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Abstract

This article reviews recent progress in the development of the computing framework Vector 
Symbolic Architectures (also known as Hyperdimensional Computing). This framework is well 

suited for implementation in stochastic, emerging hardware and it naturally expresses the types 

of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article 

that the field-like algebraic structure of Vector Symbolic Architectures offers simple but powerful 

operations on high-dimensional vectors that can support all data structures and manipulations 

relevant to modern computing. In addition, we illustrate the distinguishing feature of Vector 

Symbolic Architectures, “computing in superposition,” which sets it apart from conventional 

computing. It also opens the door to efficient solutions to the difficult combinatorial search 

problems inherent in AI applications. We sketch ways of demonstrating that Vector Symbolic 

Architectures are computationally universal. We see them acting as a framework for computing 

with distributed representations that can play a role of an abstraction layer for emerging computing 

hardware. This article serves as a reference for computer architects by illustrating the philosophy 

behind Vector Symbolic Architectures, techniques of distributed computing with them, and their 

relevance to emerging computing hardware, such as neuromorphic computing.

Index Terms—

computing framework; hyperdimensional computing; vector symbolic architectures; emerging 
hardware; distributed representations; data structures; Turing completeness; computing in 
superposition

I. Introduction

The demands of computation are changing. First, Artificial Intelligence (AI) and other novel 

applications pose a host of computing problems that require a search over an immense space 

of possible solutions, with many approximately correct answers, but rarely a single correct 

one. Second, future emerging hardware platforms, operating at ultra-low voltages to reduce 

energy consumption and to support continued process scaling, are destined to be noisy 

and, hence, operate stochastically [1]. These observations expose the need for a computing 

framework that supports both deterministic computation in the presence of noise as well as 

the approximate and parallel nature of algorithms used in AI.

By emerging hardware, we refer to the broad class of new hardware designs that are 

highly parallel, fabricated at ultra-small scales, utilize novel components, and/or operate at 

ultra-low voltages, thus consisting of unreliable, stochastic computational elements.

The conventional (à la von Neumann) computing architecture is not well adapted to these 

demands, as it was designed assuming precise computational elements for tasks that require 

exact answers. Conventional computing architectures will continue to play an important 
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role in technology, but there is a growing amount of computational demands that are 

better served by new computing designs. Thus, hardware engineers have been looking at 

distributed and neuromorphic computing as a way of meeting these demands.

Many of the emerging computational demands come from cognitive or perceptual 

applications found within the realm of AI. Examples include image recognition, computer 

vision, and text analysis. Indeed, large-scale deep learning neural network modeling 

dominates discussions about modern computing technology, pushing innovations in 

hardware design towards parallel, distributed processing [2]. While widely used, deep 

learning neural networks still have limitations, such as lacking the transparency of learned 

representations and the difficulties in performing symbolic computations. In order to support 

more sophisticated symbolic computations, researchers have been embedding conventional 

data structures, such as graphs and key-value pairs, into neural network models [3]–[5]. 

However, it is not yet clear whether the sub-symbolic pattern recognition and learning 

capabilities of deep neural networks can be augmented to handle the rich control flow, 

abstraction, symbol manipulation, and recursion of existing computing frameworks.

Work on developing emerging computing hardware is accelerating. There are many 

showcase demonstrations [6]–[9] but so far:

• these demonstrations have mostly lacked a unifying theoretical framework that 

can bring sufficient composability, explainability, and versatility;

• many demonstrations still depend on hand-crafted elements that would be prone 

to errors;

• most of the demonstrations have been sub-symbolic in nature and resort to 

support from the conventional computing architecture to implement the symbolic 

and flow control elements.

While these points are valid in general, there are some exceptions which we discuss in 

Section VI-B. Nevertheless, all of these demonstrate the need for a unifying computing 

framework that can serve as an abstraction layer between hardware and desired functionality. 

Ideally, such a framework should be flexible enough to provide interfaces to emerging 

hardware with various features, such as stochastic components, asynchronous spiking 

communication, or devices with analog elements.

For the following reasons, we propose Vector Symbolic Architectures (VSA) [10] or, 

synonymously, Hyperdimensional Computing (HDC) [11] as such a computing framework. 

First, HDC/VSA can represent and manipulate both symbolic and numerical data structures 

with distributed vector representations to solve, e.g., cognitive [12]–[14] or machine 

learning [15] tasks. HDC/VSA is a suitable framework for integration with neural network 

computations for solving problems in AI. It extends beyond typical AI tasks as an approach 

capable of performing symbolic manipulations with distributed representations. Second, 

the design of HDC/VSA, which was inspired by the brain, lends itself to implementation 

in emerging computing technologies [16] because it is highly robust to individual device 

variations. Third, HDC/VSA is a framework with two interfaces, one towards computations 

and algorithms and one towards implementation and representations (cf. Fig. 1). There are 
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different HDC/VSA models that all offer the same operation primitives but differ slightly in 

terms of their implementation of these primitives. For example, there are HDC/VSA models 

that compute with binary, bipolar, continuous real, and continuous complex vectors. Thus, 

the HDC/VSA concept has the flexibility to connect to a multitude of different hardware 

types, such as analog in-memory computing architectures [16] for binary-valued HDC/VSA 

models or spiking neuron architectures [17], [18] for complex-valued ones.

HDC/VSA is a relatively new concept. The key idea goes back to the 1990s, but computers 

of the day were not ready to handle large numbers of high-dimensional vectors. Now they 

are, and so the framework deserves to be looked into anew. Not as a complete substitute for 

conventional computing, but as a concept complementing it in a specific niche. For example, 

human and animal-like perception and learning have eluded our attempts to be programmed 

into computers. HDC/VSA is a strong candidate for such tasks because of their suitability 

for both statistical learning and symbolic reasoning.

This article provides three main contributions. First, we review the principles of HDC/VSA 

and how they provide a generic computing framework for implementing the primitives of 

conventional data structures and deterministic algorithms. Second, we highlight pros and 

cons of a non-traditional mode of computing in HDC/VSA, “computing in superposition,” 

which can leverage distributed representations and parallelism for efficiently solving 

computationally hard problems. Finally, we present two proposals (see Appendix A) that 

show the universality of HDC/VSA by using them to represent systems known to be Turing 

complete.

Guide to the article

The article is written with both newcomers to HDC/VSA and seasoned readers in mind. 

Section II provides some motivation for using HDC/VSA in the context of emerging 

computing hardware. This section sets up the context for the article. Section III offers 

a deep dive into the fundamentals of HDC/VSA, recommended primarily to readers not 

yet familiar with the framework. Section IV explains different aspects of computing with 

HDC/VSA, including a “cookbook” for the representation primitives for numerous data 

structures (Section IV-A) as well as introducing an idea of computing in superposition 

and its existing applications (Section IV-B). Current hardware realizations of HDC/VSA 

models are considered in Section V. Section VI provides the discussion. Finally, Appendix A 

describes proposals for implementing two Turing complete systems with HDC/VSA.

II. Motivation

The exponential growth of Big Data and AI applications exposes fundamental limitations of 

the conventional computing framework. One problem is that energy efficiency is stagnating 

[20] – training and fine-tuning a neural network for a Natural Language Processing 

application consumes energy and computational resources equivalent to several hundred 

thousand US dollars [21] or more [22]. Conventional computing hardware is also highly 

susceptible to errors and energy is often “wasted” attempting to maintain low error rates.
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Data-intensive applications illustrate the scale of the problem and make energy efficiency 

the grand challenge of computer engineering. To solve this challenge, alternative hardware 

is required that can work with imprecise and unreliable computational elements [1]. 

Operating at ultra-low voltages with stochastic devices that are prone to errors has the 

potential to greatly increase computing power and efficiency. For example, the recent 

advances in materials science as well as in device manufacturing make it possible to design 

computing hardware that accommodates computational principles of biological brains or 

exploits physical properties of the substrate material. For certain classes of problems, 

computing hardware such as neuromorphic processors [23]–[25] and in-memory computing 

architectures [16] consumes only a fraction of the energy compared to current technology. 

For certain tasks, existing neuromorphic platforms can be 1, 000 times more energy efficient 

[24] than the conventional ones.

There is currently a focus on implementing AI capabilities in emerging computing hardware 

[25], with the aim of providing an energy-efficient implementation of a selected class 

of AI functionalities (mainly neural networks). However, we see the opportunity for a 

computational framework exceeding neural networks in scope, which could empower an 

unprecedented breakthrough in emerging computing technology. First, while neural network 

algorithms serve a rather small subset of computation problems extremely well, they are 

unable to address a large class of problems that require conventional algorithms and data 

structures. A computing framework with a broader application scope than neural networks 

could boost the adoption of emerging computing by several orders of magnitude. Second, 

despite many promising applications for emerging computing hardware, the programming of 

any new functionality is far from trivial. Emerging computing hardware currently lacks 

a holistic software architecture, which would streamline the development of the new 

functionality. Current development strategies resemble those of assembly programming, 

where the developer is left with the entire job – from coming up with the algorithmic idea to 

designing the actual machine instructions to be executed by a central processing unit. Thus, 

the impressive recent emerging hardware development [16], [26] needs to be complemented 

with the creation of computing frameworks for such hardware, which can abstract and 

simplify the implementation of new functionalities, including the design of programs. Last 

but not least, most emerging hardware differs fundamentally from traditional computer and 

neural network accelerator hardware in that the enabled computations are unreliable and 

stochastic. Thus, a computing framework is required in which error correction and error 

robustness are achieved.

There is ample work demonstrating that HDC/VSA possesses a rich computational 

expressiveness, from the functionality of neural networks [27]–[30] to machine learning 

tasks [31]–[35] and cognitive modeling [13], [14], [36]–[39]. Further, HDC/VSA can 

express conventional algorithms, for example, finite state automata [40], [41] and context-

free grammars [42].

In this article, we explore whether HDC/VSA can serve as a computing framework for 

taking emerging computing to the next level. We argue that HDC/VSA provide a framework 

to formalize and modularize algorithms and, at the same time, bridge the computation and 

implementation levels in Marr’s framework [19] for information processing systems (see 
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Fig. 1). Our proposal generalizes earlier suggestions to apply HDC/VSA for implementing 

specific machine learning algorithms on emerging hardware [43], [44].

III. FUNDAMENTALS OF HDC/VSA

HDC/VSA [10], [11], is the term for a family of models for representing and manipulating 

data in a high-dimensional space. It was originally proposed in cognitive psychology and 

cognitive neuroscience as a connectionist model for symbolic reasoning [45]. In HDC/VSA, 

data objects are represented by vectors of high (but fixed) dimension N, sometimes called 

hypervectors or HD vectors. The encoded information is distributed across all components 

of a hypervector. Such distributed representations [46] are distinct from localist and semi-

localist representations [47], where single or subsets of components encode individual data 

objects.

Distributed representations are, in and of themselves, not the full story. As argued by 

[48], distributed representations must be productive and systematic. Productivity refers 

to massive expressiveness generated by simple primitives, while systematicity means that 

representations are sensitive to the structure of the encoded objects. These desiderata 

were one of the drivers for developing HDC/VSA. One major advantage of HDC/VSA 

as the algorithmic level in the Marr hierarchy (Fig. 1) is that it embraces distributed 

representations, which are robust to local noise.

The idea of computing with random hypervectors as basic objects rather than Boolean 

or numeric scalars was developed by Kussul as part of Associative-Projective Neural 

Networks [49] and independently in seminal works by Smolensky on Tensor Product 

Variable Binding [50] & Plate on Holographic Reduced Representation [51]. HDC/VSA 

can be formulated with different types of vectors, namely those containing real, complex, or 

binary entries, as well as with the multivectors from geometric algebra. These HDC/VSA 

models come under many different names: Holographic Reduced Representation (HRR) 

[52], [53], Multiply-Add-Permute (MAP) [54], Binary Spatter Codes [55], Sparse Binary 

Distributed Representations (SBDR) [56], [57], Sparse Block-Codes [58], [59], Matrix 

Binding of Additive Terms (MBAT) [60], Geometric Analogue of Holographic Reduced 

Representation (GAHRR) [61], etc. All of these different models have similar computational 

properties – see [30] and [62]. For clarity, we will use the Multiply-Add-Permute model in 

the remainder of this article.

A. Basic elements of HDC/VSA

1) High-dimensional space: HDC/VSA requires a high-dimensional space. The 

appropriate choice of dimensionality N is somewhat dependent on the problem, but there 

are simple rules of thumb (N > 1, 000, for example), and the representation of particular 

data structures in the given problem is much more important. As mentioned above, there are 

HDC/VSA models defined for different types of spaces (see Section V-A for more details). 

In this article, we will use a variation of the Multiply-Add-Permute model (MAP-I, see, e.g., 

[62]) that operates in integer vector spaces ℤN . Operations and properties that have proven 

useful are presented below (Appendix B provides the summary). It is worth pointing out that 
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the superposition and binding of hypervectors form an algebraic structure that resembles a 

field, and that permutations extend the algebra to all finite groups up to size N.

2) Quasi-orthogonality: HDC/VSA uses random (strictly speaking, pseudo-random) 

vectors as a means for data representation. By using random vectors as representations, 

HDC/VSA can exploit the concentration of measure phenomenon [63], [64], which implies 

that with high probability random vectors become almost orthogonal in high-dimensional 

vector spaces. This phenomenon is sometimes called progressive precision [65] or the 

blessing of dimensionality [64]. In the case of HDC/VSA, it means that when, e.g., two 

objects are represented by random vectors, with high probability their representations will be 

almost orthogonal to each other. Multiply-Add-Permute uses bipolar random vectors where 

the i-th component of a vector a is generated i.i.d. random from the Bernoulli distribution: ai 

~ 2(0.5)−1. In the HDC/VSA literature, dissimilar representations are described by various 

adjectives such as unrelated, uncorrelated, approximately-, pseudo-, or quasi-orthogonal. 

Unlike exact orthogonality, the dimension N is not a hard limit on the number of quasi-

orthogonal vectors one can create.

3) Similarity measure: Processing in HDC/VSA is based on similarity between 

hypervectors. The common similarity measures in HDC/VSA are the dot (scalar, inner) 

product, cosine similarity, overlap, and Hamming distance. In Multiply-Add-Permute, it is 

common to use either the cosine similarity or the dot product. Therefore, we will be using 

the dot product (denoted as ⟨·, ·⟩) as the similarity measure below.

4) Seed hypervectors: When designing an HDC/VSA algorithm for solving a problem, 

it is common to define a set of the most basic concepts/symbols for the given problem and 

assign hypervectors to them. Such seed hypervectors are defined as the representations 

of concepts that are irreducible. All other hypervectors occurring in the course of a 

computation are therefore reducible, that is, they are composed of seed hypervectors. Here 

we will focus on symbolic structures, i.e., symbols from some alphabet with size D, which 

are represented by i.i.d. random seed hypervectors (see Section III-A2). As mentioned 

above, in Multiply-Add-Permute, seed hypervectors are bipolar and so any hypervector 

a ∈ {−1, 1}N. The process of assigning seed hypervectors, usually (but not always) by 

i.i.d. random generation of vectors, is referred to as mapping, encoding, projection, or 

embedding. We reiterate that representations in an HDC/VSA algorithm need not always 

be quasi-orthogonal. For example, for representing real-valued variables one might use a 

locality-preserving representation scheme, in which representations of similar values are 

systematically correlated and not quasi-orthogonal [66]–[68], or where the hypervectors are 

learned [31], [69]. Thus, one should keep in mind that i.i.d. randomness is not the only tool 

for designing seed representations.

5) Item memory: Seed hypervectors are stored in the so-called item memory (or cleanup 

memory), a content-addressable memory which can be just a matrix or an associative 

memory [70]–[72] that stores the hypervectors as point attractors.
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B. HDC/VSA operations and compound representations

Seed hypervectors are the building blocks for compound HDC/VSA representations, which 

are built from operations performed on the seed vectors. For example, a compound 

hypervector representing edges of a graph (compound entity) can be constructed (Section 

IV-A7) from seed hypervectors representing its nodes (basis symbols). This compositional 

formation of data structures in HDC/VSA is akin to conventional computing and very 

different from the modern neural networks in which activity vectors, especially in hidden 

layers, often can not be readily parsed.

Two key HDC/VSA operations are dyadic vector operations between hypervectors that 

are referred to as superposition and binding. Like the corresponding operations between 

ordinary numbers, they form, together with the representation vector space, a field-

like algebraic structure. Another important HDC/VSA operation is the permutation of 

components within a hypervector.

The component-wise addition operation is used for bundling or superposing and in 

the Multiply-Add-Permute model it is implemented as a component-wise addition of 

hypervectors. The binding operation is used for variable binding. In the Multiply-Add-

Permute model, the binding operation is implemented via component-wise multiplication, 

i.e., via the Hadamard product. The permutation operation, as its name suggests, shuffles 

the components of a hypervector according to a pre-defined permutation that can be, e.g., 

chosen randomly. In practice, a rotation of components, i.e., a cyclic shift of the hypervector 

component index, is used frequently.

In what follows, we describe each operation and its properties in more detail. It is important 

to stress that various HDC/VSA models differ in the particular details of realizing their 

operations. As a consequence, the operations’ properties presented below are relevant for the 

Multiply-Add-Permute model but are not valid for each and every HDC/VSA model. For the 

sake of focus, we will not discuss differences between different HDC/VSA models in depth 

here, but we encourage interested readers to consult recent studies [62], [73].

Note also that the seed hypervectors referred to in this section are pseudo-random i.i.d. 

Because high-dimensional representation tolerates errors, the conditions listed below need 

only be satisfied approximately or with high probability. Due to the concentration of 

measure phenomenon, the operations – and computations based on them – become ever 

more reliable, dependable, and predictable as the dimensionality N of the space increases.

1) Binding: a dyadic operation mapping two hypervectors to another hypervector. It is 

used to represent an object formed by the binding of two other objects. This operation is 

an important ingredient for forming compositional structures with distributed representations 

(see, e.g., a discussion on its importance in the context of deep learning in [74]). Formally, 

for two objects a and b, represented by the hypervectors a and b, the hypervector that 

represents the bound object (denoted by m) is:

m = a ⊙ b . (1)
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In the Multiply-Add-Permute model, ⊙ denotes the component-wise multiplication 

(Hadamard product). Multiple application of binding is denoted by ∏, enabling the 

formation of a hypervector representing the product of more than two hypervectors.

Consider the example of representing a database for trivia about countries [75]. The database 

record for a country contains the name, the capital, and the currency. The first step is to form 

hypervectors that represent key-value pairs, which can be done by binding: country⊙USA, 

capital⊙Washington, currency ⊙ USD. To create a single hypervector that represents 

the entire data record for a country, we need another operation to combine the different 

key-value pairs (see below).

2) Superposition: a dyadic operation mapping two hypervectors to another hypervector. 

It is denoted with + and, in the Multiply-Add-Permute model, implemented via component-

wise addition, which sometimes can be thresholded to keep bipolar representations (not 

used in this article). The superposition operation combines several hypervectors into a single 

hypervector. For example, for a and b the result z of the superposition of their hypervectors 

is simply:

z = a + b . (2)

The superposition of more than two hypervectors is denoted by Σ. Often, superposition 

is followed by a thresholding operation to produce a resultant hypervector that is of the 

same type as the seed vectors. For example, in the Multiply-Add-Permute model the 

seed hypervectors are bipolar vectors, but the arithmetic sum-vector is not. Therefore, in 

the bipolar variant (MAP-B, see [62]) a thresholding operation, using the signs in each 

component, can map the sum vector back to a bipolar hypervector. This type of thresholding 

is sometimes called the majority rule/sum and denoted by brackets: [a + b]. For the sake of 

consistency, the examples below use the non-thresholded sum, unless mentioned otherwise.

The non-thresholded sum has the advantage of being invertible since individual elements 

in the sum can be removed by subtraction (denoted as −) without interfering with the rest. 

Using the example above:

a = z − b . (3)

Continuing the database example, the superposition operation can be used to create a single 

hypervector from hypervectors representing all key-value pairs of the record. Thus, the 

compound hypervector for the whole record will be formed as: country ⊙ USA + capital ⊙ 
Washington + currency ⊙ USD.

3) Permutation: a unary operation on a hypervector that yields a hypervector. Akin 

to the binding operation, permutation is often used to map into an area of hypervector 

space that does not interfere strongly with other representations. However, unlike binding 

in Multiply-Add-Permute, the same permutation can be used recursively, projecting into 

previously unoccupied space with every iteration. Note that the number of possible 

permutations grows super-exponentially with the dimensionality (N!) and that permutations 
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themselves are not elements of the space of representations. In most HDC/VSA algorithms, 

a single one or a small set of permutations are fixed at the onset of computation. We 

continue with a simple example, and more examples follow in the subsequent sections.

Permutation can be seen as an alternative approach to binding when there is only one 

hypervector as the operand [54]. The permutation operation can also be used to represent 

sequence relations and other asymmetric relations like “part-of”. For example, a fixed 

permutation (denoted as ρ(·)) can be used to associate, e.g., a symbol hypervector with the 

position of a symbol in a sequence, resulting in a hypervector representing the symbol in that 

position. The single application of the permutation is:

r = ρ1(a) = ρ(a) . (4)

To associate a with the i-th position in a sequence, the permutation is applied i times. The 

result is the hypervector:

r = ρi(a) .

Note that permutation is an example of a more general unary operation, matrix-vector 

multiplications (see, e.g., [60] for a proposal on using matrix-vector multiplications to 

implement the binding operation).

4) Properties of HDC/VSA operations and their interaction: Here we summarize 

the properties of the basic HDC/VSA operations and how they interact:

a) Superposition:

• Superposition can be inverted with subtraction: a + b + c − c = a + b;

• In contrast to the binding and permutation operations, the result of the 

superposition z = a + b (often called the superposition hypervector) is similar 

to each of its argument hypervectors, i.e., the dot product between z and a or b is 

significantly more than 0: ⟨z, a⟩ ≈ ⟨z, b⟩ > 0;

• Arguments of binding can be approximately recovered from the superposition 

hypervector: b⊙(a⊙b+c⊙d) ≈ a;

• Superposition is commutative: a + b = b + a;

• Thresholded superposition is approximately associative: [[a + b] + c] ≈ [a + [b + 

c]].

Note that if several instances of any hypervector are included (e.g., z = 3a + b), the resultant 

hypervector is more similar to the dominating hypervector than to other arguments.

b) Binding:

• Binding is commutative: a ⊙ b = b ⊙ a;

• Binding distributes over superposition: c ⊙ (a + b) = (c ⊙ a) + (c ⊙ b);
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• Binding is invertible, for m = a ⊙ b: a ⊙ m = b. The inversion process is often 

called releasing or unbinding. In the case of the component-wise multiplication 

of bipolar vectors, the unbinding operation is performed with the same operation. 

Therefore, we do not introduce a separate notation for unbinding here;

• Binding is associative: c ⊙ (a ⊙ b) = (c ⊙ a) ⊙ b;

• The result of binding is dissimilar to each of its argument hypervectors, e.g., m is 

dissimilar to the hypervectors being bound, i.e., the dot product between m and a 
or b is approximately 0: ⟨m, a⟩ ≈ ⟨m, b⟩ ≈ 0;

• Binding preserves similarity (for similar a and a′): ⟨a ⊙ b, a′ ⊙ b⟩ ≫ 0;

• Binding is a “randomizing” operation (since ⟨a ⊙ b, a⟩ ≈ 0) that preserves 

similarity (because ⟨a ⊙ b, c ⊙ b⟩ = ⟨a, c⟩).

c) Permutation:

• Permutation is invertible, for r = ρ(a): a = ρ−1(r);

• In Multiply-Add-Permute, permutation distributes over both binding (ρ(a ⊙ b) = 

ρ(a) ⊙ ρ(b)) and superposition (ρ(a + b) = ρ(a) + ρ(b));

• Similar to the binding operation, the result r of a (random) permutation is 

dissimilar to the argument hypervector a: ⟨r, a⟩ ≈ 0;

• Permutation is a “randomizing” operation (since ⟨ρ(a), a⟩ ≈ 0) that preserves 

similarity (because ⟨ρ(a), ρ(b)⟩ = ⟨a, b⟩);

It is worth clarifying what we mean by “similarity preserving” in the case of binding and 

permutation vs. superposition above: For binding, the similarity between two hypervectors 

is the same before and after binding with a third hypervector, i.e., ⟨a ⊙ b, c ⊙ b⟩ = ⟨a, 

c⟩, and for permutation, the similarity between two hypervectors is also the same before 

and after the operation, i.e., ⟨ρ(a), ρ(b)⟩ = ⟨a, b⟩. However, for superposition, the similarity 

between two hypervectors is generally lower before vs. after superimposing them to a third 

hypervector, i.e., ⟨a + b, c + b⟩ > ⟨a, c⟩, since the sum moves them in a common direction b. 

On the other hand, since the superposition hypervector is similar to each of the vectors in the 

sum, ⟨a + b, a⟩ ≈ ⟨a + b, b⟩ > 0, it is also sometimes referred to as “similarity preserving,” 

in contrast to binding and permutation, which generally create a dissimilar hypervector. One 

should keep this distinction in mind when referring to the similarity preserving properties of 

these operators.

C. Parsing compound representations

HDC/VSA offer the possibility to encode data structures into compound hypervectors and 

to manipulate the hypervectors with the operations described above to perform computation 

on the data structures. In conventional computing, data structures are always exposed and 

the algorithm queries or modifies individual elements within them. In contrast, the vector 

operations in HDC/VSA can search or transform many or all elements of a data structure in 

parallel, which we call “computing in superposition” (see Section IV-B). All data structures 

are hypervectors and can be manipulated immediately and in parallel, regardless of how 
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complicated a structure they possess. But this also means that the data structure of a 

compound hypervector is not immediately decodable from the item memory. To query 

element(s) of a compound hypervector, it first needs to be analyzed or “parsed”. We 

borrow the term parsing from linguistics because the parsing of HDC/VSA hypervectors 

is somewhat similar. To understand a sentence, one needs to divide the sentence into 

its parts and assign their syntactic roles, which involves comparing the parts with the 

stored information about their meaning and syntactic roles. Similarly, to extract the result 

of a HDC/VSA computation, one has to parse the resultant hypervector. The parsing of 

HDC/VSA hypervectors involves the decomposition and comparison of the resulting parts 

with the stored information.

Like with the sum or product of ordinary numbers, the parsing of hypervectors requires 

additional information, such as the operations used to form the compound representation 

and the set of seed vectors. Parsing a compound hypervector first entails the operation 

inverse that used to encode the wanted element in the data structure. However, the result is 

almost always approximate because of crosstalk noise coming from all the other elements 

in the compound hypervector. To single out the correct result, the noisy vector has to be 

compared to the original seed vectors in terms of similarity. Probing is the process of 

retrieving the best-matching hypervector (i.e., the nearest neighbor) among the hypervectors 

for a given query hypervector. This is done in the item memory, which contains all the seed 

hypervectors. For example, consider the compound hypervector:

s = a ⊙ b + c ⊙ d .

In order to know which hypervector has been bound to, e.g., b we have to unbind (inverse 

binding) b from s:

s ⊙ b = b ⊙ (a ⊙ b + c ⊙ d) =
= a + b ⊙ c ⊙ d = a + noise ≈ a .

The resultant hypervector contains the correct answer a and a crosstalk noise term b ⊙ c 
⊙ d, which is dissimilar to any of the items in the item memory. The query hypervector a 
+ noise will be highly similar to the hypervector a stored in the item memory, which will 

be successfully retrieved by the nearest neighbor search with high probability. Thus, the 

probing operation removes (or cleans up) the noise and returns the correct result.

Cleanup via probing is a critical part of HDC/VSA computations and has the advantage 

that its operation is intrinsically noise resilient and the degree of noise robustness can be 

easily controlled by the dimension N. In essence, probing is a signal detection problem. 

The number of hypervectors that can be correctly retrieved from the superposition is called 

capacity. The capacity increases roughly linearly with the hypervector dimension and is 

quite insensitive to the details of a particular HDC/VSA model. The signal detection theory 

for HDC/VSA [30] enables one to determine the dimension of the hypervector space that is 

sufficient for a given computation and a given precision of the hardware.
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Parsing hypervectors with multiple bindings: In the example above, it was assumed 

that one argument (i.e., b) of the key-value pair was known. This, however, is not always the 

case. Moreover, there exist representations where several hypervectors are being bound (e.g., 

a ⊙ b ⊙ c). Parsing compound hypervectors with such elements is challenging due to the 

fact that the binding operation in the Multiply-Add-Permute model produces a hypervector 

dissimilar to its arguments (cf. Section III-B4b). This means that the most obvious way 

to parse hypervectors of the form a ⊙ b ⊙ c is by brute force, through checking all 

possible combinations of the arguments. The number of such combinations, however, grows 

exponentially with the number of arguments involved. Therefore, a mechanism called a 

resonator network has been proposed [76], [77], which addresses this problem by a parallel 

search in the space of all possible combinations.

The resonator network assumes that none of the arguments are given, but that they are 

contained in different item memories, which should be known to the resonator network. 

Fig. 2 illustrates an example of a resonator network for factoring the hypervector s = 

a⊙b⊙c. In a nutshell, the resonator network is a novel recurrent neural network design that 

uses HDC/VSA principles to solve combinatorial optimization problems. As shown in the 

example, it factors the arguments of the input vector s representing the binding of several 

hypervectors. To do so it uses hypervectors a(t), b(t), c(t), each storing the prediction for a 

particular argument of the product forming s. Each prediction communicates with the input 

hypervector (s) and all other predictions using the following dynamics:

a(t + 1) = sign AA⊤ (s ⊙ b(t) ⊙ c(t)) ;
b(t + 1) = sign BB⊤ (s ⊙ a(t) ⊙ c(t)) ;
c(t + 1) = sign CC⊤ (s ⊙ a(t) ⊙ b(t)) ,

(5)

where A, B, and C denote the corresponding item memories containing a, b, and c 
arguments, respectively, and sign(·) denotes a step that projects the predictions back to 

the bipolar values. Note that the resonator network does not have to work with only 

bipolar hypervectors. Rather, the usage of the sign(·) function is determined by the fact 

that the seed hypervectors in the Multiply-Add-Permute model are bipolar. Thus, other types 

of nonlinearity functions can be used to make a resonator network compatible with the 

desirable format of the seed hypervectors. Note also that these item memories will contain 

other hypervectors as well, but hypervectors stored in A, B, and C differ from each other. 

The size of each item memory depends on a task but it will affect the performance of the 

resonator network as larger item memories imply a larger search space.

The key insight into the internals of the resonator network is that it iteratively tries to 

improve its current predictions of the arguments constituting the input hypervector s. 

In essence, at time t each prediction might hold multiple weighted guesses from the 

corresponding item memory. The current predictions for other arguments are used to invert 

the input vector and infer the current argument (e.g, s ⊙ b(t) ⊙ c(t)). The cost of using 

the superposition for storing the predictions is crosstalk noise. To clean up this noise, 

the predictions are projected back to their item memories (e.g., A⊤ (s ⊙ b(t) ⊙ c(t))), which 

provides weights for different seed hypervectors stored in the item memory and, therefore, 
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constrains the predictions to only to the valid entries in the item memory. These weights 

are then used to form a new prediction, which is a weighted superposition of all seed 

hypervectors. Successive iterations of the process in Eq. (5) eliminate the noise as the 

arguments become identified and find their place in the input vector. Once the arguments are 

fully identified, the resonator network reaches a stable equilibrium and the arguments can 

be read. For the sake of space, we do not go into the details of applying resonator networks 

here. Please refer to [76] for examples of factoring hypervectors of data structures with 

resonator network and to [77] for their comparison with other standard optimization-based 

methods.

D. Generality and utility

Currently, there are several known areas where HDC/VSA have been employed. 

Hypervectors serve as representations for cognitive architectures [37], [38]. They are used 

for the approximation of conventional data structures [40], [41], [78], distributed systems 

[79], [80], communications [81]–[83], for forming representations in natural language 

processing applications [31], [84] and robotics [85]–[89]. The fact that it is possible to 

map real-valued data to hypervectors allows one to apply HDC/VSA in machine learning 

domains. Most of these works were connected to classification tasks (see a recent overview 

in [15]). Examples of domains that have benefited from the application of HDC/VSA 

modeling are biomedical signal processing [34], [90], gesture recognition [33], [91], seizure 

onset detection and localization [92], physical activity recognition [93], and fault isolation 

[94]. However, HDC/VSA modeling can also be useful for very generic classification tasks 

[29], [95]. The common feature of these works is a simple training process, which does not 

require the use of iterative optimization methods, and transparently learns with few training 

examples.

IV. COMPUTING WITH HDC/VSA

A. Computational primitives formalized in HDC/VSA

In the previous section, we have introduced the basic elements of HDC/VSA. To provide 

the algorithmic level in the Marr computing hierarchy in Fig. 1, one needs to combine 

elements of HDC/VSA into primitives of HDC/VSA computing, i.e., something akin to 

design patterns in software engineering. For instance, a set of HDC/VSA templates has been 

proposed for tasks in the domain of personalized devices covering different multivariate 

modalities such as electromyography, electroencephalography, or electrocorticography [34]. 

Here we summarize best practices for representing well-known data structures with 

HDC/VSA – this section can be thought of as a “HDC/VSA cookbook”. All examples 

in this section are available in an interactive Jupyter Notebook1. After providing some basic 

rules for representing data structures with HDC/VSA, we present a collection of primitives 

from prior work that has been done along these lines. We do not go into an advanced 

topic of how distributed representations of data structures can be used to construct or learn 

single-shot transformation between data structures that share symbols. It is, however, worth 

noting that this property differentiates distributed representations from conventional data 

1https://github.com/denkle/HDC-VSA_cookbook_tutorial.
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structure manipulations and the interested readers are referred to, e.g., [96], [97] for more 

details. A well-known example of this property has been presented in [98] where a mapping 

between the “mother-of” relation to the “parent-of” relation was constructed with simple 

vector operations and using only a few examples. It was shown later in [39] that such a 

mapping can be used to easily form associations between observed structures and decisions 

caused by these structures.

It is worth noting that in this article we do not cover the representation of real-valued data 

(see, e.g., [66], [99]–[102]) or solving machine learning problems (see, e.g., [15]) as it has 

been covered elsewhere and is outside the immediate scope of the article.

1) The rules of thumb: We should point out that the HDC/VSA implementations we 

describe are not the only possibilities and other solutions may be possible/desirable in a 

particular design context. The solutions provided are, however, the most common/obvious 

choices, based on several “rules of thumb”:

• Superposition is used to combine individual elements of a data structure into a 

set;

• Binding is used to make associations between elements, e.g., key-value pairs;

• Permutation is used for tagging data elements to put them into a sequential order, 

such as in time series;

• Permutation is used for protection from the self-inverse property of the binding 

operation since the hypervector will not cancel out when bound with its 

permuted version.

We will follow these rules most of the time when forming hypervectors for different data 

structures.

2) Sets: A set (denoted as S) represents a group of elements, for example, S = {a, b, 

c, d, e}. In order to map a set to a hypervector, two steps are required. First, an item 

memory storing random hypervectors for each element of a set is initialized. We will use 

bold font in notations of hypervectors (e.g., a for “a”) but a more general notation is via the 

mapping function ϕ(i) ↦ i, i ∈ S. Second, a single hypervector (denoted as s) is formed that 

represents the set as the superposition of hypervectors for the set’s elements, e.g., for the set 

above:

s = a + b + c + d + e,
s = ∑

i ∈ S
ϕ(i) . (6)

The hypervector s is a distributed representation of the set S. This mapping preserves 

the overlap between elements of the sets. For example, set membership can be tested 

by calculating the similarity between s and the hypervector corresponding to the element 

of interest. If the similarity score is higher than that expected between two random 

hypervectors, then most likely the element is present in the set. This mapping is very 

similar to a Bloom Filter [103] (in particular, to Counting Bloom Filter [104]), which 
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is a well-known randomized data structure for approximate membership query in a set. 

Bloom Filters have been recently shown to be a subclass of HDC/VSA [78], where the 

superposition operation is implemented via OR and seed hypervectors are sparse, as in the 

Sparse Binary Distributed Representations [56] model. While conceptually representation 

of sets via distributed representations is a simple idea, it is very influential as it has been 

applied in myriads of engineering problems (see, e.g., a survey in [105]).

Note that the limitation of the described mapping of sets is that it does not have a simple 

and exact way of obtaining distributed representations of the intersection or union of two 

sets. The exact results can, obviously, be obtained by first parsing distributed representations 

of the corresponding sets, reconstructing the symbolic versions, computing the union or 

intersection in the symbolic domain, and finally forming the distributed representation 

of the result. There are, however, simple approximations of the operations the require 

fewer interactions with the symbolic domain. Both approximations are obtained by the 

superposition operation on the corresponding set’s hypervectors (e.g., s1 and s2):

s = s1 + s2

The difference is in the way the parsing of the result in s is done. In order to parse the 

intersection of two sets, only the elements with the largest dot products should be retrieved. 

So, if the result of the intersection is stored in I, which is initially empty (I = ∅), then for 

element i with the corresponding entry Hi in the item memory:

I =
I ∪ i ,  if His ≥ Θi

I ∪ ∅ ,  otherwise 

where Θi denotes the corresponding threshold.

To retrieve the union (U = ∅ at start), the elements with the dot products sufficiently 

different from the noise level should be considered:

U =
U ∪ i ,  if His ≥ Θn

U ∪ ∅ ,  otherwise 

where Θn denotes the noise level threshold. Thus, the subtlety for the intersection is that 

elements present in both sets will have higher similarity then the ones present in only one of 

the sets (see Section III-B2). This property of the superposition operation is in fact used in 

the next section for representing multisets.

3) Multisets/Histograms/Frequency distributions: Let us consider how to form a 

single hypervector of a multiset or a frequency distribution in the form of counts of the 

occurrences of various elements in some source. The mapping is essentially the same as in 

the case of sets in Section IV-A2 with the only difference that a hypervector of an element 

can be present in the result of the superposition operation several times. For example, given 

S = (a, a, a, b, b, c), hypervector representing the frequency of elements is formed as:
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s = a + a + a + b + b + c =
= 3a + 2b + c .

Thus, the number of times a hypervector is present in the superposition determines the 

frequency of the corresponding element in the sequence. Using s it is possible to estimate 

either the frequency of an individual element or compare to the frequency distribution 

of another sequence. Both operations require calculating the similarity between s and the 

corresponding hypervector.

Usually, s is used as an approximate representation of the exact counters of a histogram. Fig. 

3 demonstrates Pearson correlation coefficient between the histogram and its approximate 

version retrieved from a compound hypervector s where the approximate version was 

obtained as the dot product between s and symbols’ seed hypervectors. The simulations 

were done for different sizes of histogram and varying the dimensionality of hypervectors. 

The results are characteristic for HDC/VSA – the quality of approximation improved with 

the increased dimensionality of hypervectors.

This mapping shall be seen as a particular instance of a count-min sketch [106] that is a 

randomized data structure for obtaining frequency distributions from sequences. The count-

min sketch is used in a plethora of applications where data are of streaming nature (see, e.g., 

some examples in [106]). Below, in Section IV-A6 we will also see that the representation 

of multisets is an essential primitive for representing n-gram statistics that in turn is used 

for solving classification tasks (see, e.g., [107]–[109]). The limitation of the presented 

mapping is that due to the usage of bipolar hypervectors the resultant representation could 

both overcount and undercount the frequency. This limitation is partially addressed by the 

standard count-min sketch that could only overcount the frequency.

4) Cross product of two sets: A particularly interesting case is when we have 

hypervectors representing two different sets (e.g., {a, b, c, d, e} and {x, y, z}). Then a 

mapping based on the binding operation is used to create a hypervector corresponding to the 

cross product of two sets as follows:

(a + b + c + d + e) ⊙ (x + y + z) =
= (a ⊙ x + a ⊙ y + a ⊙ z) + (b ⊙ x + b ⊙ y + b ⊙ z) +
+ (c ⊙ x + c ⊙ y + c ⊙ z) + (d ⊙ x + d ⊙ y + d ⊙ z) +
+ (e ⊙ x + e ⊙ y + e ⊙ z) .

In essence, here occurs (due to the superpositions) a simultaneous binding between all the 

elements in the two sets. The cross product set, thus, consists of all possible bindings of 

hypervectors representing elements of the original sets (e.g., a ⊙ x). In the example above, 

when starting first with the representations of sets, only 7 operations (6 superpositions and 

1 binding) were necessary to form the representation. The brute force way for forming 

the cross product set hypervector would require 29 operations (14 superpositions and 15 

binding). It is clear that this shortcut works due to the fact that the binding operation 

distributes over the superposition operation (Section III-B4b). Note that using the Tensor 

Product Variable Binding [50] model, the outer product of vector representations of the two 

Kleyko et al. Page 17

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sets will be a tensor with the number of dimensions determined by the number of sets in 

the cross-product. In contrast, the HDC/VSA representation of a cross-product is given by a 

hypervector of the same dimension as the individual set hypervectors. Note also that while 

it is simple to form a hypervector corresponding to the cross product of two sets with the 

binding operation, computing the cross product in the symbolic domain might still require 

lower computational costs as it does not require high-dimensional representations. Another 

potential issue of such a representation is the required dimensionality of hypervectors 

for the situation when all the elements of the cross product should be retrievable from 

the distributed representation. In this case, the dimensionality of hypervectors should 

be proportional to the product of the sets’ cardinalities; so even moderately sized sets 

require large number of components in hypervectors to provide high accuracy of retrieving 

individual elements of their cross product from the corresponding hypervector.

5) Sequences: A sequence is an ordered set of elements. For example, the set from the 

previous section is now a sequence (a, b, c, d, e), which is not the same as, e.g., (b, a, c, d, e) 

since the order of elements is different. Note that a finite sequence with k elements is called 

k-tuple, with an ordered pair being the special case for k = 2.

Clearly, plain superposition of hypervectors works for representing sets but not for 

sequences, as the sequential order would be lost. Many authors have proposed the following 

idea to represent sequences with permutation, e.g., in [11], [30], [44], [110]–[112]. Before 

combining the hypervectors of sequence elements, the order i of each element is associated 

by applying some specific permutation k − i times to its hypervector (e.g., ρ2(c)). The 

advantage of this recursive encoding of sequences is that extending a sequence can be done 

by permuting s and superimposing or binding it (see below) with the next hypervector in 

the sequence, hence, incurring a fixed computational cost per symbol. The last step is to 

combine the sequence elements into a single hypervector representing the whole sequence.

There are two common ways to combine sequence elements. The first way is to use the 

superposition operation, similar to the case of sets. For the sequence above the resultant 

hypervector is:

s = ρ4(a) + ρ3(b) + ρ2(c) + ρ1(d) + ρ0(e) .

In general, a given sequence S of length k is represented as:

s = ∑
i = 1

k
ρk − i ϕ Si , (7)

where Si is the ith element of sequence S. The advantage of the mapping with the 

superposition operation is that it is possible to estimate the similarity of two sequences 

by measuring the similarity of their hypervectors. Here the similarity of sequences is defined 

by the number of the same elements in the same sequential positions, where the sequences 

are aligned by their last elements. Evidently, this definition does not take into account the 

same elements in different positions, in contrast to, e.g., an edit distance of sequences [113]. 

Kleyko et al. Page 18

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the edit distance can be approximated by vectors of n-gram frequencies and their 

randomized versions akin to hypervectors (see, e.g., [114], [115]).

Another advantage of sequence representation with superposition is that it allows easily 

probing the distributed representation s. For example, one can check, which element is in 

position i by applying inverse permutation i times to the resultant hypervector. Note that 

permutation of a sequence representation is a general method for shifting an entire sequence 

by a single operation. It produces a shifted sequence where the ith element is now at the first 

position, and thus it can be used to probe the hypervector of element i from the sequence 

representation. For example, when inverting position 3 in s:

ρ−2(s) = ρ2(a) + ρ1(b) + ρ0(c) + ρ−1(d) + ρ−2(e) =
= c + noise ≈ c .

Probing ρ−2(s) with the item memory containing hypervectors of all sequence elements will 

return c as the best match (with high probability).

The second way of forming the representation of a sequence involves binding of the 

permuted hypervectors, e.g., the sequence above is represented as (denoted by p):

p = ρ4(a) ⊙ ρ3(b) ⊙ ρ2(c) ⊙ ρ1(d) ⊙ ρ0(e) .

In general, a given sequence S of length k is represented as:

p = ∏
i = 1

k
ρk − i ϕ Si . (8)

The advantage of this sequence representation is that it allows forming unique hypervectors 

even for sequences that differ in only one position. Section IV-A6 provides a concrete 

example of a task where this advantage is important.

Both mappings allow replacement of an element at position i in the sequence if the 

current element at the ith position is known. When the superposition operation is used, 

the replacement requires subtraction of the permuted hypervector of the current element 

followed by superposition of the permuted hypervector of the new element. For example, 

replacing “d” to “z” in position 4 is done as follows:

s − ρ1(d) + ρ1(z) = ρ4(a) + ρ3(b) + ρ2(c) + ρ1(z) + ρ0(e) .

When the binding operation is used in the mapping, replacement requires application of 

the unbinding operation between the permuted hypervector of the current element and s, 

followed by binding with the permuted hypervector of the new element. For the example 

above:

s ⊙ ρ1(d) ⊙ ρ1(z) = ρ4(a) ⊙ ρ3(b) ⊙ ρ2(c) ⊙ ρ1(z) ⊙ ρ0(e) .
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Another feature of both sequence mappings is that the permutation operation distributes over 

both binding and superposition operations. This means that in both mappings the whole 

sequence can be shifted relative to the initial position by applying the permutation operation 

required number of times. For example, when applying the permutation operation 3 times to 

s for (a, b, c, d, e) we obtain:

ρ3(s) = ρ7(a) + ρ6(b) + ρ5(c) + ρ4(d) + ρ3(e) .

Thus, ρ3(s) is the shifted version of the original sequence. This feature can be used for 

sequence concatenation. For example, to concatenate (a, b, c, d, e) and (x, y, z), we can use 

already calculated s for (a, b, c, d, e) as follows:

ρ3(s) + ρ2(x) + ρ1(y) + ρ0(z) = ρ7(a) + ρ6(b) +
+ ρ5(c) + ρ4(d) + ρ3(e) + ρ2(x) + ρ1(y) + ρ0(z) .

This feature was applied in [116] for searching the best alignment (shift) of two sequences 

that results in the maximum number of coinciding elements. Other examples of using 

distributed representation of sequences include modeling human perception of word 

similarity [115], [117]–[119], modeling human working memory [120]–[125], DNA string 

matching [126], and spell checking [118], [127].

An evident limitation of the above mappings is that due to the usage of a random 

permutation ρ, elements of the sequence in the nearby positions are dissimilar (even if 

the elements are the same). A possible way to handle this limitation is by using locality-

preserving representations to encode positions; see some proposals in [117]–[119], [128]. 

Generally, for a given problem, it might be useful to consider alternative representations 

that bind element and position hypervectors. Another limitation is that the representations of 

the element’s order here used hypervector transformation by the permutation corresponding 

to its absolute position in a sequence. Thus, the resultant hypervector does not reflect the 

information about, e.g., successor/predecessor information. Some ways of using relative 

positions when representing sequences in HDC/VSA are investigated in [115].

6) n-gram statistics: The n-gram statistics of a sequence S is the histogram of all 

length n substrings occuring in the sequence. The mapping of n-gram statistics to a single 

hypervector was presented in, e.g., [84], and includes two steps using the primitives above: 

First, forming hypervectors of n-grams, and second, forming a hypervector of the frequency 

distribution. The hypervectors of n-grams are formed as in Section IV-A5 using the chain of 

binding operations, i.e., each n-gram is treated as an n-tuple. The hypervectors of n-grams 

and their counters are then used to form a single hypervector for the frequency distribution 

as in Section IV-A3. Thus, in essence this is a frequency distribution with compound 

symbols.

The advantage of this mapping is that in order to create a representation for any n-gram, 

we only need to use a single item memory and several simple operations where the number 

of operations is proportional to n. In other words, with the fixed amount of resources 

Kleyko et al. Page 20

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the appropriate use of operations allows forming a combinatorially large number of new 

representations.

The mapping, obviously, inherits the limitations of its intermediate steps. That is, due to the 

usage of the chain of binding operations (Section IV-A5) similar n-grams are going to be 

mapped to dissimilar hypervectors (assuming that all n-gram are assigned with random seed 

hypervectors). And due to the representation of the frequency distribution (Section IV-A3), 

the retrieved values of individual n-grams can be either overcount or undercount.

This mapping has been found useful in several applications: in language identification [84], 

news article classification [129], and biosignal processing [34] that leveraged its hardware-

friendliness [130]. Distributed representations were also used to untie the dimensionality of 

the hypervector representing n-grams statistics from the possible number of n-grams, which 

grows exponentially with n and would dictate the size of a localist representation of the 

n-grams statistics. The same property was also leveraged for constructing more compact 

neural networks using the distributed representation of n-grams statistics as their input [108], 

[131], [132].

7) Graphs: A graph (denoted as G) consists of vertices and edges. Edges can either be 

undirected or directed. Fig. 4 presents examples of both directed and undirected graphs. 

Following earlier work on graph representations with hypervectors, e.g., in [56], [133], 

[134], we consider the following very simple mapping of graphs into hypervectors [133]. 

A random hypervector is assigned to each vertex of the graph, according to Fig. 4 vertex 

hypervectors are denoted by letters (i.e., a for vertex “a” and so on). An edge is represented 

via the binding operation applied to the hypervectors of the connected vertices, for instance, 

the edge between vertices “a” and “b” is represented as a⊙b. The whole graph G is 

represented simply as the superposition of hypervectors representing all edges in the graph, 

e.g., the undirected graph in Fig. 4 is:

g = a ⊙ b + a ⊙ e + b ⊙ c + c ⊙ d + d ⊙ e .

Note that if an edge is represented as the result of binding of two hypervectors for vertices, 

it has no information about the direction of the edge and, therefore, the representation 

above will not work for directed graphs. The direction of an edge can be added applying a 

permutation to the hypervector of the incidental node, the directed edge from the vertex “a” 

to “b” in Fig. 4 is represented as a ⊙ ρ(b). Note that this is just the mapping of an ordered 

pair (2-tuple in this case) based on binding described in Section IV-A5. Thus, the directed 

graph in Fig. 4 is represented by the hypervector:

g = a ⊙ ρ(b) + a ⊙ ρ(e) + c ⊙ ρ(b) +
+ d ⊙ ρ(c) + e ⊙ ρ(d) .

The described graph representations g can be queried for the presence of a particular edge. 

For graphs that have the same vertex hypervectors, the inner product is a measure of the 

number of overlapping edges. When it comes to the usage of the described mappings, [133] 

propose an HDC/VSA based algorithm for graph matching. For two graphs for which the 
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correspondence between their vertices is unknown, graph matching finds the best match 

between the vertices so that the graph similarity can be assessed. In [135], a similar mapping 

is applied on the task of inferring missing links of knowledge graphs. The mapping can 

also be extended to the case when some of its part is learned from the training data; in 

[136] representations of knowledge graphs are constructed with hypervectors of nodes and 

relations that are learned from data.

The described mappings have a number of limitations. First, they do not work for sparse 

graphs in which vertices can be entirely isolated because those vertices are not represented 

at all. One way to address it is by also superimposing to g the hypervectors representing 

the vertices, or to keep a separate hypervector with the superposition of all the vertices. 

Another limitation is that one could come up with operations that cannot be done directly on 

the representation in g. One example of such an operation is the computation of composite 

edges in a directed graph (see details in [137]).

8) Binary trees: A binary tree is a well-known data structure where each node has at 

most two children: the left child and the right child. Fig. 5 depicts an example of a binary 

tree, which will be used to demonstrate the mapping of such a data structure into a single 

hypervector. We describe a mapping process [76] that involves all the three basic HDC/VSA 

operations and two item memories. One item memory stores two random hypervectors 

corresponding to roles for the left child (denoted as l) and the right child (denoted as r). 

Another item memory stores random hypervectors corresponding to symbols of the alphabet, 

which are associated with the leaves. The example below uses letters so these hypervectors 

are denoted correspondingly (i.e., a for “a” and so on).

The permutation operation is used to create a unique hypervector corresponding to the 

association of the left or right child with its level in the tree. For example, the left child at 

the second level is represented as ρ2(l). In general, the level of the node equals the number of 

times the permutation operation is applied to its role hypervector.

The chain of the binding operations is used to create a hypervector corresponding to the 

trace from the tree root to a certain leaf, associated with the leaf’s symbol. For instance, to 

reach the leaf “a”, it is necessary to traverse three left children. In terms of HDC/VSA, this 

trace will be represented as: a ⊙ l ⊙ ρ(l) ⊙ ρ2(l). In such a way, traces to all leaves can be 

represented.

Finally, the superposition operation is used to combine hypervectors of individual traces in 

order co create a single hypervector (denoted as t) corresponding to the whole binary tree. 

Combining all steps together, the single hypervector for the tree depicted in Fig. 5 will then 

look like:
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t = a ⊙ l ⊙ ρ(l) ⊙ ρ2(l) +
+ b ⊙ l ⊙ ρ(r) ⊙ ρ2(l) +
+ c ⊙ r ⊙ ρ(r) ⊙ ρ2(l) +
+ d ⊙ r ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(l) +
+ e ⊙ r ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(r) +
+ f ⊙ l ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(l) ⊙ ρ4(l) +
+ g ⊙ l ⊙ ρ(r) ⊙ ρ2(r) ⊙ ρ3(l) ⊙ ρ4(r) .

Thus, the information about the tree in Fig. 5 is stored in a distributed way in the compound 

hypervector t, which in turn can be queried with HDC/VSA operations. For example, given 

a trace of children, we can extract the symbol associated with the leaf at this trace. Assume 

that the trace is right-right-left, then its hypervector is r ⊙ ρ(r) ⊙ ρ2(l). This hypervector 

can be unbound from t as:

t ⊙ r ⊙ ρ(r) ⊙ ρ2(l) = c + noise .

The result is c + noise because r ⊙ ρ(r) ⊙ ρ2(l) cancels out itself in t and, thus, releases c, 

which was bound with this trace. Since there were other terms in the superposition t, they 

act as crosstalk noise for c, hence, denoted as noise. Thus, when c + noise is presented to 

the item memory, the item memory is expected to return c as the closest alternative, with 

high probability. The inverse task of querying the trace with a given leaf symbol is more 

challenging because the resultant hypervector corresponds to a chain of binding operations, 

e.g., for c we get:

t ⊙ c = r ⊙ ρ(r) ⊙ ρ2(l) + noise .

In order to interpret the resultant hypervector one has to query all hypervectors 

corresponding to all possible traces in a binary tree of the given depth, where the number 

of the traces grows exponentially with the depth of the tree. This is a significant limitation 

of the representation. This limitation can, however, be addressed in part by the resonator 

network [76], [77] (see Section III-C).

We do not cover the details of factoring trees with the resonator network here, but the 

interested readers are referred to Section 4.1 in [76]. It should, of course, be noted that 

resonator networks are not limitless in their capabilities, since as reported in [77], for the 

fixed dimensionality of hypervectors their capacity decreases with the increased number of 

factors (i.e., tree depth in this case). Nevertheless, they still seem to be the best alternative to 

tackle the problem (cf. Fig. 3 in [77]) – their search space scales quadratically with N.

The presented mapping is, of course, not the only possible way to represent binary trees. For 

example, in [44] it was proposed to use two different random permutations for representing 

nested structures. This mechanism can be applied to trees as well by using these different 

random permutations instead of l and r.
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Last but not least, note that the mapping for binary trees can be easily generalized to trees 

with nodes having more than two children by superimposing additional role hypervectors in 

the item memory. Also, filler hypervectors for the leaves do not have to be seed hypervectors 

– they could represent any compound structure.

9) Stacks: A stack is a memory in which elements are written or removed in a last-in-

first-out manner. At any given moment, only the top-most element of the stack can be 

accessed and elements written to the stack before are inaccessible until all later elements are 

removed. There are two possible operations on the stack: writing (pushing) and removing 

(popping) an element. The writing operation adds an element to the stack – it becomes 

the top-most one, while all previously written elements are “pushed down”. The removing 

operation allows reading the top-most element of the stack. Once read, it is removed from 

the stack and the remaining elements are moved up.

HDC/VSA-based representations of a stack were proposed in [138] and [41]. The 

representation of a stack is essentially the representation of a sequence with the addition 

of an operation that always moves the top-most element to the beginning of the sequence. 

For example, if “d”, “c”, and “b” were successively added to the stack than the hypervector 

for the current state of the stack is:

s = b + ρ(c) + ρ2(d) .

Thus, the pushing operation is implemented as the concatenation of two sequences (i.e., 

a new element to be written and the current state of the stack) using their corresponding 

hypervectors (Section IV-A5). In particular, the hypervector of the newly written element is 

added to the permuted hypervector of the current state of the stack. For instance, writing “a” 

to the current state s is done as follows:

s = a + ρ(s) = a + ρ(b) + ρ2(c) + ρ3(d) .

The popping operation includes two steps. First, s is probed with the item memory of 

elements’ hypervectors in order to get the closest match for the seed hypervector of the 

top-most element. Once the hypervector of the top-most element is identified (e.g., a in the 

current example), it is removed from the stack and the hypervector representation of the 

stack with the remaining elements is moved back by the permutation operation:

ρ−1(s − a) = ρ−1 ρ(b) + ρ2(c) + ρ3(d) =
= b + ρ(c) + ρ2(d) .

When it comes to limitations of this representation, there are several things to keep in mind. 

First, the popping operation will not work well if the hypervector representing the stack is 

normalized after each writing operation, so the operations described above assume that s is 

not normalized. Second, the size of the stack that can be retrieved reliably from s depends 

on the dimensionality of s. Third, if the alphabet of symbols that can be stored in the stack 

is large, then the probing process for the popping operation might be a computationally 
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demanding step. Fourth, if the stack is going to store compound hypervectors, then the 

popping operation would be more complicated as it either would require the item memory 

storing all compound hypervectors (this option quickly expand the item memory) or would 

need to incorporate retrieval procedure assuming the knowledge of the structure of the 

compound hypervectors so that they could be parsed.

The main foreseen application of the presented representation is within some control 

structures as a part of HDC/VSA systems. For example, it was used in [41] in a proposal 

for implementing stack machines and in [138] as a part of HDC/VSA implementation of a 

general-purpose left-corner parsing with simple grammars.

10) Finite-state automata: A deterministic finite-state automaton is an abstract 

computational model; it is specified by defining a finite set of states, a finite set of allowed 

input symbols, a transition function, the start state, and a finite set of accepting states. The 

automaton is always in one of its possible states. The current state can change in response 

to an input. The current state and input symbol together uniquely determine the next state 

of the automaton. Changing from one state to another is called a transition. The transition 

function defines all transitions in the automaton.

Fig. 6 presents an intuitive example of a finite-state automaton, the control logic of a 

turnstile. The set of states is { “Locked”, “Unlocked” } and the set of input symbols is 

{ “Push”, “Token” }. The transition function can be easily derived from the state diagram in 

Fig. 6.

HDC/VSA-based implementations of finite-state automata were proposed in [40], [41]. 

Similar to binary trees, the mapping involves all three HDC/VSA operations and requires 

two item memories. One item memory stores seed hypervectors corresponding to the set of 

states (denoted as l for “Locked” and u for “Unlocked”). Another item memory stores seed 

hypervectors corresponding to the set of input symbols (denoted as p for “Push” and t for 

“Token”). The hypervectors from the item memories are used to form a single hypervector 

(denoted as a), which represents the transition function. Note that the state diagram of 

a finite-state automaton is essentially a directed graph in which each edge has an input 

symbol associated with it. Therefore, the mapping for the transition function is very similar 

to the mapping of the directed graph in Section IV-A7. The only difference is that the 

binding of the hypervectors for the vertices, (i.e., states) involves, as an additional factor, the 

hypervector for the input symbol, which causes the transition. For example, the transition 

from “Locked” state to “Unlocked” state, contingent on receiving “Token”, is represented as:

t ⊙ l ⊙ ρ(u) .

Given the distributed representations of all transitions of the automaton, the transition 

function a of the automaton is represented by the superposition of the individual transitions:

a = p ⊙ l ⊙ ρ(l) + t ⊙ l ⊙ ρ(u) + p ⊙ u ⊙ ρ(l) + t ⊙ u ⊙ ρ(g) .

Kleyko et al. Page 25

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to calculate the next state, we query a with the binding of the hypervectors of the 

current state and input symbol followed by the inverse permutation operation applied to the 

result. Calculated in this way, the result is the noisy version of the hypervector representing 

the next state. For example, if the current state is l and the input symbol is p then we have:

ρ−1(a ⊙ p ⊙ l) = l + noise .

As usual, this hypervector should be passed to the item memory in order to retrieve the 

noiseless seed hypervector l.

The same mapping can be used to create a hypervector representing a nondeterministic 

finite-state automaton [139]. The main difference from deterministic finite-state automata 

is that the nondeterministic finite-state automaton can reside simultaneously in several of 

its states. The transitions do not have to be uniquely determined by their current state 

and input symbol, i.e., there can be several valid transitions from a given current state 

and input symbol. The nondeterministic finite-state automaton can assume a so-called 

generalized state, defined as a set of the automaton’s states that are simultaneously active. 

The generalized state corresponds to a hypervector representing the set of the currently 

active states with (6). Similar to the deterministic finite-state automata, the hypervector for 

the generalized state is used to query the automaton to get a hypervector for next generalized 

state. This corresponds to a parallel execution of the automaton from all currently active 

states. It should also be noted that in the case of the nondeterministic finite-state automaton, 

due to the potential presence of several active states, the cleanup procedure (Section III-C) 

has to search for several nearest neighbors. Please see Section IV-B2 for an example of such 

a procedure.

In the next subsection, we will see an example of how to compute with hypervectors 

representing automata, but the most obvious application of the presented representation is to 

execute the automaton in the presence of noise in hypervectors. Fig. 7 presents the accuracy 

of the correct recall of a next state from a bipolarized hypervector representing an automaton 

with 22 states and 29 symbols. The figure shows how the accuracy changed with the 

dimensionality of hypervectors for different values of noise in a. As expected, we see that 

for every amount of noise, there is eventually a dimensionality that allows a perfect recall – 

an elegant property that can be simply leveraged for executing a deterministic behavior in a 

very stochastic environment.

While currently there are not many HDC/VSA applications that use finite-state automata 

(but we will see one in Section IV-B2), there is a potential in such a mapping as it naturally 

allows using HDC/VSA as a medium for executing programs that can be formalized via 

automata. Moreover, the primitives for stacks and finite-state automata can be combined 

to create richer computational models such as deterministic pushdown automata or stack 

machines; see, e.g., [41] for a sketch of a stack machine operating with hypervectors. 

An alternative representation for pushdown automata and context-free grammars has been 

recently presented in [42].
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Finally, it should be noted that the presented mapping is designed for executing an 

automaton, however, it is limited in the sense that it cannot be used directly to modify it 

or to perform composition operations (e.g., combining it with another automaton).

11) Deeper hierarchies: Finally, it is important to touch upon constructing data 

structures encoding deep hierarchies. In the previous subsections, we concentrated mainly 

on data structures with a single level hierarchy. In fact, this is what most of the current 

studies in the area used. Therefore, we will not go into technical details of existing 

proposals. HDC/VSA, however, are well-suited for representing many levels of hierarchy 

and representation of hierarchical data structures was a part of the original motivation right 

from the start (see, e.g., [51]). The representation of binary trees in Section IV-A8 can 

already be seen as a hierarchy, since a tree has several levels and the representation should 

be able to discriminate between different levels. In the presented mapping, this was done 

using powers of permutation to protect different levels of hierarchy. This can be done in 

some other ways by, e.g., assigning special role hypervectors for each level. Currently, the 

usage of representations for hierarchies in HDC/VSA is relatively uncommon. We mainly 

attribute this fact to the nature of applications which are being explored, rather than to the 

capabilities of HDC/VSA. The use-cases, which relied on the representation the hierarchical 

representations, are representation of analogical episodes [36], [53], distributed orchestration 

of workflows [79], and representation of hierarchies in WordNet concepts [140]. It has 

also been argued that the representation of hierarchical data structures via HDC/VSA is 

an important feature for modular learning where modules at different levels of hierarchy 

can communicate with such representations [37], [141]. Finally, there is a recent proposal 

that suggests that the JSON format with several levels of hierarchy can be represented in 

hypervectors [142].

B. Computing in superposition with HDC/VSA

1) Simple examples of computing in superposition: A well-known data structure 

– Bloom filter [103] – is the simplest case of computing in superposition. Bloom filter 

is a sketch as a fixed-size memory footprint is used to represent a set of elements. A 

Bloom filter encodes a set as a superposition of its elements’ sparse binary vectors, which, 

in essence, corresponds in HDC/VSA to a compound hypervector representing sets. Thus, 

Bloom filter directly corresponds to the primitive for representing sets as described in 

Section IV-A2. With Bloom filters, the algorithm for searching an element in a set is a 

single operation of comparing the similarity of the distributed representation of the query 

element to the Bloom filter instance. In other words, all elements of the set are tested in 

one shot, i.e., the search is performed as a computation in superposition. It enables solving 

the approximate membership query task instantaneously. This illustrates a simple instance 

of computing in superposition. Bloom filters are highly specialized for one particular 

task. In contrast, HDC/VSA constitute a broad framework for computing in superposition, 

containing Bloom filters as a subclass [78]. We have already seen other examples in Section 

IV-A for computing in superposition with HDC/VSA, such as the primitives for recursive 

construction of sequence representations (see equations (7) and (8)) and in Section IV-A4 

the forming of a representation for the cross product of two sets via a single binding 
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operation. In these examples, the distributivity of HDC/VSA operations (see Section III-B4) 

played an important role.

2) Computing in superposition for substring search: Finding a substring within a 

larger string is a standard computer science problem with numerous algorithms (e.g., [143]–

[145]) that have a linear complexity on the total length of the base and the query strings. 

Recently, an algorithm based on nondeterministic finite-state automata was formulated 

with HDC/VSA [146]. It nicely demonstrates how HDC/VSA can solve computer science 

problems, so we briefly explain it here.

Each position of a symbol in the base string is modeled as a unique state of the 

nondeterministic finite-state automaton S = {s0, s1, s2, …, sn}. For example, the string 

“hello” generates an automaton with six states: s0 through s5. The transitions between states 

are defined by the base string’s (denoted B) symbols bi from B = {b1, b2, …, bn}. Fig. 8 

illustrates the automaton for the string “hello.” The nondeterministic finite-state automaton 

is then defined by tuple < S, s0, B, T >, where s0 is the start state of the automaton and T 
is the set of transition tuples of the form ti =< si−1, bi, si >, where si−1 and si are the start 

and end states of a particular transition caused by symbol bi. The elements of sets B and S 
are represented by i.i.d. random hypervectors (denoted in bold). The hypervector β of the 

automaton for the base string is constructed as (cf. Section IV-A10):

β = ∑
i = 1

B
si − 1 ⊙ bi ⊙ ρ1 si . (9)

Thus, β is the superposition of all the automaton’s transitions caused by sequential input of 

symbols of the base string. Note that this representation corresponds to the primitive for the 

finite-state automata as described in Section IV-A10.

The algorithm for finding whether a query string Q = {q1, …, ql} is a part of the base string 

B is a sequential retrieval of the next state of automaton β, for each symbol of the query 

string qj. In terms of hypervectors, this is:

pj = ρ−1 pj − 1 ⊙ β ⊙ qj , (10)

where pj denotes the hypervector that includes the hypervector(s) of the next generalized 

automaton state (given symbol qj), as well as crosstalk noise. Equation (10) is also a 

primitive from Section IV-A10. Note, however, that generalized state may include one or 

several states si. The set of valid (i.e., permitted) previous generalized states is initialized as 

p0 = ∑si ∈ S si, which is a superposition of all the states of the base string. Since the operation 

in (10) is performed on the superimposed set of all states, it is qualified as computing in 

superposition.

While the algorithm presented in [146] works in principle (confirmed experimentally but 

not reported here), the required dimensionality of hypervectors grows extremely fast with 

the length of strings since every step of (10) introduces additional crosstalk noise to pj. 

Crosstalk noise can be reduced by a cleanup procedure on pj after every execution of (10):
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pj = SS⊤pj, (11)

where S ∈ [N, n + 1] denotes the item memory storing hypervectors for the unique states of 

the base string, S = {s0, s1, s2, …, sn}. This primitive uses the idea of projecting predictions 

back onto the item memory and it was introduced in Section III-C as a part of resonator 

network (see equation (5)).

We simulated the modified algorithm for searching a fixed length query substring (30 

symbols) in the base string of four different lengths (see Fig. 9). Average accuracy in 30 

simulation runs is plotted against the varying dimensionality of hypervectors. In in every 

simulation run, 100 different random base strings were used. In approximately half of the 

searches, the query substring was present in the base string, so a single simulation run 

determines the accuracy of correctly detecting when a substring is present and when it 

is not (thus, the accuracy of a random guess is 0.5). With increasing dimensionality of 

hypervectors, the accuracy of detecting a substring increases and eventually approaches 1. 

For longer base strings, it would require larger dimensions of the hypervectors to achieve 

high accuracy. Nevertheless, it scales much better than the original algorithm for which 

we were not able to simulate large enough dimensionalities that would provide reasonable 

accuracy.

The substring search provides lessons for computing in superposition with HDC/VSA. 

Both algorithms use it; the original one requires a large dimensionality to reduce crosstalk 

sufficiently, while the modified one includes an extra cleanup step to reduce the required 

dimensionality significantly – but it also increases the algorithmic complexity. In particular, 

the asymptotic computational complexity of the query algorithm in HDC/VSA operations 

is O(|Q|) for the original algorithm versus (O(|Q||B|) for the modified algorithm. But in 

terms of hypervector dimensionality, the original algorithm required much more space 

than the modified algorithm. Another consequence of long hypervectors required by the 

original algorithm is that despite not requiring an extra cleanup step (11), the total number 

of operations would be higher due to much shorter hypervectors used by the modified 

algorithm. Moreover, with appropriate implementation of the HDC/VSA algorithm on 

parallel hardware, the cleanup step in (11) can be parallelized2 using, e.g., in-memory 

computing architectures with massive phase-change memory devices [147]. When executed 

on such hardware, the time complexity of the modified algorithm also becomes O(|Q|).3 

Thus, computing in superposition in HDC/VSA is natural but can require very high 

dimensionality for managing crosstalk. Steps to manage the crosstalk can be added in 

the algorithm at no compute time costs, if the algorithm is properly mapped on parallel 

hardware (see, e.g., [126] for acceleration of DNA string matching with HDC/VSA).

Last, it is important to note that we do not claim that the substring search will be 

a practically useful application of computing in superposition, since its computational 

complexity exceeds that of the conventional algorithms optimized for the problem. However, 

2For the sake of fairness, it should be noted that the conventional substring search algorithms could also be parallelized.
3Of course, the size of the chip places limitations on the dimensionality of hypervectors and the number of hypervectors in the item 
memory.
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we think that this example has a didactic value as it clearly demonstrates how the primitives 

for representing data structures from Section IV-A can be connected to a well-known 

computer science problem. Thus, it serves as an important illustration of the lines along 

which one should think to utilize computing in superposition. Below, we elaborate on 

more practical (but not always explicit) contemporary examples of using computing in 

superposition.

3) Applications of computing in superposition: In a long-term, we anticipate the 

resonator networks [76], [77] (see Section III-C) to become a pivotal mechanism in many 

solutions based on computing in superposition since they use the idea of removing crosstalk 

noise from the predictions represented in the superposition. In particular, we believe that 

this idea would be important to efficiently solve non-trivial combinatorial search problems. 

There are already a couple of proposals for, e.g., scene decomposition [148] and prime 

factorization [149], but they are yet to be demonstrated at scale.

In a short-term, there is another practical direction for the application of computing in 

superposition that is already being used to tackle a large problem – enhancement of 

capabilities of machine learning algorithms (often neural networks)4. Below, we briefly 

explain the role computing in superposition plays in approaches proposed within this 

direction, since, in our opinion, it is a unifying theme that will, hopefully, inspire more 

approaches for machine learning algorithms enhancement.

A recent connection, introduced in [102], [150], between a method for representation of 

numeric data as hypervectors [51], [67], [68] and kernel methods allowed representing 

functions as compound hypervectors of weighted sets (Section IV-A2). This finding, in turn, 

allowed one-shot evaluation of kernel machines since the whole model can now be stored 

in the superposition as a compound hypervector. The one-shot evaluation principle was 

demonstrated on probability density estimation [102], [150], [151], kernel regression [102], 

[150], Gaussian processes-based mutual information exploration [152], and rules search in 

superposition [153]. The distributed representations of numeric data can also be very useful 

even without formal links to the kernel methods. They can be used to store in superposition 

multiple locations of interest on a 2D grid that has been shown to be important for, e.g., 

implementing agent’s memory for cognitive maps [154], navigation in 2D environments 

[67], [154], and reasoning on 2D images [67], [148], [155].

When it comes to approaches for augmenting neural networks, in [156], the weights 

of multiple deep neural networks trained to solve different tasks were stored jointly in 

superposition using a single compound hypervector. This approach addressed the so-called 

“catastrophic forgetting” phenomenon by using a unique random permutation assigned to 

each task that allow networks to co-exist in the compound hypervector without much 

interference. These permutations were used as keys to extract the corresponding network’s 

weights from the superposition hypervector. A big leap of such an approach is that new 

networks can be added gradually into the superposition hypervector without significant 

degradation of the performance of the previously included networks.

4We additionally review some of these works in the context of connections to hardware realizations of HDC/VSA in Section V-B2.
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Another approach combining computing in superposition and neural networks was presented 

in [157]. There, activations of network’s layers from a single data sample were used in place 

of value hypervectors. They were bound to the corresponding random key hypervectors and 

all hypervectors of the key-value pairs were aggregated in a single compound hypervector. 

Since the compound hypervector simultaneously keeps all the activations, calculating 

the similarity between two such hypervector corresponds to an aggregate similarity 

score between two data samples. This property was leveraged successfully to detect 

out-of-distribution data. In a similar way, in [158], [159], activations of multiple neural 

network-based image descriptors were combined together into a compound hypervector 

simultaneously representing the aggregated descriptor. Such hypervectors allowed an 

efficient image retrieval for visual place recognition task. A different combination of a 

neural network and a compound hypervector of the key-value pairs was reported in [160], 

where the compound hypervector was used to simultaneously represent the output of a 

neural network when solving multi-label classification tasks.

From the descriptions above, one can notice a striking pattern – most of the approaches 

relied on the primitive for representing sets, in general, and sets of key-value pairs, in 

particular. This is likely because the latter is a simple yet non-trivial data structure. We, thus, 

anticipate that more new approaches can be conceived by expanding to more sophisticated 

data structures.

V. Hardware realizations of HDC/VSA

A. HDC/VSA models for different types of hardware

The computational primitives of HDC/VSA connect the algorithmic level of Marr’s 

computing hierarchy (Fig. 1) to the computational level. At the same time, a HDC/VSA 

placed at the algorithmic level also interfaces with the implementation level. While the 

computational primitives are generic across different HDC/VSA models, the model choice 

can become critical when it comes to interfacing with a particular physical substrate.5 This 

suggests a general design pattern when designing a HDC/VSA system to be implemented 

on emerging hardware: the desired computation is formalized in terms of the generic 
HDC/VSA computational primitives, and then the specific HDC/VSA variant best suited for 
this emerging hardware is used in implementing these primitives. Here, we describe some of 

the existing HDC/VSA models and examples of how they can be implemented in different 

hardware. Different HDC/VSA models can be distinguished in terms of the properties of 

seed hypervectors and corresponding algebraic operations.

1) Dense binary vectors: The Binary Spatter Codes [55] model uses dense binary 

vectors. Superposition is done by the component-wise majority rule followed by tie-

breaking, and binding is by the component-wise XOR. Due to its discrete nature, Binary 

5It should be noted that there exist subtleties when it comes to computational primitives of different HDC/VSA models (see, e.g., [62] 
for a discussion). So, strictly speaking, model choice may not be only influenced by a physical substrate but also by the nature of the 
task at the computational level. To put it simply, not all HDC/VSA models are interchangeable. This is not entirely unexpected since, 
if a framework can provide tight matches between computation and hardware to enable efficiency, the separation between abstraction 
and physical realization cannot be perfect. Thus, for the sake of narration in this section, we focus on the availability of an efficient 
mapping between some physical substrate and some HDC/VSA model.
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Spatter Codes is highly suitable for conventional digital application-specific integrated 

circuit (ASIC). The first ASIC design [130] was made in 65 nm CMOS for the language 

recognition, followed by more programmable designs in 28 nm [161] and 22 nm [162]. 

It has been also mapped on a 28 nm FD-SOI silicon prototype with four programmable 

OpenRISC cores operating in near-threshold regime (0.7 V−0.5 V) [163]. Overall, in the 

Binary Spatter Codes model, the hypervectors are stationary and robust, and related binary 

operations are local and simple. This provides a natural fit for implementing the model on 

non von Neumann architectures (a.k.a. in-memory computing) using emerging technologies 

such as carbon nanotube FETs and resistive RAM [26], [164], [165], and phase-change 

memory [16], [147]. Specifically, [16] describes how to organize computational memories 

for storing and manipulating hypervectors whereby the operations are implemented inside, 

or near, computational memory elements.

2) Integer vectors: The Multiply-Add-Permute model [54], the HDC/VSA model 

we have used in the examples so far as the default, employs bipolar (+1s and −1s) 

hypervectors, component-wise multiplication, and superposition with possible thresholding. 

Multiply-Add-Permute model will usually suit the same technologies as Binary Spatter 

Codes. For example, it was recently implemented on an FPGA for hand gesture recognition 

[166].

3) Real-valued vectors: The Holographic Reduced Representation model [52] was 

originally done with N-dimensional real-valued hypervectors whose components are i.i.d. 

normal with zero mean and 1/N variance. Superposition is done by the normalized vector 

sum, and binding is done by circular convolution. It has been shown how to map real-

valued hypervectors onto spiking neurons using the principles from the Neural Engineering 

Framework [167] with the help of spike-rate coding. For example, the Spaun cognitive 

architecture [38] has been implemented in such a way. Most of the studies were done 

using simulations in Nengo [168], which is a Python-based package for simulating large-

scale spiking neural networks. Nevertheless, Nengo has compilers to popular neuromorphic 

platforms such as SpiNNaker and Loihi, therefore, it is straightforward to deploy a model 

built in Nengo on the neuromorphic platforms.

4) Complex vectors: In the Fourier Holographic Reduced Representations [53], vector 

components are random phasors, superposition is by component-wise complex addition 

followed by normalization, and binding is by component-wise complex multiplication 

(addition of phasors) [53]. This HDC/VSA model should be suited for implementations 

on coupled oscillator hardware [169], however, we are not aware of any concrete 

hardware realizations as of yet. Another alternative is mapping complex HDC/VSA to 

the neuromorphic hardware [24], by representing phasors with spike times [170]. This 

implementation is particularly interesting because the neuromorphic hardware scales up 

more easily than the current approaches to coupled oscillator hardware. However, no 

neuromorphic implementation of a full complex HDC/VSA has been reported to date.

5) Sparse vectors: Traditional HDC/VSA models use dense distributed representations. 

However, sparsity is an important ingredient of energy efficient realizations in hardware. 
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Thus, HDC/VSA models that use sparse representations are important for mapping 

HDC/VSA operations efficiently onto hardware. We are aware of two such models: Sparse 

Binary Distributed Representations [56], [57] and Sparse Block-Codes [58], [59]. In the 

Sparse Binary Distributed Representations model, the hypervectors are sparse patterns 

without any restrictions on placing the active components, while in Sparse Block-Codes 

the hypervectors are divided into blocks of the same size (denoted as K) with just 

one single active component per block. The Sparse Binary Distributed Representations 

model was implemented around 1990 in specialized hardware – “associative-projective 

neurocomputers” [49]. This hardware was designed to operate efficiently with sparse 

representations [56] by using simple bit-wise logical operations and a long word processor 

with 256 bits (later with 512 and 2048 bits, implemented by Wacom, Japan). For cleanup 

memory, it used Willshaw-like associative memories, following earlier ideas to implement 

such memory networks [171] and motivated by theoretical results suggesting high memory 

capacity [70], [71], [172]–[175]. Concerning HDC/VSA with Sparse Block-Codes, in 

particular with complex-valued sparse vectors, they seem to be the most amenable for 

implementations on neuromorphic and coupled oscillator hardware. Currently, there are two 

proposals for implementing binary Sparse Block-Codes in spiking neural network circuits 

[17], [18]. The proposal in [17] has been implemented on Intel’s Loihi [24] while the one 

from [18] has not been realized in hardware yet, but it has been implemented in the Brian 2 

simulator [176].

B. Mapping algorithms to hardware

1) Hardware implementations of pure HDC/VSA: How do implementations of 

HDC/VSA in existing conventional hardware produce gains over conventional machine 

learning methods? On a dedicated digital ASIC design, it has been demonstrated that 

HDC/VSA-based classification can lower the energy by about 2× compared to a k-nearest 

neighbors classifier for the European language recognition task [130]. By running these 

classifiers on the Nvidia Tegra X2 GPU, HDC/VSA exhibited over 3× lower energy per 

prediction [161]. Considering a wide range of biomedical signal classifications, HDC/VSA 

achieved at least the same level of accuracy compared to the baseline methods running 

on the conventional programmable hardware, however, at: 2× lower power compared to 

the fixed-point SVM for EMG classification on the embedded ARM Cortex M4 [163]; 

2.9× lower energy compared to SVM, and over 16× compared to CNN and LSTM for 

iEEG classification on the Nvidia Tegra X2 [107]. More details for this benchmarking 

is available in [34]. Using PageRank centrality metric, HDC/VSA achieved comparable 

accuracy with 2× faster inference compared to the graph kernels and neural networks for 

graph classifications on the Intel Xeon CPUs [177]. These improvements are due to the 

fact that the HDC/VSA-based solutions mostly use basic bit-wise operations, instead of 

fixed-point or floating point operations.

Another appealing property of HDC/VSA-based solutions is their great robustness, for 

example, they tolerate 8.8× higher probability of failures with respect to intermittent 

hardware errors [130], and 60× higher probability of failures with respect to permanent 

hardware errors [26]. This robustness makes HDC/VSA ideally suited to the low signal-

to-noise ratio and high variability conditions in the emerging hardware as discussed in 
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more detail in [43]. Among them, as a large-scale experimental demonstration [16] of HDC/

VSA, it was implemented on 760, 000 phase-change memory devices performing analog 

in-memory computing with 10, 000-dimensional binary hypervectors for three different 

classification tasks. The implementation not only achieved accuracies comparable to 

software implementations—despite the non-idealities in the phase-change memory devices

—but also achieved over 6× end-to-end energy saving compared to an optimized digital 

ASIC implementation [16].

The connection of HDC/VSA to spiking neuromorphic hardware is not obvious since 

all classical HDC/VSA models used abstract connectionist representations, not spikes. 

However, recent work has demonstrated that representations of a complex HDC/VSA model, 

Fourier Holographic Reduced Representations [53], can be mapped to spike timing codes 

[170]. Although focused just on content-addressable memory, i.e., item memory, this work 

opens avenues for efficient implementations of full HDC/VSA models on neuromorphic 

hardware [9]. Because neuromorphic hardware often optimizes spike communication 

for sparse network connectivity, the scaling properties of neuromorphic HDC/VSA will 

potentially outperform other types of hardware. Further, neuromorphic hardware might 

enable hybrid approaches by integrating HDC/VSA with other computing frameworks. For 

instance, an event-based dynamic vision sensor (as a front-end spiking sensor) has been 

combined with sparse HDC/VSA leading to 10× higher energy efficiency than an optimized 

9-layer perceptron with comparable accuracy on an 8-core low-power digital processor [89].

The results above bring a question worth discussing – what are the common hardware 

primitives enabling these gains? The most common architectural primitives that are observed 

in the hardware implementations can, actually, be naturally mapped to basic elements 

(Section III-A) and operations (Section III-B) of HDC/VSA. For example, let us consider 

the implementations of the Binary Spatter Codes model based on phase-change memory 

devices reported in [16] and of the Sparse Block-Codes model on spiking neural network 

circuits described in [18]. The basic hardware primitives lying at the core of these 

implementations were: item memory circuit (cf. Fig. 1 in [16] & Section III-A1a in [18]), 

superposition operation circuit (“The complete in-memory HDC system” in [16] & Fig. 2 in 

[18]), binding operation circuit (cf. Fig. 3 in [16] & Fig. 4 in [18]), and circuit for probing 

(cf. Fig. 2 in [16] & Fig. 3 in [18]).

The fact that the basic HDC/VSA elements and operations are the most common hardware 

primitives should not be surprising because, as it was demonstrated in Section IV-A, they are 

the key building blocks of all the computational primitives in the “HDC/VSA cookbook”. 

This implies that given the hardware implementation of the most basic elements, it is 

possible to construct architectures for compositional primitives that might, e.g., combine 

usage of several HDC/VSA operations. This, of course, does not mean that there is no 

other way to approach hardware implementation of HDC/VSA. In fact, there are incentives 

to design implementations targeting concrete compositional primitives and they were even 

present in the two above works, e.g., a circuit for representing n-grams – see Fig. 3 in 

[16] and a circuit for representing a set of key-value pairs – see Fig. 5 in [18]. The main 

incentive for doing so is to increase the efficiency of the implementation since it allows 

applying, e.g., computational reuse. A vivid example of such an approach is a circuit from 

Kleyko et al. Page 34

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[130] (cf. Fig. 3 there) for generating hypervectors of trigrams (Section IV-A6) that used 

Barrel shifters to minimize the switching activity during the permutation operations. Note 

that the same circuit could have been designed using the hardware primitives for binding and 

permutation operations as the building blocks, but such a design would come at the price 

of the reduced efficiency. Another common bottleneck in the hardware implementations of 

machine learning applications of HDC/VSA is the item memory (cf. Fig. 8 in [161]). The 

presence of this bottleneck caused researchers to consider ways of efficiently eliminating it. 

A prominent way to do so is the rematerialization of the item memory using inexpensive 

recurrent methods as proposed in [162], [178], [179]. This idea of rematerialization created 

a room for trading off system’s dynamic and leakage powers and was demonstrated to 

increase energy efficiency in scenarios involving, e.g., biosignal processing [162], [180], 

[181].

In summary, we can argue that hardware implementations of HDC/VSA rely on architectural 

primitives corresponding to the basic elements and operations of HDC/VSA. However, 

in order to increase the efficiency, it is also common to design circuits implementing 

compositional computational primitives from Section IV-A.

2) HDC/VSA combined with neural networks: The aforementioned works have 

demonstrated the benefits of HDC/VSA on relatively small-scaled classification tasks. In 

order to approach more complex tasks, a common strategy is to combine some of the 

basic HDC/VSA primitives (discussed in Section IV-A) with neural networks. For instance, 

representations from pretrained neural networks have been used with the HDC/VSA 

primitives to compactly represent a set of key-value pairs to generate image descriptors 

for visual place recognition [158], [159]. One step further, the deep neural networks 

were trained from the scratch to be able to directly generate desired hypervectors that 

were further bound, or superposed by HDC/VSA operations to represent the concepts of 

interest [147], [153], [182]. They achieved the state-of-the-art accuracy compared to the 

stand-alone deep learning solutions in various tasks involving images, including few-shot 

learning [147], continual learning [182], and visual abstract reasoning [153]. The hardware 

implementation of such hybrid architectures may vary. For instance, the associative memory 

for few-shot learning was implemented on the phase-change memory devices to execute 

searches in constant time, while the neural network was implemented externally [147]. 

Alternatively, the whole architecture for the visual abstract reasoning was executed on 

CPUs, whereby leveraging HDC/VSA leads to two orders of magnitude faster execution 

than the functionally-equivalent symbolic logical reasoning [153].

VI. Discussion

HDC/VSA has been criticized for lacking a structured methodology for designing systems 

as well as for missing well-defined design patterns [86]. Here (Section IV-A), we compiled 

existing computational primitives with HDC/VSA that paint a different picture. There is 

an HDC/VSA methodology addressing a wide range of applications, but it is scattered 

throughout the literature. In addition to compiling existing work, we laid out principles of 

design for building distributed representations of data structures such as sets, sequences, 

trees, key-value pairs, and more. This demonstrates a rich algorithmic and representation 
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level approach which one can use as an abstraction for the next generation of computing 

devices.

Our compilation of varied HDC/VSA primitives also suggests that, contrary to some earlier 

assessments (see, e.g., [183] and the commentary in [184]), the repertoire potential of 

HDC/VSA applications is extremely wide, ranging from low-level sensory processing 

to high-level reasoning. While we provided an extensive introduction to HDC/VSA as 

well a comprehensive collection of computational primitives and existing connections to 

computing hardware, there was no goal to provide the complete state-of-the-art of the area 

such as, e.g., a review of all existing HDC/VSA models. We, however, hope that this article 

will motivate readers to explore the current state of the area that is covered in details in 

a two-part survey that covers both fundamentals [73] as well as applications [185]. We 

think that the strength of HDC/VSA comes for the applications where there is a need for 

a computing framework constructing transparent compositional distributed representations 

that will allow interfacing unconventional parallel computing hardware. It is not obvious 

how to achieve it with, e.g., modern neural networks, though it should be admitted that there 

is increasing empirical evidence demonstrating that certain problems benefit from hybrid 

approaches combining elements of HDC/VSA and neural networks.

That being said, it is still important to admit the limitations and challenges of HDC/VSA 

and, therefore, before ending the article, we would like to focus on them (Section VI-A). We 

conclude by discussing the role of HDC/VSA as a framework for computing with emerging 

hardware (Section VI-B).

A. Limitations and open challenges

Here, we would like to emphasize some of the limitations of HDC/VSA that are directly 

related to the scope of this article: applications (Section VI-A1), dimensionality of 

hypervectors (Section VI-A2), and flow control (Section VI-A3). For a broader discussion of 

open challenges, we kindly refer the reader to the section “Open issues” in [185].

1) Applications: There are numerous attempts to use HDC/VSA in problems within 

various application domains (see [185] for a detailed coverage). Some well-known examples 

of using HDC/VSA include word embedding [186], [187] (though largely overshadowed 

after [188], [189]), analogical reasoning [13], [97], cognitive architectures [37], [38] and 

modeling [190], [191] as well as solving classification tasks [15], [34]. It must be admitted, 

however, that most of these use-cases were limited to small scope problems, therefore, 

there is still a need to demonstrate how HDC/VSA-based solutions scale-up to real-world 

computational problems and, what is also important, to identify niches where the advantages 

of HDC/VSA will be self-evident. We think that further research will eventually address 

this limitation as we see two recent developments in this direction. First, there is a 

continuing trend to extend HDC/VSA to novel domains – promising recent examples 

include applications in communications [83] and in distributed systems [79]. Second, there 

is an increasing number of studies (see Section V-B2 and, e.g., [147], [153], [156], [158], 

[160], [192]) that combine together neural networks and HDC/VSA primitives. This seems 
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to be a promising way to scale-up HDC/VSA-based solutions to real-world problems, in the 

short-term.

2) HDC/VSA dimensionality and working memory: The key feature of data 

representation in HDC/VSA is that data structures are represented by fixed sized 

hypervectors, independent of the size of a data structure. This is in contrast to the localist 

representations of data structures, that grow linearly or even quadratically with the number 

of elements. On the one hand, it is a great advantage as data structures of arbitrary size 

and shape can be manipulated in parallel with the elementary set of HDC/VSA operations. 

At the same time, as we have seen in Section IV-A, dimensionality of hypervectors might 

easily become a limitation since for a given dimensionality, the information content of 

representation, i.e., the HDC/VSA capacity, limits the size of data structures that can be 

represented reliably [30], [193].

Conceptually, one should think of the memory in hypervectors as the working memory or 

working registers, holding the data relevant during an ongoing computation. In contrast, 

the role of a long-term memory for a HDC/VSA-based system can be fulfilled by, e.g., a 

large capacity associative content-addressable memory that might store hypervectors of data 

structures [37], [194]. Currently, this idea is being investigated by the community [195].

The limitation of working memory in HDC/VSA has interesting parallels to the limitation of 

human working memory. For data structures of limited size, there are guarantees for exact 

reconstruction [193]. However, transcending the theoretical bound for exact reconstruction, 

the data representation becomes lossy, with error rates also being theoretically predictable 

[30]. HDC/VSA representations of data structures in the lossy regime have been shown to 

reproduce some properties of human working memory. For example, the recall of sequence 

in an HDC/VSA, as described in Section IV-A5, can reproduce the performance of humans 

remembering sequences [120], [122]. Further, the modeling of memorizing sequences with 

HDC/VSA was linked to the neuroscience literature in [125]. It is not immediately clear 

how this capturing of the limitations of human memory might be beneficial in engineering 

applications. The way biological working memory coarsens its content and gradually 

degrades might be an important feature of cognition whose benefits are not yet fully 

appreciated. However, for applications that require guarantees for exact reconstruction, the 

dimensionality of hypervectors needs to be specified at the design stage that makes it a 

limitation for the situations where data structures to be represented can be of highly varying 

size.

3) Flow control: HDC/VSA implementations of algorithms generally rely on existing 

non-HDC/VSA mechanisms for flow control. This is reasonable in systems where the aim is 

to use HDC/VSA to implement conventional computing approaches. In this case, it can be 

seen more from the point of extending conventional computing with HDC/VSA. However, if 

we were modeling biological systems we should not be using non-HDC/VSA conventional 

computing flow control. Moreover, from the efficiency point of view, when using emerging 

hardware it might not be desirable to have a conventional processing unit for flow control. 

For these reasons, it is important to develop methodologies for flow control that would 

use native HDC/VSA primitives. In our opinion, it is possible. However, to date the efforts 
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in this direction are quite limited. There was an attempt in [196] to define a model of 

a biological system with HDC/VSA-based control. Two other related efforts are [41] that 

presented a proposal for a stack machine and [58] proposing a processor with instructions 

specified in the form of hypervectors.

B. HDC/VSA as a framework for computing with emerging hardware

HDC/VSA was originally proposed in cognitive neuroscience as models for symbolic 

reasoning with distributed representations. More recently, it has been shown that HDC/VSA 

can formulate sub-symbolic computations, for example, in machine learning tasks.

Here we proposed that HDC/VSA provides a computing framework within the algorithmic 

level of Marr’s framework [19] for linking abstract computation and emerging hardware 

levels. The algorithmic formalism of HDC/VSA (with few exceptions) is the same for all of 

its variants. Thus, HDC/VSA enables a model-independent formulation of computational 

primitives. At the same time, HDC/VSA also provides a seamless interface between 

algorithms and hardware. In Section V-A, we illustrated how different HDC/VSA models 

can connect to specific types of emerging hardware. Moreover, in Section IV-B we 

demonstrated how HDC/VSA can be used for computing in superposition. This feature 

extends HDC/VSA beyond the conventional computing architectures, and we foresee 

that together with algorithms that leverage computing in superposition, such as resonator 

networks [76], [77] (Section III-C), it will pave the way to efficient solutions of non-trivial 

combinatorial search problems (see examples in [148], [197]).

Another interesting aspect of computing with hypervectors is that it occupies a realm 

between digital and analog computing. After each computation step in a digital computer, 

all vector components are pulled to one of the possible digital states (bits). This 

individual discretization of each component avoids error accumulation. Conversely, an 

analog computer is supposed to implement an analog dynamical system to predict 

its future states. Any deviation between the dynamical system to be analyzed and 

its computer implementation (e.g., noise) leads to uncontrollable error accumulation in 

analog computers. HDC/VSA operations leverage analog operations on vectors without 

discretization. However, discretization takes place on the entire vector level, when a resultant 

hypervector is matched with the entries in the item memory. Thus, HDC/VSA can leverage 

(potentially very) noisy dynamics in the high-dimensional state space of emerging hardware, 

while still protecting against error accumulation.

Despite all the above promising aspects, the practicability of the HDC/VSA computing 

framework for emerging computing hardware is yet to be thoroughly quantified. An 

important future direction is to develop a systematic methodology to quantitatively measure 

and compare side-by-side the efficiency of different computing frameworks on a concrete 

hardware. In this article, we concentrated on the question how HDC/VSA enables the 

construction of varied algorithmic primitives and, therefore, could be a possible candidate 

framework in such a comparison.

Alternative frameworks: HDC/VSA constitutes a computing framework that provides an 

algebraic language for formulating algorithms and, at the same time, links the computation 
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to distributed states on hardware. Table I compares the qualitative properties of HDC/VSA 

as a computing framework to conventional computing and neural networks.

There is a tradeoff between how general a framework is in terms of computation and 

how closely it is linked to implementation. A general purpose framework typically 

requires a full sealing between implementation and computation, like, for example, the 

conventional computing architecture. Conversely, a framework that is well matched to an 

implementation, and, therefore, can efficiently leverage the hardware, is typically quite 

special purpose. We argue that the tradeoff HDC/VSA provides between generality and 

linking to implementation is ideal for emerging hardware. In particular, it seamlessly 

provides implementations of algorithms that leverage distributed representations, parallel 

operations, and can tolerate noise and imprecision [43]. Of course, HDC/VSA is not the 

only candidate of a framework for emerging hardware, alternative approaches include 

probabilistic computing [198], sampling-based computing [199], computing by assemblies 

of neurons [200], and dynamic neural fields [201]. For example, in neuromorphic 

computing, dynamic neural fields is an alternative computing framework that could 

support fully symbolic operations. In fact, dynamic neural fields and HDC/VSA might 

complement each other by combining real-time dynamics of dynamic neural fields with the 

computational power and scalability of HDC/VSA. The detailed comparison between these 

approaches and HDC/VSA is, however, outside the scope of this article. Nevertheless, in 

our opinion HDC/VSA is the most transparent approach in structuring computation, and the 

most general with regard to different types of hardware. In terms of formulating algorithms 

and computational primitives, HDC/VSA offers a common language, independent of a 

particular HDC/VSA model. For a desired computation on a given hardware, one of the 

many existing HDC/VSA models can provide the most advantageous implementation in 

terms of energy and time efficiency.

There is currently a plethora of collective-state computing approaches emerging, such 

as compressed sensing, Bloom filters, reservoir computing, etc., relying on distributed 

representations [169]. These approaches are rather disjoint, and typically focus on special 

purpose computing applications. HDC/VSA has been shown to be able to formalize 

different types of collective-state computing including reservoir computing [28], [30], 

Bloom filters [78], compressed sensing [59], randomized kernels [102], [150], and extreme 

learning machines/random vector functional link networks [29]. Thus, we see HDC/VSA 

as a promising candidate framework for providing a “lingua franca” of collective-state 

computing.
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Appendix A

On Turing completeness of HDC/VSA

It is practical to have a collection of primitives for common data structures. However, these 

primitives alone do not provide us with a quantification of the theoretical capabilities of 

using HDC/VSA as a computing framework. Of course, it is desirable that a computing 

framework for emerging hardware be able to (in theory, at least) execute any algorithm. 

For example, in [202] that proposed a system hierarchy for neuromorphic computing, it 

has been emphasized that Turing completeness is an essential property for an abstraction 

model that is used at the algorithmic level. Therefore, in this section, we sketch ways of 

demonstrating that HDC/VSA is computationally universal by exemplifying how they (with 

some assumptions) can be used to emulate systems that have already been proven to be 

Turing complete. While computing in superposition is likely to be the most interesting 
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feature of operating with HDC/VSA, computational universality is still a critical property 

to study as it characterizes the general computational power of a system. It is worth 

noting that among HDC/VSA researchers there is a general agreement that HDC/VSA 

are computationally universal but, to the best of our knowledge, this has not been shown 

yet. Therefore, here we make two proposals towards demonstrating their universality: by 

implementing a Turing machine and by emulating an elementary cellular automaton, which 

is also known to be Turing complete [203]. Note that while these proposals might not be 

tight enough to be qualified as a formal proof, we believe that the directions below are the 

most promising ways to make such a proof.

A. Implementation of Turing machines with HDC/VSA

Since there are a number of small Turing machines known to be universal [204], we first 

focus on demonstrating how HDC/VSA can be used as a part of an implementation of such 

a machine. In order to do so, we present how HDC/VSA representations are used to map a 

table of behaviour [204] and execute the machine.

Fig. 10. 
An illustration of the current state of the machine and its tape.

The presented implementation could be used to realize any Turing machine, but for the sake 

of compactness we exemplify the implementation with a (2,4) Turing machine, which has 2 

states (A and B) and 4 symbols (0, 1, 2, 3). The table of behaviour of a (2,4) Turing machine 

is presented in Table II. For a given combination of the current state and tape’s content, it 
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provides which symbol should be written to the current cell, the next state of the machine, 

and the direction for the head’s move.

1) HDC/VSA implementation of the table of behaviour: We use the Multiply-Add-

Permute model described above. In order to represent the table of behaviour of a Turing 

machine, we first create two item memories populated with random hypervectors. One item 

memory stores the states, e.g., in the case of a (2,4) Turing machine it includes only two 

hypervectors for states A and B (denoted as a and b), respectively. Another item memory 

stores hypervectors for symbols. Since the considered machine uses only four symbols, four 

hypervectors 0, 1, 2, and 3 are sufficient. These item memories are used to construct a 

hypervector for each combination of states and symbols. The hypervector is constructed by 

applying the binding operation on the hypervectors for a state and a symbol.

Eight hypervectors corresponding to all possible combinations form a basis for constructing 

a third, heteroassociative, item memory, i.e., the memory where the address and content 

parts store different hypervectors. The heteroassociative item memory can implement any 

table of behaviour by using the bound pair of state and symbol as input to the memory and 

issuing hypervectors, which should be used as the tape content, head’s move, and next state 

as an output. Table III presents the heteroassociative item memory for the table of behaviour 

of (2,4) Turing machine. Thus, three item memories constitute the static part of the system, 

which is generated only once at the initialization. At this point, it is worth making a note that 

in addition to the standard assumptions about unlimited time and memory resources, there 

is an extra assumption about the heteroassociative item memory. In particular, it should be 

guaranteed to behave correctly in the absence of external errors. Practically, it means that 

the address part of the heteroassociative item memory should not have repeated entries. Even 

for moderate dimensionality of hypervectors the chance of such an event is low, but if this 

happens the issue is solved by the regeneration of the item memories.
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Fig. 11. 
The updated state and tape of the machine after the previous state as in Fig. 10.

2) HDC/VSA-based tape: The other part of the system is dynamic and includes the 

location for storing a hypervector for the current state, the tape, and current position of 

the head. Fig. 10 presents an example of the dynamic part of the system. In the case of 

using HDC/VSA, the tape can be seen as a matrix where each column corresponds to 

the hypervector of a symbol. In order to make the next step, the machine has to read the 

hypervector of the current state (b in Fig. 10) and the hypervector of the symbol at the 

current location of the head (0 in Fig. 10). The result of binding of these hypervectors b⊙0 
is used as an input to the heteroassociative memory. The output of the memory indicates that 

hypervector a should be written to the current state; the tape’s content is changed to 3, and 

the head should be moved to the right of the current location. The updated state is shown 

in Fig. 11. In such a manner, the system could operate on the tape for the required number 

of computational steps. Summarizing, the proposed implementation of a Turing machine 

uses basic elements of HDC/VSA such as hypervectors, item memories, and the binding 

operation; however, it also includes few parts that go beyond HDC/VSA – namely, control of 

head movements and unlimited memory tape.

3) Scaling HDC/VSA implementation: Since the proposed implementation of a 

Turing machine does not make use of the superposition operation, there is no crosstalk noise 

being introduced to the computations, which in turn means that in the absence of external 

noise the emulation behaves in a deterministic way. Thus, even tiny three-dimensional 
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vectors can be used to construct the heteroassociative item memory with unique entries. 

Nevertheless, since one of the arguments in favour of HDC/VSA is their built-in tolerance 

to errors, it is interesting to observe the behaviour of the emulation in the presence of 

external noise. We performed simulations where the external noise was added to the tape 

by randomly flipping signs of a fraction of hypervector components. Fig. 12 presents the 

average dimensionality of hypervectors required to make at least 109 error-free updates of 

the emulated Turing machine when the hypervectors representing symbols on the tape were 

subject to external bit flips. The Bit Error Rate varied in the range [0.05, 0.30] with step 

0.05. The starting dimensionality of hypervectors was 24. If the error in emulation was 

happening in less than 109 steps, then the dimensionality was increased by 10%. The results 

demonstrate that the proposed implementation can reliably emulate the Turing machine 

given adequate resources (i.e., dimensionality of hypervectors). Naturally, in the presence of 

external noise, more resources are needed to obtain the error-free execution of the machine. 

Nevertheless, an important observation is that the implementation works with imprecise 

noisy representations. Moreover, the robustness of the implementation comes at no cost in 

terms of design, as the same algorithm is being used for any amount of noise and the only 

cost to be paid is the increased size of the system.

Fig. 12. 
The average dimensionality of hypervectors required to make at least 109 error-free updates 

of the emulated (2,4) Turing machine when the hypervectors representing symbols on the 

tape were subject to external bit flips. The Bit Error Rate was in the range [0.05, 0.30] with 

step 0.05. The results were computed from 10 simulation runs with random initializations 
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of hypervectors in the item memories and random bit flips added at every update of the 

machine.

Fig. 13. 
The assignment of new states for a center cell when the cellular automaton uses rule 110. A 

hollow cell corresponds to zero state while a shaded cell marks one state.

B. Emulation of cellular automaton with HDC/VSA

Since HDC/VSA are designed to create vector representations of symbolic structures, when 

identifying a Turing complete system suitable for emulation with HDC/VSA, it is also 

natural to choose a highly structured system which uses a small finite alphabet of symbols. 

We think that an elementary cellular automaton is one example of such a system. Since the 

elementary cellular automaton with the rule 110 is known to be Turing complete [203], we 

would like to demonstrate how HDC/VSA can be used in emulating this rule. In order to do 

so, we first revisit the elementary cellular automaton concept. Next, we present a HDC/VSA 

algorithm for mapping and executing an elementary cellular automaton. Thus, we literally 

follow the roadmap from [203]: “The automaton itself is so simple that its universality gives 

us a new tool for proving that other systems are universal”. Finally, we explore how the 

proposed implementation is scaling with respect to the size of the initial grid state of an 

elementary cellular automaton, the dimensionality of hypervectors, and the amount of noise 

present during the computations. The major point of the latter is that even for large amount 

of noise the implementation can perfectly emulate the elementary cellular automaton given 

sufficiently large dimensionality of hypervectors, which is a nice property as the robustness 

is achieved without modifying the design.

TABLE IV

The heteroassociative item memory implementing rule 110.

Address (input) Content (output)

h111 = [l ⊙ 1 + c ⊙ 1 + r ⊙ 1] 0

h110 = [l ⊙ 1 + c ⊙ 1 + r ⊙ 0] 1

h101 = [l ⊙ 1 + c ⊙ 0 + r ⊙ 1] 1
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Address (input) Content (output)

h100 = [l ⊙ 1 + c ⊙ 0 + r ⊙ 0] 0

h011 = [l ⊙ 0 + c ⊙ 1 + r ⊙ 1] 1

h010 = [l ⊙ 0 + c ⊙ 1 + r ⊙ 0] 1

h001 = [l ⊙ 0 + c ⊙ 0 + r ⊙ 1] 1

h000 = [l ⊙ 0 + c ⊙ 0 + r ⊙ 0] 0

1) Elementary cellular automata: An elementary cellular automaton is a discrete 

computational model consisting of a one-dimensional grid of cells [205]. Each cell can be in 

one of a finite number of states (two – for the elementary automaton). States of cells evolve 

in discrete time steps according to a fixed rule. The state of a cell at the next computational 

step depends on its current state and states of its neighbors. The computations performed by 

an elementary cellular automaton are local. The new state of a cell is determined by previous 

states of the cell itself and its two neighboring cells (left and right). Thus, only three cells are 

involved in a computation step, i.e., for binary states, there are in total 23 = 8 combinations. 

A rule assigns states for each of eight combinations. Fig. 13 presents all combinations and 

the corresponding states for the rule 110.

2) HDC/VSA algorithm for emulating an elementary cellular automaton with 
the rule 110: We use the Multiply-Add-Permute model described above. In order to 

represent an elementary cellular automaton with the rule 110, we first create two item 

memories populated with random hypervectors. One item memory stores the finite alphabet, 

i.e., it includes only two hypervectors, for one and for zero (denoted as 1 and 0, 

respectively). Another item memory stores hypervectors for positions. Since an elementary 

cellular automaton relies only on a cell in focus and its immediate neighbors, then three 

hypervectors: l (left), c (center), and r (right) are sufficient. These item memories are used 

to construct a hypervector for each combination of states in three consecutive cells. The 

hypervector is constructed by applying the superposition operation on the bound pairs of 

a positional hypervector and an alphabet hypervector. In other words, the current states in 

three consecutive cells are represented as a set of unordered pairs. For example, for 010, the 

corresponding compound hypervector is constructed as:

h010 = [l ⊙ 0 + c ⊙ 1 + r ⊙ 0] .

All eight compound hypervectors form a basis for constructing a heteroassociative item 

memory which can implement any elementary rule by using the compound hypervectors as 

input to the memory, and issuing either 1 or 0 (determined by the rule) as an output. Table 

IV presents the heteroassociative item memory for the rule 110. Thus, three item memories 

constitute the static part of the system, which is generated only once at the initialization.
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Fig. 14. 
The average error rate after 100 computational steps of the elementary cellular automaton 

against the dimensionality of hypervectors (N = 2i, i ∈ [10, 17]) for several different lengths 

of the grid (l = 2i, i ∈ [5, 10]). The results were computed from 100 simulation runs with 

random initializations of hypervectors in the item memories. The initial grid states were also 

randomized.

The other part of the system performs computations for a given initial grid state of length l at 

time t = 0. The initial grid state is mapped to a compound hypervector (denoted as a0). The 

mapping is done by applying the superposition operation on all hypervectors representing 

the states of cells at all positions. Position j in the grid is represented by applying the 

permutation operation j times to the hypervector corresponding to a state at position j. 
Thus, this representation corresponds to the mapping of a sequence with the superposition 

operation. For example, if the initial grid state is 10101, then the representation of the state 

at the fifth position is ρ51 while the compound hypervector for the initial grid state is:

a0 = ρ11 + ρ20 + ρ31 + ρ40 + ρ51 .

Given a0, the next step is to compute a1 or in general compute at+1 given at.
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Fig. 15. 
The average error rate after 100 computational steps of the elementary cellular automaton 

against the dimensionality of hypervectors (N = 2i, i ∈ [10, 17]) for several different bit error 

rates, BER (p = 2−i, i ∈ [2, 5]) for the length of the grid l = 32. The results were computed 

from 100 simulation runs with random initializations of hypervectors in the item memories. 

The initial grid states were also randomized.

First, at+1 is initialized to be an empty hypervector. Next, for each position j ranging from 1 

to l we do the following (this step can be either serial or parallel):

• Approximately recover the state at j and its neighbors as 

h = l ⊙ ρ−(j − 1)at + c ⊙ ρ−jat + r ⊙ ρ−(j + 1)at

• Use h as the query to the heteroassociative item memory. The memory returns 

the content (i.e., 0 or 1) for the address closest to h in terms of dot product. The 

returned content is denoted as vj.

• Modify at+1 with vj as: at+1+ = ρjvj.

Finally, apply the majority rule on at+1: at+1 = [at+1], so that it becomes bipolar. In such a 

manner, the system could iterate through the grid for the required number of computational 

steps.
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Last but not least, it is worth explicating that the proposed implementation assumes parts 

that go beyond HDC/VSA. First, the full computational system has its control architecture 

that is responsible for initializing the grid state as well as for running the for-loop, which 

can be seen as a recurrent connection, required for constructing at+1. The second part that is 

assumed here to be the same as in the standard implementation of a cellular automaton, is 

the circuit determining when to stop the computation. We have not focused on this circuit as 

our main goal here was to demonstrate how to evolve HDC/VSA representations to perform 

cellular automaton’s computations.

3) Scaling HDC/VSA emulation: It is known that compound hypervectors can be 

used to retrieve their components (Section III-C); however, there is a limit on the number 

of components which can be stored in a compound hypervector without losing the 

ability to recover the components [30]. The rule of thumb is that for larger hypervector 

dimensionalities more components can be recovered from a compound hypervector. For the 

task of emulating an elementary cellular automaton, it is important that h is similar enough 

to the correct state hypervector in the item memory. Otherwise, we will introduce errors 

to the computations being emulated, which is highly undesirable. When constructing h, the 

main source of noise is the crosstalk noise from other cell states stored in at. Therefore, in 

order to avoid errors in the computations, the dimensionality of hypervectors should depend 

on the length of the grid: the longer is the grid, the larger dimensionality is required for 

robustly querying the item memory.6

Fig. 14 presents the empirical results for a range of l and N values. The curves depict the 

average error rate after 100 computational steps of the elementary cellular automaton. Note 

that the errors occurring at the earlier computational steps will most likely propagate to the 

successive steps. The length of the grid, l, varied as 2i, i ∈ [5, 10], while the dimensionality 

of hypervectors, N, varied as 2i, i ∈ [10, 17]. Thus, the results demonstrate that HDC/VSA 

can perfectly emulate the elementary cellular automaton with the grid of certain length, 

given adequate resources (i.e., dimensionality of hypervectors).

Note that Fig. 14 presented the results for the case when hypervectors did not include any 

external noise. Since one of the arguments in favour of HDC/VSA is their built-in tolerance 

to errors, it is interesting to observe the behaviour of the emulation in the presence of 

external noise. External noise was added by randomly flipping a fraction of components 

in at, but it was still assumed that the control architecture functions without errors. Fig. 

15 presents the average error rate after 100 computational steps of the elementary cellular 

automaton in the presence of external noise. The bit error rate, p, varied as 2−i, i ∈ [2, 5]. 

The length of the grid was fixed to l = 32.

The results demonstrate that, naturally, in the presence of external noise, more resources 

are needed to obtain the error-free emulation. Nevertheless, an important observation is 

that the HDC/VSA-based system works with imprecise noisy representations. Moreover, the 

6In principle, it should be possible to analytically find the minimal dimensionality of hypervectors for robustly emulating the grid of 
the given length.
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robustness of the system comes at no cost in terms of design, as the same algorithm is used 

in both cases and the only cost to be paid is in the increased size of the system.

4) Studies related to computational universality of HDC/VSA: Studying 

computational universality of a particular computing framework is important for 

understating ultimate theoretical limitations of computing hardware using this framework. 

For example, [206] has shown that recurrent neural networks are computationally universal, 

[207] has shown universality of modern transformer and Neural GPU networks. Since 

HDC/VSA can express some recurrent neural networks [28], studying their universality by 

leveraging on the existing results for neural networks is a possible direction of research. 

We, however, followed earlier approaches that showed that neural network-like systems can 

implement Turing machines [208]. In the sections above, we sketched how HDC/VSA can 

be used in implementations of a small Turing machine [204] and a universal elementary 

cellular automaton with the rule 110 [203].

Recently, [209] emphasized the need for a formal machine model for novel neuromorphic 

hardware in order to develop a computational complexity theory for neuromorphic 

computations. This is an important direction of research for understanding the full potential 

of emerging hardware. They argued, however, that in order to encompass the computational 

abilities of neuromorphic hardware, one will likely need to define an entirely new computing 

theory framework. Their study has proposed to use spiking neural networks (shown to be 

Turing complete [210]) because, similar to HDC/VSA, they are suitable for co-located 

computation and memory, and massive parallelism – which is not the case for the 

conventional computing architecture.

In addition to the demonstration of universality, an important practical question is how 

a complete computational architecture should look like. This is still an open question. A 

proposal has been sketched in [58], which featured a HDC/VSA-based processor where both 

data and instructions were represented as hypervectors. There is another approach known 

as Tensor Product Variable Binding, which is closely related to HDC/VSA. For example, 

Tensor Product Variable Binding can also be used to represent data structures in distributed 

representations [211]. The study [50] has demonstrated how to implement push, pop, and 

the Lisp primitives CAR and CDR with Tensor Product Variable Binding, while [212] has 

demonstrated how to implement a production system. A HDC/VSA-based model, which was 

positioned as a general-purpose neural controller playing a role analogous to a production 

system, was proposed in [196].

Another relevant result is a demonstration of the feasibility of implementing Fluid 

Construction Grammars with HDC/VSA [213]. Even though Fluid Construction Grammars 

have not been shown to be universal, it is a powerful and interesting approach for both 

cognitive and evolutionary linguistics. [213] proposed a vision similar to the one presented 

in Fig. 1. They suggest HDC/VSA can be seen as a “virtual machine” that can have different 

(independent) physical implementations, such as an indirect mapping to spiking neurons 

[170] or direct mapping of operations with analog/digital implementations [16].
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Appendix B

Summary of Vector-Symbolic Space and Operations

A. Key components

This appendix presents excerpts from Section III providing a summary of HDC/VSA. The 

key components of all HDC/VSA are:

• High-dimensional space (e.g., bipolar);

• Orthogonality;

• Similarity measure (e.g., dot product ⟨a, b⟩);

• Seed representations (e.g., random i.i.d. vectors);

• Operations on representations.

There are three key operations in HDC/VSA:

• Binding (denoted as ⊙, implemented as component-wise multiplication 

(Hadamard product) in the Multiply–Add–Permute model);

• Superposition (denoted as +, implemented as component-wise addition, enclosed 

in […] when thresholded);

• Permutation (denoted as ρ, e.g., rotation of coordinates). Below, we present 

the properties of the implementations of these operations for the Multiply–Add–

Permute HDC/VSA model [54]. Here, we enumerate the properties assuming 

that the seed hypervectors are bipolar.

B. Properties of the binding operation

• Binding is commutative: a ⊙ b = b ⊙ a;

• Binding distributes over superposition: c ⊙ (a + b) = c ⊙ a + c ⊙ b;

• Binding is invertible: (a ⊙ b) ⊙ b = a (bipolar b is self-inverse), the inverse 

operation is called releasing or unbinding;

• Binding is associative: (a ⊙ b) ⊙ c = a ⊙ (b ⊙ c);

• The result of binding is dissimilar to each of its argument hypervectors: ⟨(a ⊙ b), 

a⟩ ≈ ⟨(a ⊙ b), b⟩ ≈ 0, hence binding is a “randomizing” operation;

• Binding preserves similarity: ⟨(c ⊙ a), (c ⊙ b)⟩ = ⟨a, b⟩.

C. Properties of the superposition operation

• Superposition is invertible: (a + b) + (−b) = a; for thresholded superposition: ⟨[[a 
+ b] + (−b)], a⟩ > 0;

• In contrast to binding and permutation operations, the result of superposition z 
= a + b (often called the superposition hypervector) is similar to each of its 
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argument hypervectors: i.e., the dot product between z and a or b is considerably 

greater than 0, ⟨z, a⟩ ≫ 0 and ⟨z, b⟩ ≫ 0;

• Superposition is commutative: a + b = b + a;

• Thresholded superposition is approximately associative: [[a + b] + c] ≈ [a + [b + 

c]].

D. Properties of the permutation operation

• Permutation is invertible: ρ−1(ρ(a)) = a;

• Permutation distributes over both binding and superposition: ρ(a⊙b) = ρ(a)

⊙ρ(b) and ρ(a+b) = ρ(a)+ρ(b);

• Similar to the binding operation, a random permutation ρ results in a vector that 

is dissimilar to the argument hypervector: ⟨ρ(a), a⟩ ≈ 0, hence permutation is a 

“randomizing” operation;

• Permutation preserves similarity: ⟨ρ(a), ρ(b)⟩ = ⟨a, b⟩.

References

[1]. Jaeger H, “Towards a Generalized Theory Comprising Digital, Neuromorphic and Unconventional 
Computing,” Neuromorphic Computing and Engineering, vol. 1, no. 1, pp. 1–38, 2021.

[2]. Ben-Nun T and Hoefler T, “Demystifying Parallel and Distributed Deep Learning: An In-depth 
Concurrency Analysis,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–43, 2019.

[3]. Kipf TN and Welling M, “Semi-supervised Classification with Graph Convolutional Networks,” in 
International Conference on Learning Representations (ICLR), 2017, pp. 1–14.

[4]. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, and Monfardini G, “The Graph Neural Network 
Model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008. [PubMed: 
19068426] 

[5]. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, and Polosukhin 
I, “Attention Is All You Need,” in Neural Information Processing Systems (NeurIPS), 2017, pp. 
5998–6008.

[6]. Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, and Ozcan A, “All-optical Machine 
Learning Using Diffractive Deep Neural Networks,” Science, vol. 361, no. 6406, pp. 1004–1008, 
2018. [PubMed: 30049787] 

[7]. Pei J, Deng L, Song S, Zhao M, Zhang Y, Wu S, Wang G, Zou Z, Wu Z, He W, Chen F, Deng 
N, Wu S, Wang Y, Wu Y, Yang Z, Ma C, Li G, Han W, Li H, Wu H, Zhao R, Xie Y, and Shi 
L, “Towards Artificial General Intelligence with Hybrid Tianjic Chip Architecture,” Nature, vol. 
572, no. 7767, pp. 106–111, 2019. [PubMed: 31367028] 

[8]. Imam N and Cleland TA, “Rapid Online Learning and Robust Recall in a Neuromorphic Olfactory 
Circuit,” Nature Machine Intelligence, vol. 2, no. 3, pp. 181–191, 2020.

[9]. Davies M, Wild A, Orchard G, Sandamirskaya Y, Guerra GAF, Joshi P, Plank P, and Risbud 
SR, “Advancing Neuromorphic Computing with Loihi: A Survey of Results and Outlook,” 
Proceedings of the IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[10]. Gayler RW, “Vector Symbolic Architectures Answer Jackendoff’s Challenges for Cognitive 
Neuroscience,” in Joint International Conference on Cognitive Science (ICCS/ASCS), 2003, pp. 
133–138.

[11]. Kanerva P, “Hyperdimensional Computing: An Introduction to Computing in Distributed 
Representation with High-Dimensional Random Vectors,” Cognitive Computation, vol. 1, no. 
2, pp. 139–159, 2009.

Kleyko et al. Page 55

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[12]. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, and Rasmussen D, “A 
Large-scale Model of the Functioning Brain,” Science, vol. 338, no. 6111, pp. 1202–1205, 2012. 
[PubMed: 23197532] 

[13]. Rachkovskij DA and Slipchenko SV, “Similarity-based Retrieval with Structure-sensitive Sparse 
Binary Distributed Representations,” Computational Intelligence, vol. 28, no. 1, pp. 106–129, 
2012.

[14]. Emruli B, Gayler RW, and Sandin F, “Analogical Mapping and Inference with Binary Spatter 
Codes and Sparse Distributed Memory,” in International Joint Conference on Neural Networks 
(IJCNN), 2013, pp. 1–8.

[15]. Ge L and Parhi KK, “Classification Using Hyperdimensional Computing: A Review,” IEEE 
Circuits and Systems Magazine, vol. 20, no. 2, pp. 30–47, 2020.

[16]. Karunaratne G, Gallo ML, Cherubini G, Benini L, Rahimi A, and Sebastian A, “In-Memory 
Hyperdimensional Computing,” Nature Electronics, vol. 3, no. 6, pp. 327–337, 2020.

[17]. Renner A, Sandamirskaya Y, Sommer FT, and Frady EP, “Sparse Vector Binding on Spiking 
Neuromorphic Hardware Using Synaptic Delays,” in International Conference on Neuromorphic 
Systems (ICONS), 2022, pp. 1–5.

[18]. Bent G, Simpkin C, Li Y, and Preece A, “Hyperdimensional Computing using Time-to-spike 
Neuromorphic Circuits,” in International Joint Conference on Neural Networks (IJCNN), 2022, 
pp. 1–8.

[19]. Marr D, Vision: A Computational Investigation into the Human Representation and Processing of 
Visual Information. W. H. Freeman and Company, 1982.

[20]. Andrae ASG and Edler T, “On Global Electricity Usage of Communication Technology: Trends 
to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015.

[21]. Strubell E, Ganesh A, and McCallum A, “Energy and Policy Considerations for Deep Learning 
in NLP,” in Annual Meeting of the Association for Computational Linguistics (ACL), 2019, pp. 
3645–3650.

[22]. Rogers A. (2019) How the Transformers Broke NLP Leaderboards. [Online]. Available: https://
hackingsemantics.xyz/2019/leaderboards/

[23]. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam 
N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner 
MD, Risk WP, Manohar R, and Modha DS, “A Million Spiking-neuron Integrated Circuit with 
a Scalable Communication Network and Interface,” Science, vol. 345, no. 6197, pp. 668–673, 
2014. [PubMed: 25104385] 

[24]. Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain 
S, Liao Y, Lin C-K, Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J, Venkataramanan 
G, Weng Y-H, Wild A, Yang Y, and Wang H, “Loihi: A Neuromorphic Manycore Processor with 
On-Chip Learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[25]. Frady EP, Orchard G, Florey D, Imam N, Liu R, Mishra J, Tse J, Wild A, Sommer FT, and 
Davies M, “Neuromorphic Nearest-Neighbor Search Using Intel’s Pohoiki Springs,” in Neuro-
Inspired Computational Elements Workshop (NICE), 2020, pp. 1–10.

[26]. Li H, Wu TF, Rahimi A, Li K-S, Rusch M, Lin C-H, Hsu J-L, Sabry MM, Eryilmaz SB, 
Sohn J, Chiu W-C, Chen M-C, Wu T-T, Shieh J-M, Yeh W-K, Rabaey JM, Mitra S, and Wong H-
SP, “Hyperdimensional Computing with 3D VRRAM In-Memory Kernels: Device-Architecture 
Co-Design for Energy-Efficient, Error-Resilient Language Recognition,” in IEEE International 
Electron Devices Meeting (IEDM), 2016, pp. 1–4.

[27]. Kleyko D, Osipov E, De Silva D, Wiklund U, and Alahakoon D, “Integer Self-Organizing Maps 
for Digital Hardware,” in International Joint Conference on Neural Networks (IJCNN), 2019, pp. 
1–8.

[28]. Kleyko D, Frady EP, Kheffache M, and Osipov E, “Integer Echo State Networks: Efficient 
Reservoir Computing for Digital Hardware,” IEEE Transactions on Neural Networks and 
Learning Systems, vol. 33, no. 4, pp. 1688–1701, 2022. [PubMed: 33351770] 

[29]. Kleyko D, Kheffache M, Frady EP, Wiklund U, and Osipov E, “Density Encoding Enables 
Resource-Efficient Randomly Connected Neural Networks,” IEEE Transactions on Neural 
Networks and Learning Systems, vol. 32, no. 8, pp. 3777–3783, 2021. [PubMed: 32833655] 

Kleyko et al. Page 56

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hackingsemantics.xyz/2019/leaderboards/
https://hackingsemantics.xyz/2019/leaderboards/


[30]. Frady EP, Kleyko D, and Sommer FT, “A Theory of Sequence Indexing and Working Memory 
in Recurrent Neural Networks,” Neural Computation, vol. 30, pp. 1449–1513, 2018. [PubMed: 
29652585] 

[31]. Recchia G, Sahlgren M, Kanerva P, and Jones MN, “Encoding Sequential Information 
in Semantic Space Models: Comparing Holographic Reduced Representation and Random 
Permutation,” Computational Intelligence and Neuroscience, pp. 1–18, 2015.

[32]. Rasanen O and Saarinen J, “Sequence Prediction with Sparse Distributed Hyperdimensional 
Coding Applied to the Analysis of Mobile Phone Use Patterns,” IEEE Transactions on Neural 
Networks and Learning Systems, vol. 27, no. 9, pp. 1878–1889, 2016. [PubMed: 26285224] 

[33]. Kleyko D, Rahimi A, Rachkovskij DA, Osipov E, and Rabaey JM, “Classification and Recall 
with Binary Hyperdimensional Computing: Tradeoffs in Choice of Density and Mapping 
Characteristic,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 12, 
pp. 5880–5898, 2018. [PubMed: 29993669] 

[34]. Rahimi A, Kanerva P, Benini L, and Rabaey JM, “Efficient Biosignal Processing Using 
Hyperdimensional Computing: Network Templates for Combined Learning and Classification 
of ExG Signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–143, 2019.

[35]. Rachkovskij DA, “Representation of Spatial Objects by Shift-Equivariant Similarity-Preserving 
Hypervectors,” Neural Computing and Applications, pp. 1–17, 2022.

[36]. ——, “Some Approaches to Analogical Mapping with Structure Sensitive Distributed 
Representations,” Journal of Experimental and Theoretical Artificial Intelligence, vol. 16, no. 
3, pp. 125–145, 2004.

[37]. Rachkovskij DA, Kussul EM, and Baidyk TN, “Building a World Model with Structure-sensitive 
Sparse Binary Distributed Representations,” Biologically Inspired Cognitive Architectures, vol. 
3, pp. 64–86, 2013.

[38]. Eliasmith C, How to Build a Brain. Oxford University Press, 2013.

[39]. Kleyko D, Osipov E, Gayler RW, Khan AI, and Dyer AG, “Imitation of Honey Bees’ Concept 
Learning Processes Using Vector Symbolic Architectures,” Biologically Inspired Cognitive 
Architectures, vol. 14, pp. 57–72, 2015.

[40]. Osipov E, Kleyko D, and Legalov A, “Associative Synthesis of Finite State Automata Model 
of a Controlled Object with Hyperdimensional Computing,” in Annual Conference of the IEEE 
Industrial Electronics Society (IECON), 2017, pp. 3276–3281.

[41]. Yerxa T, Anderson A, and Weiss E, “The Hyperdimensional Stack Machine,” in Cognitive 
Computing, 2018, pp. 1–2.

[42]. beim Graben P, Huber M, Meyer W, Romer R, Tschope C, and Wolff M, “Vector Symbolic 
Architectures for Context-Free Grammars,” Cognitive Computation, vol. 14, pp. 733–748, 2022.

[43]. Rahimi A, Datta S, Kleyko D, Frady EP, Olshausen B, Kanerva P, and Rabaey JM, “High-
dimensional Computing as a Nanoscalable Paradigm,” Circuits and Systems I: Regular Papers, 
IEEE Transactions on, vol. 64, no. 9, pp. 2508–2521, 2017.

[44]. Kanerva P, “Computing with High-Dimensional Vectors,” IEEE Design & Test, vol. 36, no. 3, pp. 
7–14, 2019.

[45]. Plate TA, “Estimating Analogical Similarity by Dot-products of Holographic Reduced 
Representations,” in Advances in Neural Information Processing Systems (NIPS), 1994, pp. 
1109–1116.

[46]. Hinton GE, McClelland JL, and Rumelhart DE, “Distributed Representations,” in Parallel 
Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, 1986, pp. 
77–109.

[47]. Thorpe SJ, “Localized Versus Distributed Representations,” in The Handbook of Brain Theory 
and Neural Networks. MIT Press, 2003, pp. 643–646.

[48]. Fodor JA and Pylyshyn ZW, “Connectionism and Cognitive Architecture: A Critical analysis,” 
Cognition, vol. 28, no. 1–2, pp. 3–71, 1988. [PubMed: 2450716] 

[49]. Kussul EM, Rachkovskij DA, and Baidyk TN, “On Image Texture Recognition by Associative-
Projective Neurocomputer,” in Intelligent Engineering Systems through Artificial Neural 
Networks (ANNIE), 1991, pp. 453–458.

Kleyko et al. Page 57

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[50]. Smolensky P, “Tensor Product Variable Binding and the Representation of Symbolic Structures in 
Connectionist Systems,” Artificial Intelligence, vol. 46, pp. 159–216, 1990.

[51]. Plate TA, Distributed Representations and Nested Compositional Structure. University of 
Toronto, PhD Thesis, 1994.

[52]. ——, “Holographic Reduced Representations,” IEEE Transactions on Neural Networks, vol. 6, 
no. 3, pp. 623–641, 1995. [PubMed: 18263348] 

[53]. ——, Holographic Reduced Representations: Distributed Representation for Cognitive 
Structures. Stanford: CSLI, 2003.

[54]. Gayler RW, “Multiplicative Binding, Representation Operators & Analogy,” in Advances in 
Analogy Research: Integration of Theory and Data from the Cognitive, Computational, and 
Neural Sciences, 1998, pp. 1–4.

[55]. Kanerva P, “Fully Distributed Representation,” in Real World Computing Symposium (RWC), 
1997, pp. 358–365.

[56]. Rachkovskij DA and Kussul EM, “Binding and Normalization of Binary Sparse Distributed 
Representations by Context-Dependent Thinning,” Neural Computation, vol. 13, no. 2, pp. 411–
452, 2001.

[57]. Kleyko D, Osipov E, and Rachkovskij DA, “Modification of Holographic Graph Neuron using 
Sparse Distributed Representations,” Procedia Computer Science, vol. 88, pp. 39–45, 2016.

[58]. Laiho M, Poikonen JH, Kanerva P, and Lehtonen E, “High-dimensional computing with sparse 
vectors,” in IEEE Biomedical Circuits and Systems Conference (BioCAS), 2015, pp. 1–4.

[59]. Frady EP, Kleyko D, and Sommer FT, “Variable Binding for Sparse Distributed Representations: 
Theory and Applications,” IEEE Transactions on Neural Networks and Learning Systems, vol. 
99, no. PP, pp. 1–14, 2021.

[60]. Gallant SI and Okaywe TW, “Representing Objects, Relations, and Sequences,” Neural 
Computation, vol. 25, no. 8, pp. 2038–2078, 2013. [PubMed: 23607563] 

[61]. Aerts D, Czachor M, and Moor BD, “Geometric Analogue of Holographic Reduced 
Representation,” Journal of Mathematical Psychology, vol. 53, pp. 389–398, 2009.

[62]. Schlegel K, Neubert P, and Protzel P, “A Comparison of Vector Symbolic Architectures,” 
Artificial Intelligence Review, vol. 55, pp. 4523–4555, 2021.

[63]. Ledoux M, The Concentration of Measure Phenomenon, ser. Mathematical Surveys and 
Monographs. American Mathematical Society, 2001, no. 89.

[64]. Gorban AN and Tyukin IY, “Blessing of Dimensionality: Mathematical Foundations of the 
Statistical Physics of Data,” Philosophical Transactions of the Royal Society A: Mathematical, 
Physical and Engineering Sciences, vol. 376, no. 2118, pp. 1–18, 2018.

[65]. Alaghi A and Hayes J, “Computing with Randomness,” IEEE Spectrum, vol. 55, no. 3, pp. 
46–51, 2018.

[66]. Rachkovskij DA, Slipchenko SV, Kussul EM, and Baidyk TN, “Sparse Binary Distributed 
Encoding of Scalars,” Journal of Automation and Information Sciences, vol. 37, no. 6, pp. 12–23, 
2005.

[67]. Weiss E, Cheung B, and Olshausen BA, “A Neural Architecture for Representing and Reasoning 
about Spatial Relationships,” OpenReview Preprint, pp. 1–4, 2016.

[68]. Komer B, Stewart TC, Voelker AR, and Eliasmith C, “A Neural Representation of Continuous 
Space Using Fractional Binding,” in Annual Meeting of the Cognitive Science Society (CogSci), 
2019, pp. 2038–2043.

[69]. Sutor P, Summers-Stay D, and Aloimonos Y, “A Computational Theory for Life-long Learning 
of Semantics,” in International Conference on Artificial General Intelligence (AGI), 2018, pp. 
217–226.

[70]. Frolov AA, Rachkovskij DA, and Husek D, “On Informational Characteristics of Willshaw-Like 
Auto-Associative Memory,” Neural Network World, vol. 12, no. 2, pp. 141–157, 2002.

[71]. Frolov AA, Husek D, and Rachkovskij DA, “Time of Searching for Similar Binary Vectors in 
Associative Memory,” Cybernetics and Systems Analysis, vol. 42, no. 5, pp. 615–623, 2006.

Kleyko et al. Page 58

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[72]. Gritsenko VI, Rachkovskij DA, Frolov AA, Gayler RW, Kleyko D, and Osipov E, “Neural 
Distributed Autoassociative Memories: A Survey,” Cybernetics and Computer Engineering, vol. 
2, no. 188, pp. 5–35, 2017.

[73]. Kleyko D, Rachkovskij DA, Osipov E, and Rahimi A, “A Survey on Hyperdimensional 
Computing aka Vector Symbolic Architectures, Part I: Models and Data Transformations,” ACM 
Computing Surveys, 2022.

[74]. Greff K, van Steenkiste S, and Schmidhuber J, “On the Binding Problem in Artificial Neural 
Networks,” arXiv:2012.05208, pp. 1–75, 2020.

[75]. Kanerva P, “What We Mean When We Say “WhatâĂŹs the Dollar of Mexico?”: Prototypes and 
Mapping in Concept Space,” in AAAI Fall Symposium. Quantum Informatics for Cognitive, 
Social, and Semantic Processes,, Ed., 2010, pp. 2–6.

[76]. Frady EP, Kent SJ, Olshausen BA, and Sommer FT, “Resonator Networks, 1: An Efficient 
Solution for Factoring High-Dimensional, Distributed Representations of Data Structures,” 
Neural Computation, vol. 32, no. 12, pp. 2311–2331, 2020. [PubMed: 33080162] 

[77]. Kent SJ, Frady EP, Sommer FT, and Olshausen BA, “Resonator Networks, 2: Factorization 
Performance and Capacity Compared to Optimization-Based Methods,” Neural Computation, 
vol. 32, no. 12, pp. 2332–2388, 2020. [PubMed: 33080160] 

[78]. Kleyko D, Rahimi A, Gayler RW, and Osipov E, “Autoscaling Bloom Filter: Controlling Trade-
off Between True and False Positives,” Neural Computing and Applications, vol. 32, pp. 3675–
3684, 2020.

[79]. Simpkin C, Taylor I, Bent GA, de Mel G, Rallapalli S, Ma L, and Srivatsa M, “Constructing 
Distributed Time-critical Applications Using Cognitive Enabled Services,” Future Generation 
Computer Systems, vol. 100, pp. 70–85, 2019.

[80]. Rosato A, Panella M, and Kleyko D, “Hyperdimensional Computing for Efficient Distributed 
Classification with Randomized Neural Networks,” in International Joint Conference on Neural 
Networks (IJCNN), 2021, pp. 1–10.

[81]. Jakimovski P, Schmidtke HR, Sigg S, Chaves LWF, and Beigl M, “Collective Communication for 
Dense Sensing Environments,” Journal of Ambient Intelligence and Smart Environments, vol. 4, 
no. 2, pp. 123–134, 2012.

[82]. Kleyko D, Lyamin N, Osipov E, and Riliskis L, “Dependable MAC Layer Architecture based on 
Holographic Data Representation Using Hyper-Dimensional Binary Spatter Codes,” in Multiple 
Access Communications (MACOM), 2012, pp. 134–145.

[83]. Kim H, “HDM: Hyper-Dimensional Modulation for Robust Low-Power Communications,” in 
IEEE International Conference on Communications (ICC), 2018, pp. 1–6.

[84]. Joshi A, Halseth JT, and Kanerva P, “Language Geometry Using Random Indexing,” in 
International Symposium on Quantum Interaction (QI), 2016, pp. 265–274.

[85]. Levy S, Bajracharya S, and Gayler RW, “Learning Behavior Hierarchies via High-Dimensional 
Sensor Projection,” in The Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI), 
2013, pp. 1–4.

[86]. Neubert P, Schubert S, and Protzel P, “An Introduction to Hyper-dimensional Computing for 
Robotics,” KI - Künstliche Intelligenz, vol. 33, no. 4, pp. 319–330, 2019.

[87]. Mitrokhin A, Sutor P, Fermuller C, and Aloimonos Y, “Learning Sensorimotor Control with 
Neuromorphic Sensors: Toward Hyperdimensional Active Perception,” Science Robotics, vol. 4, 
no. 30, pp. 1–10, 2019.

[88]. Kleyko D, Gayler RW, and Osipov E, “Commentaries on “Learning Sensorimotor Control with 
Neuromorphic Sensors: Toward Hyperdimensional Active Perception” [Science Robotics Vol. 4 
Issue 30 (2019) 1–10],” arXiv:2003.1145, pp. 1–10, 2020.

[89]. Hersche M, Rella EM, Mauro AD, Benini L, and Rahimi A, “Integrating Event-based Dynamic 
Vision Sensors with Sparse Hyperdimensional Computing: A Low-power Accelerator with 
Online Learning Capability,” in IEEE/ACM International Symposium on Low Power Electronics 
and Design (ISLPED), 2020, pp. 169–174.

[90]. Kleyko D, Osipov E, and Wiklund U, “A Hyperdimensional Computing Framework for Analysis 
of Cardiorespiratory Synchronization During Paced Deep Breathing,” IEEE Access, vol. 7, pp. 
34 403–34 415, 2019.

Kleyko et al. Page 59

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[91]. Rahimi A, Benatti S, Kanerva P, Benini L, and Rabaey JM, “Hyperdimensional Biosignal 
Processing: A Case Study for EMG-Based Hand Gesture Recognition,” in IEEE International 
Conference on Rebooting Computing (ICRC), 2016, pp. 1–8.

[92]. Burrello A, Schindler K, Benini L, and Rahimi A, “Hyperdimensional Computing with Local 
Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain 
Regions Using Short-Time iEEG Recordings,” IEEE Transactions on Biomedical Engineering, 
vol. 67, no. 2, pp. 601–613, 2020. [PubMed: 31144620] 

[93]. Rasanen O and Kakouros S, “Modeling Dependencies in Multiple Parallel Data Streams with 
Hyperdimensional Computing,” IEEE Signal Processing Letters, vol. 21, no. 7, pp. 899–903, 
2014.

[94]. Kleyko D, Osipov E, Papakonstantinou N, and Vyatkin V, “Hyperdimensional Computing in 
Industrial Systems: The Use-Case of Distributed Fault Isolation in a Power Plant,” IEEE Access, 
vol. 6, pp. 30 766–30 777, 2018.

[95]. Diao C, Kleyko D, Rabaey JM, and Olshausen BA, “Generalized Learning Vector Quantization 
for Classification in Randomized Neural Networks and Hyperdimensional Computing,” in 
International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–9.

[96]. Neumann J, “Learning the Systematic Transformation of Holographic Reduced Representations,” 
Cognitive Systems Research, vol. 3, no. 2, pp. 227–235, 2002.

[97]. Plate TA, “Structure Matching and Transformation with Distributed Representations,” in 
Connectionist-Symbolic Integration, 1997, pp. 1–19.

[98]. Kanerva P, “Large Patterns Make Great Symbols: An example of Learning from Example,” in 
International Workshop on Hybrid Neural Systems, ser. Lecture Notes in Computer Science, vol. 
1778, 2000, pp. 194–203.

[99]. Kussul EM, Rachkovskij DA, and Wunsch DC, “The Random Subspace Coarse Coding Scheme 
for Real-valued Vectors,” in International Joint Conference on Neural Networks (IJCNN), vol. 1, 
1999, pp. 450–455.

[100]. Rachkovskij DA, “Formation of Similarity-reflecting Binary Vectors with Random Binary 
Projections,” Cybernetics and Systems Analysis, vol. 51, no. 2, pp. 313–323, 2015.

[101]. Widdows D and Cohen T, “Reasoning with Vectors: A Continuous Model for Fast Robust 
Inference,” Logic Journal of the IGPL, vol. 23, no. 2, pp. 141–173, 2015. [PubMed: 26582967] 

[102]. Frady EP, Kleyko D, Kymn CJ, Olshausen BA, and Sommer FT, “Computing on Functions 
Using Randomized Vector Representations,” arXiv:2109.03429, pp. 1–33, 2021.

[103]. Bloom BH, “Space/Time Trade-offs in Hash Coding with Allowable Errors,” Communications 
of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[104]. Fan L, Cao P, Almeida J, and Broder A, “Summary Cache: A Scalable Wide-area Web Cache 
Sharing Protocol,” IEEE/ACM Transaction on Networking, vol. 8, no. 3, pp. 281–293, 2000.

[105]. Tarkoma S, Rothenberg CE, and Lagerspetz E, “Theory and Practice of Bloom Filters for 
Distributed Systems,” IEEE Communications Surveys and Tutorials, vol. 14, no. 1, pp. 131–155, 
2012.

[106]. Cormode G and Muthukrishnan S, “An Improved Data Stream Summary: The Count-Min 
Sketch and its Applications,” Journal of Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[107]. Burrello A, Cavigelli L, Schindler K, Benini L, and Rahimi A, “Lae-laps: An Energy-Efficient 
Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms,” 
in Design, Automation Test in Europe Conference Exhibition (DATE), 2019, pp. 752–757.

[108]. Alonso P, Shridhar K, Kleyko D, Osipov E, and Liwicki M, “HyperEmbed: Tradeoffs 
Between Resources and Performance in NLP Tasks with Hyperdimensional Computing enabled 
Embedding of n-gram Statistics,” in International Joint Conference on Neural Networks 
(IJCNN), 2021, pp. 1–9.

[109]. Shridhar K, Jain H, Agarwal A, and Kleyko D, “End to End Binarized Neural Networks for Text 
Classification,” in Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), 
2020, pp. 29–34.

[110]. Kussul EM and Baidyk TN, “On Information Encoding in Associative-Projective Neural 
Networks,” Report 93–3, V. M. Glushkov Institute of Cybernetics (in Russian), Tech. Rep., 1993.

Kleyko et al. Page 60

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[111]. Plate TA, “Networks Which Learn to Store Variable-length Sequences in a Fixed Set of Unit 
Activations,” Preprint, pp. 1–19, 1995.

[112]. Sahlgren M, Holst A, and Kanerva P, “Permutations as a Means to Encode Order in Word 
Space,” in Annual Meeting of the Cognitive Science Society (CogSci), 2008, pp. 1300–1305.

[113]. Levenshtein VI, “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals,” 
Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.

[114]. Sokolov A, “Vector Representations For Efficient Comparison and Search for Similar Strings,” 
Cybernetics and Systems Analysis, vol. 43, no. 4, pp. 484–498, 2007.

[115]. Hannagan T, Dupoux E, and Christophe A, “Holographic String Encoding,” Cognitive Science, 
vol. 35, no. 1, pp. 79–118, 2011. [PubMed: 21428993] 

[116]. Kleyko D and Osipov E, “On Bidirectional Transitions between Localist and Distributed 
Representations: The Case of Common Substrings Search Using Vector Symbolic Architecture,” 
Procedia Computer Science, vol. 41, pp. 104–113, 2014.

[117]. Cohen T, Widdows D, Wahle M, and Schvaneveldt RW, “Orthogonality and Orthography: 
Introducing Measured Distance into Semantic Space,” in International Symposium on Quantum 
Interaction (QI), ser. Lecture Notes in Computer Science, vol. 8369, 2013, pp. 34–46.

[118]. Rachkovskij DA, “Shift-Equivariant Similarity-Preserving Hypervector Representations of 
Sequences,” arXiv:2112.15475, pp. 1–10, 2021.

[119]. Rachkovskij DA and Kleyko D, “Recursive Binding for Similarity-Preserving Hypervector 
Representations of Sequences,” in International Joint Conference on Neural Networks (IJCNN), 
2022, pp. 1–8.

[120]. Choo X and Eliasmith C, “A Spiking Neuron Model of Serial-Order Recall,” in Annual Meeting 
of the Cognitive Science Society (CogSci), 2010, pp. 2188–2193.

[121]. Blouw P and Eliasmith C, “A Neurally Plausible Encoding of Word Order Information into a 
Semantic Vector Space,” in Annual Meeting of the Cognitive Science Society (CogSci), 2013, 
pp. 1905–1910.

[122]. Kelly MA, Arora N, West RL, and Reitter D, “Holographic Declarative Memory: Distributional 
Semantics as the Architecture of Memory,” Cognitive Science, vol. 44, no. 11, pp. 1–34, 2020.

[123]. Gosmann J and Eliasmith C, “CUE: A Unified Spiking Neuron Model of Short-term and 
Long-term Memory,” Psychological Review, vol. 128, no. 1, pp. 104–124, 2021. [PubMed: 
32816508] 

[124]. Reimann S, “The Algebra of Cognitive States: Towards Modelling the Serial Position Curve,” in 
International Conference on Cognitive Modeling (ICCM), 2021, pp. 1–7.

[125]. Calmus R, Wilson B, Kikuchi Y, and Petkov CI, “Structured Sequence Processing 
and Combinatorial Binding: Neurobiologically and Computationally Informed Hypotheses,” 
Philosophical Transactions of the Royal Society B, vol. 375, no. 1791, pp. 1–13, 2019.

[126]. Kim Y, Imani M, Moshiri N, and Rosing T, “GenieHD: Efficient DNA Pattern Matching 
Accelerator Using Hyperdimensional Computing,” in Design, Automation Test in Europe 
Conference Exhibition (DATE), 2020, pp. 115–120.

[127]. Kleyko D, Osipov E, and Gayler RW, “Recognizing Permuted Words with Vector Symbolic 
Architectures: A Cambridge Test for Machines,” Procedia Computer Science, vol. 88, pp. 169–
175, 2016.

[128]. Schlegel K, Neubert P, and Protzel P, “HDC-MiniROCKET: Explicit Time Encoding in Time 
Series Classification with Hyperdimensional Computing,” in International Joint Conference on 
Neural Networks (IJCNN), 2022, pp. 1–8.

[129]. Najafabadi FR, Rahimi A, Kanerva P, and Rabaey JM, “Hyperdimensional Computing for Text 
Classification,” in Design, Automation and Test in Europe Conference (DATE), 2016, pp. 1–1.

[130]. Rahimi A, Kanerva P, and Rabaey J, “A Robust and Energy Efficient Classifier Using Brain-
Inspired Hyperdimensional Computing,” in IEEE/ACM International Symposium on Low Power 
Electronics and Design (ISLPED), 2016, pp. 64–69.

[131]. Kleyko D, Osipov E, Silva DD, Wiklund U, Vyatkin V, and Alahakoon D, “Distributed 
Representation of n-gram Statistics for Boosting Self-Organizing Maps with Hyperdimensional 
Computing,” in International Andrei Ershov Memorial Conference on Perspectives of System 
Informatics (PSI), 2019, pp. 64–79.

Kleyko et al. Page 61

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[132]. Bandaragoda T, Silva DD, Kleyko D, Osipov E, Wiklund U, and Alahakoon D, “Trajectory 
Clustering of Road Traffic in Urban Environments Using Incremental Machine Learning in 
Combination with Hyperdimensional Computing,” in IEEE Intelligent Transportation Systems 
Conference (ITSC), 2019, pp. 1664–1670.

[133]. Gayler RW and Levy SD, “A Distributed Basis for Analogical Mapping,” in New frontiers in 
Analogy Research, Second International Conference on the Analogy (ANALOGY), 2009, pp. 
165–174.

[134]. Guo JK, Brackle DV, Lofaso N, and Hofmann MO, “Vector Representation for Sub-Graph 
Encoding to Resolve Entities,” Procedia Computer Science, vol. 95, pp. 327–334, 2016.

[135]. Ma Y, Hildebrandt M, Tresp V, and Baier S, “Holistic Representations for Memorization and 
Inference,” in Conference on Uncertainty in Artificial Intelligence (UAI), 2018, pp. 1–11.

[136]. Nickel M, Rosasco L, and Poggio T, “Holographic Embeddings of Knowledge Graphs,” in 
AAAI Conference on Artificial Intelligence, 2016, pp. 1955–1961.

[137]. Qiu F, “Graph Embeddings via Tensor Products and Approximately Orthonormal Codes,” 
arXiv:2208.10917, pp. 1–20, 2022.

[138]. Stewart TC, Choo X, and Eliasmith C, “Sentence Processing in Spiking Neurons: A 
Biologically Plausible Left-corner Parser,” in Annual Meeting of the Cognitive Science Society 
(CogSci), 2014, pp. 1533–1538.

[139]. Rabin MO and Scott D, “Finite Automata and Their Decision Problems,” IBM Journal of 
Research and Development, vol. 3, no. 2, pp. 114–125, 1959.

[140]. Crawford E, Gingerich M, and Eliasmith C, “Biologically Plausible, Human-scale Knowledge 
Representation,” Cognitive Science, vol. 40, no. 4, pp. 782–821, 2016. [PubMed: 26173464] 

[141]. Ghazi B, Panigrahy R, and Wang J, “Recursive Sketches for Modular Deep Learning,” in 
International Conference on Machine Learning (ICML), 2019, pp. 2211–2220.

[142]. Gallant SI, “Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a “Soft” VSA 
Representation for JSON,” arXiv:2202.04771, pp. 1–10, 2022.

[143]. Boyer RS and Moore JS, “A Fast String Searching Algorithm,” Communications of the ACM, 
vol. 20, no. 10, pp. 762–772, 1977.

[144]. Karp RM and Rabin MO, “Efficient Randomized Pattern-matching Algorithms,” IBM Journal 
of Research and Development, vol. 31, no. 2, pp. 249–260, 1987.

[145]. Knuth DE, Morris JH, and Pratt VR, “Fast Pattern Matching in Strings,” SIAM Journal on 
Computing, vol. 6, no. 2, pp. 323–350, 1977.

[146]. Pashchenko DV, Trokoz DA, Martyshkin AI, Sinev MP, and Svistunov BL, “Search for a 
Substring of Characters Using the Theory of Non-deterministic Finite Automata and Vector-
Character Architecture,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 3, pp. 
1238–1250, 2020.

[147]. Karunaratne G, Schmuck M, Gallo ML, Cherubini G, Benini L, Sebastian A, and Rahimi A, 
“Robust High-dimensional Memory-augmented Neural Networks,” Nature Communications, vol. 
12, no. 1, pp. 1–12, 2021.

[148]. Frady EP, Kent SJ, Kanerva P, Olshausen BA, and Sommer FT, “Cognitive Neural Systems for 
Disentangling Compositions,” in Cognitive Computing, 2018, pp. 1–3.

[149]. Kleyko D, Bybee C, Kymn CJ, Olshausen BA, Khosrowshahi A, Nikonov DE, Sommer FT, 
and Frady EP, “Integer Factorization with Compositional Distributed Representations,” in Neuro-
Inspired Computational Elements Conference (NICE), 2022, pp. 73–80.

[150]. Frady EP, Kleyko D, Kymn CJ, Olshausen BA, and Sommer FT, “Computing on Functions 
Using Randomized Vector Representations (in brief),” in Neuro-Inspired Computational 
Elements Conference (NICE), 2022, pp. 115–122.

[151]. Furlong PM and Eliasmith C, “Fractional Binding in Vector Symbolic Architectures as Quasi-
Probability Statements,” in Annual Meeting of the Cognitive Science Society (CogSci), 2022, pp. 
259–266.

[152]. Furlong PM, Stewart TC, and Eliasmith C, “Fractional Binding in Vector Symbolic 
Representations for Efficient Mutual Information Exploration,” in ICRA Workshop: Towards 
Curious Robots: Modern Approaches for Intrinsically-Motivated Intelligent Behavior, 2022, pp. 
1–5.

Kleyko et al. Page 62

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[153]. Hersche M, Zeqiri M, Benini L, Sebastian A, and Rahimi A, “A Neuro-Vector-Symbolic 
Architecture for Solving Raven’s Progressive Matrices,” arXiv:2203.04571, pp. 1–20, 2022.

[154]. Komer B and Eliasmith C, “Efficient Navigation using a Scalable, Biologically Inspired Spatial 
Representation,” in Annual Meeting of the Cognitive Science Society (CogSci), 2020, pp. 1532–
1538.

[155]. Lu T, Voelker AR, Komer B, and Eliasmith C, “Representing Spatial Relations with Fractional 
Binding,” in Annual Meeting of the Cognitive Science Society (CogSci), 2019, pp. 2214–2220.

[156]. Cheung B, Terekhov A, Chen Y, Agrawal P, and Olshausen B, “Superposition of Many Models 
into One,” in Advances in Neural Information Processing Systems (NeurIPS), 2019, pp. 10 868–
10 877.

[157]. Wilson S, SÃijnderhauf N, and Dayoub F, “Hyperdimensional Feature Fusion for Out-Of-
Distribution Detection,” arXiv:2110.00214, pp. 1–13, 2021.

[158]. Neubert P and Schubert S, “Hyperdimensional Computing as a Framework for Systematic 
Aggregation of Image Descriptors,” in Conference on Computer Vision and Pattern Recognition 
(CVPR), 2021, pp. 16 938–16 947.

[159]. Neubert P, Schubert S, Schlegel K, and Protzel P, “Vector Semantic Representations as 
Descriptors for Visual Place Recognition,” in Robotics: Science and Systems (RSS), 2021, pp. 
1–11.

[160]. Ganesan A, Gao H, Gandhi S, Raff E, Oates T, Holt J, and McLean M, “Learning with 
Holographic Reduced Representations,” in Advances in Neural Information Processing Systems 
(NeurIPS), 2021, pp. 1–15.

[161]. Datta S, Antonio RAG, Ison ARS, and Rabaey JM, “A Programmable Hyper-Dimensional 
Processor Architecture for Human-Centric IoT,” IEEE Journal on Emerging and Selected Topics 
in Circuits and Systems, vol. 9, no. 3, pp. 439–452, 2019.

[162]. Eggimann M, A. AR, and Benini L, “A 5 μW Standard Cell Memory-based Configurable 
Hyperdimensional Computing Accelerator for Always-on Smart Sensing,” IEEE Transactions on 
Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4116–4128, 2021.

[163]. Montagna F, Rahimi A, Benatti S, Rossi D, and Benini L, “PULP-HD: Accelerating Brain-
Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform,” in IEEE/ACM 
Design Automation Conference (DAC), 2018, pp. 1–6.

[164]. Wu T, Huang P-C, Rahimi A, Li H, Shulaker M, Rabaey JM, Wong H-S, and Mitra S, “Brain-
Inspired Computing Exploiting Carbon Nanotube FETs and Resistive RAM: Hyperdimensional 
Computing Case Study,” in IEEE International Solid-State Circuits Conference (ISSCC), 2018, 
pp. 492–493.

[165]. Wu TF, Li H, Huang P-C, Rahimi A, Hills G, Hodson B, Hwang W, Rabaey JM, Wong H-SP, 
Shulaker MM, and Mitra S, “Hyperdimensional Computing Exploiting Carbon Nanotube FETs, 
Resistive RAM, and Their Monolithic 3D Integration,” IEEE Journal of Solid-State Circuits, vol. 
53, no. 11, pp. 3183–3196, 2018.

[166]. Moin A, Zhou A, Rahimi A, Menon A, Benatti S, Alexandrov G, Tamakloe S, Ting J, 
Yamamoto N, Khan Y, Burghardt F, Benini L, Arias AC, and Rabaey JM, “A Wearable 
Biosensing System with In-sensor Adaptive Machine Learning for Hand Gesture Recognition,” 
Nature Electronics, vol. 4, no. 1, pp. 54–63, 2021.

[167]. Eliasmith C and Anderson CH, Neural Engineering: Computation, Representation, and 
Dynamics in Neurobiological Systems. MIT Press, 2003.

[168]. Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC, Rasmussen D, Choo X, Voelker 
A, and Eliasmith C, “Nengo: A Python Tool for Building Large-scale Functional Brain Models,” 
Frontiers in Neuroinformatics, vol. 7, pp. 1–13, 2014.

[169]. Csaba G and Porod W, “Coupled Oscillators for Computing: A Review and Perspective,” 
Applied Physics Reviews, vol. 7, no. 1, pp. 1–19, 2020.

[170]. Frady EP and Sommer FT, “Robust Computation with Rhythmic Spike Patterns,” Proceedings 
of the National Academy of Sciences, vol. 116, no. 36, pp. 18 050–18 059, 2019.

[171]. Palm G and Bonhoeffer T, “Parallel Processing for Associative and Neuronal Networks,” 
Biological Cybernetics, vol. 51, no. 3, pp. 201–204, 1984. [PubMed: 6518181] 

Kleyko et al. Page 63

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[172]. Willshaw DJ, Buneman OP, and Longuet-Higgins HC, “Non-holographic Associative Memory,” 
Nature, vol. 222, no. 5197, pp. 960–962, 1969. [PubMed: 5789326] 

[173]. Palm G, “On Associative Memory,” Biological Cybernetics, vol. 36, no. 1, pp. 19–31, 1980. 
[PubMed: 7353062] 

[174]. Palm G and Sommer FT, “Information Capacity in Recurrent McCulloch–Pitts Networks with 
Sparsely Coded Memory States,” Network: Computation in Neural Systems, vol. 3, no. 2, pp. 
177–186, 1992.

[175]. Sommer FT and Dayan P, “Bayesian Retrieval in Associative Memories with Storage Errors,” 
IEEE Transactions on Neural Networks, vol. 9, no. 4, pp. 705–713, 1998. [PubMed: 18252493] 

[176]. Stimberg M, Brette R, and Goodman DFM, “Brian 2, an Intuitive and Efficient Neural 
Simulator,” Elife, vol. 8, pp. 1–41, 2019.

[177]. Nunes I, Heddes M, Givargis T, Nicolau A, and Veidenbaum A, “GraphHD: Efficient Graph 
Classification using Hyperdimensional Computing,” in Design, Automation and Test in Europe 
Conference (DATE), 2022, pp. 1485–1490.

[178]. Schmuck M, Benini L, and Rahimi A, “Hardware Optimizations of Dense Binary 
Hyperdimensional Computing: Rematerialization of Hypervectors, Binarized Bundling, and 
Combinational Associative Memory,” ACM Journal on Emerging Technologies in Computing 
Systems, vol. 15, no. 4, pp. 1–25, 2019.

[179]. Kleyko D, Frady EP, and Sommer FT, “Cellular Automata Can Reduce Memory Requirements 
of Collective-State Computing,” IEEE Transactions on Neural Networks and Learning Systems, 
vol. 33, no. 6, pp. 2701–2713, 2022. [PubMed: 34699370] 

[180]. Menon A, Sun D, Aristio M, Liew H, Lee K, and Rabaey JM, “A Highly Energy-Efficient 
Hyperdimensional Computing Processor for Wearable Multi-modal Classification,” in IEEE 
Biomedical Circuits and Systems Conference (BioCAS), 2021, pp. 1–4.

[181]. Menon A, Sun D, Sabouri S, Lee K, Aristio M, Liew H, and Rabaey JM, “A Highly 
Energy-Efficient Hyperdimensional Computing Processor for Biosignal Classification,” IEEE 
Transactions on Biomedical Circuits and Systems, pp. 1–11, 2022.

[182]. Hersche M, Karunaratne G, Cherubini G, Benini L, Sebastian A, and Rahimi A, “Constrained 
Few-shot Class-incremental Learning,” in Conference on Computer Vision and Pattern 
Recognition (CVPR), 2022, pp. 1–19.

[183]. der Velde FV and de Kamps M, “Neural Blackboard Architectures of Combinatorial Structures 
in Cognition,” Behavioral and Brain Sciences, vol. 29, no. 1, pp. 37–70, 2006. [PubMed: 
16542539] 

[184]. Gayler RW, “Vector Symbolic Architectures are a Viable Alternative for Jackendoff’s 
Challenges,” Behavioral and Brain Sciences, vol. 29, no. 1, pp. 78–79, 2006.

[185]. Kleyko D, Rachkovskij DA, Osipov E, and Rahimi A, “A Survey on Hyperdimensional 
Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and 
Challenges,” ACM Computing Surveys, 2022.

[186]. Kanerva P, Kristoferson J, and Holst A, “Random Indexing of Text Samples for Latent Semantic 
Analysis,” in Annual Meeting of the Cognitive Science Society (CogSci), 2000, p. 1036.

[187]. Jones MN and Mewhort DJK, “Representing Word Meaning and Order Information in a 
Composite Holographic Lexicon,” Psychological Review, vol. 114, no. 1, pp. 1–37, 2007. 
[PubMed: 17227180] 

[188]. Mikolov T, Sutskever I, Chen K, Corrado G, and Dean J, “Distributed Representations of Words 
and Phrases and Their Compositionality,” in Advances in Neural Information Processing Systems 
(NIPS), 2013, pp. 1–9.

[189]. Pennington J, Socher R, and Manning CD, “GloVe: Global Vectors for Word Representation,” in 
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–
1543.

[190]. Blouw P, Solodkin E, Thagard P, and Eliasmith C, “Concepts as Semantic Pointers: A 
Framework and Computational Model,” Cognitive Science, vol. 40, no. 5, pp. 1128–1162, 2016. 
[PubMed: 26235459] 

Kleyko et al. Page 64

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[191]. Kelly MA, Mewhort DJK, and West RL, “The Memory Tesseract: Mathematical Equivalence 
between Composite and Separate Storage Memory Models,” Journal of Mathematical 
Psychology, vol. 77, pp. 142–155, 2017.

[192]. Kleyko D, Karunaratne G, Rabaey JM, Sebastian A, and Rahimi A, “Generalized Key-Value 
Memory to Flexibly Adjust Redundancy in Memory-Augmented Networks,” IEEE Transactions 
on Neural Networks and Learning Systems, vol. 99, no. PP, pp. 1–6, 2022.

[193]. Thomas A, Dasgupta S, and Rosing T, “A Theoretical Perspective on Hyperdimensional 
Computing,” Journal of Artificial Intelligence Research, vol. 72, pp. 215–249, 2021.

[194]. Emruli B, Sandin F, and Delsing J, “Vector Space Architecture for Emergent Interoperability of 
Systems by Learning from Demonstration,” Biologically Inspired Cognitive Architectures, vol. 
11, pp. 53–64, 2015.

[195]. Steinberg J and Sompolinsky H, “Associative Memory of Structured Knowledge,” bioRxiv, pp. 
1–27, 2022.

[196]. Stewart TC, Choo X, and Eliasmith C, “Symbolic Reasoning in Spiking Neurons: A Model of 
the Cortex/Basal Ganglia/Thalamus Loop,” in Annual Meeting of the Cognitive Science Society 
(CogSci), 2010, pp. 1100–1105.

[197]. Renner A, Supic L, Danielescu A, Indiveri G, Olshausen BA, Sandamirskaya Y, Sommer 
FT, and Frady EP, “Neuromorphic Visual Scene Understanding with Resonator Networks,” 
arXiv:2208.12880, pp. 1–15, 2022.

[198]. Mansinghka VK, “Natively Probabilistic Computation,” Ph.D. dissertation, Massachusetts 
Institute of Technology, 2009.

[199]. Orbán G, Berkes P, Fiser J, and Lengyel M, “Neural Variability and Sampling-based 
Probabilistic Representations in the Visual Cortex,” Neuron, vol. 92, no. 2, pp. 530–543, 2016. 
[PubMed: 27764674] 

[200]. Papadimitriou CH, Vempala SS, Mitropolsky D, Collins M, and Maass W, “Brain Computation 
by Assemblies of Neurons,” Proceedings of the National Academy of Sciences, vol. 117, no. 25, 
pp. 14 464–14 472, 2020.

[201]. Schöner G, Spencer JP, and the DFT Research Group, Dynamic Thinking: A Primer on 
Dynamic Field Theory. Oxford University Press, 2016.

[202]. Zhang Y, Qu P, Ji Y, Zhang W, Gao G, Wang G, Song S, Li G, Chen W, Zheng W, Chen F, Pei 
J, Zhao R, Zhao M, and Shi L, “A System Hierarchy for Brain-inspired Computing,” Nature, vol. 
586, no. 7829, pp. 378–384, 2020. [PubMed: 33057220] 

[203]. Cook M, “Universality in Elementary Cellular Automata,” Complex Systems, vol. 15, no. 1, pp. 
1–40, 2004.

[204]. Neary T and Woods D, “Small Weakly Universal Turing Machines,” in International 
Symposium on Fundamentals of Computation Theory (FCT), 2009, pp. 262–273.

[205]. Wolfram S, A New Kind of Science. Champaign, IL. Wolfram Media, Inc., 2002.

[206]. Siegelmann HT and Sontag ED, “Turing Computability with Neural Nets,” Applied 
Mathematics Letters, vol. 4, no. 6, pp. 77–80, 1991.

[207]. Perez J, Marinkovic J, and Barcelo P, “On the Turing Completeness of Modern Neural Network 
Architectures,” in International Conference on Learning Representations (ICLR), 2019, pp. 1–36.

[208]. beim Graben P and Potthast R, “Implementing Turing Machines in Dynamic Field 
Architectures,” arXiv:1204.5462, pp. 1–5, 2012.

[209]. Kwisthout J and Donselaar N, “On the Computational Power and Complexity of Spiking Neural 
Networks,” in Neuro-Inspired Computational Elements Workshop (NICE), 2020, pp. 1–7.

[210]. Maass W, “Lower Bounds for the Computational Power of Networks of Spiking Neurons,” 
Neural Computation, vol. 8, no. 1, pp. 1–40, 1996.

[211]. Demidovskij A, “Encoding and Decoding of Recursive Structures in Neural-Symbolic 
Systems,” Optical Memory and Neural Networks, vol. 30, no. 1, pp. 37–50, 2021.

[212]. Dolan CP and Smolensky P, “Tensor Product Production System: a Modular Architecture and 
Representation,” Connection Science, vol. 1, no. 1, pp. 53–68, 1989.

Kleyko et al. Page 65

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[213]. Knight Y, Spranger M, and Steels L, “A Vector Representation of Fluid Construction 
Grammar Using Holographic Reduced Representations,” in EuroAsianPacific Joint Conference 
on Cognitive Science (EAPCogSci), 2015, pp. 560–565.

Kleyko et al. Page 66

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The place of HDC/VSA within Marr’s levels of analysis [19]. The focus of this article 

is marked by the dashed rectangle. We explain how HDC/VSA provides primitives 

to formalize algorithms in ways that seamlessly connect to the computational and 

implementational levels in the computing hierarchy.
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Fig. 2. 
An example of a resonator network with three arguments. It is factoring a compound 

hypervector s = a ⊙ b ⊙ c; A, B, and C denote the corresponding item memories containing 

seed hypervectors for a, b, and c arguments, respectively.

Kleyko et al. Page 68

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The correlation coefficients between the exact histogram and their approximations 

from integer-valued ℤN compound hypervectors. Six different sizes of histograms were 

considered. The dimensionality of hypervectors varied in the range [200, 10000] with step 

200. The values of counters were drawn from the discrete uniform distribution [0, 1023]. 

The reported values were averaged over 100 simulations.
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Fig. 4. 
An example of an undirected and directed graphs with 5 nodes. In the case of the undirected 

graph, each node has two edges.
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Fig. 5. 
An example of a binary tree from [76] where the leaves are different symbols from the 

alphabet.
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Fig. 6. 
An example of a state diagram of a finite-state automaton modelling the control logic of a 

turnstile. It has two states. The start state is depicted by the arrow pointing from the black 

circle.
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Fig. 7. 
Average accuracy of the recall of the next state of the automaton from a, which was 

bipolarized, against the dimensionality of hypervectors (N ∈ [100, 4000], with step 100). 

The results were obtained over 50 random initializations of the item memories. For each 

initialization, 1, 000 transitions (chosen randomly) were performed. For each transition 

function, noise added to a was also generated at random. Bit Error Rates were in range 

0.0312–0.2500, Bit Error Rate is defined as the percentage of bits (here dimensions) that 

have errors relative to the total number of bits.
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Fig. 8. 
The automaton for the base string “hello”.
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Fig. 9. 
Search of a substring in superposition with HDC/VSA using the modified algorithm from 

[146]. The length of a substring was fixed to 30. The reported values were averaged over 30 

simulations.
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TABLE I

A qualitative assessment of HDC/VSA capabilities contrasted to conventional computing and neural networks.

Conventional computing/AI Neural networks HDC/VSA

Distributed representation × ✓ ✓

Learning from data × ✓ ✓

Symbolic computing with variables and binding ✓ × ✓

Tolerance to device imperfections × ? ✓

Transparency ✓ × ✓

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kleyko et al. Page 77

TABLE II

Table of behaviour of (2,4) Turing machine.

A B

0 2 L A 3 R A

1 3 L B 2 L B

2 3 L A 0 R B

3 3 L A 1 R B
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TABLE III

The heteroassociative item memory implementing (2,4) Turing machine.

Address (input) Content (output)

Tape content Next State Head’s move

a ⊙ 0 2 a L

a ⊙ 1 3 b L

a ⊙ 2 3 a L

a ⊙ 3 3 a L

b ⊙ 0 3 a R

b ⊙ 1 2 b L

b ⊙ 2 0 b R

b ⊙ 3 1 b R
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