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Abstract

Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle

by passing through the stomach to colonize the digestive tract. To develop a fundamental

understanding of this response, we established a molecular mechanistic description of acid

stress mitigation responses in E. coli and integrated them with a genome-scale model of its

metabolism and macromolecular expression (ME-model). We considered three known

mechanisms of acid stress mitigation: 1) change in membrane lipid fatty acid composition,

2) change in periplasmic protein stability over external pH and periplasmic chaperone pro-

tection mechanisms, and 3) change in the activities of membrane proteins. After integrating

these mechanisms into an established ME-model, we could simulate their responses in the

context of other cellular processes. We validated these simulations using RNA sequencing

data obtained from five E. coli strains grown under external pH ranging from 5.5 to 7.0. We

found: i) that for the differentially expressed genes accounted for in the ME-model, 80% of

the upregulated genes were correctly predicted by the ME-model, and ii) that these genes

are mainly involved in translation processes (45% of genes), membrane proteins and

related processes (18% of genes), amino acid metabolism (12% of genes), and cofactor

and prosthetic group biosynthesis (8% of genes). We also demonstrated several interven-

tion strategies on acid tolerance that can be simulated by the ME-model. We thus estab-

lished a quantitative framework that describes, on a genome-scale, the acid stress

mitigation response of E. coli that has both scientific and practical uses.

Author summary

Understanding the acid resistance mechanisms of E. coli has important implications in

the food, health care and biotechnology industries. The ability of E. coli to tolerate acid

stress can be attributed to its various regulatory, metabolic and physiological mechanisms.

Although different acid resistance mechanisms have been well characterized, few studies

are focused on understanding how these mechanisms work together to protect E. coli
from acid stress. A mathematical representation of the metabolic flux state and proteome
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allocation of E. coli allows the characterization of how these mechanisms interact and

function on a systems-level. Here, based on an existing E. colimodel framework, we char-

acterize three acid stress mitigation responses of E. coli: 1) change in membrane lipid fatty

acid composition, 2) change in periplasmic protein stability over external pH and peri-

plasmic chaperone protection mechanisms, and 3) change in the membrane protein activ-

ities. The predictions of our framework with the integrated mechanisms demonstrated

good agreement with RNA sequencing data of E. coli on gene expression changes under

acid stress. The efforts here open up various opportunities for practical applications, e.g.

intervention strategies that challenge acid stress tolerance and enhancement of acid resis-

tance during organic acid production in a cell factory.

Introduction

Multiple studies have focused on the ability of Escherichia coli to tolerate acid stress [1–6]. E.

coli has been shown to survive under extreme acid stress at pH 2 for several hours and to grow

under acid stress above pH 4.5 [1,4–6]. The ability to tolerate acid stress is critical for E. coli to

complete its life cycle as an enteric bacteria. For colonization in the human digestive tract, it

has to pass through the stomach with pH 1.5 to 3, and then metabolize and proliferate at

around pH 5 to 6 in the intestinal tract [7,8]. A fundamental understanding of the acid resis-

tance mechanisms of E. coli thus has important implications in the food and health care indus-

try, e.g., the development of effective strategies against pathogenic E. coli by targeting specific

acid resistance mechanisms.

Various acid resistance mechanisms exist that protect E. coli under acid stress and are

found across different cellular compartments. In the cytoplasm, mechanisms that actively con-

sume protons include four types of amino acid decarboxylase systems and formate hydrogen

lyase [9–13]. Metabolism of secondary carbon sources and sugar derivatives are upregulated as

these carbon sources produce fewer acids compared to glucose when metabolized [14,15].

Additionally, cytoplasmic buffering from inorganic phosphates, amino acid side chains, poly-

phosphates, and polyamines helps to maintain intracellular pH homeostasis [16]. When cyto-

plasmic pH drops under extreme acid stress, cytoplasmic chaperones such as Hsp31 bind and

protect unfolded protein intermediates; DNA-binding proteins bind and protect DNA [17–

19]. On the inner membrane, activities of electron transport chain components and composi-

tion of membrane lipids change under acid stress [14,15,20,21]. In the periplasmic space, peri-

plasmic chaperones HdeA and HdeB are activated under acid stress to bind and protect

unfolded protein intermediates [22]. Lastly, outer membrane porins are bound by polypho-

sphate or cadaverine to reduce proton influx [23,24].

While there have been extensive studies describing the response of E. coli under acid stress,

research to elucidate how different acid resistance mechanisms function together to protect

E. coli against a low pH environment is lacking. Such an explanation will require a detailed

characterization of different acid resistance mechanisms of E. coli. The genome-scale meta-

bolic model (M-model) of E. coli provides a mathematical representation of its metabolic capa-

bilities and serves as an ideal framework to describe the acid stress response of E. coli [25].

Recently, M-models have been extended to include the synthesis of the gene expression

machinery (called ME-models) [26,27]. In addition to computing the optimal metabolic flux

state of the organism, ME-models compute the optimal proteome allocation for a given pheno-

type [27,28], thus providing additional information on the cellular processes as a whole. Fur-

thermore, the calculation on proteome allocation can be validated with RNA sequencing data,
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007525 December 6, 2019 2 / 21

Funding: BD, LY, CJL, XF, BOP received Novo

Nordisk Foundation Grant NNF10CC1016517

(www.novonordisk.com). BD, LY, CJL, BOP

received National Institute of General Medical

Sciences of the National Institutes of Health Grant

R01GM057089 (www.nigms.nih.gov). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007525
http://www.novonordisk.com
http://www.nigms.nih.gov


which can be conveniently obtained with the advancement of next-generation sequencing

technology.

In this work, we characterize the growth of E. coli under mild acid stress using the ME-

model framework (Fig 1). Mild acid stress can be found under a variety of conditions, includ-

ing the intestinal tract and fermented food, where the pH is around 5 to 6 [7,29]. We thus nar-

row the pH range under study between 5.5 and 7, to elucidate the change in cellular responses

under acidic and neutral conditions. As a result, we do not include the description of several

known acid resistance mechanisms due to the context of acid stress response. One such exam-

ple is the amino acid decarboxylase systems that are involved in maintaining pH homeostasis.

The relevant reactions are included in the ME-model, but do not carry flux in model simula-

tions. The decarboxylase systems are typically active when there is a large influx of proton into

the cytoplasmic space or under extreme acid stress when the intracellular pH of E. coli drops to

around 4 to 5 [13]. Similarly, the descriptions of DNA-binding proteins and the activation of

periplasmic chaperone HdeA are not included, but will be more relevant under extreme acid

stress [13]. We also do not include some acid resistance mechanisms due to the limitation of

the current ME-model framework. One such example is cytoplasmic buffering. The descrip-

tion of this mechanism requires a detailed characterization of the metabolites and amino acid

side chains at different protonation states, which is currently out of the model’s scope.

Fig 1. Illustrations of three different stress response mechanisms of E. coli under acid stress. (A) Adjustment of membrane lipid

fatty acid composition. (B) Change in periplasmic protein stability and periplasmic chaperone protection. (C) Activity change of

membrane proteins.

https://doi.org/10.1371/journal.pcbi.1007525.g001
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Here, we describe three acid stress mitigation mechanisms in the ME-model framework.

We first incorporate the change in fatty acid composition of membrane lipids into the ME-

model, based on experimental measurements under mild acid stress. Next, we model the

change in periplasmic proteins under acid stress, specifically on protein stability and periplas-

mic chaperone protection. We also model the change in activity for proteins located in the

inner membrane of E. coli, including ATP synthase, electron transport chain components, and

transporters. We integrate all these modifications into the ME-model and compare the simula-

tions with RNA sequencing data of E. coli grown under neutral pH and mild acid stress. Specif-

ically, we examine the upregulated and downregulated genes, as well as the change in cellular

processes based on cluster of orthologous group (COG) annotation [30]. Lastly, we demon-

strate how ME-model can be used to predict intervention strategies on acid tolerance.

Results

Adjustment of E. coli membrane lipid fatty acid composition under acid

stress

The E. colimembrane serves as a barrier between the intracellular space and the external envi-

ronment by controlling the entry and exit of ions and molecules of different sizes. The compo-

nents of the membrane have been shown to actively respond to changes in the external

environment [31]. Specifically, membrane lipids are important components in maintaining

membrane function and integrity under environmental perturbations. Several studies have

demonstrated that the membrane lipid composition of E. coli changes under acid stress, result-

ing in the change of membrane fluidity that potentially reduces the leakage of protons into the

cytoplasm [20,21,32]. Here, we will recapitulate this response in the context of the E. coliME-

model framework.

The current ME-model provides a detailed description of the proteins and lipids that con-

stitute the inner and outer membranes of E. coli [27]. However, it does not include the con-

straint that the membrane surface area is completely occupied by proteins and lipids.

Therefore, we need to add this constraint into the current ME-model to describe this acid

stress response. Our incorporation of the membrane area constraint was able to reproduce the

results of similar earlier work (S1 Fig) [33].

Earlier study showed that the composition of fatty acid tails on the membrane lipids of E.

coli changes during adaptation to acid stress [20]. Specifically, the mole fraction of monounsat-

urated fatty acids decreased during adaptation, while the proportion in saturated fatty acids

and cyclopropane fatty acids increased. This trend is consistently observed across all E. coli
strains examined by Brown et al [20]. Notably, the composition in cyclopropane fatty acids

increased significantly (from an average of 1.57% to 19.6% out of the total fatty acid content)

during acid adaptation. We obtained a total of 11 profiles of membrane lipid fatty acid compo-

sition of E. coli strains from the study by Brown et al. [20] and the existing M-model recon-

struction [25]. We grouped the profiles into two categories: the group with an acid-adapted

profile where E. coli was grown under acidic pH and the group with a non-adapted profile

where E. coli was grown under neutral pH (Fig 2A).

We incorporated the change in membrane lipid fatty acid composition into the E. coliME-

model, while maintaining consistency on the biomass composition and membrane surface

area constraints [33,34]. Specifically, the mole fractions of membrane lipids with different fatty

acid tails are transformed to their relative fractions in biomass following the procedures in a

previous work [34], with units in millimole per gram dry weight of biomass. The calculated

lipid biomass fractions are used as the coefficients of lipids in the ME-model reaction on bio-

mass function [27]. The ME-model predicted the group with the acid-adapted profile to have

Multi-scale description of acid stress responses in Escherichia coli

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007525 December 6, 2019 4 / 21

https://doi.org/10.1371/journal.pcbi.1007525


lower relative growth rates (0.94 ± 0.01) compared to the group with the non-adapted profile

(1.00 ± 0.01) (p value 5.93 × 10−6) (Fig 2B).

Based on model simulation, we found the cfa gene to have the largest change in expression

level between the acid-adapted profile and the non-adapted profile. The product of the cfa
gene, cyclopropane fatty acyl phospholipid synthase, catalyzes the transfer of the methyl group

from S-adenosyl-L-methionine (SAM) to convert unsaturated fatty acids to cyclopropane fatty

acids. The other genes with the largest computed change in expression levels are mainly associ-

ated with the recycling of S-adenosyl-L-methionine and cover a variety of cellular processes

including methionine metabolism (luxS, metK,metE), nucleotide metabolism (purN, deoD),

and folate metabolism (metF, folD) (S1 Table).

Periplasmic protein stability as a function of pH and periplasmic

chaperone protection

Under mild acid stress, E. colimaintains intracellular pH within a narrow range (7.4–7.6)

[16,35]. However, the pH of the periplasm is close to the external pH when E. coli is exposed to

an acidic environment [36]. The acidic pH in the periplasm poses a challenge to the periplas-

mic proteins. E. coli has developed strategies to protect periplasmic proteins from acid-induced

damage, using molecular chaperones HdeA and HdeB that bind to native substrates to reduce

protein denaturation and aggregation [22]. Here, we focus on modeling the change in periplas-

mic protein stability and the protection by molecular chaperones on periplasmic proteins

under acid stress.

Protein stability as a function of pH depends on the pKas and protonation states of the

amino acid side chains of the protein [37–40]. Specifically, protein stability can be described

using folding energy (ΔGfolding), which is the difference between the folded state and unfolded

state of the protein. For the same protein, a more negative folding energy indicates greater sta-

bility. An empirical approach has been developed that calculates ΔGfolding based on the number

of amino acids of the protein [37,41]. To account for the change in ΔGfolding as a function of

Fig 2. Fatty acid composition of membrane lipids under different pH conditions. (A) Comparison of calculated acid-adapted (AA) against non-

adapted (NA) fatty acid composition profiles for different E. coli strains. The fatty acid composition profiles are calculated based on published data [20].

(B) Comparison of simulated E. coli growth rates with different fatty acid composition profiles incorporated into the ME-model. The use of the

experimentally determined changes in membrane composition under acid stress leads to around 6% decrease in the computed growth rate.

https://doi.org/10.1371/journal.pcbi.1007525.g002
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pH, Ghosh and Dill [37] expressed ΔGfolding as the sum of two terms,

DGfolding ¼ DGneutral þ DGelectric ð1Þ

where ΔGneutral is the energy term that does not consider any charge effect and ΔGelectric
accounts for electrostatic interactions and is a function of pH. The term ΔGelectric is protein-

specific and depends on the charge and radius of gyration of the folded and unfolded states

(Materials and methods).

We calculated the profiles of ΔGfolding as a function of pH for 86 of 93 periplasmic proteins

in the ME-model (S2 Table). Folding energies of the other 7 proteins could not be calculated

due to issues associated with protein charge calculation (Materials and methods). We also

compared the folding energies of the periplasmic proteins under pH 7 and pH 5.5. We found

that proteins under pH 7 generally have lower ΔGfolding than those under pH 5.5 (Fig 3A), indi-

cating greater stability for proteins under neutral pH. Notably, all periplasmic proteins exam-

ined are favorable towards folding under pH 7 (Fig 3A). We also determined the optimal pH

for each protein under study, where ΔGfolding is the lowest and the protein is most stable under

the optimal pH. We found that while most proteins have optimal pH around 7, a large number

of them have optimal pH around 12 and some have optimal pH around 3 (S2 Fig).

We describe the relationship between the folded and unfolded states of the protein in the

form of a ME-model reaction, similar to the approach in the previous work [42]. Specifically,

the ratio between the folded and unfolded states of the protein can be calculated from

DGfolding ¼ � RTlnð½Folded�=½Unfolded�Þ ð2Þ

where R is the ideal gas constant, T is the temperature, [Folded] and [Unfolded] are the con-

centrations of the folded and unfolded protein states. The ratio is expressed as the metabolite

coefficient in the ME-model reaction, connecting the folded and unfolded states of the protein

(Materials and methods). Next, to model periplasmic chaperone protection, we focus on the

mechanisms of HdeB, since HdeB has an optimal activation pH from 4 to 5, while HdeA is

Fig 3. Periplasmic protein stability is reflected in protein folding energies. (A) Comparison of calculated folding energies of E. coli periplasmic

proteins at external pH 7.0 and pH 5.5. Proteins with lower folding energies are generally more stable. Therefore, the periplasmic proteins are found to

be more stable at external pH 7 compared to pH 5.5. (B) ME-model simulations on relative growth rate and HdeB mass fraction at different external pH

conditions. We calculated the folding energies of periplasmic proteins as a function of pH and modeled the relative ratio of folded and unfolded states

of each protein in the ME-model (Materials and methods). We also included the binding of HdeB chaperone to the unfolded states. We then simulated

the change in E. coli growth rate due to change in protein stability under different external pH conditions. We also showed the change of HdeB mass

fraction of the total proteome as a function of external pH.

https://doi.org/10.1371/journal.pcbi.1007525.g003
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most active under pH 2 to 3 [43]. We described HdeB protection on the protein in the form of

a ME-model reaction, in which the HdeB protein binds to the unfolded state of the protein to

form a chaperone-protein complex (Materials and methods).

Incorporating the description on periplasmic protein stability and HdeB protection in the

ME-model, we simulated the response of E. coli under different external pH conditions. We

found the relative growth rate to decrease slowly as pH decreases from 7 to 5.5, but drops

quickly when pH decreases beyond 5.5 (Fig 3B). Similarly, we observed the mass fraction of

HdeB of the total proteome to change slowly before pH decreases to 5.5 and increases signifi-

cantly as pH decreases from 5.5 to 5. We found both the change in protein stability and

increase in chaperone synthesis (S3 Fig) contribute to the decrease in growth rate, and the sta-

bility change of LptA protein was found to be the major factor causing the decrease in growth

rate and increase in HdeB mass fraction. LptA protein is involved in the transport of (KDO)2-

lipid IVA, which contributes to E. coli biomass [44]. Based on ME-model simulations, genes

with the largest change in expression levels as a result of decreasing pH are hdeB (periplasmic

chaperone), lptA (lipopolysaccharide Biosynthesis), rpoE (transcription), and secBDEFGY (Sec

translocation processes) (S3 Table). The Sec complexes are responsible for translocating the

LptA protein from the cytoplasm into the periplasmic space [33].

Membrane protein activity as a function of pH

Under mild acid stress, E. colimaintains pH homeostasis in the cytoplasm (around 7.4) while

its periplasmic pH is close to that of the external acidic environment [16,35,36]. Thus, the dif-

ference in proton concentration across the inner membrane results in a large proton motive

force [45,46]. For membrane proteins involved in proton import/export processes, their activi-

ties can be significantly affected by the change in proton motive force at different external pH

conditions. These proteins include ATP synthase, electron transport chain components, and

various membrane transporters. Here, we model the change of their activities, specifically the

rates of reactions they catalyze, under mild acid stress and integrate these changes into ME-

model simulations.

We first modeled the activity change of ATP synthase under mild acid stress using an exist-

ing kinetic model [47]. Specifically, the model consists of a series of elementary reactions that

describes the proton transport and the rotation of the rotor subunit in ATP synthase. The rate

of ATP synthesis is expressed in terms of the proton concentrations in the cytoplasm and peri-

plasm, as well as the kinetic parameters of the elementary reactions (Materials and methods).

It is worth mentioning that ATP synthesis rate also depends on the membrane potential

[47,48] and different sets of kinetic parameters are needed when the membrane potential

changes under different external pH values. Thus, we fitted the experimental data by Fischer

and Gräber [48] on ATP synthesis rate as a function of transmembrane pH difference at three

different transmembrane potentials and obtained three parameter sets for rate calculation. The

calculated ATP synthesis rates at different external pH values can be found in Fig 4A.

Next, we examined the activity change of the electron transport chain components and var-

ious membrane transporters. There is not much evidence available on these reaction mecha-

nisms in terms of the detailed elementary steps. Thus, we modeled their reaction rates based

on the theory of nonequilibrium thermodynamics [49]. Specifically, the rate is expressed in

terms of the reaction energy, the membrane potential, periplasmic and cytoplasmic proton

concentrations, as well as the concentrations of metabolites involved (Materials and methods).

The calculations on the electron transport chain components show that the rates of reactions

they catalyze remain almost unchanged from neutral pH to acidic pH (S4A Fig). We were

unable to calculate the reaction rates for most of the membrane transporters, due to missing
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metabolite concentration data. However, we found that the change of their activities in terms

of reaction rates had minimal impact on cellular growth rate and processes (<1%) through the

sensitivity analysis using the ME-model (S4B Fig).

Based on the analysis on the activity change of different membrane proteins across pH, we

modeled the change of ATP synthesis rate at different external pH values by modifying the

effective turnover rate (keff) of the reaction catalyzed by ATP synthase in the ME-model [27]

(Materials and methods). Considering possible errors due to parameter fitting, we performed

sensitivity analysis and found the change in cellular processes at different ATP synthesis rates

to be similar. Using the calculated ATP synthesis rate at pH 5.5 as an example (Fig 4A), the top

50 genes with the largest change in expression levels are mainly involved in carbohydrate

metabolism (e.g., citric acid cycle, glycolysis/gluconeogenesis, pentose phosphate pathway)

and energy production and conversion (oxidative phosphorylation related to ATP synthase)

(Fig 4B, S4 Table). The top reactions with the largest increase in ATP use under pH 5.5 cover

processes including ATP maintenance requirement, glycolysis/gluconeogenesis, nucleotide

Fig 4. Change in ATP synthesis rate at different external pH values and the effect on cellular processes simulated using the ME-model. (A)

Relative ATP synthesis rates calculated at different external pH values. The relative ATP synthesis rate at pH 7 is set to 1. (B) Genes with the largest

computed change in expression level at pH 5.5 compared to pH 7. The top 51 genes with the largest change in expression level are grouped based on

their assignment to the indicated cellular processes. (C) Genes with the largest change in carbohydrate metabolism from ME-model simulations. Most

of the genes are involved in three main processes in central metabolism (glycolysis, pentose phosphate pathway and citric acid cycle) and are displayed

on the metabolic network map. Genes predicted to be upregulated are colored in red and genes predicted to be downregulated are colored in blue.

https://doi.org/10.1371/journal.pcbi.1007525.g004
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salvage pathway, amino acid metabolism, purine and pyrimidine biosynthesis, translation pro-

cess, etc (S5 Table).

ME-model with integrated mechanisms explains the acid stress response of

E. coli
We integrated the description of the three pH stress mitigation mechanisms (membrane lipid

fatty acid composition, periplasmic protein stability and periplasmic chaperone protection,

and the activity change of membrane proteins) into the ME-model, and then simulated its

response under neutral pH and mild acid stress (pH 5.5). We compared the simulations to

RNA sequencing data of K-12 MG1655 E. coli strains grown under pH 7 and pH 5.5 in glucose

minimal medium from a previous study [50]. The E. coli strains from which the RNA-seq data

were obtained include: 1) the wild type strain, 2) two strains adapted to pH 5.5 through adap-

tive laboratory evolution [51], and 3) two control strains adapted to specific media conditions.

Since the acid-adapted strains were evolved in glucose minimal medium with lowered magne-

sium concentration and MES buffer, the two control strains (one for lowered magnesium con-

centration and one for MES) were necessary to account for the possible effects due to these

two changes in media composition.

We compared RNA-seq data (S6a–S6e Table) and ME-model simulations (S6f Table) in

terms of the differentially expressed genes (DEGs) due to acid stress (growth under pH 5.5 ver-

sus pH 7). We grouped the DEGs found in RNA-seq data into three categories (S6g Table): 1)

DEGs currently not active in the ME-model, 2) DEGs correctly predicted by the ME-model,

and 3) DEGs incorrectly predicted by the ME-model.

We found a large number of genes in the first category to be associated with membrane

proteins and transporters and their related cellular processes (S6h Table). For example, one of

the reported acid stress responses involves the blockage of outer membrane porins by secreted

cadaverine [52]. Therefore, these DEGs are currently outside the ME-model’s predictive capa-

bilities. To include such descriptions in the ME-model, quantitative measurements on cadav-

erine binding to outer membrane porin and the corresponding change under acid stress is

required.

For genes in the second category, we found that, on average, 80% of the upregulated genes

in the RNA-seq data to be correctly predicted. These correctly predicted DEGs are mainly

involved in the translation process (45% of genes), membrane proteins and related processes

(18% of genes), amino acid metabolism (12% of genes), and cofactor and prosthetic group bio-

synthesis (8% of genes). Additionally, we found a limited number of downregulated genes to

be active in the ME-model, as shown in Fig 5A. For genes in the third category, those found to

be upregulated in the data but predicted to be downregulated in the ME-model are grouped by

COG categories and shown in Fig 5B. Genes found to be downregulated in the data but pre-

dicted to be upregulated by the ME-model are discussed in more detail below.

We grouped the correctly predicted DEGs by COG categories (Materials and methods) and

summarized them by the underlying mechanisms in Fig 5A. We found a large number of upre-

gulated genes to be related to the translation process (Fig 5B red). We found the increase in

ATP synthase activity as the main driver for these upregulated genes, as a large number of

them were also upregulated when simulating with only modified ATP synthase activity in the

ME-model (S4 Table). Additionally, we found increased expression levels for a number of pro-

teins on the inner and outer membranes of E. coli. These proteins include the electron trans-

port chain components, transporters (uptake of sugar, lysophospholipid), Sec translocase, and

BAM complex responsible for outer membrane assembly. We also found cofactor and pros-

thetic group biosynthesis to be another major category with a number of upregulated genes.
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Fig 5. Comparison of ME-model simulations, accounting for the three acid stress mechanisms, against RNA-seq

data from E. coli. (A) Differentially expressed genes (DEGs) due to acid stress found to be consistent with model

predictions and RNA-seq data. We grouped the list of DEGs found into different COG categories. (B) Upregulated

genes in RNA-seq data compared to ME-model simulations. The upregulated genes in RNA-seq data correctly

predicted by the ME-model (with strikes in different COG categories) and incorrectly predicted by the ME-model (no

strikes in different COG categories) are shown. We listed the five E. coli strains with RNA sequencing data available.

The two control strains are labeled as “low Mg control” to account for the effect of lowered magnesium concentration

and “MES control” to account for the use of MES buffer during adaptive evolution of E. coli under acid stress.

https://doi.org/10.1371/journal.pcbi.1007525.g005
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The differential expression of certain genes in this category (e.g. metF, folE, fldA) were related

to the recycling of cofactor SAM, due to the upregulation of cfa to adjust the membrane lipid

fatty acid composition under acid stress. Due to changes in membrane lipid fatty acid compo-

sition and periplasmic proteome predicted by the ME-model, we found upregulated genes in

RNA-seq data to be related to membrane lipid metabolism, lipopolysaccharide biosynthesis,

and glycerophospholipid metabolism.

Furthermore, the correctly predicted DEGs in amino acid metabolism cover processes

related to cysteine, threonine, lysine, glutamate, and aromatic amino acids (tryptophan, tyro-

sine, phenylalanine). We found the upregulated genes in amino acid metabolism to be mainly

due to the requirement of the related metabolic processes as well as proteome resources for

various cellular processes. First, for metabolic processes, the upregulation in cysteine biosyn-

thesis contributes to the biosynthesis of methionine, which is an important metabolite

involved in the recycling of SAM. The increased biosynthesis of threonine mainly contributes

to the biosynthesis of glutamate. The increased biosynthesis of glutamate contributes to several

metabolic processes: 1) biosynthesis of lysine through aspartate (later used for protein synthe-

sis), 2) biosynthesis of asparagine (later used for protein synthesis), 3) recycling of SAM, as glu-

tamate leads to methionine and tetrahydrofolate, which are intermediates of the SAM

recycling process). Next, we examined the processes that have the largest change in proteome

resource requirement under acid stress. For each amino acid in Fig 5A, we obtained the top

100 translation reactions in the ME-model that has the largest change in flux under acid stress,

respectively. We then obtained the overlapping translation reactions from those amino acids.

We examined the specific proteome sectors that correspond to the protein product of these

translation reactions. We found that processes such as oxidative phosphorylation, cofactor and

prosthetic group biosynthesis, glycolysis/gluconeogenesis to be the main categories requiring

additional proteome resources under acid stress (S7 Table), and hence are the major drivers

behind the upregulation of amino acid biosynthesis shown in Fig 5A.

We then examined the incorrectly predicted DEGs. We found a few genes to be downregu-

lated in the RNA-seq data but predicted to be upregulated (rlmC, glcD, hisI, erpA, nadB).

Upon examining the reactions catalyzed by these gene products, we found proton generation

to be involved in three reactions, with the corresponding genes being rlmC, hisI, nadB. The

proton generation in the reaction explains the downregulation of these genes, as E. coli tends

to minimize proton production under acid stress. Genes found to be upregulated in the data

but downregulated in ME-model predictions were grouped based on the COG categories (Fig

5B). These incorrectly predicted DEGs suggest ways to further develop the modeling of acid

stress response. For example, the arginine-dependent acid resistance system has been shown

to play a role under acid stress [11], but the corresponding genes were not correctly predicted

by the ME-model. A possible way to improve model predictions is to fine-tune model parame-

ters related to arginine metabolism based on RNA-seq data. We also found genes related to

cytoplasmic chaperones to be upregulated in RNA-seq data but not predicted by the ME-

model. A previous reconstruction of the cytoplasmic chaperone network in the ME-model

exists [42] and its incorporation can potentially improve predictions of the use of chaperone

related processes.

In addition, we examined the data on protein abundance under pH 6 and pH 7 by Schmidt

et al [53]. We obtained the list of proteins that were differentially expressed under acid stress

(S8 Table, confidence score > 500). Comparing the list against the differentially expressed

genes predicted by the ME-model, we found that the expression change of 123 proteins were

correctly predicted and 119 proteins were incorrectly predicted (S8 Table). We found the larg-

est number of proteins to belong to the translation process, for both the correctly predicted

and incorrectly predicted lists. The model predicted most of the upregulated genes but few
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downregulated genes in the translation process correctly. The result indicates that the model is

able to predict certain processes that are more active under acid stress after incorporating vari-

ous acid stress response mechanisms. The list of incorrectly predicted translation genes can

potentially suggest downregulated processes under acid stress to include in the model.

ME-model simulates intervention strategies on E. coli acid tolerance

To demonstrate the use cases of the ME-model, we examined several potential intervention

strategies on E. coli acid tolerance using the developed framework. The intervention strategies

are designed based on the acid stress responses of E. coli described in this work. Specifically,

they are downregulation of the HdeB protein and knockout of the cfa gene.

As demonstrated earlier, HdeB chaperone plays an important role in protecting unfolded

proteins in the periplasm. Since we have HdeB as the only periplasmic chaperone here, knock-

out of the hdeB gene would result in no growth predicted by the model. We thus simulated the

ME-model with 10% of the expected HdeB protein amount under pH 5.5. We found that with

reduced HdeB protein expression, the growth rate drops to 31.6% of that with normal HdeB

expression under pH 5.5. Genes with the largest change in expression include ilvBHIN (amino

acid metabolism), lysS (tRNA charging), rpe (pentose phosphate pathway), lysU, deoA, udp,

tdk, yjjG (nucleotide salvage pathway) (S9 Table). The results here can be used to compare

with experimental studies examining downregulation or knockout of the hdeB gene. Any dis-

crepancies between the experimental outcome and model simulations can potentially lead to

the discovery of novel chaperone protection mechanisms in the periplasm [54].

We also assessed the effect of cfa gene knockout using the ME-model. E. coli with the cfa
gene knocked out cannot convert unsaturated fatty acids to cyclopropane fatty acids. Thus,

the membrane fluidity of E. coli under acidic conditions is likely to be similar to that under

neutral condition, while increased proton gradient under acidic conditions increases the pro-

ton leakage into the cytoplasm [20,21,32]. We simulated the ME-model with cfa gene knock-

out and proton influx into the cytoplasm at 10 mmol • gDW-1 • hr-1. We have examined the

results at various proton influx rates and found the qualitative trend of gene expression

change to be the same. We found that the largest change in gene expression cover processes

such as amino acid metabolism (glnA, argBC), carbohydrate metabolism (paaH, idnK), oxi-

dative phosphorylation (atpADE), membrane and transport related processes (lpp, ompN,

hcaT) (S10 Table). The experimental validation on this intervention strategy is straightfor-

ward, by knocking out the cfa gene and characterizing the gene expression profiles through

RNA sequencing data. Any discrepancies between experimental and modeling results can

help uncover new strategies that E. coli uses to adjust the membrane lipid fatty acid composi-

tion under acid stress.

Discussion

In this study, we described the response of E. coli under acid stress using the ME-model frame-

work. We first modified the membrane lipid fatty acid composition based on experimental

data, with the addition of the constraint on total membrane surface area. Second, we modeled

the pH-dependent periplasmic protein stability and periplasmic chaperone protection mecha-

nisms. Third, we characterized the activities of membrane proteins under low pH. Lastly, we

integrated these descriptions of stress mitigation mechanisms into the ME-model and com-

pared the simulations of the integrated model with measured RNA sequencing data and prote-

omics data. We demonstrated that the ME-model was able to recapitulate DEGs under acid

stress in a number of cellular processes, including amino acid metabolism, cofactor and pros-

thetic group biosynthesis, processes related to membrane proteins, and translation process.
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The effects of acid stress mitigation on these cellular processes can now be understood at the

systems level and quantitatively computed. We also suggested a few areas for further model

development, based on model predictions that were inconsistent with the RNA-seq data. We

also demonstrated several use cases of the developed ME-model, by proposing intervention

strategies on acid tolerance that can be validated experimentally.

The work here describes the change in the cellular state of E. coli between two distinct con-

ditions, the mild acidic condition and the neutral condition. A continuous profile of the

change in cellular processes as the pH decreases from neutral to acidic can provide more

insights into how E. coli adjusts its cellular resource allocation when facing increased acid

stress. However, such an effort is currently limited due to the lack of relevant experimental

data. For example, the current data on fatty acid composition of membrane lipids of E. coli are

only measured under pH 5 and 7. Possible steps forward include acquiring more experimental

data at the intermediate pH values between 5 and 7 or making simplifying assumptions about

how the fatty acid composition profile changes over pH.

ME-model simulations predicted only a few of the periplasmic proteins to be active. The

main reason for the inactivation of other proteins is the lack of description of their down-

stream processes or metabolic reactions they catalyze in the ME-model. The addition of rele-

vant processes could help provide a more complete picture of the periplasmic protein response

under acid stress, as the stability profiles for most of the periplasmic proteins are available

from this work. Furthermore, adding these descriptions can uncover more periplasmic pro-

teins that significantly affect the growth rate and cellular processes, and potentially improve

the predictions on acid stress response.

The ME-model framework here enables predictions of how different interventions affect

the acid stress tolerance of E. coli. For example, we can design intervention strategies on the

recycling of S-adenosyl-L-methionine, which is an important cofactor responsible for the

adjustment of membrane lipid fatty acid composition under acid stress. As another example,

the effect of hdeB knockout can be simulated using the ME-model and compared with experi-

mental data. Discrepancies between model simulations and the data can potentially lead to dis-

coveries of novel periplasmic chaperone protection mechanisms [54].

Taken together, the work here describes acid stress mitigation responses in E. coli through a

mechanistic approach and provides insights into the resulting changes to its cellular processes.

It is worth noting that the current description focuses on the acid stress response of E. coli
under the aerobic growth condition with glucose as the sole carbon source. In practice, E. coli
faces more complicated nutrient environments and can be subjected to anaerobic respiration.

The response to acid stress differs due to different environmental conditions (e.g., activation of

formate hydrogen lyase under anaerobic acid stress [13]). Thus, descriptions of additional acid

resistance mechanisms can be added to expand the scope of ME-model predictions. The study

here is a first step towards a complete characterization of the wide array of acid stress responses

of E. coli.

Materials and methods

ME-model and simulations

The ME-model framework is based on the work by Lloyd et al [27], with no change on the

parameters used other than the inclusion of acid stress mitigation responses described in the

text. A quad-precision NLP solver was used to obtain the ME-model solutions [55]. The source

code for model construction and integration of the acid stress mitigation mechanisms is avail-

able on GitHub (https://github.com/bdu91/acidify-ME). All work here is in implemented in

Python 2.7.6.
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Stability of periplasmic proteins as a function of pH

As mentioned in the main text, protein stability can be quantified by the folding energy ΔGfold-
ing, which is the sum of ΔGnetural and ΔGelectric based on Eq 1. The change in pH affects the

value of ΔGelectric, which can be expressed as

DGelectric ¼ kTð
Q2
folded lb

2Rfoldedð1þ kRfoldedÞ
�

Q2
unfolded lb

2Runfoldedð1þ kRunfoldedÞ
Þ ð3Þ

where Qfolded and Qunfolded are the protein charges in the folded and unfolded states, Rfolded and

Runfolded are radius of gyration of the folded and unfolded states, k is the Boltzmann constant,

T is the temperature, lb is the Bjerrum length and κ = 2c lb (c as the salt concentration, set as

0.25 M here) [37].

The charge of the unfolded state of the given protein can be calculated based on the pKas

and charges of the individual amino acid side chains (S11 Table). The charge of the folded

state can be obtained through a method called multi-conformation continuum electrostatics

(MCCE), which calculates the pKas and charges of the amino acid side chains of the folded

state [56]. The MCCE method requires the PDB structures of the folded proteins, which were

obtained from the latest genome-scale metabolic network reconstruction of E. coli [25]. It is

worth mentioning that the charge of 7 periplasmic proteins cannot be calculated due to failed

delphi runs in the MCCE method. The radius of gyration of the folded protein Rfolded is calcu-

lated through the Bio3d package in R [57], using the PDB structure of the folded protein. The

radius of gyration of the unfolded protein Runfolded is obtained by fitting empirical data (S12

Table) and the relationship between the number of amino acid residues N and Runfolded, where

Runfolded/ N0.588 [58].

Finally, as ΔGfolding at neutral pH can be calculated based on the number of amino acids of

the protein [37,41], ΔGfolding at different pH values can be obtained from the change of ΔGelectric
over pH using Eq 3.

Periplasmic chaperone protection by HdeB in the ME-model

We first modeled the formation of HdeB protein, including steps on transcription, translation,

translocation from the cytoplasm to the periplasm and formation of HdeB dimer [43]. The

details of each step have been defined in the COBRAme framework by Lloyd et al [27]. We

then modeled the protection of HdeB on unfolded proteins. We defined a spontaneous folding

reaction for each periplasmic protein, using the coupling constraint defined by Ke et al [42].

Specifically, we have

K½HdeB� þ ð1þ K þ m=kfoldingÞ½Unfolded� $ K½HdeB � unfolded � complex� þ ½Folded� ð4Þ

where [HdeB] is the HdeB protein, [Unfolded] and [Folded] are the folded and unfolded states

of the protein, [HdeB − unfolded − complex] is the complex formed by HdeB bound to the

unfolded state, K is the ratio between the unfolded state and the folded state and can be

obtained from ΔGfolding under the given pH, μ is the growth rate in the ME-model, kfolding is

the kinetic folding rate and can be calculated based on the work by Gromiha et al [59]. For pro-

teins where ΔGfolding cannot be obtained, we assume the protein is favorable towards folding

under all conditions and set ΔGfolding to -100 kJ/mol.

There is no data available on the amount of HdeB under different pH conditions. Instead,

we let the model to produce enough HdeB to bind and protect the proteins in the unfolded

state. Based on the steady state assumption, the amount of HdeB required under the specific

pH condition is determined by the amount of unfolded proteins through mass balance. Thus,
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we have HdeB½ � ¼
Pn

p¼1
Unfolded�p

1þKpþmp=kfolding� p
Kp

� �h
, where there exists n different proteins in

the periplasm.

Activity of ATP synthesis rate as a function of external pH in the ME-

model

We used the kinetic model by Jain and Nath [47] to describe the mechanism of ATP synthase

through a list of elementary steps, including proton transport and rotor rotation. The rate of

ATP synthesis can be expressed in terms of the cytoplasmic and periplasmic proton concentra-

tions, as well as the kinetic parameters.

v ¼ k1=ð1þ k2�H
þ

cytoplasm=H
þ

periplasm þ k3=H
þ

periplasmÞ ð5Þ

It is worth mentioning that parameters k1, k2 and k3 are composite terms. Each term con-

sists of various kinetic parameters of the elementary steps.

We used the experimental data from Fischer and Gräber [48], where the rate of E. coli ATP

synthase was measured as a function of transmembrane pH difference at three different trans-

membrane potentials (80 mV, 108 mV, 152 mV). Based on Eq 5, we obtained three sets of

kinetic parameters at different membrane potentials by fitting the experimental data through a

non-linear least-squares minimization procedure [60].

To calculate the rate of ATP synthesis under a specific external pH, we first calculated the

cytoplasmic pH, using the relationship between the cytoplasmic pH and the external pH

derived by Slonczewski et al [35]. We next calculated the membrane potential of E. coli under

the given external pH based on the experimental measurements by Felle et al [61]. From the

three fitted parameter sets at different membrane potentials, we selected the set with the closest

membrane potential. Using the selected parameter set and the calculated pH values, we calcu-

lated the rate of ATP synthesis under different external pH conditions. To standardize the cal-

culated rates, we defined the rate under pH 7 as 1 and expressed the rates under other pH

values as the fold change relative to it. To incorporate the change in ATP synthesis rate under

the specific external pH in the ME-model, we adjusted the effective turnover rate (keff) of ATP

synthase in the ME-model according to the calculated fold change under the given external pH

[27].

Activity of electron transport chain components as a function of pH

For electron transport chain components, we examined those active in the ME-model simula-

tions, which are NADH dehydrogenase (associated with ubiquinone-8), and cytochrome oxi-

dase bo3. We described the rate as a function of pH using the derivation by Jin and Bethke

[49], based on the theory of nonequilibrium thermodynamics. Specifically, the rate is

expressed as,

v ¼ vþð1 � expð
� nFDE� þmFDc

RT
Þ�ð
½Hþperiplasm�

m
½Dþ�vDþ ½A� �vA�

½Hþcytoplasm�
m
½D�vD ½A�vA

ÞÞ ð6Þ

where v+ is the forward reaction flux, n is the number of electrons transferred, ΔE˚ is the differ-

ence in standard redox potential between the donating and accepting half-reactions, m is the

number of protons transported across the membrane, Δψ is the membrane potential, F is Fara-

day’s constant, R is the ideal gas constant, T is the temperature, [D+] and [D] are the concen-

trations of the oxidized and reduced forms of the electron-donating half reaction, [A] and [A−]

are the concentrations of the oxidized and reduced form of the electron-accepting half reac-

tion. Since we were only interested in the relative change of activity for the electron transport
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chain components, we focused on calculating the term after v+ in Eq 6. The difference in stan-

dard redox potential as termed ΔE˚ is calculated based on the standard redox potential of

the half-reactions from multiple sources [62–64]. The membrane potential Δψ at the specific

external pH is calculated based on the experimental measurements by Felle et al [61]. The con-

centrations of the electron donors and acceptors are obtained from the experimental measure-

ments by Bennett et al [65].

Comparison of DEGs between ME-model predictions and RNA sequencing

data

We computed the amount of individual proteins expressed in the ME-model and determined

the relative change of each protein expression from neutral pH to acidic pH. We compared the

change in protein expression to the DEGs in the RNA sequencing data in terms of the direc-

tion of change. For a more systematic comparison of DEGs, we grouped the E. coli genes into

cellular processes based on COG annotation (detailed list in S13 Table). Different E. coli strains

have different sets of DEGs under acid stress in the RNA-seq data, with a small set of DEGs

overlapping. Thus, we compared the DEGs found in each strain against the DEGs predicted by

the ME-model and grouped the correctly and incorrectly predicted DEGs by COG categories.

To obtain the set of genes consistent between model predictions and RNA-seq data, we

obtained the list of COG categories commonly found across all five E. coli strains in which the

correctly predicted genes fall. For each COG category, we then summarized the list of correctly

predicted genes from all five E. coli strains.

Supporting information

S1 Fig. The change in relative growth rate as a function of fraction of membrane surface

area covered by proteins. We examined the change in protein fraction in both the inner and

outer membranes. Similar results in an earlier version of the ME-model can be found in the

work by Liu et al [33] (Fig 5A). It is worth mentioning that the qualitative trend in terms of the

change of growth rate matches with the earlier work, but discrepancies in the quantitative

change of growth rate exist. Such discrepancies are mainly due to the change in membrane

composition description in the latest version of the ME-model [27], which was used as the

framework in this study.

(TIF)

S2 Fig. Optimal pH of E. coli periplasmic proteins. The optimal pH of the specific protein is

determined based on the pH where the folding energy is the lowest.

(TIF)

S3 Fig. The relative growth rates across pH under two scenarios: 1) by taking into account

only the increased HdeB synthesis under acidic conditions, 2) by taking into account both

the change in protein stability and increased HdeB synthesis under acidic conditions. We

found that when considering the the change in protein stability under acidic conditions, the

growth rate dropped significantly, compared to when only considering the increased HdeB

synthesis.

(TIF)

S4 Fig. (A) Change in enzyme activity of electron transport chain (ETC) components as a

function of pH. Here we focused on the ETC components active in the ME-model and calcu-

lated the change of their activity at different external pH values based on the theory of non-

equilibrium thermodynamics (main text Materials and methods). We found that the two
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electron transport chain components examined does not have a notable change in enzyme

activity across pH. (B) Change in growth rate due to change in the activities of membrane

transporters. We focused on the membrane transporters that are active in the ME-model simu-

lations. We change the activity of the membrane transporters one at a time and simulated the

corresponding growth rates. We found that the change in the activities of membrane trans-

porters do not significantly affect the growth rate (stayed at 1.0 relative growth rate).

(TIF)

S1 Table. Top genes with the largest change in expression with the adjustment of mem-

brane lipid fatty acid composition under acidic conditions.

(XLSX)

S2 Table. Folding energies of periplasmic proteins across pH from 0 to 14.

(XLSX)

S3 Table. Top genes with the largest change in expression considering periplasmic protein

stability and periplasmic chaperone protection mechanisms under acid stress.

(XLSX)

S4 Table. Top genes with the largest change in expression with the increase in ATP

synthase activity (10 fold increase).

(XLSX)

S5 Table. Top reactions that consume ATP upon the increase in ATP synthase activity.

(XLSX)

S6 Table. Differentially expressed genes found in RNA-seq data of five E. coli strains (S2a–

S2e Table) and predicted by model (S2f Table).

(XLSX)

S7 Table. Top translation reactions requiring proteome resources that lead to the upregu-

lation of amino acid synthesis in Fig 5A.

(XLSX)

S8 Table. Validation of model predictions against the proteomics data of E. coli under pH

6 compared to pH 7.

(XLSX)

S9 Table. Top 100 genes with the largest change in expression with 10% of HdeB activity

compared to 100% HdeB activity under pH 5.5.

(XLSX)

S10 Table. Top 100 genes with the largest change in expression with increased proton

influx (at 10 mmol • gDW-1 • hr-1) and cfa gene knockout compared to wild type normal

condition.

(XLSX)

S11 Table. pKa values of amino acids.

(XLSX)

S12 Table. Data on the radius of gyration of unfolded proteins.

(XLSX)

S13 Table. COG categories.

(XLSX)
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