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Abstract 

Several algorithms for learning syntactic categories from 
distributional information were tested against utterances 
from adults and children in twelve typologically different 
languages.  The evaluation measure that was developed 
allows one to examine word order constraints over a whole 
corpus and developmentally. By comparing several 
different algorithms of varying abstraction against actual 
corpora of children’s speech, the evaluation measure 
determined that lexically specific knowledge is more 
advantageous than more broad-based category knowledge 
in predicting word order. 

Introduction 
There is a growing interest in unsupervised computational 
approaches to syntax acquisition (e.g., Mintz, 2003; 
Redington, Chater, & Finch, 1998).  These systems 
collect statistical information from corpora and use that 
information to extract syntactic categories and constraints.  
These systems are evaluated by comparing their internal 
representations with syntactic representations that have 
been labeled or created by humans (e.g. tagged corpora).  
To compare these systems to human children, we would 
need to label child utterances with a set of syntactic 
representations.  Since there is little agreement about the 
nature of syntactic representations in human children at 
each point in development (contrast Pinker, 1984, with 
Tomasello, 2003), it is difficult to use child utterances 
with computational approaches that are evaluated against 
human labeled representations. 

One way to evaluate computational models that does 
not depend on tagged categories is suggested by 
connectionist approaches to syntax (Elman, 1990).  
Connectionist syntax acquisition models learn internal 
abstractions by making predictions over words.  In these 
systems, the accuracy at predicting the order of words in a 
sentence is a measure of the system’s language 
knowledge.  One difficulty with scaling these systems up 
to real corpora is the use of neural assumptions such as 
gradual weight-based learning.  In language models (e.g., 
n-grams), similar evaluation measures have been used, 
but since there are not enough constraints to predict the 
next word from the whole lexicon, researchers have 
typically looked at performance of these models with a 
subset of the data (e.g., frequent words).  Here, we used 
prediction as the evaluation measure, but restrict it to the 

set of words from the utterance that we are trying to 
predict.  This approach fits better with human 
performance and allows us to use corpora from multiple 
languages to test ideas from theories of syntax acquisition 
and adult sentence production. 

Our version of this evaluation measure will be called 
Word Order Prediction Accuracy (WOPA) and it is based 
on models of sentence production.  In production, one has 
a message that one wants to convey.  To model the effect 
of the message in a rough way, we start with an unordered 
bag of words made up of words from the utterance that 
we want to predict, which we call the candidate set.   
Given this candidate set, the system has to try to predict 
the order of words in the sentence in a word-by-word 
fashion.  After a word has been produced, it is removed 
from the candidate set, and the system tries to predict the 
next word in the sequence.  After a sequence has been 
produced in this manner, we compare the sequence 
against the actual utterance in the corpus, and record 
whether it was correctly predicted or not.  The Word 
Order Prediction Accuracy (WOPA) score is the number 
of correctly predicted utterances out of all the utterances 
of two words or more (one word utterances only have one 
ordering).   
 In this article, we will use WOPA to compare six 
syntax acquisition algorithms based on ideas from work in 
computational linguistics and child language.  For input 
and testing, we will use utterances from child and parent 
interactions from twelve typologically-diverse languages.  
Our goal is to be able to determine which of these 
algorithms best matches the knowledge that may have 
yielded these corpora.  More generally, we hope that this 
demonstration will suggest that WOPA can be useful as a 
general way of comparing computational approaches that 
use different internal representations. 
 

Corpora 
Computational learners should be tested against multiple 
typologically-different languages to avoid biases towards 
particular languages (e.g., English) or particular language 
typologies (e.g., languages without rich morphology).  
This is not usually done, because tagged corpora are not 
always available for different languages.  WOPA does not 
evaluate against human-labeled syntactic tags and can be 
evaluated against raw word-separated corpora.  Our 
corpora were twelve typologically diverse corpora 
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(Cantonese, Croatian, English, Estonian, French, German, 
Hebrew, Hungarian, Japanese, Sesotho, Tamil, Welsh) 
from CHILDES (Aldridge, Borsley, Clack, Creunant, & 
Jones, 1998; Berman, 1990; Demuth, 1992; Kovacevic, 
2003; Lee, Wong, Leung, Man, Cheung, Szeto, & Wong, 
1996; Miller, 1976; Miyata, 2000; Narasimhan, 1981; 
Réger, 1986; Suppes, Smith, & Leveillé, 1973; 
Theakston, Lieven, Pine, & Rowland, 2001; Vihman & 
Vija, in press).  In addition, two larger English and 
German dense corpora from the Max Planck Institute for 
Evolutionary Anthropology were also used (Abbot-Smith 
& Behrens, in press; Lieven, Behrens, Speares, & 
Tomasello, 2003).  These languages differ syntactically in 
important ways.  German, Japanese, Croatian, Hungarian, 
and Tamil have more freedom in the placement of noun 
phrases (although the order is influenced by discourse 
factors) than English, French, and Cantonese.  Several 
allow arguments to be omitted (e.g., Japanese, 
Cantonese).   Several have rich morphological processes 
that lead to complex word forms (e.g. Croatian, 
Hungarian).  Four common word orders are represented 
(SVO, SOV, VSO, no default order).  Eleven genera are 
represented Chinese, Germanic, Finnic, Romance, 
Semitic, Ugric, Japanese, Slavic, Bantoid, Southern 
Dravidian, Celtic).  All the corpora involved interactions 
between a target child and at least one adult that were 
collected from multiple recordings over several months or 
years.  For each corpus, the child utterances were the 
target child utterances for that corpus, and the adult 
utterances were all other utterances. 
 
Syntax Learners: Category-based algorithms 
In this section, we will compare how well several 
different algorithms for learning distributional categories 
work in predicting the utterances in our fourteen corpora.  
WOPA evaluation depends on statistics collected from 
corpora.  We will first describe the motivations for the 
kinds of statistics that will be collected.  Second, we will 
describe the different algorithms for creating the 
categories that the statistics are collected on (Lexstat, 
Prevword, Freqframe, Token/Type, Type/Token).  In 
addition, we will present a Chance learner that gives us a 
baseline level of performance.  Then we will give an 
example of the statistics that are collected for a particular 
sentence, and also an example of how these statistics are 
used in production of a test sentence. 

Our algorithms use statistics that are based on a dual-
pathway model of sentence production (Chang, 2002; 
Chang, Dell, & Bock, 2006).  In this Dual-path model, 
there are two pathways to guide word sequences.  One 
pathway was called the sequencing system (using a 
simple recurrent network architecture, Elman, 1990), and 
this system learned how previous words constrained the 
next word in the sequences.  The second pathway was 
called the meaning system, and it had a representation of 
the message that was to be produced.  The meaning 
system was not able to encode sequencing information, 

and hence it set up a competition between all of the words 
that were activated by the message.  So in this model, the 
sequencing system and meaning systems are 
independently trying to activate words, and the word with 
the best combined activation is selected as the next word 
in the utterance. 

The Dual-path architecture was the basis for the 
statistics that were collected in our non-connectionist 
category-based statistical learners.  To represent the 
sequencing pathway in the Dual-path model, a statistic 
was collected called the context statistic.  This statistic 
represented how often the category of a word directly 
followed another word (akin to bigram statistics in 
computational linguistics).  The other statistic represented 
the message pathway in the Dual-path model and it was 
called the access statistic.  Unlike the context statistic, 
which only encodes the relationship between adjacent 
words, the access statistic encodes how often a category 
precedes other words in the sentence separated by any 
number of words (these statistics can encode long 
distance dependencies).  The most important difference in 
the context and access statistics will be in how they are 
used in production, which we will describe after we 
describe the categorization algorithms and present an 
example of the statistics that they collect. 
 
Lexstat Learner: A simple categorization algorithm for 
words is one that simply treats all words as separate 
categories (each category has one member).  The Lexstat 
learner exemplifies this strategy by collecting statistics 
using the words themselves as the category.  For example, 
the word “ate” would be a member of the ate category. 
 
Prevword Learner: Many computational linguistic 
approaches make use of the preceding word as context for 
classifying the next word (Redington, Chater, & Finch, 
1998).  In our version of this learner, each word is 
categorized based on the most frequent previous word.  If 
the most frequent previous word is “you”, then “ate” 
would be classified as a member of the YOU category. 
 
Freqframe Learner: Mintz (2003) proposed that a frame 
made up of one word before and one word after was a 
better way to classify words into categories like nouns 
and verbs.  For our version of this learner, each word was 
classified by the most frequent frame that surrounded it.  
 
Token/Type Learner and Type/Token Learner: The 
slots in the Freqframe algorithm differ in their lexical 
diversity.  Some slots seem to have a wide range of 
members, and some have a relatively small set.  One way 
to measure lexical diversity is with the ratio of unique 
word types to the number of token words.  So it might be 
useful to pick frames based on their lexical diversity of 
their slots.  However, it is not yet clear whether we should 
prefer slots with a large lexical diversity or a small lexical 
diversity.  A large lexical diversity may be evidence of a 
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general categorizer, or it might simply be a frame which 
accepts many different categories.  Likewise, a frame with 
a small lexical diversity might be a selective categorizer, 
but it might also be a frame whose behavior is dominated 
by a few idiosyncratic members.  To test both of these 
possibilities, two learners were created, one which 
categorizes words with the frame that has the highest 
lexical diversity (Type/Token Learner) and one which 
uses the frame with the lowest diversity (Token/Type 
Learner). 
  Now that the five categorization algorithms have been 
described, we can examine how the context and access 
statistics would be collected for these different learners. 
To make this concrete, let us work through how the 
statistics for “ate” would be calculated in the sentence 
“We ate the cake” (Table 1).   
 
Table 1: Example of statistics incremented for word “ate”.  
Capitalized Words are categories. 
Learner Context Statistic  Access Statistics  
Lexstat we -> ate ate > the 

ate > cake 
Prevword we -> YOU YOU > the 

YOU > cake 
Freqframe we -> YOU_IT YOU _IT > the 

YOU _IT > cake 
Token/Type we -> SHE_IT SHE_IT > the 

SHE_IT > cake 
Type/Token we -> YOU_IT YOU _IT > the 

YOU _IT > cake 
 
In the Lexstat Learner, the “we” to “ate” context statistic 
and the “ate” before “the” and the “ate” before “cake” 
access statistic would be incremented.  In the Prevword 
approach, if the most frequent word preceding “ate” in the 
corpus is “you”, then “ate” would be in the YOU category 
and the same statistics would be collected except that the 
YOU category would replace the “ate” category.  In the 
Freqframe approach, if the most frequent frame that “ate” 
occurs in is “you ate it”, then “ate” would be classified as 
an YOU_IT category, and corresponding statistics would 
be collected.  The categories in the Type/Token and 
Token/Type Learners would depend on the number of 
members in each frame.  Lets say that “ate” occurs also 
between “she” and “it”, and the SHE_IT category has a 
frequency of 4 and 2 unique members and the YOU_IT 
has a frequency of 9 and 9 unique members.  The 
Type/Token Learner would classify “ate” with YOU_IT 
(9/9 > 2/4), while the Token/Type Learner would classify 
with SHE_IT (4/2 > 9/9). 

Since context and access statistics are just counts of 
how often the word and a category appear together in a 
particular order, the counts can vary greatly due to the 
frequency of two elements involved.  To equate for this, 
we divide the context and access statistics by a count of 
how often two elements both occur in the same utterance.     
This helps to make the ordering statistics for low 

frequency elements equivalent to the ordering statistics 
for high frequency elements. 
 Before describing how these statistics are used, we 
should first introduce the last learner, which is the Chance 
learner.  The Chance learner just estimates the probability 
of getting the sentence right by randomly generating an 
order.  For example, a two word utterances has only two 
orders and therefore a 50% chance of getting the order 
right by guessing.  A three word utterances has six orders 
and 16.7% chance of getting the right order.  Chance 
sentence accuracy is then simply a function of the length 
of the utterance (% correct = 100/n! ).  If a word occurs 
more than once in an utterance, it is give a unique label 
(e.g., “the-1 boy saw the girl”), but either “the” and “the-
1” are consider correct when “the” is expected.  Hence the 
Chance learner is a bit lower than the actual chance level. 
 The creation of the categories and the collection of the 
statistics encompass the creation of the learner.  Next, we 
need to test these learners and evaluate the results using 
WOPA.  To give an example of this, we will work 
through the utterance “Do you want to throw something 
in the rubbish?” (Brian 3;5), which was correctly 
predicted by the Lexstat learner and which has never been 
produced by the adults in the corpus.  Initially, the 
algorithm starts with the candidate set (“do”, ”in”, 
”rubbish”, ”something”, “the”, “throw”, “to”, “want”, 
“you”) and uses the punctuation as the first previous word 
(question mark in this case).  Since sentences tend to start 
with words that are related to their purpose (e.g., English 
questions tend to start with question words or verbs, while 
statements tend to start with pronouns or determiners), 
using the punctuation as the first previous word allows us 
to captures this relationship.  Each of the candidate words 
has a choice value, and the word with the highest choice 
value is selected at each point in a sentence.  The choice 
function for each word in the candidate set is incremented 
by the context statistic from the previous word.  For 
example, English input to children has many questions 
that start with “do”, so the context statistic from “?” to 
“do” will be strong, and that will increase the choice 
value for “do” at the beginning of this specific novel 
utterance.  The choice function for each word in the 
candidate set is also augmented by the access statistics 
between this word and all the other candidate words.  For 
example, “want” and “throw” both appear after pronouns 
like “you” in the input to the child.  But when an 
utterance has both “want” and “throw”, “want” tends to 
precede “throw” (as in the mother’s utterance “I didn’t 
want you to throw the string.”).  If “want” precedes “to”, 
“throw”, “something”, “in”, “the”, and “rubbish” more 
than “throw” precedes “to”, “want”, “something”, “in”, 
“the”, and “rubbish”, then the access statistics will 
increase the value of the choice function for “want”.  
Since the choice value of a particular word is changed by 
access statistics from all the words in the candidate set, 
the context statistic from the previous word is multiplied 
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by the length of the candidate set before being added to 
the choice value. 
 Our goal here is to see which of these proposed theories 
of category formation are best able to learn constraints 
that are implicit in the utterances in our corpora.  The first 
test will be a situation which we called self-prediction 
where the input and the output for the algorithm was the 
same.  This allows us to see to what extent our particular 
learners can account for the data under ideal input 
conditions.  Self-prediction gives us a view of how 
consistent a corpus is with itself.  For example, if a corpus 
has only two sentences: “it is here” and “here it is”, then 
the statistics in these two sentences are not going to be 
able to predict whether “here” goes before or after “it is”.  
Hence, self-prediction with this corpus will be at 50% 
(one of these two sentences will be incorrectly predicted).  
Notice that this is higher than chance (100/3! =16.7%), 
since the order for the words "it" and "is" is consistent 
with this corpus.  If the orders in the corpora are 
consistent for each set of words and predictable with our 
learners, then we should expect that the self-prediction 
accuracy would be higher than the Chance learner.  

To test whether the models differ from each other, t-
tests were performed treating our fourteen corpora as the 
population.  These t-tests tell us how likely we would see 
a difference between these learners if we selected a 
random corpus from the same population.  By using 

typologically-different languages as our population, 
differences between our learners will generalize to other 
languages that come from that population.  
 Fig 1 shows that our learners were able to predict the 
order of words in these typologically-different languages.  
Using a learner that categorizes words using the previous 
word (Prevword) yields a 28% improvement over what 
would expected by chance (t(13) = 11.37, p < 0.0001).  
Restricting the categories with the following word 
(Freqframe) increases the prediction accuracy by 10% 
(t(13) = 7.38, p < 0.0001).  Both of these algorithms pick 
the most frequent categorizers, but if we divide by the 
number of unique words in that frame and pick the frame 
with the best ratio (Token/Type), we get a further 8% 
improvement (t(13) = 12,19, p < 0.0001).  The 
Token/Type Learner prefers frames which have few 
members, but are highly frequent.  But an even higher 
improvement (5%) is reached if we pick frames with a 
high Type/Token ratio (t(13) = 8.0, p < 0.0001).  Finally, 
a learner that just uses lexical-lexical statistics has the 
highest accuracy (71%) over all the category-based 
learners (7% higher than the Type/Token learner, t(13) = 
12.24, p < 0.0001).  
 Another way to evaluate these algorithms is by 
examining how well the adult input can be used to predict 
the child’s output (Fig. 2).  This is a stricter test, because 
there are words and utterances in the child’s speech which 
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are not present in the adult speech, and hence this tests the 
systems’ ability to generalize to novel sentences.  

The average adult-child results suggest that rank order 
of learners is the same, even when tested on child 
utterances.  But some of the adult differences between 
learners are no longer significant.  Prevword and 
Freqframe Learners are the same (t(13) = 1.31, p = 0.21).  
Token/Type Learner is still better than the Freqframe 
Learner (t(13) = 3.65, p = 0.003).  The Type/Token 
Learner is no different than the Token/Type Learner 
(t(13) = 1.72, p = 0.11).  And the Lexstat Learner remains 
the better than the Type/Token Learner (t(13) = 3.03, p = 
0.01).  So it would seem that taking lexically-specific 
information into account, either in the ratio or in the 
statistics, is what yields improvement in the learners. 
 Another way to compare learners to see which learner 
best matches the child’s syntactic development.  To 
examine this, we calculated the prediction accuracy of all 
five learners for each day in each corpus (Fig. 3).  Each of 
the corpora is collected at different frequencies (daily, 
monthly) and at different periods in each child’s life 
between 1 and 5 years.  For each learner, we estimate a 
linear regression that attempts to predict the accuracy 
level given the age of the child in days (computed with 
the age in days approximation: years * 365 + months * 31 
+ days).  The slope of the regression tells us how 
consistent the algorithm is at predicting the utterances 
over development.  Since the utterances that children 
produce are becoming more syntactically complex over 
time, the slope is typically negative, since the systems can 
usually predict simpler utterances better than longer and 
more complex utterances.  The slope is independent from 
overall accuracy, because it is possible to have an 
algorithm which has a high overall accuracy and a low 
slope, and vice versa.  To compare slopes, we use a t-test 
with accuracy on each day over all the corpora as the 
sample.  This analysis tells us whether we would see a 
difference in these slopes if we were to sample another 

child from this age range and from a language with 
features that are similar to our typologically-diverse 
sample.  

The Prevword and Frequent-frame learners had the 
same slope (t(2344) = 0.03, p = .97).  And although the 
intercept for the Token/Type is higher than the Frequent-
frame, the slope is the same (t(2344) = 0.80, p = 0.43).  
The Type/Token Learner has a more positive slope than 
the Token/Type Learner (t(2344) = 2.0, p = 0.045) and 
was not different from the Lexstat Learner (t(2344) = 
0.82, p = 0.41).  This suggests that the Type/Token and 
Lexstat learners are best able to account for the more 
complex utterances later in development, where the 
accuracy results for five algorithms diverge. 
 So in general, what do these results says about the 
match between these algorithms and child data?  It is clear 
that category and statistics in the Prevword and Freqframe 
learners are useful in characterizing the orders in child 
speech, but at the same time, the tendency of these 
algorithms to discover broad categories (e.g., like nouns 
and verbs) makes it hard to order members of the same 
category relative to one another.  The Token/Type and 
Frequent Frame algorithms both depend on high token 
frequency, but by dividing by the number of unique types, 
the Token/Type learner is able to yield more specific 
categories, which seems to increase the match with what 
children are producing.  The Type/Token is a quite 
different algorithm from the Token/Type, as it prefers 
frames with a high lexical diversity in the slot.  This 
preference actually makes the Type/Token learner more 
like the Lexstat learner.  This is because frames with a 
single word member (like lexical items in the Lexstat 
Learner) have a high type/token ratio and therefore are 
sometimes selected by the Type/Token learner.  Given the 
results here, we can say that we are better able to 
characterize the order of words in child and adult speech 
using more specific categories like words rather than with 
broad categories.  So although none of the learners has 
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learned standard linguistic syntactic categories (e.g., 
nouns, verbs, adjectives, determiners), the ones that were 
closest to having these broad categories (e.g., Prevword, 
Freqframe) were less good at producing word order than 
those with non-standard categories (e.g., Lexstat, 
Type/Token).  It maybe the case that combinations of 
broad and specific categories might work better, but more 
work is needed to specify how this is done. 
 

Conclusion 
Learning to order words is a crucial behavior in language 
acquisition and constrained word order is one important 
indicator of internal syntactic constraints.  But instead of 
using word order for evaluation, most computational 
systems used abstract categories and structures for 
evaluation and these measures depend on theoretical 
considerations for their validity.  Our approach takes 
advantage of the syntactic constraints on word order and 
therefore does not require human-labeled categories or 
structures for evaluation.  In this work, we have 
demonstrated that WOPA evaluation measures can be 
used to compare six different learners with child and adult 
utterances in twelve typologically different languages.  
This evaluation measure provides several advantages.  
Instead of optimizing computational linguistics systems 
for the limited set of languages that are typically studied, 
we can use WOPA to compare systems against 
typologically different languages, allowing us to work 
towards a universal account of syntax acquisition.  In 
addition, because WOPA is compatible between 
connectionist and non-connectionist approaches to 
language, it provides a way to combine and integrate 
these computational approaches.  Finally, WOPA works 
on child utterances, which are rarely tested by 
computational systems, because they are difficult to tag 
with syntactic representations.  Since children are the only 
known systems that can learn the syntax of any human 
language, it seems wise to use their utterances to help 
evaluate syntax acquisition algorithms. 
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