved accuracies comparable to

software implementations—despite the non-idealities in the phase-change memory devices

—but also achieved over 6× end-to-end energy saving compared to an optimized digital

ASIC implementation [16].

The connection of HDC/VSA to spiking neuromorphic hardware is not obvious since

all classical HDC/VSA models used abstract connectionist representations, not spikes.

However, recent work has demonstrated that representations of a complex HDC/VSA model,

Fourier Holographic Reduced Representations [53], can be mapped to spike timing codes

[170]. Although focused just on content-addressable memory, i.e., item memory, this work

opens avenues for efficient implementations of full HDC/VSA models on neuromorphic

hardware [9]. Because neuromorphic hardware often optimizes spike communication

for sparse network connectivity, the scaling properties of neuromorphic HDC/VSA will

potentially outperform other types of hardware. Further, neuromorphic hardware might

enable hybrid approaches by integrating HDC/VSA with other computing frameworks. For

instance, an event-based dynamic vision sensor (as a front-end spiking sensor) has been

combined with sparse HDC/VSA leading to 10× higher energy efficiency than an optimized

9-layer perceptron with comparable accuracy on an 8-core low-power digital processor [89].

The results above bring a question worth discussing – what are the common hardware

primitives enabling these gains? The most common architectural primitives that are observed

in the hardware implementations can, actually, be naturally mapped to basic elements

(Section III-A) and operations (Section III-B) of HDC/VSA. For example, let us consider

the implementations of the Binary Spatter Codes model based on phase-change memory

devices reported in [16] and of the Sparse Block-Codes model on spiking neural network

circuits described in [18]. The basic hardware primitives lying at the core of these

implementations were: item memory circuit (cf. Fig. 1 in [16] & Section III-A1a in [18]),

superposition operation circuit (“The complete in-memory HDC system” in [16] & Fig. 2 in

[18]), binding operation circuit (cf. Fig. 3 in [16] & Fig. 4 in [18]), and circuit for probing

(cf. Fig. 2 in [16] & Fig. 3 in [18]).

The fact that the basic HDC/VSA elements and operations are the most common hardware

primitives should not be surprising because, as it was demonstrated in Section IV-A, they are

the key building blocks of all the computational primitives in the “HDC/VSA cookbook”.

This implies that given the hardware implementation of the most basic elements, it is

possible to construct architectures for compositional primitives that might, e.g., combine

usage of several HDC/VSA operations. This, of course, does not mean that there is no

other way to approach hardware implementation of HDC/VSA. In fact, there are incentives

to design implementations targeting concrete compositional primitives and they were even

present in the two above works, e.g., a circuit for representing n-grams – see Fig. 3 in

[16] and a circuit for representing a set of key-value pairs – see Fig. 5 in [18]. The main

incentive for doing so is to increase the efficiency of the implementation since it allows

applying, e.g., computational reuse. A vivid example of such an approach is a circuit from

Kleyko et al. Page 34

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[130] (cf. Fig. 3 there) for generating hypervectors of trigrams (Section IV-A6) that used

Barrel shifters to minimize the switching activity during the permutation operations. Note

that the same circuit could have been designed using the hardware primitives for binding and

permutation operations as the building blocks, but such a design would come at the price

of the reduced efficiency. Another common bottleneck in the hardware implementations of

machine learning applications of HDC/VSA is the item memory (cf. Fig. 8 in [161]). The

presence of this bottleneck caused researchers to consider ways of efficiently eliminating it.

A prominent way to do so is the rematerialization of the item memory using inexpensive

recurrent methods as proposed in [162], [178], [179]. This idea of rematerialization created

a room for trading off system’s dynamic and leakage powers and was demonstrated to

increase energy efficiency in scenarios involving, e.g., biosignal processing [162], [180],

[181].

In summary, we can argue that hardware implementations of HDC/VSA rely on architectural

primitives corresponding to the basic elements and operations of HDC/VSA. However,

in order to increase the efficiency, it is also common to design circuits implementing

compositional computational primitives from Section IV-A.

2) HDC/VSA combined with neural networks: The aforementioned works have

demonstrated the benefits of HDC/VSA on relatively small-scaled classification tasks. In

order to approach more complex tasks, a common strategy is to combine some of the

basic HDC/VSA primitives (discussed in Section IV-A) with neural networks. For instance,

representations from pretrained neural networks have been used with the HDC/VSA

primitives to compactly represent a set of key-value pairs to generate image descriptors

for visual place recognition [158], [159]. One step further, the deep neural networks

were trained from the scratch to be able to directly generate desired hypervectors that

were further bound, or superposed by HDC/VSA operations to represent the concepts of

interest [147], [153], [182]. They achieved the state-of-the-art accuracy compared to the

stand-alone deep learning solutions in various tasks involving images, including few-shot

learning [147], continual learning [182], and visual abstract reasoning [153]. The hardware

implementation of such hybrid architectures may vary. For instance, the associative memory

for few-shot learning was implemented on the phase-change memory devices to execute

searches in constant time, while the neural network was implemented externally [147].

Alternatively, the whole architecture for the visual abstract reasoning was executed on

CPUs, whereby leveraging HDC/VSA leads to two orders of magnitude faster execution

than the functionally-equivalent symbolic logical reasoning [153].

VI. Discussion

HDC/VSA has been criticized for lacking a structured methodology for designing systems

as well as for missing well-defined design patterns [86]. Here (Section IV-A), we compiled

existing computational primitives with HDC/VSA that paint a different picture. There is

an HDC/VSA methodology addressing a wide range of applications, but it is scattered

throughout the literature. In addition to compiling existing work, we laid out principles of

design for building distributed representations of data structures such as sets, sequences,

trees, key-value pairs, and more. This demonstrates a rich algorithmic and representation

Kleyko et al. Page 35

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

level approach which one can use as an abstraction for the next generation of computing

devices.

Our compilation of varied HDC/VSA primitives also suggests that, contrary to some earlier

assessments (see, e.g., [183] and the commentary in [184]), the repertoire potential of

HDC/VSA applications is extremely wide, ranging from low-level sensory processing

to high-level reasoning. While we provided an extensive introduction to HDC/VSA as

well a comprehensive collection of computational primitives and existing connections to

computing hardware, there was no goal to provide the complete state-of-the-art of the area

such as, e.g., a review of all existing HDC/VSA models. We, however, hope that this article

will motivate readers to explore the current state of the area that is covered in details in

a two-part survey that covers both fundamentals [73] as well as applications [185]. We

think that the strength of HDC/VSA comes for the applications where there is a need for

a computing framework constructing transparent compositional distributed representations

that will allow interfacing unconventional parallel computing hardware. It is not obvious

how to achieve it with, e.g., modern neural networks, though it should be admitted that there

is increasing empirical evidence demonstrating that certain problems benefit from hybrid

approaches combining elements of HDC/VSA and neural networks.

That being said, it is still important to admit the limitations and challenges of HDC/VSA

and, therefore, before ending the article, we would like to focus on them (Section VI-A). We

conclude by discussing the role of HDC/VSA as a framework for computing with emerging

hardware (Section VI-B).

A. Limitations and open challenges

Here, we would like to emphasize some of the limitations of HDC/VSA that are directly

related to the scope of this article: applications (Section VI-A1), dimensionality of

hypervectors (Section VI-A2), and flow control (Section VI-A3). For a broader discussion of

open challenges, we kindly refer the reader to the section “Open issues” in [185].

1) Applications: There are numerous attempts to use HDC/VSA in problems within

various application domains (see [185] for a detailed coverage). Some well-known examples

of using HDC/VSA include word embedding [186], [187] (though largely overshadowed

after [188], [189]), analogical reasoning [13], [97], cognitive architectures [37], [38] and

modeling [190], [191] as well as solving classification tasks [15], [34]. It must be admitted,

however, that most of these use-cases were limited to small scope problems, therefore,

there is still a need to demonstrate how HDC/VSA-based solutions scale-up to real-world

computational problems and, what is also important, to identify niches where the advantages

of HDC/VSA will be self-evident. We think that further research will eventually address

this limitation as we see two recent developments in this direction. First, there is a

continuing trend to extend HDC/VSA to novel domains – promising recent examples

include applications in communications [83] and in distributed systems [79]. Second, there

is an increasing number of studies (see Section V-B2 and, e.g., [147], [153], [156], [158],

[160], [192]) that combine together neural networks and HDC/VSA primitives. This seems

Kleyko et al. Page 36

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to be a promising way to scale-up HDC/VSA-based solutions to real-world problems, in the

short-term.

2) HDC/VSA dimensionality and working memory: The key feature of data

representation in HDC/VSA is that data structures are represented by fixed sized

hypervectors, independent of the size of a data structure. This is in contrast to the localist

representations of data structures, that grow linearly or even quadratically with the number

of elements. On the one hand, it is a great advantage as data structures of arbitrary size

and shape can be manipulated in parallel with the elementary set of HDC/VSA operations.

At the same time, as we have seen in Section IV-A, dimensionality of hypervectors might

easily become a limitation since for a given dimensionality, the information content of

representation, i.e., the HDC/VSA capacity, limits the size of data structures that can be

represented reliably [30], [193].

Conceptually, one should think of the memory in hypervectors as the working memory or

working registers, holding the data relevant during an ongoing computation. In contrast,

the role of a long-term memory for a HDC/VSA-based system can be fulfilled by, e.g., a

large capacity associative content-addressable memory that might store hypervectors of data

structures [37], [194]. Currently, this idea is being investigated by the community [195].

The limitation of working memory in HDC/VSA has interesting parallels to the limitation of

human working memory. For data structures of limited size, there are guarantees for exact

reconstruction [193]. However, transcending the theoretical bound for exact reconstruction,

the data representation becomes lossy, with error rates also being theoretically predictable

[30]. HDC/VSA representations of data structures in the lossy regime have been shown to

reproduce some properties of human working memory. For example, the recall of sequence

in an HDC/VSA, as described in Section IV-A5, can reproduce the performance of humans

remembering sequences [120], [122]. Further, the modeling of memorizing sequences with

HDC/VSA was linked to the neuroscience literature in [125]. It is not immediately clear

how this capturing of the limitations of human memory might be beneficial in engineering

applications. The way biological working memory coarsens its content and gradually

degrades might be an important feature of cognition whose benefits are not yet fully

appreciated. However, for applications that require guarantees for exact reconstruction, the

dimensionality of hypervectors needs to be specified at the design stage that makes it a

limitation for the situations where data structures to be represented can be of highly varying

size.

3) Flow control: HDC/VSA implementations of algorithms generally rely on existing

non-HDC/VSA mechanisms for flow control. This is reasonable in systems where the aim is

to use HDC/VSA to implement conventional computing approaches. In this case, it can be

seen more from the point of extending conventional computing with HDC/VSA. However, if

we were modeling biological systems we should not be using non-HDC/VSA conventional

computing flow control. Moreover, from the efficiency point of view, when using emerging

hardware it might not be desirable to have a conventional processing unit for flow control.

For these reasons, it is important to develop methodologies for flow control that would

use native HDC/VSA primitives. In our opinion, it is possible. However, to date the efforts

Kleyko et al. Page 37

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in this direction are quite limited. There was an attempt in [196] to define a model of

a biological system with HDC/VSA-based control. Two other related efforts are [41] that

presented a proposal for a stack machine and [58] proposing a processor with instructions

specified in the form of hypervectors.

B. HDC/VSA as a framework for computing with emerging hardware

HDC/VSA was originally proposed in cognitive neuroscience as models for symbolic

reasoning with distributed representations. More recently, it has been shown that HDC/VSA

can formulate sub-symbolic computations, for example, in machine learning tasks.

Here we proposed that HDC/VSA provides a computing framework within the algorithmic

level of Marr’s framework [19] for linking abstract computation and emerging hardware

levels. The algorithmic formalism of HDC/VSA (with few exceptions) is the same for all of

its variants. Thus, HDC/VSA enables a model-independent formulation of computational

primitives. At the same time, HDC/VSA also provides a seamless interface between

algorithms and hardware. In Section V-A, we illustrated how different HDC/VSA models

can connect to specific types of emerging hardware. Moreover, in Section IV-B we

demonstrated how HDC/VSA can be used for computing in superposition. This feature

extends HDC/VSA beyond the conventional computing architectures, and we foresee

that together with algorithms that leverage computing in superposition, such as resonator

networks [76], [77] (Section III-C), it will pave the way to efficient solutions of non-trivial

combinatorial search problems (see examples in [148], [197]).

Another interesting aspect of computing with hypervectors is that it occupies a realm

between digital and analog computing. After each computation step in a digital computer,

all vector components are pulled to one of the possible digital states (bits). This

individual discretization of each component avoids error accumulation. Conversely, an

analog computer is supposed to implement an analog dynamical system to predict

its future states. Any deviation between the dynamical system to be analyzed and

its computer implementation (e.g., noise) leads to uncontrollable error accumulation in

analog computers. HDC/VSA operations leverage analog operations on vectors without

discretization. However, discretization takes place on the entire vector level, when a resultant

hypervector is matched with the entries in the item memory. Thus, HDC/VSA can leverage

(potentially very) noisy dynamics in the high-dimensional state space of emerging hardware,

while still protecting against error accumulation.

Despite all the above promising aspects, the practicability of the HDC/VSA computing

framework for emerging computing hardware is yet to be thoroughly quantified. An

important future direction is to develop a systematic methodology to quantitatively measure

and compare side-by-side the efficiency of different computing frameworks on a concrete

hardware. In this article, we concentrated on the question how HDC/VSA enables the

construction of varied algorithmic primitives and, therefore, could be a possible candidate

framework in such a comparison.

Alternative frameworks: HDC/VSA constitutes a computing framework that provides an

algebraic language for formulating algorithms and, at the same time, links the computation

Kleyko et al. Page 38

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to distributed states on hardware. Table I compares the qualitative properties of HDC/VSA

as a computing framework to conventional computing and neural networks.

There is a tradeoff between how general a framework is in terms of computation and

how closely it is linked to implementation. A general purpose framework typically

requires a full sealing between implementation and computation, like, for example, the

conventional computing architecture. Conversely, a framework that is well matched to an

implementation, and, therefore, can efficiently leverage the hardware, is typically quite

special purpose. We argue that the tradeoff HDC/VSA provides between generality and

linking to implementation is ideal for emerging hardware. In particular, it seamlessly

provides implementations of algorithms that leverage distributed representations, parallel

operations, and can tolerate noise and imprecision [43]. Of course, HDC/VSA is not the

only candidate of a framework for emerging hardware, alternative approaches include

probabilistic computing [198], sampling-based computing [199], computing by assemblies

of neurons [200], and dynamic neural fields [201]. For example, in neuromorphic

computing, dynamic neural fields is an alternative computing framework that could

support fully symbolic operations. In fact, dynamic neural fields and HDC/VSA might

complement each other by combining real-time dynamics of dynamic neural fields with the

computational power and scalability of HDC/VSA. The detailed comparison between these

approaches and HDC/VSA is, however, outside the scope of this article. Nevertheless, in

our opinion HDC/VSA is the most transparent approach in structuring computation, and the

most general with regard to different types of hardware. In terms of formulating algorithms

and computational primitives, HDC/VSA offers a common language, independent of a

particular HDC/VSA model. For a desired computation on a given hardware, one of the

many existing HDC/VSA models can provide the most advantageous implementation in

terms of energy and time efficiency.

There is currently a plethora of collective-state computing approaches emerging, such

as compressed sensing, Bloom filters, reservoir computing, etc., relying on distributed

representations [169]. These approaches are rather disjoint, and typically focus on special

purpose computing applications. HDC/VSA has been shown to be able to formalize

different types of collective-state computing including reservoir computing [28], [30],

Bloom filters [78], compressed sensing [59], randomized kernels [102], [150], and extreme

learning machines/random vector functional link networks [29]. Thus, we see HDC/VSA

as a promising candidate framework for providing a “lingua franca” of collective-state

computing.

Acknowledgement

The authors thank members of the Redwood Center for Theoretical Neuroscience and Berkeley Wireless Research
Center for stimulating discussions. We would also like to thank Ross W. Gayler and Sohum Datta for their in depth
comments on the early versions of this article. Finally, we would like to thank three anonymous reviewers and the
editors for their insightful feedback as well as Linda Rudin for the careful proofreading that contributed to the final
shape of the article.

DK has received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 839179. The work of BAO, JMR, PK, and DK was supported in part
by the DARPA’s VIP (Super-HD Project) and AIE (HyDDENN Project) programs. The work of DK, PK, and BAO
was supported in part by AFOSR FA9550-19-1-0241. The work of FTS, BAO, and DK was supported in part by

Kleyko et al. Page 39

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Intel’s THWAI program. The work of DAR was supported in part by the National Academy of Sciences of Ukraine
(grant no. 0120U000122, 0121U000016, 0122U002151, and 0117U002286), the Ministry of Education and Science
of Ukraine (grant no. 0121U000228 and 0122U000818), and the Swedish Foundation for Strategic Research (SSF,
grant no. UKR22-0024). FTS was supported by NIH R01-EB026955.

Biographies

Denis Kleyko (Member, IEEE) received the B.S. degree (Hons.) in telecommunication

systems and the M.S. degree (Hons.) in information systems from the Siberian State

University of Telecommunications and Information Sciences, Novosibirsk, Russia, in 2011

and 2013, respectively, and the Ph.D. degree in computer science from the Luleå University

of Technology, Luleå, Sweden, in 2018.

He is currently a Post-Doctoral Researcher on a joint appointment between the Redwood

Center for Theoretical Neuroscience at the University of California at Berkeley, CA, USA

and the Intelligent Systems Lab, Research Institutes of Sweden, Kista, Sweden. His current

research interests include machine learning, reservoir computing, and vector symbolic

architectures/hyperdimensional computing.

Mike Davies received the B.S. and M.S. degrees from the California Institute of Technology

(Caltech), Pasadena, CA, USA, in 1998 and 2000, respectively.

He was a Founding Employee of Fulcrum Microsystems, Calabasas, CA, USA, and the

Director of its Silicon Engineering Group until Intel’s acquisition of Fulcrum in 2011.

He led the development of four generations of low latency, highly integrated Ethernet

switches using Fulcrum’s proprietary asynchronous design methodology. Since 2014, he has

been researching neuromorphic circuits, architectures, and algorithms at Intel Labs, Intel

Corporation, Santa Clara, CA, USA. He is currently a Senior Principal Engineer and the

Director of the Neuromorphic Computing Laboratory, Intel Corporation.

Edward Paxon Frady received the B.S. degree in computation and neural systems from

the California Institute of Technology (Caltech), Pasadena, CA, USA in 2008 and the Ph.D.

degree in neuroscience from the University of California San Diego, La Jolla, CA, USA in

2014.

He is currently a Research Lead with the Neuromorphic Computing Laboratory, Intel Labs,

Santa Clara, CA, USA. His research interests include neuromorphic engineering, vector

symbolic architectures/hyperdimensional computing, and machine learning.

Kleyko et al. Page 40

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pentti Kanerva received the Ph.D. degree in philosophy from Stanford University. He was

involved in designing and building computer systems for 20 years, and he has over 30 years

of research into understanding brains in computing terms. He has held research positions

at the NASA Ames Research Center, the Swedish Institute of Computer Science, and the

Redwood Neuroscience Institute. He is currently a Researcher with Redwood Center for

Theoretical Neuroscience, University of California at Berkeley, CA, USA. His thesis was

published in the book Sparse Distributed Memory (MIT Press). His subsequent research

includes binary spatter code, random indexing, and hyperdimensional computing.

Spencer J. Kent received the B.S. degree in electrical and computer engineering in 2015

from Rice University, Houston, TX, USA. In 2020, he received the Ph.D. degree in electrical

engineering and computer sciences from the University of California at Berkeley, CA, USA.

He was the recipient of a National Science Foundation Graduate Research Fellowship for his

work on Vector Symbolic Architectures and image compression. He is currently leading an

early-stage company that builds software and actuarial models for the insurance industry.

Bruno A. Olshausen received B.S. and M.S. degrees in electrical engineering from Stanford

University, Palo Alto, CA, USA and a Ph.D. degree in computation and neural systems

from the California Institute of Technology (Caltech), Pasadena, CA, USA. From 1996

to 2005, he was an Assistant Professor and subsequently an Associate Professor with the

Departments of Psychology and Neurobiology, Physiology and Behavior, University of

California at Davis, CA, USA. Since 2005, he has been with the University of California

at Berkeley, CA, USA where he is Professor of Neuroscience and Optometry. He also

serves as Director of the Redwood Center for Theoretical Neuroscience which is developing

mathematical and computational models of brain function. His research aims to understand

the information processing strategies employed by the brain for doing tasks, such as

object recognition and scene analysis. The aim of this work is not only to advance our

understanding of the brain, but also to discover new algorithms for scene analysis based on

how brains work.

Evgeny Osipov received the Ph.D. degree in computer science from the University of Basel,

Switzerland, in 2005. He is currently a Full Professor in dependable communication and

computation systems with the Department of Computer Science and Electrical Engineering,

Luleå University of Technology, Luleå, Sweden.

Kleyko et al. Page 41

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

His research interests are in novel computational models for unconventional computer

architectures. His current research focuses on hyperdimensional computing and vector

symbolic architectures.

Jan M. Rabaey (Life Fellow, IEEE) is a Professor in the Graduate School in the EECS

Department, University of California at Berkeley, CA, USA, after being the holder of the

Donald O. Pederson Distinguished Professorship at the same institute for over 30 years.

He is a founding director of the Berkeley Wireless Research Center (BWRC) and the

Berkeley Ubiquitous SwarmLab, and has served as the Electrical Engineering Division

Chair at UC Berkeley twice. In 2019, he also became the CTO of the System-Technology

Co-Optimization Division of IMEC, Belgium.

Prof. Rabaey has made high-impact contributions to a number of fields, including low

power integrated circuits, advanced wireless systems, mobile devices, sensor networks, and

ubiquitous computing. His current interests include the conception of the next-generation

distributed systems, as well as the exploration of the interaction between the cyber and the

biological worlds. He is the primary author of the influential “Digital Integrated Circuits: A

Design Perspective” textbook that has served to educate hundreds of thousands of students

all over the world. He is the recipient of numerous awards, is a Life Fellow of the IEEE, and

has been involved in a broad variety of start-up ventures.

Dmitri A. Rachkovskij received the D.Sc. degree in artificial intelligence from the

International Research and Training Center for Information Technologies and Systems

(IRTC ITS), National Academy of Sciences of Ukraine and Ministry of Education and

Science of Ukraine, Kyiv, Ukraine, in 2008, the Ph.D. degree from V. M. Glushkov Institute

of Cybernetics, Kyiv, Ukraine, in 1990, and the M.S. degree in radiophysics from Rostov

State University, Rostov, Russia, in 1983. He has a Full Professor rank since 2019 and holds

a Visiting Professor position at Luleå University of Technology, Luleå, Sweden since 2022.

In 1987, he joined the Cybernetics Center, IRTC ITS, where he is currently a Chief

Research Scientist. He led over 20 projects and has authored or coauthored more than 80

refereed publications, including those in high-impact journals. His research is connected

with the domain of artificial intelligence and neural networks. He was also involved

extensively in the areas of pattern recognition, software and hardware neurocomputers, and

micromechanics. His current research interests include distributed representations, similarity

search, analogical reasoning, and distributed autoassociative memories.

Kleyko et al. Page 42

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Abbas Rahimi received the B.S. degree in computer engineering from the University

of Tehran, Tehran, Iran, in 2010, and the M.S. and Ph.D. degrees in computer science

and engineering from the University of California at San Diego, La Jolla, CA, USA, in

2015. Since then, until 2020, he held post-doctoral research positions at the University of

California Berkeley, Berkeley, CA, USA, and at the ETH ZÃijrich, ZÃijrich, Switzerland. In

2020, he has joined the IBM Research-ZÃijrich laboratory in RÃijschlikon, Switzerland, as

a Research Staff Member.

Dr. Rahimi received the 2015 Outstanding Dissertation Award in the area of “New

Directions in Embedded System Design and Embedded Software” from the European

Design and Automation Association, and the ETH ZÃijrich Postdoctoral Fellowship in

2017. He was a co-recipient of the Best Paper Nominations at DAC (2013) and DATE

(2019), and the Best Paper Awards at BICT (2017), BioCAS (2018), and IBM’s Pat

Goldberg Memorial Best Paper Award (2020).

Friedrich T. Sommer received the Diploma in physics from the University of Tuebingen,

Tuebingen, Germany, in 1987, the Ph.D. degree from the University of Duesseldorf,

Duesseldorf, Germany, in 1993, and the Habilitation degree in computer science from the

University of Ulm, Ulm, Germany, in 2002.

He is an Adjunct professor with the Redwood Center for Theoretical Neuroscience,

University of California Berkeley, CA, USA and a Researcher at the Neuromorphic

Computing Laboratory, Intel Labs, Santa Clara, CA, USA. His research interests include

neuromorphic engineering, vector symbolic architectures/hyperdimensional computing, and

machine learning.

Appendix A

On Turing completeness of HDC/VSA

It is practical to have a collection of primitives for common data structures. However, these

primitives alone do not provide us with a quantification of the theoretical capabilities of

using HDC/VSA as a computing framework. Of course, it is desirable that a computing

framework for emerging hardware be able to (in theory, at least) execute any algorithm.

For example, in [202] that proposed a system hierarchy for neuromorphic computing, it

has been emphasized that Turing completeness is an essential property for an abstraction

model that is used at the algorithmic level. Therefore, in this section, we sketch ways of

demonstrating that HDC/VSA is computationally universal by exemplifying how they (with

some assumptions) can be used to emulate systems that have already been proven to be

Turing complete. While computing in superposition is likely to be the most interesting

Kleyko et al. Page 43

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

feature of operating with HDC/VSA, computational universality is still a critical property

to study as it characterizes the general computational power of a system. It is worth

noting that among HDC/VSA researchers there is a general agreement that HDC/VSA

are computationally universal but, to the best of our knowledge, this has not been shown

yet. Therefore, here we make two proposals towards demonstrating their universality: by

implementing a Turing machine and by emulating an elementary cellular automaton, which

is also known to be Turing complete [203]. Note that while these proposals might not be

tight enough to be qualified as a formal proof, we believe that the directions below are the

most promising ways to make such a proof.

A. Implementation of Turing machines with HDC/VSA

Since there are a number of small Turing machines known to be universal [204], we first

focus on demonstrating how HDC/VSA can be used as a part of an implementation of such

a machine. In order to do so, we present how HDC/VSA representations are used to map a

table of behaviour [204] and execute the machine.

Fig. 10.
An illustration of the current state of the machine and its tape.

The presented implementation could be used to realize any Turing machine, but for the sake

of compactness we exemplify the implementation with a (2,4) Turing machine, which has 2

states (A and B) and 4 symbols (0, 1, 2, 3). The table of behaviour of a (2,4) Turing machine

is presented in Table II. For a given combination of the current state and tape’s content, it

Kleyko et al. Page 44

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

provides which symbol should be written to the current cell, the next state of the machine,

and the direction for the head’s move.

1) HDC/VSA implementation of the table of behaviour: We use the Multiply-Add-

Permute model described above. In order to represent the table of behaviour of a Turing

machine, we first create two item memories populated with random hypervectors. One item

memory stores the states, e.g., in the case of a (2,4) Turing machine it includes only two

hypervectors for states A and B (denoted as a and b), respectively. Another item memory

stores hypervectors for symbols. Since the considered machine uses only four symbols, four

hypervectors 0, 1, 2, and 3 are sufficient. These item memories are used to construct a

hypervector for each combination of states and symbols. The hypervector is constructed by

applying the binding operation on the hypervectors for a state and a symbol.

Eight hypervectors corresponding to all possible combinations form a basis for constructing

a third, heteroassociative, item memory, i.e., the memory where the address and content

parts store different hypervectors. The heteroassociative item memory can implement any

table of behaviour by using the bound pair of state and symbol as input to the memory and

issuing hypervectors, which should be used as the tape content, head’s move, and next state

as an output. Table III presents the heteroassociative item memory for the table of behaviour

of (2,4) Turing machine. Thus, three item memories constitute the static part of the system,

which is generated only once at the initialization. At this point, it is worth making a note that

in addition to the standard assumptions about unlimited time and memory resources, there

is an extra assumption about the heteroassociative item memory. In particular, it should be

guaranteed to behave correctly in the absence of external errors. Practically, it means that

the address part of the heteroassociative item memory should not have repeated entries. Even

for moderate dimensionality of hypervectors the chance of such an event is low, but if this

happens the issue is solved by the regeneration of the item memories.

Kleyko et al. Page 45

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
The updated state and tape of the machine after the previous state as in Fig. 10.

2) HDC/VSA-based tape: The other part of the system is dynamic and includes the

location for storing a hypervector for the current state, the tape, and current position of

the head. Fig. 10 presents an example of the dynamic part of the system. In the case of

using HDC/VSA, the tape can be seen as a matrix where each column corresponds to

the hypervector of a symbol. In order to make the next step, the machine has to read the

hypervector of the current state (b in Fig. 10) and the hypervector of the symbol at the

current location of the head (0 in Fig. 10). The result of binding of these hypervectors b⊙0
is used as an input to the heteroassociative memory. The output of the memory indicates that

hypervector a should be written to the current state; the tape’s content is changed to 3, and

the head should be moved to the right of the current location. The updated state is shown

in Fig. 11. In such a manner, the system could operate on the tape for the required number

of computational steps. Summarizing, the proposed implementation of a Turing machine

uses basic elements of HDC/VSA such as hypervectors, item memories, and the binding

operation; however, it also includes few parts that go beyond HDC/VSA – namely, control of

head movements and unlimited memory tape.

3) Scaling HDC/VSA implementation: Since the proposed implementation of a

Turing machine does not make use of the superposition operation, there is no crosstalk noise

being introduced to the computations, which in turn means that in the absence of external

noise the emulation behaves in a deterministic way. Thus, even tiny three-dimensional

Kleyko et al. Page 46

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

vectors can be used to construct the heteroassociative item memory with unique entries.

Nevertheless, since one of the arguments in favour of HDC/VSA is their built-in tolerance

to errors, it is interesting to observe the behaviour of the emulation in the presence of

external noise. We performed simulations where the external noise was added to the tape

by randomly flipping signs of a fraction of hypervector components. Fig. 12 presents the

average dimensionality of hypervectors required to make at least 109 error-free updates of

the emulated Turing machine when the hypervectors representing symbols on the tape were

subject to external bit flips. The Bit Error Rate varied in the range [0.05, 0.30] with step

0.05. The starting dimensionality of hypervectors was 24. If the error in emulation was

happening in less than 109 steps, then the dimensionality was increased by 10%. The results

demonstrate that the proposed implementation can reliably emulate the Turing machine

given adequate resources (i.e., dimensionality of hypervectors). Naturally, in the presence of

external noise, more resources are needed to obtain the error-free execution of the machine.

Nevertheless, an important observation is that the implementation works with imprecise

noisy representations. Moreover, the robustness of the implementation comes at no cost in

terms of design, as the same algorithm is being used for any amount of noise and the only

cost to be paid is the increased size of the system.

Fig. 12.
The average dimensionality of hypervectors required to make at least 109 error-free updates

of the emulated (2,4) Turing machine when the hypervectors representing symbols on the

tape were subject to external bit flips. The Bit Error Rate was in the range [0.05, 0.30] with

step 0.05. The results were computed from 10 simulation runs with random initializations

Kleyko et al. Page 47

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of hypervectors in the item memories and random bit flips added at every update of the

machine.

Fig. 13.
The assignment of new states for a center cell when the cellular automaton uses rule 110. A

hollow cell corresponds to zero state while a shaded cell marks one state.

B. Emulation of cellular automaton with HDC/VSA

Since HDC/VSA are designed to create vector representations of symbolic structures, when

identifying a Turing complete system suitable for emulation with HDC/VSA, it is also

natural to choose a highly structured system which uses a small finite alphabet of symbols.

We think that an elementary cellular automaton is one example of such a system. Since the

elementary cellular automaton with the rule 110 is known to be Turing complete [203], we

would like to demonstrate how HDC/VSA can be used in emulating this rule. In order to do

so, we first revisit the elementary cellular automaton concept. Next, we present a HDC/VSA

algorithm for mapping and executing an elementary cellular automaton. Thus, we literally

follow the roadmap from [203]: “The automaton itself is so simple that its universality gives

us a new tool for proving that other systems are universal”. Finally, we explore how the

proposed implementation is scaling with respect to the size of the initial grid state of an

elementary cellular automaton, the dimensionality of hypervectors, and the amount of noise

present during the computations. The major point of the latter is that even for large amount

of noise the implementation can perfectly emulate the elementary cellular automaton given

sufficiently large dimensionality of hypervectors, which is a nice property as the robustness

is achieved without modifying the design.

TABLE IV

The heteroassociative item memory implementing rule 110.

Address (input) Content (output)

h111 = [l ⊙ 1 + c ⊙ 1 + r ⊙ 1] 0

h110 = [l ⊙ 1 + c ⊙ 1 + r ⊙ 0] 1

h101 = [l ⊙ 1 + c ⊙ 0 + r ⊙ 1] 1

Kleyko et al. Page 48

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Address (input) Content (output)

h100 = [l ⊙ 1 + c ⊙ 0 + r ⊙ 0] 0

h011 = [l ⊙ 0 + c ⊙ 1 + r ⊙ 1] 1

h010 = [l ⊙ 0 + c ⊙ 1 + r ⊙ 0] 1

h001 = [l ⊙ 0 + c ⊙ 0 + r ⊙ 1] 1

h000 = [l ⊙ 0 + c ⊙ 0 + r ⊙ 0] 0

1) Elementary cellular automata: An elementary cellular automaton is a discrete

computational model consisting of a one-dimensional grid of cells [205]. Each cell can be in

one of a finite number of states (two – for the elementary automaton). States of cells evolve

in discrete time steps according to a fixed rule. The state of a cell at the next computational

step depends on its current state and states of its neighbors. The computations performed by

an elementary cellular automaton are local. The new state of a cell is determined by previous

states of the cell itself and its two neighboring cells (left and right). Thus, only three cells are

involved in a computation step, i.e., for binary states, there are in total 23 = 8 combinations.

A rule assigns states for each of eight combinations. Fig. 13 presents all combinations and

the corresponding states for the rule 110.

2) HDC/VSA algorithm for emulating an elementary cellular automaton with
the rule 110: We use the Multiply-Add-Permute model described above. In order to

represent an elementary cellular automaton with the rule 110, we first create two item

memories populated with random hypervectors. One item memory stores the finite alphabet,

i.e., it includes only two hypervectors, for one and for zero (denoted as 1 and 0,

respectively). Another item memory stores hypervectors for positions. Since an elementary

cellular automaton relies only on a cell in focus and its immediate neighbors, then three

hypervectors: l (left), c (center), and r (right) are sufficient. These item memories are used

to construct a hypervector for each combination of states in three consecutive cells. The

hypervector is constructed by applying the superposition operation on the bound pairs of

a positional hypervector and an alphabet hypervector. In other words, the current states in

three consecutive cells are represented as a set of unordered pairs. For example, for 010, the

corresponding compound hypervector is constructed as:

h010 = [l ⊙ 0 + c ⊙ 1 + r ⊙ 0] .

All eight compound hypervectors form a basis for constructing a heteroassociative item

memory which can implement any elementary rule by using the compound hypervectors as

input to the memory, and issuing either 1 or 0 (determined by the rule) as an output. Table

IV presents the heteroassociative item memory for the rule 110. Thus, three item memories

constitute the static part of the system, which is generated only once at the initialization.

Kleyko et al. Page 49

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 14.
The average error rate after 100 computational steps of the elementary cellular automaton

against the dimensionality of hypervectors (N = 2i, i ∈ [10, 17]) for several different lengths

of the grid (l = 2i, i ∈ [5, 10]). The results were computed from 100 simulation runs with

random initializations of hypervectors in the item memories. The initial grid states were also

randomized.

The other part of the system performs computations for a given initial grid state of length l at

time t = 0. The initial grid state is mapped to a compound hypervector (denoted as a0). The

mapping is done by applying the superposition operation on all hypervectors representing

the states of cells at all positions. Position j in the grid is represented by applying the

permutation operation j times to the hypervector corresponding to a state at position j.
Thus, this representation corresponds to the mapping of a sequence with the superposition

operation. For example, if the initial grid state is 10101, then the representation of the state

at the fifth position is ρ51 while the compound hypervector for the initial grid state is:

a0 = ρ11 + ρ20 + ρ31 + ρ40 + ρ51 .

Given a0, the next step is to compute a1 or in general compute at+1 given at.

Kleyko et al. Page 50

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 15.
The average error rate after 100 computational steps of the elementary cellular automaton

against the dimensionality of hypervectors (N = 2i, i ∈ [10, 17]) for several different bit error

rates, BER (p = 2−i, i ∈ [2, 5]) for the length of the grid l = 32. The results were computed

from 100 simulation runs with random initializations of hypervectors in the item memories.

The initial grid states were also randomized.

First, at+1 is initialized to be an empty hypervector. Next, for each position j ranging from 1

to l we do the following (this step can be either serial or parallel):

• Approximately recover the state at j and its neighbors as

h = l ⊙ ρ−(j − 1)at + c ⊙ ρ−jat + r ⊙ ρ−(j + 1)at

• Use h as the query to the heteroassociative item memory. The memory returns

the content (i.e., 0 or 1) for the address closest to h in terms of dot product. The

returned content is denoted as vj.

• Modify at+1 with vj as: at+1+ = ρjvj.

Finally, apply the majority rule on at+1: at+1 = [at+1], so that it becomes bipolar. In such a

manner, the system could iterate through the grid for the required number of computational

steps.

Kleyko et al. Page 51

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Last but not least, it is worth explicating that the proposed implementation assumes parts

that go beyond HDC/VSA. First, the full computational system has its control architecture

that is responsible for initializing the grid state as well as for running the for-loop, which

can be seen as a recurrent connection, required for constructing at+1. The second part that is

assumed here to be the same as in the standard implementation of a cellular automaton, is

the circuit determining when to stop the computation. We have not focused on this circuit as

our main goal here was to demonstrate how to evolve HDC/VSA representations to perform

cellular automaton’s computations.

3) Scaling HDC/VSA emulation: It is known that compound hypervectors can be

used to retrieve their components (Section III-C); however, there is a limit on the number

of components which can be stored in a compound hypervector without losing the

ability to recover the components [30]. The rule of thumb is that for larger hypervector

dimensionalities more components can be recovered from a compound hypervector. For the

task of emulating an elementary cellular automaton, it is important that h is similar enough

to the correct state hypervector in the item memory. Otherwise, we will introduce errors

to the computations being emulated, which is highly undesirable. When constructing h, the

main source of noise is the crosstalk noise from other cell states stored in at. Therefore, in

order to avoid errors in the computations, the dimensionality of hypervectors should depend

on the length of the grid: the longer is the grid, the larger dimensionality is required for

robustly querying the item memory.6

Fig. 14 presents the empirical results for a range of l and N values. The curves depict the

average error rate after 100 computational steps of the elementary cellular automaton. Note

that the errors occurring at the earlier computational steps will most likely propagate to the

successive steps. The length of the grid, l, varied as 2i, i ∈ [5, 10], while the dimensionality

of hypervectors, N, varied as 2i, i ∈ [10, 17]. Thus, the results demonstrate that HDC/VSA

can perfectly emulate the elementary cellular automaton with the grid of certain length,

given adequate resources (i.e., dimensionality of hypervectors).

Note that Fig. 14 presented the results for the case when hypervectors did not include any

external noise. Since one of the arguments in favour of HDC/VSA is their built-in tolerance

to errors, it is interesting to observe the behaviour of the emulation in the presence of

external noise. External noise was added by randomly flipping a fraction of components

in at, but it was still assumed that the control architecture functions without errors. Fig.

15 presents the average error rate after 100 computational steps of the elementary cellular

automaton in the presence of external noise. The bit error rate, p, varied as 2−i, i ∈ [2, 5].

The length of the grid was fixed to l = 32.

The results demonstrate that, naturally, in the presence of external noise, more resources

are needed to obtain the error-free emulation. Nevertheless, an important observation is

that the HDC/VSA-based system works with imprecise noisy representations. Moreover, the

6In principle, it should be possible to analytically find the minimal dimensionality of hypervectors for robustly emulating the grid of
the given length.

Kleyko et al. Page 52

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

robustness of the system comes at no cost in terms of design, as the same algorithm is used

in both cases and the only cost to be paid is in the increased size of the system.

4) Studies related to computational universality of HDC/VSA: Studying

computational universality of a particular computing framework is important for

understating ultimate theoretical limitations of computing hardware using this framework.

For example, [206] has shown that recurrent neural networks are computationally universal,

[207] has shown universality of modern transformer and Neural GPU networks. Since

HDC/VSA can express some recurrent neural networks [28], studying their universality by

leveraging on the existing results for neural networks is a possible direction of research.

We, however, followed earlier approaches that showed that neural network-like systems can

implement Turing machines [208]. In the sections above, we sketched how HDC/VSA can

be used in implementations of a small Turing machine [204] and a universal elementary

cellular automaton with the rule 110 [203].

Recently, [209] emphasized the need for a formal machine model for novel neuromorphic

hardware in order to develop a computational complexity theory for neuromorphic

computations. This is an important direction of research for understanding the full potential

of emerging hardware. They argued, however, that in order to encompass the computational

abilities of neuromorphic hardware, one will likely need to define an entirely new computing

theory framework. Their study has proposed to use spiking neural networks (shown to be

Turing complete [210]) because, similar to HDC/VSA, they are suitable for co-located

computation and memory, and massive parallelism – which is not the case for the

conventional computing architecture.

In addition to the demonstration of universality, an important practical question is how

a complete computational architecture should look like. This is still an open question. A

proposal has been sketched in [58], which featured a HDC/VSA-based processor where both

data and instructions were represented as hypervectors. There is another approach known

as Tensor Product Variable Binding, which is closely related to HDC/VSA. For example,

Tensor Product Variable Binding can also be used to represent data structures in distributed

representations [211]. The study [50] has demonstrated how to implement push, pop, and

the Lisp primitives CAR and CDR with Tensor Product Variable Binding, while [212] has

demonstrated how to implement a production system. A HDC/VSA-based model, which was

positioned as a general-purpose neural controller playing a role analogous to a production

system, was proposed in [196].

Another relevant result is a demonstration of the feasibility of implementing Fluid

Construction Grammars with HDC/VSA [213]. Even though Fluid Construction Grammars

have not been shown to be universal, it is a powerful and interesting approach for both

cognitive and evolutionary linguistics. [213] proposed a vision similar to the one presented

in Fig. 1. They suggest HDC/VSA can be seen as a “virtual machine” that can have different

(independent) physical implementations, such as an indirect mapping to spiking neurons

[170] or direct mapping of operations with analog/digital implementations [16].

Kleyko et al. Page 53

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendix B

Summary of Vector-Symbolic Space and Operations

A. Key components

This appendix presents excerpts from Section III providing a summary of HDC/VSA. The

key components of all HDC/VSA are:

• High-dimensional space (e.g., bipolar);

• Orthogonality;

• Similarity measure (e.g., dot product ⟨a, b⟩);

• Seed representations (e.g., random i.i.d. vectors);

• Operations on representations.

There are three key operations in HDC/VSA:

• Binding (denoted as ⊙, implemented as component-wise multiplication

(Hadamard product) in the Multiply–Add–Permute model);

• Superposition (denoted as +, implemented as component-wise addition, enclosed

in […] when thresholded);

• Permutation (denoted as ρ, e.g., rotation of coordinates). Below, we present

the properties of the implementations of these operations for the Multiply–Add–

Permute HDC/VSA model [54]. Here, we enumerate the properties assuming

that the seed hypervectors are bipolar.

B. Properties of the binding operation

• Binding is commutative: a ⊙ b = b ⊙ a;

• Binding distributes over superposition: c ⊙ (a + b) = c ⊙ a + c ⊙ b;

• Binding is invertible: (a ⊙ b) ⊙ b = a (bipolar b is self-inverse), the inverse

operation is called releasing or unbinding;

• Binding is associative: (a ⊙ b) ⊙ c = a ⊙ (b ⊙ c);

• The result of binding is dissimilar to each of its argument hypervectors: ⟨(a ⊙ b),

a⟩ ≈ ⟨(a ⊙ b), b⟩ ≈ 0, hence binding is a “randomizing” operation;

• Binding preserves similarity: ⟨(c ⊙ a), (c ⊙ b)⟩ = ⟨a, b⟩.

C. Properties of the superposition operation

• Superposition is invertible: (a + b) + (−b) = a; for thresholded superposition: ⟨[[a
+ b] + (−b)], a⟩ > 0;

• In contrast to binding and permutation operations, the result of superposition z
= a + b (often called the superposition hypervector) is similar to each of its

Kleyko et al. Page 54

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

argument hypervectors: i.e., the dot product between z and a or b is considerably

greater than 0, ⟨z, a⟩ ≫ 0 and ⟨z, b⟩ ≫ 0;

• Superposition is commutative: a + b = b + a;

• Thresholded superposition is approximately associative: [[a + b] + c] ≈ [a + [b +

c]].

D. Properties of the permutation operation

• Permutation is invertible: ρ−1(ρ(a)) = a;

• Permutation distributes over both binding and superposition: ρ(a⊙b) = ρ(a)

⊙ρ(b) and ρ(a+b) = ρ(a)+ρ(b);

• Similar to the binding operation, a random permutation ρ results in a vector that

is dissimilar to the argument hypervector: ⟨ρ(a), a⟩ ≈ 0, hence permutation is a

“randomizing” operation;

• Permutation preserves similarity: ⟨ρ(a), ρ(b)⟩ = ⟨a, b⟩.

References

[1]. Jaeger H, “Towards a Generalized Theory Comprising Digital, Neuromorphic and Unconventional
Computing,” Neuromorphic Computing and Engineering, vol. 1, no. 1, pp. 1–38, 2021.

[2]. Ben-Nun T and Hoefler T, “Demystifying Parallel and Distributed Deep Learning: An In-depth
Concurrency Analysis,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–43, 2019.

[3]. Kipf TN and Welling M, “Semi-supervised Classification with Graph Convolutional Networks,” in
International Conference on Learning Representations (ICLR), 2017, pp. 1–14.

[4]. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, and Monfardini G, “The Graph Neural Network
Model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008. [PubMed:
19068426]

[5]. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, and Polosukhin
I, “Attention Is All You Need,” in Neural Information Processing Systems (NeurIPS), 2017, pp.
5998–6008.

[6]. Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, and Ozcan A, “All-optical Machine
Learning Using Diffractive Deep Neural Networks,” Science, vol. 361, no. 6406, pp. 1004–1008,
2018. [PubMed: 30049787]

[7]. Pei J, Deng L, Song S, Zhao M, Zhang Y, Wu S, Wang G, Zou Z, Wu Z, He W, Chen F, Deng
N, Wu S, Wang Y, Wu Y, Yang Z, Ma C, Li G, Han W, Li H, Wu H, Zhao R, Xie Y, and Shi
L, “Towards Artificial General Intelligence with Hybrid Tianjic Chip Architecture,” Nature, vol.
572, no. 7767, pp. 106–111, 2019. [PubMed: 31367028]

[8]. Imam N and Cleland TA, “Rapid Online Learning and Robust Recall in a Neuromorphic Olfactory
Circuit,” Nature Machine Intelligence, vol. 2, no. 3, pp. 181–191, 2020.

[9]. Davies M, Wild A, Orchard G, Sandamirskaya Y, Guerra GAF, Joshi P, Plank P, and Risbud
SR, “Advancing Neuromorphic Computing with Loihi: A Survey of Results and Outlook,”
Proceedings of the IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[10]. Gayler RW, “Vector Symbolic Architectures Answer Jackendoff’s Challenges for Cognitive
Neuroscience,” in Joint International Conference on Cognitive Science (ICCS/ASCS), 2003, pp.
133–138.

[11]. Kanerva P, “Hyperdimensional Computing: An Introduction to Computing in Distributed
Representation with High-Dimensional Random Vectors,” Cognitive Computation, vol. 1, no.
2, pp. 139–159, 2009.

Kleyko et al. Page 55

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[12]. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, and Rasmussen D, “A
Large-scale Model of the Functioning Brain,” Science, vol. 338, no. 6111, pp. 1202–1205, 2012.
[PubMed: 23197532]

[13]. Rachkovskij DA and Slipchenko SV, “Similarity-based Retrieval with Structure-sensitive Sparse
Binary Distributed Representations,” Computational Intelligence, vol. 28, no. 1, pp. 106–129,
2012.

[14]. Emruli B, Gayler RW, and Sandin F, “Analogical Mapping and Inference with Binary Spatter
Codes and Sparse Distributed Memory,” in International Joint Conference on Neural Networks
(IJCNN), 2013, pp. 1–8.

[15]. Ge L and Parhi KK, “Classification Using Hyperdimensional Computing: A Review,” IEEE
Circuits and Systems Magazine, vol. 20, no. 2, pp. 30–47, 2020.

[16]. Karunaratne G, Gallo ML, Cherubini G, Benini L, Rahimi A, and Sebastian A, “In-Memory
Hyperdimensional Computing,” Nature Electronics, vol. 3, no. 6, pp. 327–337, 2020.

[17]. Renner A, Sandamirskaya Y, Sommer FT, and Frady EP, “Sparse Vector Binding on Spiking
Neuromorphic Hardware Using Synaptic Delays,” in International Conference on Neuromorphic
Systems (ICONS), 2022, pp. 1–5.

[18]. Bent G, Simpkin C, Li Y, and Preece A, “Hyperdimensional Computing using Time-to-spike
Neuromorphic Circuits,” in International Joint Conference on Neural Networks (IJCNN), 2022,
pp. 1–8.

[19]. Marr D, Vision: A Computational Investigation into the Human Representation and Processing of
Visual Information. W. H. Freeman and Company, 1982.

[20]. Andrae ASG and Edler T, “On Global Electricity Usage of Communication Technology: Trends
to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015.

[21]. Strubell E, Ganesh A, and McCallum A, “Energy and Policy Considerations for Deep Learning
in NLP,” in Annual Meeting of the Association for Computational Linguistics (ACL), 2019, pp.
3645–3650.

[22]. Rogers A. (2019) How the Transformers Broke NLP Leaderboards. [Online]. Available: https://
hackingsemantics.xyz/2019/leaderboards/

[23]. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam
N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner
MD, Risk WP, Manohar R, and Modha DS, “A Million Spiking-neuron Integrated Circuit with
a Scalable Communication Network and Interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014. [PubMed: 25104385]

[24]. Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain
S, Liao Y, Lin C-K, Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J, Venkataramanan
G, Weng Y-H, Wild A, Yang Y, and Wang H, “Loihi: A Neuromorphic Manycore Processor with
On-Chip Learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[25]. Frady EP, Orchard G, Florey D, Imam N, Liu R, Mishra J, Tse J, Wild A, Sommer FT, and
Davies M, “Neuromorphic Nearest-Neighbor Search Using Intel’s Pohoiki Springs,” in Neuro-
Inspired Computational Elements Workshop (NICE), 2020, pp. 1–10.

[26]. Li H, Wu TF, Rahimi A, Li K-S, Rusch M, Lin C-H, Hsu J-L, Sabry MM, Eryilmaz SB,
Sohn J, Chiu W-C, Chen M-C, Wu T-T, Shieh J-M, Yeh W-K, Rabaey JM, Mitra S, and Wong H-
SP, “Hyperdimensional Computing with 3D VRRAM In-Memory Kernels: Device-Architecture
Co-Design for Energy-Efficient, Error-Resilient Language Recognition,” in IEEE International
Electron Devices Meeting (IEDM), 2016, pp. 1–4.

[27]. Kleyko D, Osipov E, De Silva D, Wiklund U, and Alahakoon D, “Integer Self-Organizing Maps
for Digital Hardware,” in International Joint Conference on Neural Networks (IJCNN), 2019, pp.
1–8.

[28]. Kleyko D, Frady EP, Kheffache M, and Osipov E, “Integer Echo State Networks: Efficient
Reservoir Computing for Digital Hardware,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no. 4, pp. 1688–1701, 2022. [PubMed: 33351770]

[29]. Kleyko D, Kheffache M, Frady EP, Wiklund U, and Osipov E, “Density Encoding Enables
Resource-Efficient Randomly Connected Neural Networks,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 8, pp. 3777–3783, 2021. [PubMed: 32833655]

Kleyko et al. Page 56

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hackingsemantics.xyz/2019/leaderboards/
https://hackingsemantics.xyz/2019/leaderboards/

[30]. Frady EP, Kleyko D, and Sommer FT, “A Theory of Sequence Indexing and Working Memory
in Recurrent Neural Networks,” Neural Computation, vol. 30, pp. 1449–1513, 2018. [PubMed:
29652585]

[31]. Recchia G, Sahlgren M, Kanerva P, and Jones MN, “Encoding Sequential Information
in Semantic Space Models: Comparing Holographic Reduced Representation and Random
Permutation,” Computational Intelligence and Neuroscience, pp. 1–18, 2015.

[32]. Rasanen O and Saarinen J, “Sequence Prediction with Sparse Distributed Hyperdimensional
Coding Applied to the Analysis of Mobile Phone Use Patterns,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 27, no. 9, pp. 1878–1889, 2016. [PubMed: 26285224]

[33]. Kleyko D, Rahimi A, Rachkovskij DA, Osipov E, and Rabaey JM, “Classification and Recall
with Binary Hyperdimensional Computing: Tradeoffs in Choice of Density and Mapping
Characteristic,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 12,
pp. 5880–5898, 2018. [PubMed: 29993669]

[34]. Rahimi A, Kanerva P, Benini L, and Rabaey JM, “Efficient Biosignal Processing Using
Hyperdimensional Computing: Network Templates for Combined Learning and Classification
of ExG Signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–143, 2019.

[35]. Rachkovskij DA, “Representation of Spatial Objects by Shift-Equivariant Similarity-Preserving
Hypervectors,” Neural Computing and Applications, pp. 1–17, 2022.

[36]. ——, “Some Approaches to Analogical Mapping with Structure Sensitive Distributed
Representations,” Journal of Experimental and Theoretical Artificial Intelligence, vol. 16, no.
3, pp. 125–145, 2004.

[37]. Rachkovskij DA, Kussul EM, and Baidyk TN, “Building a World Model with Structure-sensitive
Sparse Binary Distributed Representations,” Biologically Inspired Cognitive Architectures, vol.
3, pp. 64–86, 2013.

[38]. Eliasmith C, How to Build a Brain. Oxford University Press, 2013.

[39]. Kleyko D, Osipov E, Gayler RW, Khan AI, and Dyer AG, “Imitation of Honey Bees’ Concept
Learning Processes Using Vector Symbolic Architectures,” Biologically Inspired Cognitive
Architectures, vol. 14, pp. 57–72, 2015.

[40]. Osipov E, Kleyko D, and Legalov A, “Associative Synthesis of Finite State Automata Model
of a Controlled Object with Hyperdimensional Computing,” in Annual Conference of the IEEE
Industrial Electronics Society (IECON), 2017, pp. 3276–3281.

[41]. Yerxa T, Anderson A, and Weiss E, “The Hyperdimensional Stack Machine,” in Cognitive
Computing, 2018, pp. 1–2.

[42]. beim Graben P, Huber M, Meyer W, Romer R, Tschope C, and Wolff M, “Vector Symbolic
Architectures for Context-Free Grammars,” Cognitive Computation, vol. 14, pp. 733–748, 2022.

[43]. Rahimi A, Datta S, Kleyko D, Frady EP, Olshausen B, Kanerva P, and Rabaey JM, “High-
dimensional Computing as a Nanoscalable Paradigm,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 64, no. 9, pp. 2508–2521, 2017.

[44]. Kanerva P, “Computing with High-Dimensional Vectors,” IEEE Design & Test, vol. 36, no. 3, pp.
7–14, 2019.

[45]. Plate TA, “Estimating Analogical Similarity by Dot-products of Holographic Reduced
Representations,” in Advances in Neural Information Processing Systems (NIPS), 1994, pp.
1109–1116.

[46]. Hinton GE, McClelland JL, and Rumelhart DE, “Distributed Representations,” in Parallel
Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, 1986, pp.
77–109.

[47]. Thorpe SJ, “Localized Versus Distributed Representations,” in The Handbook of Brain Theory
and Neural Networks. MIT Press, 2003, pp. 643–646.

[48]. Fodor JA and Pylyshyn ZW, “Connectionism and Cognitive Architecture: A Critical analysis,”
Cognition, vol. 28, no. 1–2, pp. 3–71, 1988. [PubMed: 2450716]

[49]. Kussul EM, Rachkovskij DA, and Baidyk TN, “On Image Texture Recognition by Associative-
Projective Neurocomputer,” in Intelligent Engineering Systems through Artificial Neural
Networks (ANNIE), 1991, pp. 453–458.

Kleyko et al. Page 57

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[50]. Smolensky P, “Tensor Product Variable Binding and the Representation of Symbolic Structures in
Connectionist Systems,” Artificial Intelligence, vol. 46, pp. 159–216, 1990.

[51]. Plate TA, Distributed Representations and Nested Compositional Structure. University of
Toronto, PhD Thesis, 1994.

[52]. ——, “Holographic Reduced Representations,” IEEE Transactions on Neural Networks, vol. 6,
no. 3, pp. 623–641, 1995. [PubMed: 18263348]

[53]. ——, Holographic Reduced Representations: Distributed Representation for Cognitive
Structures. Stanford: CSLI, 2003.

[54]. Gayler RW, “Multiplicative Binding, Representation Operators & Analogy,” in Advances in
Analogy Research: Integration of Theory and Data from the Cognitive, Computational, and
Neural Sciences, 1998, pp. 1–4.

[55]. Kanerva P, “Fully Distributed Representation,” in Real World Computing Symposium (RWC),
1997, pp. 358–365.

[56]. Rachkovskij DA and Kussul EM, “Binding and Normalization of Binary Sparse Distributed
Representations by Context-Dependent Thinning,” Neural Computation, vol. 13, no. 2, pp. 411–
452, 2001.

[57]. Kleyko D, Osipov E, and Rachkovskij DA, “Modification of Holographic Graph Neuron using
Sparse Distributed Representations,” Procedia Computer Science, vol. 88, pp. 39–45, 2016.

[58]. Laiho M, Poikonen JH, Kanerva P, and Lehtonen E, “High-dimensional computing with sparse
vectors,” in IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015, pp. 1–4.

[59]. Frady EP, Kleyko D, and Sommer FT, “Variable Binding for Sparse Distributed Representations:
Theory and Applications,” IEEE Transactions on Neural Networks and Learning Systems, vol.
99, no. PP, pp. 1–14, 2021.

[60]. Gallant SI and Okaywe TW, “Representing Objects, Relations, and Sequences,” Neural
Computation, vol. 25, no. 8, pp. 2038–2078, 2013. [PubMed: 23607563]

[61]. Aerts D, Czachor M, and Moor BD, “Geometric Analogue of Holographic Reduced
Representation,” Journal of Mathematical Psychology, vol. 53, pp. 389–398, 2009.

[62]. Schlegel K, Neubert P, and Protzel P, “A Comparison of Vector Symbolic Architectures,”
Artificial Intelligence Review, vol. 55, pp. 4523–4555, 2021.

[63]. Ledoux M, The Concentration of Measure Phenomenon, ser. Mathematical Surveys and
Monographs. American Mathematical Society, 2001, no. 89.

[64]. Gorban AN and Tyukin IY, “Blessing of Dimensionality: Mathematical Foundations of the
Statistical Physics of Data,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 376, no. 2118, pp. 1–18, 2018.

[65]. Alaghi A and Hayes J, “Computing with Randomness,” IEEE Spectrum, vol. 55, no. 3, pp.
46–51, 2018.

[66]. Rachkovskij DA, Slipchenko SV, Kussul EM, and Baidyk TN, “Sparse Binary Distributed
Encoding of Scalars,” Journal of Automation and Information Sciences, vol. 37, no. 6, pp. 12–23,
2005.

[67]. Weiss E, Cheung B, and Olshausen BA, “A Neural Architecture for Representing and Reasoning
about Spatial Relationships,” OpenReview Preprint, pp. 1–4, 2016.

[68]. Komer B, Stewart TC, Voelker AR, and Eliasmith C, “A Neural Representation of Continuous
Space Using Fractional Binding,” in Annual Meeting of the Cognitive Science Society (CogSci),
2019, pp. 2038–2043.

[69]. Sutor P, Summers-Stay D, and Aloimonos Y, “A Computational Theory for Life-long Learning
of Semantics,” in International Conference on Artificial General Intelligence (AGI), 2018, pp.
217–226.

[70]. Frolov AA, Rachkovskij DA, and Husek D, “On Informational Characteristics of Willshaw-Like
Auto-Associative Memory,” Neural Network World, vol. 12, no. 2, pp. 141–157, 2002.

[71]. Frolov AA, Husek D, and Rachkovskij DA, “Time of Searching for Similar Binary Vectors in
Associative Memory,” Cybernetics and Systems Analysis, vol. 42, no. 5, pp. 615–623, 2006.

Kleyko et al. Page 58

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[72]. Gritsenko VI, Rachkovskij DA, Frolov AA, Gayler RW, Kleyko D, and Osipov E, “Neural
Distributed Autoassociative Memories: A Survey,” Cybernetics and Computer Engineering, vol.
2, no. 188, pp. 5–35, 2017.

[73]. Kleyko D, Rachkovskij DA, Osipov E, and Rahimi A, “A Survey on Hyperdimensional
Computing aka Vector Symbolic Architectures, Part I: Models and Data Transformations,” ACM
Computing Surveys, 2022.

[74]. Greff K, van Steenkiste S, and Schmidhuber J, “On the Binding Problem in Artificial Neural
Networks,” arXiv:2012.05208, pp. 1–75, 2020.

[75]. Kanerva P, “What We Mean When We Say “WhatâĂŹs the Dollar of Mexico?”: Prototypes and
Mapping in Concept Space,” in AAAI Fall Symposium. Quantum Informatics for Cognitive,
Social, and Semantic Processes,, Ed., 2010, pp. 2–6.

[76]. Frady EP, Kent SJ, Olshausen BA, and Sommer FT, “Resonator Networks, 1: An Efficient
Solution for Factoring High-Dimensional, Distributed Representations of Data Structures,”
Neural Computation, vol. 32, no. 12, pp. 2311–2331, 2020. [PubMed: 33080162]

[77]. Kent SJ, Frady EP, Sommer FT, and Olshausen BA, “Resonator Networks, 2: Factorization
Performance and Capacity Compared to Optimization-Based Methods,” Neural Computation,
vol. 32, no. 12, pp. 2332–2388, 2020. [PubMed: 33080160]

[78]. Kleyko D, Rahimi A, Gayler RW, and Osipov E, “Autoscaling Bloom Filter: Controlling Trade-
off Between True and False Positives,” Neural Computing and Applications, vol. 32, pp. 3675–
3684, 2020.

[79]. Simpkin C, Taylor I, Bent GA, de Mel G, Rallapalli S, Ma L, and Srivatsa M, “Constructing
Distributed Time-critical Applications Using Cognitive Enabled Services,” Future Generation
Computer Systems, vol. 100, pp. 70–85, 2019.

[80]. Rosato A, Panella M, and Kleyko D, “Hyperdimensional Computing for Efficient Distributed
Classification with Randomized Neural Networks,” in International Joint Conference on Neural
Networks (IJCNN), 2021, pp. 1–10.

[81]. Jakimovski P, Schmidtke HR, Sigg S, Chaves LWF, and Beigl M, “Collective Communication for
Dense Sensing Environments,” Journal of Ambient Intelligence and Smart Environments, vol. 4,
no. 2, pp. 123–134, 2012.

[82]. Kleyko D, Lyamin N, Osipov E, and Riliskis L, “Dependable MAC Layer Architecture based on
Holographic Data Representation Using Hyper-Dimensional Binary Spatter Codes,” in Multiple
Access Communications (MACOM), 2012, pp. 134–145.

[83]. Kim H, “HDM: Hyper-Dimensional Modulation for Robust Low-Power Communications,” in
IEEE International Conference on Communications (ICC), 2018, pp. 1–6.

[84]. Joshi A, Halseth JT, and Kanerva P, “Language Geometry Using Random Indexing,” in
International Symposium on Quantum Interaction (QI), 2016, pp. 265–274.

[85]. Levy S, Bajracharya S, and Gayler RW, “Learning Behavior Hierarchies via High-Dimensional
Sensor Projection,” in The Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI),
2013, pp. 1–4.

[86]. Neubert P, Schubert S, and Protzel P, “An Introduction to Hyper-dimensional Computing for
Robotics,” KI - Künstliche Intelligenz, vol. 33, no. 4, pp. 319–330, 2019.

[87]. Mitrokhin A, Sutor P, Fermuller C, and Aloimonos Y, “Learning Sensorimotor Control with
Neuromorphic Sensors: Toward Hyperdimensional Active Perception,” Science Robotics, vol. 4,
no. 30, pp. 1–10, 2019.

[88]. Kleyko D, Gayler RW, and Osipov E, “Commentaries on “Learning Sensorimotor Control with
Neuromorphic Sensors: Toward Hyperdimensional Active Perception” [Science Robotics Vol. 4
Issue 30 (2019) 1–10],” arXiv:2003.1145, pp. 1–10, 2020.

[89]. Hersche M, Rella EM, Mauro AD, Benini L, and Rahimi A, “Integrating Event-based Dynamic
Vision Sensors with Sparse Hyperdimensional Computing: A Low-power Accelerator with
Online Learning Capability,” in IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2020, pp. 169–174.

[90]. Kleyko D, Osipov E, and Wiklund U, “A Hyperdimensional Computing Framework for Analysis
of Cardiorespiratory Synchronization During Paced Deep Breathing,” IEEE Access, vol. 7, pp.
34 403–34 415, 2019.

Kleyko et al. Page 59

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[91]. Rahimi A, Benatti S, Kanerva P, Benini L, and Rabaey JM, “Hyperdimensional Biosignal
Processing: A Case Study for EMG-Based Hand Gesture Recognition,” in IEEE International
Conference on Rebooting Computing (ICRC), 2016, pp. 1–8.

[92]. Burrello A, Schindler K, Benini L, and Rahimi A, “Hyperdimensional Computing with Local
Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain
Regions Using Short-Time iEEG Recordings,” IEEE Transactions on Biomedical Engineering,
vol. 67, no. 2, pp. 601–613, 2020. [PubMed: 31144620]

[93]. Rasanen O and Kakouros S, “Modeling Dependencies in Multiple Parallel Data Streams with
Hyperdimensional Computing,” IEEE Signal Processing Letters, vol. 21, no. 7, pp. 899–903,
2014.

[94]. Kleyko D, Osipov E, Papakonstantinou N, and Vyatkin V, “Hyperdimensional Computing in
Industrial Systems: The Use-Case of Distributed Fault Isolation in a Power Plant,” IEEE Access,
vol. 6, pp. 30 766–30 777, 2018.

[95]. Diao C, Kleyko D, Rabaey JM, and Olshausen BA, “Generalized Learning Vector Quantization
for Classification in Randomized Neural Networks and Hyperdimensional Computing,” in
International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–9.

[96]. Neumann J, “Learning the Systematic Transformation of Holographic Reduced Representations,”
Cognitive Systems Research, vol. 3, no. 2, pp. 227–235, 2002.

[97]. Plate TA, “Structure Matching and Transformation with Distributed Representations,” in
Connectionist-Symbolic Integration, 1997, pp. 1–19.

[98]. Kanerva P, “Large Patterns Make Great Symbols: An example of Learning from Example,” in
International Workshop on Hybrid Neural Systems, ser. Lecture Notes in Computer Science, vol.
1778, 2000, pp. 194–203.

[99]. Kussul EM, Rachkovskij DA, and Wunsch DC, “The Random Subspace Coarse Coding Scheme
for Real-valued Vectors,” in International Joint Conference on Neural Networks (IJCNN), vol. 1,
1999, pp. 450–455.

[100]. Rachkovskij DA, “Formation of Similarity-reflecting Binary Vectors with Random Binary
Projections,” Cybernetics and Systems Analysis, vol. 51, no. 2, pp. 313–323, 2015.

[101]. Widdows D and Cohen T, “Reasoning with Vectors: A Continuous Model for Fast Robust
Inference,” Logic Journal of the IGPL, vol. 23, no. 2, pp. 141–173, 2015. [PubMed: 26582967]

[102]. Frady EP, Kleyko D, Kymn CJ, Olshausen BA, and Sommer FT, “Computing on Functions
Using Randomized Vector Representations,” arXiv:2109.03429, pp. 1–33, 2021.

[103]. Bloom BH, “Space/Time Trade-offs in Hash Coding with Allowable Errors,” Communications
of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[104]. Fan L, Cao P, Almeida J, and Broder A, “Summary Cache: A Scalable Wide-area Web Cache
Sharing Protocol,” IEEE/ACM Transaction on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[105]. Tarkoma S, Rothenberg CE, and Lagerspetz E, “Theory and Practice of Bloom Filters for
Distributed Systems,” IEEE Communications Surveys and Tutorials, vol. 14, no. 1, pp. 131–155,
2012.

[106]. Cormode G and Muthukrishnan S, “An Improved Data Stream Summary: The Count-Min
Sketch and its Applications,” Journal of Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[107]. Burrello A, Cavigelli L, Schindler K, Benini L, and Rahimi A, “Lae-laps: An Energy-Efficient
Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2019, pp. 752–757.

[108]. Alonso P, Shridhar K, Kleyko D, Osipov E, and Liwicki M, “HyperEmbed: Tradeoffs
Between Resources and Performance in NLP Tasks with Hyperdimensional Computing enabled
Embedding of n-gram Statistics,” in International Joint Conference on Neural Networks
(IJCNN), 2021, pp. 1–9.

[109]. Shridhar K, Jain H, Agarwal A, and Kleyko D, “End to End Binarized Neural Networks for Text
Classification,” in Workshop on Simple and Efficient Natural Language Processing (SustaiNLP),
2020, pp. 29–34.

[110]. Kussul EM and Baidyk TN, “On Information Encoding in Associative-Projective Neural
Networks,” Report 93–3, V. M. Glushkov Institute of Cybernetics (in Russian), Tech. Rep., 1993.

Kleyko et al. Page 60

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[111]. Plate TA, “Networks Which Learn to Store Variable-length Sequences in a Fixed Set of Unit
Activations,” Preprint, pp. 1–19, 1995.

[112]. Sahlgren M, Holst A, and Kanerva P, “Permutations as a Means to Encode Order in Word
Space,” in Annual Meeting of the Cognitive Science Society (CogSci), 2008, pp. 1300–1305.

[113]. Levenshtein VI, “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals,”
Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.

[114]. Sokolov A, “Vector Representations For Efficient Comparison and Search for Similar Strings,”
Cybernetics and Systems Analysis, vol. 43, no. 4, pp. 484–498, 2007.

[115]. Hannagan T, Dupoux E, and Christophe A, “Holographic String Encoding,” Cognitive Science,
vol. 35, no. 1, pp. 79–118, 2011. [PubMed: 21428993]

[116]. Kleyko D and Osipov E, “On Bidirectional Transitions between Localist and Distributed
Representations: The Case of Common Substrings Search Using Vector Symbolic Architecture,”
Procedia Computer Science, vol. 41, pp. 104–113, 2014.

[117]. Cohen T, Widdows D, Wahle M, and Schvaneveldt RW, “Orthogonality and Orthography:
Introducing Measured Distance into Semantic Space,” in International Symposium on Quantum
Interaction (QI), ser. Lecture Notes in Computer Science, vol. 8369, 2013, pp. 34–46.

[118]. Rachkovskij DA, “Shift-Equivariant Similarity-Preserving Hypervector Representations of
Sequences,” arXiv:2112.15475, pp. 1–10, 2021.

[119]. Rachkovskij DA and Kleyko D, “Recursive Binding for Similarity-Preserving Hypervector
Representations of Sequences,” in International Joint Conference on Neural Networks (IJCNN),
2022, pp. 1–8.

[120]. Choo X and Eliasmith C, “A Spiking Neuron Model of Serial-Order Recall,” in Annual Meeting
of the Cognitive Science Society (CogSci), 2010, pp. 2188–2193.

[121]. Blouw P and Eliasmith C, “A Neurally Plausible Encoding of Word Order Information into a
Semantic Vector Space,” in Annual Meeting of the Cognitive Science Society (CogSci), 2013,
pp. 1905–1910.

[122]. Kelly MA, Arora N, West RL, and Reitter D, “Holographic Declarative Memory: Distributional
Semantics as the Architecture of Memory,” Cognitive Science, vol. 44, no. 11, pp. 1–34, 2020.

[123]. Gosmann J and Eliasmith C, “CUE: A Unified Spiking Neuron Model of Short-term and
Long-term Memory,” Psychological Review, vol. 128, no. 1, pp. 104–124, 2021. [PubMed:
32816508]

[124]. Reimann S, “The Algebra of Cognitive States: Towards Modelling the Serial Position Curve,” in
International Conference on Cognitive Modeling (ICCM), 2021, pp. 1–7.

[125]. Calmus R, Wilson B, Kikuchi Y, and Petkov CI, “Structured Sequence Processing
and Combinatorial Binding: Neurobiologically and Computationally Informed Hypotheses,”
Philosophical Transactions of the Royal Society B, vol. 375, no. 1791, pp. 1–13, 2019.

[126]. Kim Y, Imani M, Moshiri N, and Rosing T, “GenieHD: Efficient DNA Pattern Matching
Accelerator Using Hyperdimensional Computing,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2020, pp. 115–120.

[127]. Kleyko D, Osipov E, and Gayler RW, “Recognizing Permuted Words with Vector Symbolic
Architectures: A Cambridge Test for Machines,” Procedia Computer Science, vol. 88, pp. 169–
175, 2016.

[128]. Schlegel K, Neubert P, and Protzel P, “HDC-MiniROCKET: Explicit Time Encoding in Time
Series Classification with Hyperdimensional Computing,” in International Joint Conference on
Neural Networks (IJCNN), 2022, pp. 1–8.

[129]. Najafabadi FR, Rahimi A, Kanerva P, and Rabaey JM, “Hyperdimensional Computing for Text
Classification,” in Design, Automation and Test in Europe Conference (DATE), 2016, pp. 1–1.

[130]. Rahimi A, Kanerva P, and Rabaey J, “A Robust and Energy Efficient Classifier Using Brain-
Inspired Hyperdimensional Computing,” in IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), 2016, pp. 64–69.

[131]. Kleyko D, Osipov E, Silva DD, Wiklund U, Vyatkin V, and Alahakoon D, “Distributed
Representation of n-gram Statistics for Boosting Self-Organizing Maps with Hyperdimensional
Computing,” in International Andrei Ershov Memorial Conference on Perspectives of System
Informatics (PSI), 2019, pp. 64–79.

Kleyko et al. Page 61

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[132]. Bandaragoda T, Silva DD, Kleyko D, Osipov E, Wiklund U, and Alahakoon D, “Trajectory
Clustering of Road Traffic in Urban Environments Using Incremental Machine Learning in
Combination with Hyperdimensional Computing,” in IEEE Intelligent Transportation Systems
Conference (ITSC), 2019, pp. 1664–1670.

[133]. Gayler RW and Levy SD, “A Distributed Basis for Analogical Mapping,” in New frontiers in
Analogy Research, Second International Conference on the Analogy (ANALOGY), 2009, pp.
165–174.

[134]. Guo JK, Brackle DV, Lofaso N, and Hofmann MO, “Vector Representation for Sub-Graph
Encoding to Resolve Entities,” Procedia Computer Science, vol. 95, pp. 327–334, 2016.

[135]. Ma Y, Hildebrandt M, Tresp V, and Baier S, “Holistic Representations for Memorization and
Inference,” in Conference on Uncertainty in Artificial Intelligence (UAI), 2018, pp. 1–11.

[136]. Nickel M, Rosasco L, and Poggio T, “Holographic Embeddings of Knowledge Graphs,” in
AAAI Conference on Artificial Intelligence, 2016, pp. 1955–1961.

[137]. Qiu F, “Graph Embeddings via Tensor Products and Approximately Orthonormal Codes,”
arXiv:2208.10917, pp. 1–20, 2022.

[138]. Stewart TC, Choo X, and Eliasmith C, “Sentence Processing in Spiking Neurons: A
Biologically Plausible Left-corner Parser,” in Annual Meeting of the Cognitive Science Society
(CogSci), 2014, pp. 1533–1538.

[139]. Rabin MO and Scott D, “Finite Automata and Their Decision Problems,” IBM Journal of
Research and Development, vol. 3, no. 2, pp. 114–125, 1959.

[140]. Crawford E, Gingerich M, and Eliasmith C, “Biologically Plausible, Human-scale Knowledge
Representation,” Cognitive Science, vol. 40, no. 4, pp. 782–821, 2016. [PubMed: 26173464]

[141]. Ghazi B, Panigrahy R, and Wang J, “Recursive Sketches for Modular Deep Learning,” in
International Conference on Machine Learning (ICML), 2019, pp. 2211–2220.

[142]. Gallant SI, “Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a “Soft” VSA
Representation for JSON,” arXiv:2202.04771, pp. 1–10, 2022.

[143]. Boyer RS and Moore JS, “A Fast String Searching Algorithm,” Communications of the ACM,
vol. 20, no. 10, pp. 762–772, 1977.

[144]. Karp RM and Rabin MO, “Efficient Randomized Pattern-matching Algorithms,” IBM Journal
of Research and Development, vol. 31, no. 2, pp. 249–260, 1987.

[145]. Knuth DE, Morris JH, and Pratt VR, “Fast Pattern Matching in Strings,” SIAM Journal on
Computing, vol. 6, no. 2, pp. 323–350, 1977.

[146]. Pashchenko DV, Trokoz DA, Martyshkin AI, Sinev MP, and Svistunov BL, “Search for a
Substring of Characters Using the Theory of Non-deterministic Finite Automata and Vector-
Character Architecture,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 3, pp.
1238–1250, 2020.

[147]. Karunaratne G, Schmuck M, Gallo ML, Cherubini G, Benini L, Sebastian A, and Rahimi A,
“Robust High-dimensional Memory-augmented Neural Networks,” Nature Communications, vol.
12, no. 1, pp. 1–12, 2021.

[148]. Frady EP, Kent SJ, Kanerva P, Olshausen BA, and Sommer FT, “Cognitive Neural Systems for
Disentangling Compositions,” in Cognitive Computing, 2018, pp. 1–3.

[149]. Kleyko D, Bybee C, Kymn CJ, Olshausen BA, Khosrowshahi A, Nikonov DE, Sommer FT,
and Frady EP, “Integer Factorization with Compositional Distributed Representations,” in Neuro-
Inspired Computational Elements Conference (NICE), 2022, pp. 73–80.

[150]. Frady EP, Kleyko D, Kymn CJ, Olshausen BA, and Sommer FT, “Computing on Functions
Using Randomized Vector Representations (in brief),” in Neuro-Inspired Computational
Elements Conference (NICE), 2022, pp. 115–122.

[151]. Furlong PM and Eliasmith C, “Fractional Binding in Vector Symbolic Architectures as Quasi-
Probability Statements,” in Annual Meeting of the Cognitive Science Society (CogSci), 2022, pp.
259–266.

[152]. Furlong PM, Stewart TC, and Eliasmith C, “Fractional Binding in Vector Symbolic
Representations for Efficient Mutual Information Exploration,” in ICRA Workshop: Towards
Curious Robots: Modern Approaches for Intrinsically-Motivated Intelligent Behavior, 2022, pp.
1–5.

Kleyko et al. Page 62

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[153]. Hersche M, Zeqiri M, Benini L, Sebastian A, and Rahimi A, “A Neuro-Vector-Symbolic
Architecture for Solving Raven’s Progressive Matrices,” arXiv:2203.04571, pp. 1–20, 2022.

[154]. Komer B and Eliasmith C, “Efficient Navigation using a Scalable, Biologically Inspired Spatial
Representation,” in Annual Meeting of the Cognitive Science Society (CogSci), 2020, pp. 1532–
1538.

[155]. Lu T, Voelker AR, Komer B, and Eliasmith C, “Representing Spatial Relations with Fractional
Binding,” in Annual Meeting of the Cognitive Science Society (CogSci), 2019, pp. 2214–2220.

[156]. Cheung B, Terekhov A, Chen Y, Agrawal P, and Olshausen B, “Superposition of Many Models
into One,” in Advances in Neural Information Processing Systems (NeurIPS), 2019, pp. 10 868–
10 877.

[157]. Wilson S, SÃijnderhauf N, and Dayoub F, “Hyperdimensional Feature Fusion for Out-Of-
Distribution Detection,” arXiv:2110.00214, pp. 1–13, 2021.

[158]. Neubert P and Schubert S, “Hyperdimensional Computing as a Framework for Systematic
Aggregation of Image Descriptors,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 16 938–16 947.

[159]. Neubert P, Schubert S, Schlegel K, and Protzel P, “Vector Semantic Representations as
Descriptors for Visual Place Recognition,” in Robotics: Science and Systems (RSS), 2021, pp.
1–11.

[160]. Ganesan A, Gao H, Gandhi S, Raff E, Oates T, Holt J, and McLean M, “Learning with
Holographic Reduced Representations,” in Advances in Neural Information Processing Systems
(NeurIPS), 2021, pp. 1–15.

[161]. Datta S, Antonio RAG, Ison ARS, and Rabaey JM, “A Programmable Hyper-Dimensional
Processor Architecture for Human-Centric IoT,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 9, no. 3, pp. 439–452, 2019.

[162]. Eggimann M, A. AR, and Benini L, “A 5 μW Standard Cell Memory-based Configurable
Hyperdimensional Computing Accelerator for Always-on Smart Sensing,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4116–4128, 2021.

[163]. Montagna F, Rahimi A, Benatti S, Rossi D, and Benini L, “PULP-HD: Accelerating Brain-
Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform,” in IEEE/ACM
Design Automation Conference (DAC), 2018, pp. 1–6.

[164]. Wu T, Huang P-C, Rahimi A, Li H, Shulaker M, Rabaey JM, Wong H-S, and Mitra S, “Brain-
Inspired Computing Exploiting Carbon Nanotube FETs and Resistive RAM: Hyperdimensional
Computing Case Study,” in IEEE International Solid-State Circuits Conference (ISSCC), 2018,
pp. 492–493.

[165]. Wu TF, Li H, Huang P-C, Rahimi A, Hills G, Hodson B, Hwang W, Rabaey JM, Wong H-SP,
Shulaker MM, and Mitra S, “Hyperdimensional Computing Exploiting Carbon Nanotube FETs,
Resistive RAM, and Their Monolithic 3D Integration,” IEEE Journal of Solid-State Circuits, vol.
53, no. 11, pp. 3183–3196, 2018.

[166]. Moin A, Zhou A, Rahimi A, Menon A, Benatti S, Alexandrov G, Tamakloe S, Ting J,
Yamamoto N, Khan Y, Burghardt F, Benini L, Arias AC, and Rabaey JM, “A Wearable
Biosensing System with In-sensor Adaptive Machine Learning for Hand Gesture Recognition,”
Nature Electronics, vol. 4, no. 1, pp. 54–63, 2021.

[167]. Eliasmith C and Anderson CH, Neural Engineering: Computation, Representation, and
Dynamics in Neurobiological Systems. MIT Press, 2003.

[168]. Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC, Rasmussen D, Choo X, Voelker
A, and Eliasmith C, “Nengo: A Python Tool for Building Large-scale Functional Brain Models,”
Frontiers in Neuroinformatics, vol. 7, pp. 1–13, 2014.

[169]. Csaba G and Porod W, “Coupled Oscillators for Computing: A Review and Perspective,”
Applied Physics Reviews, vol. 7, no. 1, pp. 1–19, 2020.

[170]. Frady EP and Sommer FT, “Robust Computation with Rhythmic Spike Patterns,” Proceedings
of the National Academy of Sciences, vol. 116, no. 36, pp. 18 050–18 059, 2019.

[171]. Palm G and Bonhoeffer T, “Parallel Processing for Associative and Neuronal Networks,”
Biological Cybernetics, vol. 51, no. 3, pp. 201–204, 1984. [PubMed: 6518181]

Kleyko et al. Page 63

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[172]. Willshaw DJ, Buneman OP, and Longuet-Higgins HC, “Non-holographic Associative Memory,”
Nature, vol. 222, no. 5197, pp. 960–962, 1969. [PubMed: 5789326]

[173]. Palm G, “On Associative Memory,” Biological Cybernetics, vol. 36, no. 1, pp. 19–31, 1980.
[PubMed: 7353062]

[174]. Palm G and Sommer FT, “Information Capacity in Recurrent McCulloch–Pitts Networks with
Sparsely Coded Memory States,” Network: Computation in Neural Systems, vol. 3, no. 2, pp.
177–186, 1992.

[175]. Sommer FT and Dayan P, “Bayesian Retrieval in Associative Memories with Storage Errors,”
IEEE Transactions on Neural Networks, vol. 9, no. 4, pp. 705–713, 1998. [PubMed: 18252493]

[176]. Stimberg M, Brette R, and Goodman DFM, “Brian 2, an Intuitive and Efficient Neural
Simulator,” Elife, vol. 8, pp. 1–41, 2019.

[177]. Nunes I, Heddes M, Givargis T, Nicolau A, and Veidenbaum A, “GraphHD: Efficient Graph
Classification using Hyperdimensional Computing,” in Design, Automation and Test in Europe
Conference (DATE), 2022, pp. 1485–1490.

[178]. Schmuck M, Benini L, and Rahimi A, “Hardware Optimizations of Dense Binary
Hyperdimensional Computing: Rematerialization of Hypervectors, Binarized Bundling, and
Combinational Associative Memory,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 15, no. 4, pp. 1–25, 2019.

[179]. Kleyko D, Frady EP, and Sommer FT, “Cellular Automata Can Reduce Memory Requirements
of Collective-State Computing,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 33, no. 6, pp. 2701–2713, 2022. [PubMed: 34699370]

[180]. Menon A, Sun D, Aristio M, Liew H, Lee K, and Rabaey JM, “A Highly Energy-Efficient
Hyperdimensional Computing Processor for Wearable Multi-modal Classification,” in IEEE
Biomedical Circuits and Systems Conference (BioCAS), 2021, pp. 1–4.

[181]. Menon A, Sun D, Sabouri S, Lee K, Aristio M, Liew H, and Rabaey JM, “A Highly
Energy-Efficient Hyperdimensional Computing Processor for Biosignal Classification,” IEEE
Transactions on Biomedical Circuits and Systems, pp. 1–11, 2022.

[182]. Hersche M, Karunaratne G, Cherubini G, Benini L, Sebastian A, and Rahimi A, “Constrained
Few-shot Class-incremental Learning,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2022, pp. 1–19.

[183]. der Velde FV and de Kamps M, “Neural Blackboard Architectures of Combinatorial Structures
in Cognition,” Behavioral and Brain Sciences, vol. 29, no. 1, pp. 37–70, 2006. [PubMed:
16542539]

[184]. Gayler RW, “Vector Symbolic Architectures are a Viable Alternative for Jackendoff’s
Challenges,” Behavioral and Brain Sciences, vol. 29, no. 1, pp. 78–79, 2006.

[185]. Kleyko D, Rachkovskij DA, Osipov E, and Rahimi A, “A Survey on Hyperdimensional
Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and
Challenges,” ACM Computing Surveys, 2022.

[186]. Kanerva P, Kristoferson J, and Holst A, “Random Indexing of Text Samples for Latent Semantic
Analysis,” in Annual Meeting of the Cognitive Science Society (CogSci), 2000, p. 1036.

[187]. Jones MN and Mewhort DJK, “Representing Word Meaning and Order Information in a
Composite Holographic Lexicon,” Psychological Review, vol. 114, no. 1, pp. 1–37, 2007.
[PubMed: 17227180]

[188]. Mikolov T, Sutskever I, Chen K, Corrado G, and Dean J, “Distributed Representations of Words
and Phrases and Their Compositionality,” in Advances in Neural Information Processing Systems
(NIPS), 2013, pp. 1–9.

[189]. Pennington J, Socher R, and Manning CD, “GloVe: Global Vectors for Word Representation,” in
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–
1543.

[190]. Blouw P, Solodkin E, Thagard P, and Eliasmith C, “Concepts as Semantic Pointers: A
Framework and Computational Model,” Cognitive Science, vol. 40, no. 5, pp. 1128–1162, 2016.
[PubMed: 26235459]

Kleyko et al. Page 64

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[191]. Kelly MA, Mewhort DJK, and West RL, “The Memory Tesseract: Mathematical Equivalence
between Composite and Separate Storage Memory Models,” Journal of Mathematical
Psychology, vol. 77, pp. 142–155, 2017.

[192]. Kleyko D, Karunaratne G, Rabaey JM, Sebastian A, and Rahimi A, “Generalized Key-Value
Memory to Flexibly Adjust Redundancy in Memory-Augmented Networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 99, no. PP, pp. 1–6, 2022.

[193]. Thomas A, Dasgupta S, and Rosing T, “A Theoretical Perspective on Hyperdimensional
Computing,” Journal of Artificial Intelligence Research, vol. 72, pp. 215–249, 2021.

[194]. Emruli B, Sandin F, and Delsing J, “Vector Space Architecture for Emergent Interoperability of
Systems by Learning from Demonstration,” Biologically Inspired Cognitive Architectures, vol.
11, pp. 53–64, 2015.

[195]. Steinberg J and Sompolinsky H, “Associative Memory of Structured Knowledge,” bioRxiv, pp.
1–27, 2022.

[196]. Stewart TC, Choo X, and Eliasmith C, “Symbolic Reasoning in Spiking Neurons: A Model of
the Cortex/Basal Ganglia/Thalamus Loop,” in Annual Meeting of the Cognitive Science Society
(CogSci), 2010, pp. 1100–1105.

[197]. Renner A, Supic L, Danielescu A, Indiveri G, Olshausen BA, Sandamirskaya Y, Sommer
FT, and Frady EP, “Neuromorphic Visual Scene Understanding with Resonator Networks,”
arXiv:2208.12880, pp. 1–15, 2022.

[198]. Mansinghka VK, “Natively Probabilistic Computation,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2009.

[199]. Orbán G, Berkes P, Fiser J, and Lengyel M, “Neural Variability and Sampling-based
Probabilistic Representations in the Visual Cortex,” Neuron, vol. 92, no. 2, pp. 530–543, 2016.
[PubMed: 27764674]

[200]. Papadimitriou CH, Vempala SS, Mitropolsky D, Collins M, and Maass W, “Brain Computation
by Assemblies of Neurons,” Proceedings of the National Academy of Sciences, vol. 117, no. 25,
pp. 14 464–14 472, 2020.

[201]. Schöner G, Spencer JP, and the DFT Research Group, Dynamic Thinking: A Primer on
Dynamic Field Theory. Oxford University Press, 2016.

[202]. Zhang Y, Qu P, Ji Y, Zhang W, Gao G, Wang G, Song S, Li G, Chen W, Zheng W, Chen F, Pei
J, Zhao R, Zhao M, and Shi L, “A System Hierarchy for Brain-inspired Computing,” Nature, vol.
586, no. 7829, pp. 378–384, 2020. [PubMed: 33057220]

[203]. Cook M, “Universality in Elementary Cellular Automata,” Complex Systems, vol. 15, no. 1, pp.
1–40, 2004.

[204]. Neary T and Woods D, “Small Weakly Universal Turing Machines,” in International
Symposium on Fundamentals of Computation Theory (FCT), 2009, pp. 262–273.

[205]. Wolfram S, A New Kind of Science. Champaign, IL. Wolfram Media, Inc., 2002.

[206]. Siegelmann HT and Sontag ED, “Turing Computability with Neural Nets,” Applied
Mathematics Letters, vol. 4, no. 6, pp. 77–80, 1991.

[207]. Perez J, Marinkovic J, and Barcelo P, “On the Turing Completeness of Modern Neural Network
Architectures,” in International Conference on Learning Representations (ICLR), 2019, pp. 1–36.

[208]. beim Graben P and Potthast R, “Implementing Turing Machines in Dynamic Field
Architectures,” arXiv:1204.5462, pp. 1–5, 2012.

[209]. Kwisthout J and Donselaar N, “On the Computational Power and Complexity of Spiking Neural
Networks,” in Neuro-Inspired Computational Elements Workshop (NICE), 2020, pp. 1–7.

[210]. Maass W, “Lower Bounds for the Computational Power of Networks of Spiking Neurons,”
Neural Computation, vol. 8, no. 1, pp. 1–40, 1996.

[211]. Demidovskij A, “Encoding and Decoding of Recursive Structures in Neural-Symbolic
Systems,” Optical Memory and Neural Networks, vol. 30, no. 1, pp. 37–50, 2021.

[212]. Dolan CP and Smolensky P, “Tensor Product Production System: a Modular Architecture and
Representation,” Connection Science, vol. 1, no. 1, pp. 53–68, 1989.

Kleyko et al. Page 65

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[213]. Knight Y, Spranger M, and Steels L, “A Vector Representation of Fluid Construction
Grammar Using Holographic Reduced Representations,” in EuroAsianPacific Joint Conference
on Cognitive Science (EAPCogSci), 2015, pp. 560–565.

Kleyko et al. Page 66

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
The place of HDC/VSA within Marr’s levels of analysis [19]. The focus of this article

is marked by the dashed rectangle. We explain how HDC/VSA provides primitives

to formalize algorithms in ways that seamlessly connect to the computational and

implementational levels in the computing hierarchy.

Kleyko et al. Page 67

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
An example of a resonator network with three arguments. It is factoring a compound

hypervector s = a ⊙ b ⊙ c; A, B, and C denote the corresponding item memories containing

seed hypervectors for a, b, and c arguments, respectively.

Kleyko et al. Page 68

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
The correlation coefficients between the exact histogram and their approximations

from integer-valued ℤN compound hypervectors. Six different sizes of histograms were

considered. The dimensionality of hypervectors varied in the range [200, 10000] with step

200. The values of counters were drawn from the discrete uniform distribution [0, 1023].

The reported values were averaged over 100 simulations.

Kleyko et al. Page 69

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
An example of an undirected and directed graphs with 5 nodes. In the case of the undirected

graph, each node has two edges.

Kleyko et al. Page 70

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
An example of a binary tree from [76] where the leaves are different symbols from the

alphabet.

Kleyko et al. Page 71

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
An example of a state diagram of a finite-state automaton modelling the control logic of a

turnstile. It has two states. The start state is depicted by the arrow pointing from the black

circle.

Kleyko et al. Page 72

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Average accuracy of the recall of the next state of the automaton from a, which was

bipolarized, against the dimensionality of hypervectors (N ∈ [100, 4000], with step 100).

The results were obtained over 50 random initializations of the item memories. For each

initialization, 1, 000 transitions (chosen randomly) were performed. For each transition

function, noise added to a was also generated at random. Bit Error Rates were in range

0.0312–0.2500, Bit Error Rate is defined as the percentage of bits (here dimensions) that

have errors relative to the total number of bits.

Kleyko et al. Page 73

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
The automaton for the base string “hello”.

Kleyko et al. Page 74

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Search of a substring in superposition with HDC/VSA using the modified algorithm from

[146]. The length of a substring was fixed to 30. The reported values were averaged over 30

simulations.

Kleyko et al. Page 75

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kleyko et al. Page 76

TABLE I

A qualitative assessment of HDC/VSA capabilities contrasted to conventional computing and neural networks.

Conventional computing/AI Neural networks HDC/VSA

Distributed representation × ✓ ✓

Learning from data × ✓ ✓

Symbolic computing with variables and binding ✓ × ✓

Tolerance to device imperfections × ? ✓

Transparency ✓ × ✓

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kleyko et al. Page 77

TABLE II

Table of behaviour of (2,4) Turing machine.

A B

0 2 L A 3 R A

1 3 L B 2 L B

2 3 L A 0 R B

3 3 L A 1 R B

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kleyko et al. Page 78

TABLE III

The heteroassociative item memory implementing (2,4) Turing machine.

Address (input) Content (output)

Tape content Next State Head’s move

a ⊙ 0 2 a L

a ⊙ 1 3 b L

a ⊙ 2 3 a L

a ⊙ 3 3 a L

b ⊙ 0 3 a R

b ⊙ 1 2 b L

b ⊙ 2 0 b R

b ⊙ 3 1 b R

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

	Abstract
	Introduction
	Guide to the article

	Motivation
	Fundamentals of HDC/VSA
	Basic elements of HDC/VSA
	High-dimensional space:
	Quasi-orthogonality:
	Similarity measure:
	Seed hypervectors:
	Item memory:

	HDC/VSA operations and compound representations
	Binding:
	Superposition:
	Permutation:
	Properties of HDC/VSA operations and their interaction:
	Superposition:
	Binding:
	Permutation:

	Parsing compound representations
	Parsing hypervectors with multiple bindings:

	Generality and utility

	Computing with HDC/VSA
	Computational primitives formalized in HDC/VSA
	The rules of thumb:
	Sets:
	Multisets/Histograms/Frequency distributions:
	Cross product of two sets:
	Sequences:
	n-gram statistics:
	Graphs:
	Binary trees:
	Stacks:
	Finite-state automata:
	Deeper hierarchies:

	Computing in superposition with HDC/VSA
	Simple examples of computing in superposition:
	Computing in superposition for substring search:
	Applications of computing in superposition:

	Hardware realizations of HDC/VSA
	HDC/VSA models for different types of hardware
	Dense binary vectors:
	Integer vectors:
	Real-valued vectors:
	Complex vectors:
	Sparse vectors:

	Mapping algorithms to hardware
	Hardware implementations of pure HDC/VSA:
	HDC/VSA combined with neural networks:

	Discussion
	Limitations and open challenges
	Applications:
	HDC/VSA dimensionality and working memory:
	Flow control:

	HDC/VSA as a framework for computing with emerging hardware
	Alternative frameworks:

	Appendix A
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	TABLE IV
	Fig. 14.
	Fig. 15.
	Appendix B
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	TABLE I
	TABLE II
	TABLE III

