
UC Berkeley
Research Reports

Title
Tools for Operations Planning (TOPL1)

Permalink
https://escholarship.org/uc/item/3fh5996q

Author
Varaiya, Pravin

Publication Date
2008-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fh5996q
https://escholarship.org
http://www.cdlib.org/


CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

This work was performed as part of the California PATH Program of 
the University of California, in cooperation with the State of California 
Business, Transportation, and Housing Agency, Department of Trans-
portation, and the United States Department Transportation, Federal 
Highway Administration.

The contents of this report reflect the views of the authors who are 
responsible for the facts and the accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or policies of 
the State of California. This report does not constitute a standard, spec-
ification, or regulation.

ISSN 1055-1417

June 2008

Tools for Operations Planning (TOPL1) 

California PATH Working Paper
UCB-ITS-PWP-2008-4

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Pravin Varaiya
University of California, Berkeley

Final Report for Task Order 6611



 

1 
 

Tools for Operations Planning (TOPL1) 
Final Report for PATH TO 6611  

Pravin Varaiya 
 

Department of Electrical Engineering and Computer Science 

University of California, Berkeley CA 94720 

Tel: (510) 642-5270, Fax: (510) 642-7815 

varaiya@eecs.berkeley.edu 

 

April 17, 2008 

Abstract 
TOPL is a suite of tools to (1) specify operational improvements including ramp metering, incident and 
demand management, auxiliary lanes, traveler information and (2) quickly estimate the benefits that such 
improvements can realize.  TOPL is based on the macroscopic cell transmission model (CTM).   Version 
1, TOPL1, provides preliminary software packages, a calibrated model of 880N. 

The website of the TOPL project is http://path.berkeley.edu/topl/ 
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2. Summary of accomplishments 
TOPL1 developed preliminary versions of three software packages: FM (Freeway Modeler), CTMSim 
and Aurora1.  All are based on the same macroscopic cell transmission model (CTM), so they are 
consistent with each other.  FM and CTMSim model a single freeway.  Aurora models a freeway corridor, 
i.e., a road network with freeways and arterials.  Thus Aurora is much more general. The packages also 
come with several ramp controllers that the user can employ to evaluate their impact.   

2.1 CTM Theory 

We summarize the results of our theoretical investigation of the CTM model.  The full discussion (Gomes 
et al, 2007) is appended. 

 

Figure 1 Freeway model 

Fig. 1 shows the freeway divided into N sections, each with one on- and one off-ramp. Vehicles move 
from right to left. Section i is upstream of section i-1. There are two boundary conditions. Free flow 
prevails downstream of section 0; upstream of the freeway is an ‘‘on-ramp’’ with an inflow of rN. The 
flow accepted by section N-1 is fN (k) vehicles per period or time step k.  On-ramp flows are given as 
demand.  Off-ramp flows are determined by specified split ratios. 
 
The state of the system is given by the N-dimensional vector n of vehicle densities in the N sections.  
Intra-cell changes in the state are determined by flow conservation.  Inter-cell flows are determined by the 
fundamental diagram.   
 
A feasible stationary demand pattern induces a unique equilibrium flow in each section. However, there is 
an infinite set—in fact a continuum—of equilibrium states, including a unique uncongested equilibrium 
nu in which free flow speed prevails in all sections, and a unique most congested equilibrium ncon. In 
every other equilibrium ne one or more sections are congested, and nu ≤ n ≤ ncon.  Every equilibrium is 
stable and every trajectory converges to some equilibrium state. 
 
Two implications for ramp metering are explored. First, if the demand exceeds capacity and the ramps are 
not metered, every trajectory converges to the most congested equilibrium. Moreover, there is a ramp 
metering strategy that increases discharge flows and reduces total travel time compared with the no-
metering strategy. Second, even when the demand is feasible but the freeway is initially congested, there 
is a ramp metering strategy that moves the system to the uncongested equilibrium and reduces total travel 
time. The two conclusions show that congestion invariably indicates wastefulness of freeway resources 
that ramp metering can eliminate. 
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2.2 Simulation 

We summarize results of the 880N simulation.   

 

Figure 2 Map of 880N with major bottlenecks 

Figure 2 is a map of 880N, a 45-mile long freeway in the San Francisco Bay Are stretching from San Jose 
in the South to Oakland in the North.   The map shows the location of two major bottlenecks. 

The bottlenecks are visible in the speed contour plots for four days shown in Figure 3. There are several 
other bottlenecks as well.  Observe in on all four plots congestion starts at a bottleneck and moves 
upstream, forming the characteristic low speed triangles, as predicted by Theorem 4.1 of (Gomes et al, 
2007). 
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Figure 3 Speed contour plots for I‐880N for four days, 4‐7 September, 2007. Source: PeMS 

Figure 4 is a screen shot of a display window of the TOPL simulation of I-880N for the base case.  The 
window is divided into two halves.  The right-hand side displays contour plots of flow (top), density 
(middle) and speed (bottom).   The left-hand side displays five performance plots: (instantaneous) travel 
time, VMT, VHT, delay and productivity loss.  Comparisons with empirical data indicate that the 
estimated CTM model conforms reasonably well with measurement. For example, the contour plots 
clearly show the two major bottlenecks.  Similarly, the delay in the morning peak is much larger than the 
afternoon peak, which is to be expected, because the morning commute direction is north.  These and 
other comparisons lend confidence to the results of the scenario analysis presented in (Varaiya, 2008).  
That paper is appended as well. 
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Figure 4 TOPL simulation of the 880N base case 

3. Conclusion 
In November, 2006 California voters approved a $20 billion bond measure to improve transportation.  
Subsequently, the California Department of Transportation (Caltrans) launched an ambitious “corridor 
management program (CMP)” to design and implement operational improvements---emphasizing ramp 
metering, incident management, traveler information, and demand management (including using tolls)---
that would reduce congestion in 2025 by 40 percent (California Department of Transportation, 2006). 

TOPL is our response to the needs of the CMP by developing a set for (1) specifying such operational 
improvements and (2) quickly estimating the benefits such improvements are likely to provide.  At the 
end of the first year of effort, the TOPL approach appears very likely to meet its goals. 
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TOPL: TOOLS FOR OPERATIONS PLANNING

Pravin Varaiya1

ABSTRACT. TOPL is a suite of software tools for specifying freeway operational im-
provement strategies, such as ramp metering, demand and incident management, and for
quickly estimating the bene�ts of such improvements. TOPL is based on the macroscopic
cell transmission model. The paper summarizes the theory of the cell transmission model
and describes the procedure to carry out a TOPL application. The procedure is illustrated
for the 45-mile long I-880N freeway in California, whose model is calibrated using loop
detector measurements of volume and speed. The measurements show that congestion
originates in a bottleneck and moves upstream, as predicted by the theory. The simu-
lations show that appropriate ramp metering can dramatically reduce total congestion
delay and mainline travel time.

INTRODUCTION

In November, 2006 California voters approved a $20 billion bond measure to improve
transportation. Subsequently, the California Department of Transportation (Caltrans)
launched an ambitious `corridor management program' to design and implement opera-
tional improvements�emphasizing ramp metering, incident management, traveler infor-
mation, and demand management (including using tolls)�that would reduce congestion
in 2025 by 40 percent (California Department of Transportation (2006)). This paper de-
scribes TOPL (Tools for Operations Planning), a suite of software tools for (1) specifying
such operational improvements and (2) quickly estimating the bene�ts such improvements
are likely to provide.

TOPL is based on the macroscopic cell transmission model (CTM). Traditionally, such
investigations favor use of microscopic models, and indeed Caltrans has let contracts for
microsimulation models. However, the required data collection and model calibration
e�ort has signi�cantly slowed this e�ort (California Center for Innovative Transportation
(2006)). By contrast, the CTM model is based on aggregate variables such as volume

1Nortel Networks Distinguished Professor, Department of Electrical Engineering and Computer Sci-

ences, University of California, Berkeley, CA 94720 USA, email: varaiya@eecs.berkeley.edu
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or �ow and density, which for California freeways, are routinely measured and archived
(PeMS (2007)). Consequently, TOPL models are very quickly speci�ed, calibrated and
run to generate useful results.

CTM and its properties are reviewed in the next two sections, which are based on Gomes
et al. (2007). The subsequent section brie�y summarizes the steps within TOPL to
describe and calibrate a CTM model. This is followed by a TOPL application for the
40-mile long I-880N freeway in the San Francisco Bay Area.

CELL TRANSMISSION MODEL

The notation used here and the properties of the model stated below as Propositions 1-3
are from (Gomes et al. (2007)). Figure 1 shows the freeway divided into N sections or
cells, each with one on- and one o�-ramp. Vehicles move from right to left. There are
two boundary conditions. Free �ow prevails downstream of section 0, and vehicles from
upstream of the freeway enter an �on-ramp� with speci�ed in�ow rN . The �ow accepted
by section (N − 1) is fN(k) vehicles in period k. The cumulative di�erence forms a queue
of size nN(k).

0 i-1 i i+1

f0 fifi-1 fi+1

si ri

N-1
rN

fN

nN
s0 r0 sN-1 rN-1

Figure 1: The freeway has N sections. Each section has one on- and one o�-ramp.

Symbol Name Value Unit
section length 1 miles
period 0.01 hours

Fi capacity per lane 20 veh/period
vi free �ow speed 0.6 section/period
wi congestion wave speed 0.2 section/period
nc

i critical density 33 veh/section
n̄i jam density 133 veh/section
βi split ratio ∈ [0, 1) dimensionless
β̄i complementary split ratio = 1− βi ∈ (0, 1] dimensionless
k period number integer dimensionless
fi(k) �ow from section i to i− 1 in period k variable veh/period
si(k), ri(k) o�-ramp, on-ramp �ow in section i in period k variable veh/period
ni(k) number of vehicles in section i in period k variable veh/section

Table 1: Model variables and parameters.

Table 1 lists the model variables and parameters with plausible values, e.g. , capacity 20
veh/period/lane or 2,000 vehicles/hour/lane, and free �ow speed 0.6 sections/period or
60 mph. The length of all sections is normalized to 1 by absorbing di�erences in length
in the speeds vi, wi. To be physically meaningful vehicles should not cross an entire cell
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in one period, so 0 < vi, wi < 1. The o�-ramp �ow is assumed to be a portion βi(k) of
the total �ow leaving the section:

si(k) = βi(k)(si(k) + fi(k)), or si(k) = [βi(k)/(1− βi(k))]fi(k).

Assume constant split ratios βi (βN = 0). With β̄i = 1− βi, the model is, for k ≥ 0,

ni(k + 1) = ni(k)− fi(k)/β̄i + fi+1(k) + ri(k), 0 ≤ i ≤ N − 1, (1)

fi(k) = min{β̄i vi ni(k), wi−1[n̄i−1 − ni−1(k)], Fi}, 1 ≤ i ≤ N, (2)

f0(k) = min{β̄0 v0 n0(k), F0}, (3)

nN(k + 1) = nN(k)− fN(k) + rN(k). (4)

Flow conservation in section i ≤ N − 1 is expressed by

ni(k + 1) = ni(k)− fi(k) + fi+1(k) + ri(k)− si(k), (5)

which is equivalent to (1), using si(k) = βi/β̄ifi(k); and in section N by (4). The �ow
fi(k) from section i to i − 1 is governed by the `fundamental diagram' (2) with this
interpretation: β̄i vini(k) is the number of vehicles that can move from section i to i−1 in
period k; wi−1[n̄i−1 − ni−1(k)] is the number that i− 1 can accept; and Fi is the capacity
or maximum possible �ow from section i to i − 1. Equation (3) indicates there is no
congestion downstream of section 0. It is tacitly assumed that the �ows si(k) are not
constrained by o�-ramp capacity.

The parameter values in Table 1 correspond to the fundamental diagram of Figure 2. The

20

33 133

slope = vi = 0.6

slope = wi = 0.2

ni nc
i

Fi = βivin
c
 = wi-1 (ni-1-nc  )i i-1

veh/period

veh/section

Figure 2: The fundamental diagram is characterized by capacity Fi and speeds vi, wi.

state of the system is the N -dimensional vector n(k) = (n0(k), · · · , nN−1(k)).

Assume stationary demands ri(k) ≡ ri. Each on-ramp demand vector r = (r0, · · · , rN)
induces a unique equilibrium �ow vector f(r) = (f0, · · · , fN) calculated from

fN = rN , (6)

fi = β̄i (fi+1 + ri), 0 ≤ i ≤ N − 1. (7)

Demand r is said to be feasible if 0 ≤ fi ≤ Fi, 0 ≤ i ≤ N ; strictly feasible if 0 ≤ fi <
Fi, 0 ≤ i ≤ N ; and infeasible if fi > Fi for some i.
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n = (n0, · · · , nN−1) is an equilibrium state for a feasible demand r if the trajectory n(k) ≡
n is a solution of (1)-(3), i.e.,

fi = min{β̄i vi ni, Fi − wi−1[ni−1 − nc
i−1], Fi}, 1 ≤ i ≤ N − 1, (8)

f0 = min{β̄0 v0 n0, F0}. (9)

At equilibrium n, section i is uncongested if 0 ≤ ni ≤ nc
i and congested if ni > nc

i ; the
equilibrium n is uncongested if all sections are uncongested; otherwise it is congested. In
an uncongested section, free �ow speed prevails; in a congested section, speed is lower.

Proposition 1 A feasible demand r has a unique uncongested equilibrium nu(r):

nu
i (r) = (β̄i vi)

−1fi(r), 0 ≤ i ≤ N − 1. (10)

In addition to the uncongested equilibrium (10), there is an in�nite number�in fact, a
continuum�of congested equilibria. Let E = E(r) be the set of equilibria, i.e., the set of
all solutions of the system of nonlinear equations (8)-(9).

Say that section i is a bottleneck for a feasible demand r (or equilibrium �ow f) if fi =
Fi, i.e., in a bottleneck �ow equals capacity. Suppose there are K ≥ 0 bottlenecks at
0 ≤ I1 < I2 < · · · < IK ≤ N − 1. Partition the freeway into 1 + K segments S0, · · · , SK

comprising contiguous sections as follows:

S0 = {0, · · · , I1 − 1}, S1 = {I1, · · · , I2 − 1}, · · · , SK = {IK , · · · , N − 1}. (11)

If demand is strictly feasible, there is no bottleneck, so K = 0, I1 = N and segment
S0 = {0, · · · , N − 1} is the entire freeway. On the other hand, if the most downstream
section is congested, I1 = 0 and S0 is the empty segment.

Partition the state vector n = (n0, · · · , nN−1) into sub-vectors n = (n0, · · · , nK) in con-
formity with segments S0, · · · , SK , so nk has components ni, i ∈ Sk. The equilibrium
conditions (8)-(9) partition into 1 +K decoupled conditions, one for each segment. These
decoupled conditions decompose the equilibrium set into a product,

E(r) = E0(r)× · · · × EK(r). (12)

Since S0 is uncongested, E0(r) consists of the unique uncongested equilibrium nu,0(r)
given by (see (10))

nu,0
i (r) = (β̄i vi)

−1fi, i ∈ S0.

For k ≥ 1, the terms Ek(r) in (12) have a similar structure, di�ering only in the number of
sections in Sk. To explore this structure, consider a generic segment S = {0, · · · , N − 1}
with N cells and a demand r with equilibrium �ow f = (f0, · · · , fN−1) with f0 = F0 and
fi < Fi, i > 0. Let E be the set of equilibria. Proposition 2 characterizes E.

In addition to the uncongested density nu
i (r) de�ne the congested density

ncon
i (r) = nc

i + w−1
i (Fi+1 − fi+1). (13)
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Then

nu
i (r) ≤ nc

i ≤ ncon
i , i = 0, · · · , N − 1.

Denote ñ−1 = nu, the uncongested equilibrium (10), and

ñk = (ncon
0 , · · · , ncon

k−1, n
u
k , · · · , nu

N−1), k = 0, · · ·N − 1. (14)

In state ñk the �rst k sections are congested, the rest are uncongested.

Proposition 2 The set of equilibria E ⊂ RN can be expressed geometrically as

E = [ñ−1, ñ0] ∪ [ñ0, ñ1] ∪ · · · ∪ [ñN−2, ñN−1], (15)

in which [ñk−1, ñk] denotes the straight line segment joining ñk−1 and ñk.

Figure 3 illustrates Proposition 2 for a three-section freeway in which section 0 is the only
bottleneck (f0 = F0, f1 < F1, f2 < F2). The �ows determine the equilibrium set (15),
which for this example comprises the three straight line segments shown in the bottom of
the �gure.

f0 = F0 f1 f2 f3

f3f2

f1
f0

n1n0
n2

n0
u

n0
con n1

u n1
con n2

con
n2

u

n0

n1

n2

(n0 u n1
u n2 )u

(n0 con n1
u n2 )u

(n0 con n1
conn2 )u

(n0 con n1
conn2     )con

Figure 3: Illustration of Proposition 2 for a three-section segment.

Two important observations follow from Proposition 2. First, congestion starts at a
bottleneck section and spreads upstream. Thus, in the freeway of Figure 3, the bottleneck
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section 0 must be congested before section 1 can become congested, and section 1 must
be congested before section 2 can become congested. Second, the �ows in all sections are
the same at every equilibrium in the set (15), even though at (say) the equilibrium nu no
section is congested and vehicles move at free �ow speed, whereas at ñN−1 every section
is congested and vehicles move at lower speed. Thus the presence of congestion is not an
indication of excess demand.

EXCESSIVE DEMAND AND EFFICIENT RAMP METERING

In peak hours demand may be infeasible, and the preceding analysis needs modi�cation.

0

φ0 =
6000

n4

1 2 3

φ1 =
4800

φ2 =
6000

φ3 =
4800

φ4 =
4000

r0 =
1200

α φ1 =
1200

r1 =
0

r2 =
2700

α φ2 =
1500

α φ3 =
1200

r3 =
2000

r4 =
4000

0

φ0 =
6000

n4

1 2 3

φ1 =
4700

φ2 =
5875

φ3 =
4643.7

φ4 =
3804.7

r0 =
1300

α φ1 =
1175

r1 =
0

r2 =
2700

α φ2 =
1468.7

α φ3 =
1160.9

r3 =
2000

r4 =
4000

~ ~~ ~~

~ ~ ~

Figure 4: Freeway, on-ramp and o�-ramp �ows of Example 2: feasible demand (top);
excessive demand (bottom).

Example The upper part of Figure 4 displays a freeway with four identical three-lane
sections, each lane characterized by the fundamental diagram in Figure 2, so each section
has capacity of 6000 vph. The demand r = (r0 = 1200, r1 = 0, r2 = 2700, r3 = 2000, r4 =
4000). β0 = 0; all other split ratios are the same: βi = β = 0.2, so β̄ = 0.8. Denote
α = β[β̄]−1 = 0.25. The demand r is feasible and the equilibrium �ow φ = (φ0 =
6000, φ1 = 4800, φ2 = 6000, φ3 = 4800, φ4 = 4000). The o�-ramp �ow in section i is αφi.
Sections 0 and 2 are bottlenecks, with equilibrium �ows equal to capacity.

Suppose demand increases to r̃, with r̃0 = 1300 > r1 and r̃i = ri, i ≥ 0. This demand
is infeasible because it would increase φ0 to φ1 + r̃0 = 6100, which exceeds capacity.
The increased on-ramp �ow in section 0 will create congestion in section 0 and force a
reduction in the �ow out of section 1 from φ1 = 4800 to φ̃1 = 4700. This reduction
propagates upstream and ultimately reduces the �ow out of section 4 from φ4 = 4000
to φ̃4 = 3804.6875. The on-ramp queue n4 will grow at the rate of 4000 − 3804.6875 =
195.3125 vph. All sections will become congested. The discharge at the o�-ramps will
be reduced from αφi to αφ̃i. The new equilibrium �ows are displayed in the lower part
Figure 4.
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Thus the infeasible demand r̃ leads to a unique equilibrium �ow φ̃, corresponding to the
lower, feasible demand r̃f , which is the same as r̃, except that the upstream �ow is reduced
from φ4 = 4000 to φ̃4 ≈ 3804. The system converges to the most congested equilibrium
corresponding to r̃f .

For demand r = (r0, · · · , rN), let φ be the solution of (6)-(7):

φN = rN , φi = β̄i(φi+1 + ri), 0 ≤ i ≤ N − 1.

Suppose that r is infeasible, so that φi > Fi for some i. To simplify the notation assume
that φ0 > F0. Assume that the demand becomes feasible if either rN = 0 or r0 = 0. Let

r̃N = max{ρ ≥ 0 | the demand (r0, · · · , rN−1, ρ) is feasible} (16)

r̂0 = max{ρ ≥ 0 | the demand (ρ, r1, · · · , rN) is feasible} (17)

Proposition 3 (i) r̃N < rN is the largest upstream �ow for which the demand r̃ =
(r0, · · · , rN−1, r̃N) is feasible. The corresponding equilibrium �ow φ̃ is

φ̃N = r̃N , φi = β̄i(φ̃i+1 + ri), 0 ≤ i ≤ N − 1.

(ii) With demand r, under the no-metering strategy the system converges to the (unique)
most congested equilibrium ncon ∈ E(r̃) corresponding to demand r̃. The queue nN(k) at
the upstream ramp grows at the rate of (rN − r̃N) vehicles per period.
(iii) r̂0 < r0 is the largest �ow for which the demand r̂ = (r̂0, r1, · · · , rN) is feasible. The
corresponding equilibrium �ow φ̂ is

φ̂N = rN , φ̂i = β̄i(φ̂i+1 + ri), 1 ≤ i ≤ N − 1, φ̂0 = β̄0(φ̂1 + r̂0).

Under the ramp metering strategy that reduces the on-ramp �ow in section 0 from r0 to r̂0,
the system converges to some equilibrium in E(r̂). The queue at the on-ramp in section
0 grows at the rate of (r0 − r̂0) vehicles per period.
(iv) Flows under the ramp-metering strategy are larger throughout the freeway:

φ̃i < φ̂i, 1 ≤ i ≤ N and φ̃0 = φ̂0 = F0.

Suppose βi > 0 for some i ≥ 1, so that there is non-zero o�-ramp �ow in at least one
section. Then the total discharge under the ramp-metering strategy is strictly larger than
under the no-metering strategy. Moreover,

µ =
rN − r̃N

r0 − r̂0
= (β̄1 · · · β̄N)−1 > 1. (18)

Substituting the split ratios of Example 2 into (18) gives the ramp metering `gain'

µ = (β̄1β̄2β̄3) = (0.8)−3 ≈ 2.

The next result is not di�cult to prove.

7



Proposition 4 There is a ramp metering strategy that achieves the metering gain (18).
With a small sacri�ce in capacity, the strategy achieves the uncongested equilibrium.

TOPL PROCEDURE

Simulation of a freeway requires �ve steps:

Step 1 Network speci�cation. The freeway network must be de�ned in the form of Figure
1, i.e., the freeway must be divided into cells, each with (at most) one on- and one o�-
ramp. Each cell should be homogeneous in terms of number of lanes and grade, so that it
is sensible to represent the behavior of tra�c in the cell by a single fundamental diagram.
In order to facilitate calibration, as far as possible, each cell should have a vehicle detector
station that measures volume and speed.

In TOPL, network speci�cation begins with a GIS map from which the freeway geometry
(number of lanes and position of ramps) is extracted. An algorithm takes the speci�ed
geometry and the location of detector stations, obtained from (PeMS (2007)) and produces
a cell division of the freeway. The resulting cell structure is manually inspected and
changed if needed.

Step 2 Fundamental diagram. Five-minute average measurements of volume and speed
over several days are collected from each functioning detector. A triangular fundamental
diagram in the form of Figure 2 is �tted to the data. This leads to the speci�cation of
each cell that has a detector. For those cells that do not have a detector a `default' fun-
damental diagram is speci�ed. (In practice average values of the parameters of estimated
fundamental diagrams are taken as default values.)

Step 3 Ramp �ows. Data for on- and o�-ramp �ows are collected. All too often, these
data are missing or incorrect. TOPL has an elaborate procedure to impute missing and
incorrect ramp data. The basic idea is as follows. Suppose the on-ramp �ow sequence,
ri(k), is missing. The procedure assumes a certain pro�le r̂i(k), calculates the resulting
density pro�le n̂i(k) (using the fundamental diagram obtained in Step 2), compares this
density with the measured density pro�le ni(k), and changes the assumed pro�le r̂i(k)
so as to reduce the `error'

∑
|ni(k) − n̂i(k)|. This procedure is repeated until the error

is acceptable. The ramp �ows are now used to generate split ratios, which are usually
time-varying.

Step 4 Base case. At the end of Steps 1-3, the CTM model is fully speci�ed. The model
is run for a `base case', which simply means a particular day or several days for which
good data are available. The model output is compared with actual �eld data in terms
of (1) location of bottlenecks and speed contour plots, (2) hourly delays, (3) travel time,
and other performance measures.

Step 5 Scenarios. Several scenarios are speci�ed. A scenario is created by specifying
changes in the fundamental diagram and in the on-ramp demand. These inc;lude (1)
increasing demand by (say) two percent relative to the base case; (2) modeling an incident
in a particular cell by reducing the capacity of the cell by one or two lanes for a certain time
period; (3) a demand management scheme that reduces on-ramp �ows at some locations by
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a certain amount. TOPL provides several ramp metering control laws, including ALINEA
(Papageorgiou et al. (1991, 1997)) and those described in (Sun and Horowitz (2006)).
Running each speci�ed scenario with and without ramp metering in place provides an
estimate of the bene�ts of ramp metering.

TOPL APPLICATION: I-880N

This section is devoted to a TOPL case study of I-880N, a 45-mile long freeway in the
San Francisco Bay Are stretching from San Jose in the South to Oakland in the North,
shown in the map of Figure 5. The map shows the location of two major bottlenecks.
The bottlenecks are visible in the speed contour plots for four days shown in Figure 6.

Figure 5: I-880N with location of two major bottlenecks at 29th and Tennyson Avenues.

There are several other bottlenecks as well. Observe in on all four plots congestion starts
at a bottleneck and moves upstream, forming the characteristic low speed triangles, as
predicted by Proposition 2.

Figure 7 is a screen shot of a display window of the TOPL simulation of I-880N for the
base case. The window is divided into two halves. The right-hand side displays contour
plots of �ow (top), density (middle) and speed (bottom). The left-hand side displays
�ve performance plots: (instantaneous) travel time, VMT, VHT, delay and productivity
loss. Comparisons with empirical data indicate that the estimated CTM model conforms
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Figure 6: Speed contour plots for I-880N for four days, 4-7 September, 2007: Source PeMS
(2007).

reasonably well with measurement. For example, the contour plots clearly show the
two major bottlenecks. Similarly, the delay in the morning peak is much larger than
the afternoon peak, which is to be expected, because the morning commute direction is
north. These and other comparisons lend con�dence to the results of the scenario analysis
considered next.

On 27 September, 2007, there was a serious accident at 3:40PM. The accident is simulated
as a reduction in the capacity (two of four lanes were shut down) from 3:40PM until
4:45PM. Figure 8 shows the results of the simulation, with the density contour replaced
by the measured speed contour. The location and time of occurrence of the accident is
indicated by X. The two ellipses mark the increase delay and congestion caused by the
accident, in comparison with the base case of Figure 7. The reduction in capacity causes
the demand to be infeasible, and congestion spreads as predicted by Proposition 3.

Figure 9 shows the reduction in the congestion impact of the accident by ramp metering.
The freeway is maintained in free �ow, as suggested by Proposition 4. The dotted ellipses
are in the same locations as the solid ellipses of Figure 8. Of course, free �ow on the
mainline is partly paid for by delay on the ramps. Nonetheless, there is a net reduction
in delay as summarized in Figure 10. The �gure plots hourly delay (including delay on
the ramps) for three scenarios: base case (blue), accident with no metering (red), and
accident with metering (green). The area between the red and green plots is the net delay
savings due to ramp metering.

A more dramatic scenario is illustrated in Figures 11 which simulates the impact of a two
percent increase in demand (all on-ramp �ows are increased by two percent relative to
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Figure 7: I-880 simulation of the base case.

the base case). The morning congestion does not disappear by mid-day as in the base
case of Figure 7, and as a result congestion in the afternoon peak is worse. Nevertheless,
ramp metering keeps the mainline free �owing as indicated in Figure 12. The net e�ect
is summarized in the hourly delay plots of Figure 13, which is analogous to Figure 10.

CONCLUSIONS

The macroscopic CTM model is much easier than microscopic models to calibrate and
use to specify strategies to improve freeway operations and to evaluate their potential
bene�ts. The calibrated CTM model for I-880N generates behavior that agrees closely
with empirical measurement, including location of bottlenecks, propagation of congestion
upstream from bottlenecks, hourly delay and travel time. The validity of the model is
further con�rmed by comparing its performance under a simulated accident with empirical
measurements. This lends con�dence to the model's prediction of major reductions in
delay by appropriate ramp metering.
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Figure 8: Simulation of an accident that shuts down two lanes from 3:40 until 4:45PM.
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Figure 9: Simulation of the accident with ramp metering in place.

Figure 10: Plots of hourly delay: base case (bottom), with accident (top) and under
metering (middle) .
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Figure 11: Simulation of a two percent increase in demand.

Figure 12: Simulation of the increased demand under metering.
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Figure 13: Plots of hourly delay: base case (bottom), with accident (top) and under
metering (middle) .
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