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1. Abstract 
 
 
A sensitivity study of gravity and electromagnetic (EM) techniques, and amplitude vs. angle (AVA) 
analysis for CO2 movement in coal beds was based on the SECARB pilot test planned in the Black 
Warrior basin in Alabama. In the area of interest, coalbed methane is produced mainly from the Black 
Creek, Mary Lee, and Pratt coal zones at depths between 400 and 700 m and approximately 3 m thick on 
average. The permeability of coal in the Black Warrior basin decreases exponentially with depth as 
overburden stress increases. The permeability of the top layer is 100 mD, while the permeability of the 
deepest layer is around 1 mD. The pilot field test will include injecting a total of 1000 tons of CO2 into 
these three coal zones (~300 tons to each zone). The density, sonic and resistivity well-logs from a deep 
disposal well a couple of miles from the pilot test site were used to create background (pre-injection) 
models. Our laboratory measurements of seismic velocity and electrical resistivity as a function of CO2 
saturation on coal core samples were used to provide a link between the coalbed CO2 flow simulation 
models and the geophysical models. The sensitivity studies showed that while the response to the 300 
tons of CO2 injected into a single layer wouldn’t produce measurable surface response for either gravity 
or EM, the response due to an industrial-size injection would produce measurable surface signal for both 
techniques. Gravity inversion results illustrated that, provided we can collect high-quality gravity data in 
the field and we have some a priori information about the depth of the reservoir, we can recover the 
spatial location of CO2 plume correctly, although with the smoothing constraint of the inversion, the area 
was slightly overestimated, resulting in an underestimated value of density change. AVA analysis showed 
that by inverting seismic and EM data jointly, much better estimates of CO2 saturation can be obtained, 
especially in the third injection zone, where seismic AVA data fail to detect the high CO2 saturation. 
Analysis of spatial resolution and detectability limits show that gravity and EM measurements could, 
under certain circumstances, be used as a lower-cost alternative to seismic measurements.  
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4. Introduction 
 
 
Previous analysis of the spatial resolution and detectability limits of non-seismic geophysical techniques 
carried out as part of the “Novel geophysical monitoring” project of the first phase of the Carbon Capture 
Project (CCP-1) found that surface and borehole based electromagnetic (EM) and gravity measurements 
could, under certain circumstances, be used as a lower cost alternative to seismic geophysics 
(Gasperikova and Hoversten, 2006). An analysis of the cost of gravity and EM surveys needed for 
monitoring of enhanced oil recovery (EOR) projects showed them to be ten times less expensive than 
conventional 3D seismic surveys. The reduction in cost is accompanied by a reduction in spatial 
resolution and thus the applicability of non-seismic techniques is dependent on site specifics and the 
monitoring questions that need to be answered. 
 
The work under CCP-1 was limited to a few generic models and a single case study of proposed CO2 
EOR/sequestration of the Schrader Bluff field on the North Slope of Alaska. In this project we evaluated 
gravity and EM techniques, and amplitude vs. angle (AVA) analysis for monitoring of CO2 enhanced coal 
bed methane (CBM) production. The models were based on the Deerlick Creek Field pilot test design. In 
the area of interest, coalbed methane is produced mainly from the Black Creek, Mary Lee, and Pratt coal 
zones at depths between 400 and 700 m and approximately 3 m thick on average. The pilot field test will 
include injecting a total of 1000 tons of CO2 into these three coal zones (~300 tons to each zone). Flow 
simulations were provided by Sproule Associates. LBNL laboratory measurements, carried out 
independently from this project, of seismic velocity and electrical resistivity as a function of CO2 
saturation on a coal core sample were used as a link between the coal bed CO2 injection flow simulation 
results and the geophysical models.  
 
We used the latest state-of-the-art forward and inverse capabilities for gravity, EM, and seismic data. We 
simulated gravity, EM, and seismic responses for the background (pre-injection) model, model with CO2 
injection into one coal zone, and model with CO2 injection into three coal zones. We developed a new 
gravity inversion that uses a depth of the reservoir as a priori information, and solves for a smooth 
density variation inside the reservoir. The inversion of gravity data is very important, since construction 
of density contrast models significantly increases the amount of information that can be extracted from 
the gravity data. The simulated seismic data were imaged using industry-standard seismic processing 
techniques, and followed by acoustic AVA inversion for reservoir fluid properties. The CO2 content 
predicted from the seismic data was compared to those obtained from a joint inversion of seismic and EM 
data. 
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5. Executive Summary 
 
 
Significant potential exists for carbon sequestration and enhanced methane recovery in coalbed methane 
production scenarios. A sensitivity study of gravity and electromagnetic (EM) techniques, and amplitude 
vs. angle (AVA) analysis for CO2 movement in coal beds was based on the SECARB pilot test planned in 
the Black Warrior basin in Alabama. Coal seams in the Black Warrior basin are distributed through a 
thick stratigraphic section and are clustered in a series of coal zones within the Lower Pennsylvanian 
Pottsville Formation. In the area of interest, coalbed methane is produced mainly from the Black Creek, 
Mary Lee, and Pratt coal zones at depths between 400 and 700 m and approximately 3 m thick on 
average. The permeability of coal in the Black Warrior basin decreases exponentially with depth as 
overburden stress increases. The permeability of the top layer is 100 mD, while the permeability of the 
deepest layer is around 1 mD. The pilot field test will include injecting a total of 1000 tons of CO2 into 
these three coal zones (~300 tons to each zone).  
 
A literature search for rock properties in an environment similar to the pilot test site revealed that no such 
information was available. Hence, we used our laboratory measurements of seismic velocity and electrical 
resistivity as a function of CO2 saturation on coal core samples to link CO2 flow simulation models to 
geophysical models for this study. Background (pre-injection) models were based on the density, sonic 
and resistivity well-logs from a deep disposal well a couple of miles from the pilot test site.  
 
The sensitivity studies showed that while the response to the 300 tons of CO2 injected into a single layer 
wouldn’t produce measurable surface response for either gravity or EM technique, the response due to an 
industrial-size injection would produce measurable surface signal for both techniques.  
 
Inversion of gravity data is very important, since construction of density contrast models significantly 
increases the amount of information that can be extracted from the gravity data. We developed a new 
gravity inversion and illustrated with the results that, provided we can collect high-quality gravity data in 
the field and we have some a priori information about the depth of the reservoir, we can recover the 
spatial location of CO2 plume correctly, although with the smoothing constraint of the inversion, the area 
was slightly overestimated, resulting in an underestimated value of density change.   
 
AVA analysis provides quantitative estimates of CO2 saturation changes. Our results showed that by 
inverting seismic and EM data jointly, much better estimates of CO2 saturation can be obtained, 
especially in the third injection zone, where seismic AVA data fail to detect the high CO2 saturation.  
 
Analysis of spatial resolution and detectability limits show that gravity and EM measurements could, 
under certain circumstances, be used as a lower-cost alternative to seismic measurements.  
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6. Experimental 
 
The laboratory experiments (Kneafsey et al., 2005) were designed to gain a better understanding of brine 
displacement by carbon dioxide (CO2) and to understand the flow behavior of CO2 to allow evaluation 
and extension of numerical models. A horizontal coal core plug was used from the upper Cretaceous 
Ferron Sandstone member of the Macos Shale (“A” coal bed, Ivie Creek #11, Footage 293’4” to 294’0”, 
Loc Sec 20, T 235 R6E Salt Lake Meridian). A series of measurements were made on the core while 
changing the core conditions. 
 
Three tests were performed. The first test consisted of sorbing methane to the coal at the hydrostatic 
pressure at the depth the coal was retrieved, saturating the coal with brine (1g/l NaCl) at the same 
pressure. Following an equilibration time, the fluid pressure was reduced allowing gas to leave the core. 
In the second test, the same core was re-contacted with methane at a higher pressure, and introduced brine 
(1 g/l NaCl) saturated with CO2 at 100 psi. Following this, pore pressure was reduced again. The third set 
of measurements was performed by introducing 1 g/l NaCl brine, and then CO2 gas, CO2 liquid, and 20% 
KI brine all at constant effective stress (confining pressure – pore pressure). 
 
The test plug was a 39.1 mm diameter by 63.9 mm length coal plug from the above mentioned core with 
an air-dry mass of 99.50 g. The plug was cut perpendicular to the axis of the original drill core, thus it had 
a roughly horizontal orientation. Chips in the core were filled in with a sanded epoxy, and were 
impermeable and dense with respect to X-rays. 
 
Several sets of measurements were made. Compressional and shear wave travel times were measured 
using Panametric D7253 transducers contained within one end cap in contact with the sample and 
detected by a duplicate transducer contained within the opposing end cap. Pulses were applied to the 
transmitting transducer with a pulse width of 1.8 microseconds and a voltage of 500 V using an 
Instrument Research Company Model M1k-20 1000V Pulser, and detected pulses were amplified by a 
Stanford Research Systems Model SR560 Low Noise Preamplifier and indicated on a Tektronix Digital 
Oscilloscope (TDS3012, 100 Mhz, 1.25GS/s). 
 
Resistivity was measured using up to four ring electrodes in contact with the sample using a GenRad 
1692 RLC meter and QuadTech 7400B Precision RLC Meter. The system was calibrated using water of 
known conductivity. 
 
Permeability was deduced using flow rates indicated by Isco syringe pumps, core geometry, and Druck 
and Validyne pressure transducers. 
 
X-ray CT scanning was performed on a modified Seimens Somaton High-Q third generation medical CT 
scanner with energy of 130KeV. Most scans were performed in the “inner ear mode” with a resolution of 
0.3 x 0.3 x 1 mm (1 mm beam width). Scanning was performed on alternate 1 mm slices along the axis of 
the core. 
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Figure 1. Compressional and shear wave velocities for the laboratory test conditions 

 
 

Resistance 2233 1 kHz

0
10

20

30

40
50

60

70

Br
ine

 S
at
ur

at
ed

 2
50

/1
04

Br
in
e 
Sa

tu
ra
te
d 

25
0/

10
2

CO2
 g
as

 5
50

/3
00

CO
2 
ga

s 8
50

/6
00

CO
2 
ga

s 8
20

/6
00

Liq
ui
d 
CO

2 
11

40
/9
10

De
ns

e 
br

ine
 sa

tu
ra
te
d 

11
5.
..

R
e

s
is

ta
n

ce
 (

k
o

h
m

)

 
 

Figure 2. Resistances measured across electrodes 2 and 3 (2-wire method) for Test 3 
 
The overall conclusions of the experimental data show that acoustic (Vp) and shear (Vs) velocities were 
reduced on the order of 10% by the CO2 flood (Figure 1). Electrical resistivity increased by 160% in the 
core when flooded by CO2 (Figure 2).  
 
These experimentally determined values were used as end members of a linear trend for velocity and 
resistivity over the range from 0 to 100% CO2 saturation. These experimentally determined functions 
were used to convert the flow simulations provided by Sproule Associates to the geophysical models used 
to determine the detectability and resolution for monitoring of the CO2 flood. 
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7. Results and Discussion 
 
Significant potential exists for carbon sequestration and enhanced methane recovery in coalbed methane 
production scenarios. Our study was motivated by a pilot test planned in the Black Warrior basin in 
Alabama. Coal seams in the Black Warrior basin are distributed through a thick stratigraphic section and 
are clustered in a series of coal zones within the Lower Pennsylvanian Pottsville Formation. Assessment 
of the CO2 sequestration and enhanced recovery potential of coalbed methane in this area indicated that 
more than 5.9 Tcf of CO2 could be sequestered, while increasing coalbed methane reserves by more than 
20% (Pashin and Clark, 2006). In the area of interest, coalbed methane is produced mainly from the Black 
Creek, Mary Lee, and Pratt coal zones at depths between 400 and 700 m and approximately 3 m thick on 
average. The permeability of coal in the Black Warrior basin decreases exponentially with depth as 
overburden stress increases. The permeability of the top layer is 100 mD, while the permeability of the 
deepest layer is around 1 mD. The pilot field test will include injecting a total of 1000 tons of CO2 into 
these three coal zones (~300 tons to each zone).  
 
A literature search for rock properties in an environment similar to the pilot test site revealed that no such 
information was available. Hence, we used the density, sonic and resistivity well-logs from a deep 
disposal well that was drilled only a couple of miles from the pilot test site (Jack Pashin, Geological 
Survey of Alabama), and our laboratory measurement results to build models for this study.  
 
 
(A) Gravity monitoring 
 

The reduction in the vertical component of gravity is caused by increased CO2 saturations reducing the 
bulk density of the coal layer. The spatial pattern of the change in the vertical component of gravity is 
directly correlated with the net change in density of the coal bed.  
 
A simplified model was created to investigate if a variation in CO2 saturation in a coal layer would 
produce a measurable surface gravity response. The model consisted of a 5 m thick coal layer with a 
density of 1435 kg/m3 at a depth of 450 m. A plan view of the model is shown in Figure 3a, while the 
section view is shown in Figure 3b. The undisturbed coal layer is on the left, while a coal layer containing 
CO2 is on the right.  
 

 
 

Figure 3a. Plan view of a density model with a coal layer with no CO2 on the left and with CO2 
on the right 
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Figure 3b. Cross-section of a density model with a coal layer with no CO2 on the left and with 
CO2 on the right 
 
Using values from the flow simulation model, we calculated the density of CO2 at a temperature of 35°C 
(= 308 K = 95 F) and a pressure of 600 kPa using the NIST14 code (NIST, 1992). Under these conditions 
the density of CO2 is 10.6 kg/ m3. If we define CO2 saturation as SCO2, then the layer bulk density is:  
 

Density = (1- SCO2)*Density(coal) + SCO2*Density(CO2) 
 
We calculated values for 0, 10, 20, 50, 70, 80, and 90% of CO2 saturation and the resulting densities are 
given in Table 1. The presence of CO2 reduces the coal density, causing the decrease in the gravity 
response. Adsorption of CO2 into coal can affect the matrix density, and hence the total density change 
could be smaller than we predicted. 
 

Table 1.  Coal layer density as a function of CO2 saturation at temperature of 35°C and pressure of 600 kPa. 
 

% CO2 Density (kg/m3) 
0 1435.0 

10 1291.6 
50 721.8 
70 437.9 
80 295.5 
90 153.0 

 
The vertical component of the gravity response is defined as a difference between the model with and 
without CO2 present. Figure 4 shows the surface gravity response (in μGal) for 10% of CO2 saturation. 
The maximum gravity response is -14 μGal. The contact between area with and without CO2 is clearly 
visible, and the surface gravity response can be measured using current technologies. A 5-10 μGal and 3.5 
μGal survey accuracy have been reported for gravity surveys at Prudhoe Bay, Alaska (Hare et al., 1999; 
Brown et al., 2003). A repeatability of 2.5 μGal and detection threshold of 5 μGal for time-lapse 
variations was observed in gravity monitoring surveys of the Sleipner CO2 sequestration site in the North 
Sea (Nooner et al., 2003). 
 
Figures 5 and 6 are surface gravity responses for the model with 50% and 90 % of CO2 saturation, 
respectively. For the model with 50% CO2 saturation the maximum gravity response is -70 μGal while for 
the model with 90% CO2 saturation the maximum gravity response is -125 μGal. Again, we can clearly 
distinguish areas with CO2 present in both cases. Figures 4-6 illustrate that the surface gravity response 
decreases with increased CO2 saturation. The presence of CO2 reduces the layer density and that causes 
the decrease in the gravity response.  
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Figure 4. Surface gravity response (in μGal) for the coal layer in Figure 3 with 10% CO2 
saturation 

 
 

 
 

Figure 5. Surface gravity response (in μGal) for the coal layer in Figure 3 with 50% CO2 
saturation 
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Figure 6. Surface gravity response (in μGal) for the coal layer in Figure 3 with 90% CO2 
saturation 
 
In the proposed pilot test the amount of injected CO2 is limited, and Sproule Associates ran flow 
simulation models for CO2 injection into three coal layers. CO2 mole fractions in the three coal layers at 
the end of simulation are shown in Figures 7-9. Figure 7 is a plan view of CO2 mole fractions for the coal 
layer at the depth of ~400 m, Figure 8 for the layer at ~ 600 m, and Figure 9 for the layer at ~750 m.  
 
 

 
 

Figure 7. Plan view of CO2 mole fractions for the coal layer at a depth of ~ 400 m at the end of 
simulation (from Sproule Associates) 
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Figure 8. Plan view of CO2 mole fractions for the coal layer at a depth of ~ 600 m at the end of 
simulation (from Sproule Associates) 

 

 
Figure 9. Plan view of CO2 mole fractions for the coal layer at a depth of ~ 750 m at the end of 
simulation (from Sproule Associates) 

 
 

Flow simulation models (Figure 7-9) showed that the highest CO2 mole fractions and the largest spatial 
extent of CO2 exist in the upper two coal layers. CO2 in the deepest layer hardly moved from the injection 
well, presumably due to very low permeability. Based on these simulations, our reference density model 
was a coal layer with 95% water saturation and 5% residual gas saturation. We assumed that water in 
fractures is replaced by CO2 and neglected any changes in the matrix density. We calculated the surface 
gravity response for each of the three layers independently, and then for all of them together. Figure 10a 
shows a plan view, and Figure 10b shows a section view of the model. The coal layer at the depth of ~ 
400 m, 600 m, and 750 m, respectively, is 3 m thick, and CO2 anomaly is 300 × 200 m wide, and has 50% 
CO2 saturation.  
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Figure 10a. Plan view of a density model based on a flow simulation model 
 

 
 

Figure 10b. Cross-section of a density model based on a flow simulation model 
 
 

Figure 11 shows the surface gravity response for the CO2 plume at the depth of 400 m. The maximum 
response is -5 μGal, which is on the edge of detectability in the field. Gravity anomalies decay with the 
inverse square of the distance from their source, hence the same plume at 600 m or 750 m produces even 
smaller surface gravity response (not shown) and hence it would be difficult to detect in the field.  
 
However, if the layer thickness at the depth of 400 m would be 6 m instead of 3 m and the CO2 plume had 
the same lateral extent (300×200 m) the maximum surface gravity response would be -10 μGal. This 
anomaly response is above the detection threshold and therefore it would be measurable in the field. The 
surface gravity response from a 6 m thick layer is shown in Figure 12. Similarly, surface gravity 
measurements would be above the detection threshold when all three layers are present. In this case, the 
thickness of each layer is 3 m, the lateral extent is 300×200 m, each layer contains 50% of CO2, and they 
are at the depth of 400, 600, and 750 m, respectively. The surface gravity response of this model is shown 
in Figure 13. As mentioned earlier, the surface gravity response decreases with the square of the distance 
to the source. Hence, although the model contains identical CO2 anomalies in three different layers, most 
of the response comes from the layer at 400 m, then from the layer at 600 m, and the least from the layer 
at 750 m.  
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The deepest coal layer, at the depth of 750 m, with the same lateral extent and properties as described 
above, would be detectable by surface gravity only if its thickness was 18 m. The surface gravity response 
for this case is shown in Figure 14. 
 
 

 
 

Figure 11. Surface gravity response (in μGal) for the model in Figure 10. The coal layer at the 
depth of 400 m is 3 m thick, CO2 plume is 300×200 m wide, and it contains 50% of CO2. 

 
 

 
 

Figure 12. Surface gravity response (in μGal) for the model in Figure 10. The coal layer at the 
depth of 400 m is 6 m thick, CO2 plume is 300×200 m wide, and it contains 50% of CO2. 
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Figure 13. Surface gravity response (in μGal) for the model with three coal layers at depths of 
400 m, 600 m, and 750 m. Each layer is 3 m thick, CO2 plume is 300×200 m wide, and it 
contains 50% of CO2. 

 

 
 

Figure 14. Surface gravity response (in μGal) for the coal layer at the depth of 750 m. The layer 
is 18 m thick, CO2 plume is 300×200 m wide, and it contains 50% of CO2. 
 
 
Gravity inversion 
 
Inversion of gravity data is very important, since construction of density contrast models significantly 
increases the amount of information that can be extracted from the gravity data. However, one substantial 
difficulty with the inversion of gravity data is its inherent non-uniqueness and lack of inherent depth 
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resolution. This difficulty can be overcome by introduction of a priori information. We adopted the 
approach described by Smith et al. (1999) for magnetotelluric data inversion, in which the top and base of 
the reservoir are known, and we invert for a smooth density variation inside the reservoir. The inversion 
result is a cumulative density change in the reservoir as a function of x and y coordinates. 
 
To illustrate the whole approach we took the CO2 mole fractions model shown in Figure 15, and created a 
density model shown in Figure 16. We calculated the surface gravity response to this model (Figure 17), 
and then ran the inversion.  
 

 
 

Figure 15: Plan view of CO2 mole fractions in the coal layer at a depth of 400 m (from Sproule 
Associates) 

 

 
 

Figure 16: Plan view of a density model (kg/m3) based on the flow simulation model in Figure 
15  
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Figure 17: Surface gravity response (μGal) of the model in Figure 16 
 
 

Figure 18 shows inversion results from surface gravity data shown in Figure 17. The location of the CO2 
plume was recovered correctly, although with the smoothing constraint of the inversion, the area was 
slightly overestimated, resulting in an underestimated value of density change (Figure 18a). The inversion 
of gravity data from Figure 17 with 1 μGal random noise (25% of peak value) added results in the correct 
location of the CO2 plume; however the density contrast cannot be resolved (Figure 18b). The true density 
difference is shown by white contours. 
 

 
 

Figure 18a. Density change (kg/m3) as a function of x and y coordinates recovered by inversion 
of the data shown in Figure 17 
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Figure 18b. Density change (kg/m3) as a function of x and y coordinates recovered by inversion 
of the gravity data in Figure 17 with 1 μGal random noise (25% of peak response) added 
 
 
(B) EM monitoring 
 
The electrical resistivity of reservoir rocks is highly sensitive to changes in water and gas saturation. This 
high sensitivity can be exploited by EM techniques, in which the response is a function of the earth’s 
electrical resistivity. One technique uses a grounded electric dipole energized with an alternating current 
at a given frequency (i.e. 1 Hz) to produce time-varying electric and magnetic fields that can be measured 
on the earth’s surface. In this configuration the electric dipole consists of two steel electrodes (1 m2 plates 
or sections of drill pipe) buried at a shallow depth (1–10 m) separated by 100 m and connected by cable 
to a low-power generator (a portable 5,000 W generator is sufficient). A setup schematic is shown in 
Figure 19a, and instruments’ photos are shown in Figure 19b. The measured data consist of the electric 
field at a given separation from the transmitter, acquired on the surface or within the near surface.  
 
 

 
(a) 
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(b) 

 
Figure 19. EM survey (a) schematic, (b) equipment photos. 

 
 
As described earlier, the pilot study area contains three main coal layers – Pratt, Mary Lee, and Black 
Creek. According to the annotated coal lithology log of J.D. Jobson 24-14 #11 Well, that’s a part of the 
SECARB II project design package, the top of the Pratt zone is at the depth of 396 m and the injection 
zone is between 405 and 442 m, the top of the Mary Lee zone is at 574 m and the injection zone is 
between 592 and 610 m, and the top of the Black Creek zone is at 673 m, and the injection zone is 
between 750 and 760 m. We used the resistivity log from a deep disposal well that was drilled a couple of 
miles from the pilot test site, to build our background resistivity model. We used results of our previous 
laboratory measurements to estimate how the presence of CO2 influences coalbed resistivities. Our 
laboratory results show that CO2 can cause up to 150% resistivity increase in coal. Assuming that the 
layers within each injection zone will be influenced by the presence of CO2 in a manner similar to that in 
the laboratory measurements, we created our CO2 model. Resistivity values as a function of depth for 
both the background and CO2 models are given in Table 2, and plotted in Figure 20. The blue color in 
Figure 20 represents the background model, while the red color represents the CO2 model.  
 

 
Table 2.  Resistivity values as a function of depth for the background and CO2 models 

 

Depth (m) Resistivity (Ohm-m) 
background model 

Resistivity (Ohm-m) 
CO2 model 

0 60 60 
396 100 250 
402 2000 5000 
405 100 250 
408 1000 2500 
411 100 250 
427 400 1000 
430 70 70 
451 300 300 
457 2000 2000 
460 300 300 
482 1500 1500 
509 70 70 
530 300 300 
536 90 90 
552 30 30 
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555 100 100 
561 30 30 
564 75 190 
637 40 40 
658 600 600 
661 60 60 
744 150 400 
762 60 60 

 
 

 
 
Figure 20. Resistivity profiles as a function of depth for the background model in blue, and CO2 
model in red.  
 
We calculated responses of both models using an electric point dipole as a source (transmitter) and an 
electric point dipole as a receiver. Both “in-line” and “broad-side” responses were calculated for 
transmitter - receiver offsets up to 4 km. The transmitter was oriented in the x-direction. When both the 
transmitter and receiver are on the same line (i.e. y(Tx)=0 and y(Rx)=0), the configuration is called “in-
line” configuration. When the transmitter is on a different line than the receiver (i.e. y(Tx)=0 and 
y(Rx)=150), the configuration is called “broad-side” configuration. The in-line responses were much 
smaller than the broad-side responses; therefore we present here only the broad-side responses. The 
broad-side Ex and Ey data for models with and without CO2 are presented in Figures 21 and 22, 
respectively.  
 
In both figures, the red dashed line is a magnitude of the real component of the electric field for the model 
with CO2 while the blue solid line is for the model without CO2. The purple dashed line is a magnitude of 
the imaginary component of the electric field for the model with CO2 while the green solid line is for the 
model with no CO2. The results show the maximum response for offsets larger than 2 km. The change due 
to CO2 presence in the real component of Ex is 10-20%, and 5-10% in the imaginary component of Ex. In 
the case of Ey, the real component is 10-20% larger, and the imaginary component is 100-200% larger for 
the model with CO2. 
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Figure 21. Real and imaginary component of Ex field for models in Table 2 
 
 

 
 

Figure 22. Real and imaginary component of Ey field for models in Table 2 
 

 
The amplitude and phase plots for the broad-side Ex-component are shown in Figures 23a and 23b, while 
the amplitude and phase plots for the broad-side Ey-component are shown in Figures 24a and 24b. 
Responses to individual injections zones (not shown) were smaller than the response to all three zones 
together.  
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Figure 23a. Amplitude of Ex field for models in Table 2 
 
 

 
 

Figure 23b. Phase of Ex field for models in Table 2 
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Figure 24a. Amplitude of Ey field for models in Table 2 
 
 

 
 

Figure 24b. Phase of Ey field for models in Table 2 
 
 
(C) Amplitude vs. Angle (AVA) Analysis 
 
It has been recognized that monitoring of field-scale CO2 saturation is important for CO2 sequestration. 
Time-lapse geophysical methods, for example, surface seismic and EM, have the potential of providing 
this information, and hence being candidate monitoring tools. In this section, we investigate the feasibility 
of using time-lapse seismic AVA and EM data to monitor CO2 injection into coal beds through synthetic 
case studies. We assume that the background information, such as thickness of each layer, seismic P- and 
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S-wave velocities, density, and electrical resistivity can be obtained from borehole logging. The 
background models for seismic attributes and electrical properties may be different, but the CO2 injection 
zones are located at roughly the same depths in both models. 
 
Seismic data 
 
Synthetic seismic data were generated using a 2D finite-difference staggered-grid code which models 
elastic wave propagation in arbitrarily inhomogeneous media with a 18 Hz Gaussian derivative source 
wavelet (Levander, 1988) for the following three cases: (1) background (pre-injection) model (Model-0) 
using the well logs from a nearby well, (2) model with a 10% decrease in P-wave velocity and a 5% 
decrease in density in the top injection zone (Model-1), and (3) model with a 10% decrease in P-wave 
velocity and a 5% decrease in density in all the three injection zones (Model-2). The decrease in P-wave 
velocity and density due to the presence of CO2 was based on our laboratory measurements on coal 
samples (Kneafsey et al., 2005). Figure 25a shows the seismic P-wave velocity cross-section when CO2 is 
injected into the top injection zone, while Figure 25b shows the seismic P-wave velocity cross-section 
when CO2 is injected into all three injection zones. The CO2 plume was 300 m wide from x = 850 m to x= 
1150 m. 
 

 
 

Figure 25a. 2D seismic P-wave velocity model for CO2 injection in the top injection zone 
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Figure 25b. 2D seismic P-wave velocity model for CO2 injection into all three injection zones 
 

 
After normal moveout (NMO) correction, we created a common depth point (CDP) stack, and from that 
AVA data. We first generated seismic AVA for the background model, and then we assumed that the 
injection zone(s) had 95% CO2 saturation, and generated seismic AVA responses again. The normalized 
differences in seismic AVA responses between the model with CO2 plume and the background model 
were our time-lapse AVA data. Detail description of the approach is given in Appendix 1. As only the 
first four incident angles (corresponding to 0, 1.9, 3.8, and 5.7 degrees, respectively) had responses to all 
the zones, we only used them for inversion. At this point, the AVA inversion is using 1D numerical 
codes, hence we calculated 1D seismic data as well and compared them to 2D data.  
 
The 1D seismic data were calculated by convolving seismic reflectivity with the Gaussian derivative 
wavelet with the center frequency of 18 Hz. Seismic AVA reflectivity is an explicit function of seismic P- 
and S-wave velocities and density in the given layers. We used the Zoeppritz’s equations (Aki and 
Richards, 1980) to model the reflectivity, which is a function of seismic P- and S-wave velocities and 
density.  
 
A comparison of normalized differences in seismic AVA data for the model with a CO2 plume in the top 
injection zone calculated using 1D and 2D numerical methods is shown in Figure 26a, while the same 
comparison for the model with CO2 present in all three injection zones is shown in Figure 26b. Figure 26 
shows that 1D convolution model provides a good approximation to 2D data at small angles. 
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Figure 26a. Comparison of differences in normalized seismic AVA data, (Model-1 - Model-
0)/Model-0 for four angles, where the black curves are calculated using the 2D numerical 
methods and the red curves are calculated using the 1D convolution method 
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Figure 26b. Comparison of differences in normalized seismic AVA data, (Model-2 - Model-
0)/Model-0 for four angles, where the black curves are calculated using the 2D numerical 
methods and the red curves are calculated using the 1D convolution method 
 
 
EM data 
 
Synthetic EM data were generated using 2D numerical methods (Newman and Alumbaugh, 1997) at two 
frequencies (1 Hz and 10 Hz), with five transmitter locations (-2000 m, -1900 m, -1800 m, -1700 m, and -
1600 m), and 60 receivers located from -1000 m to 1900 m with a separation of 50 m. Again, three cases 
were considered: (1) background (pre-injection) model (Mod0) using the well logs from the nearby well, 
(2) model with a 150% increase in resistivity in the top injection zone (Mod1), and (3) model with a 
150% increase in resistivity in all the three injection zones (Mod2). The increase in resistivity due to the 
presence of CO2 was based on our laboratory measurements on coal samples (Kneafsey et al., 2005). 
Figure 27a shows the resistivity cross-section when CO2 was injected into the top injection zone, while 
Figure 27b shows the resistivity cross-section when CO2 was injected into all three injection zones. The 
CO2 plume was 300 m wide from x = 850 m to x= 1150 m.  
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Figure 27a. 2D resistivity model for CO2 injection in the top injection zone 
 

 
 

Figure 27b. 2D resistivity model for CO2 injection in all three injection zones 
 

 
Figure 28a compares the ratios of Mod1/Mod0 EM responses calculated using the 2D numerical method 
(Newman and Alumbaugh, 1997) (black curves) and using 1D method (red curves). Similarly, Figure 28b 
compares the ratios of Mod2/Mod0 EM responses calculated using the 2D numerical method (black 
curves) and using 1D method (red curves). The values obtained from the 1D method are significantly 
larger than those obtained by the 2D method. This is understandable because in the 1D model the whole 
layer (infinite extent) is CO2 saturated while in the 2D model the CO2 zone is only 300 m wide. The 2D 
EM responses clearly identify lateral boundaries of the injection zones, which are located between 850 m 
and 1150 m. If we focus on the EM data within the injection zones, we found that the slopes in the 1D 
and 2D data show some similarities even though the slopes from 2D calculation are sharper than those 
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obtained from the 1D method. They increase with the increasing source-receiver offsets, and the gradients 
are functions of the target resistivity. As a result, we may incorporate that information into our inversion. 
 

 

 
 

Figure 28a.Comparison between the real and imaginary components of EM data (ratio of 
Mod1/Mod0) calculated using the 2D numerical model (black curves) and those calculated using 
the 1D model (red curves). The response for frequency of 1 Hz is shown in (a) and (b), and the 
response for frequency of 10 Hz in shown in (c) and (d). The regions within the blue vertical 
parallel lines are CO2 injection zones. 
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Figure 28b.Comparison between the real and imaginary components of EM data (ratio of 
Mod2/Mod0) calculated using the 2D numerical model (black curves) and those calculated using 
the 1D model (red curves). The response for frequency of 1 Hz is shown in (a) and (b), and the 
response for frequency of 10 Hz in shown in (c) and (d). The regions within the blue vertical 
parallel lines are CO2 injection zones. 

 
 
AVA Analysis 
 
Our current AVA analysis is using the Bayesian model with 1D seismic and EM codes. This model is a 
revision of the joint inversion model given by Chen et al. (2007). The detail description of this model is 
given in Appendix 1. Since we use the 1D approximation of 2D seismic and EM data, the first step in our 
analysis was to compare 1D and 2D data (see above). Our 1D seismic convolution model provides good 
approximation to the 2D seismic data at small incident angles. The 1D EM model provides a fair 
approximation to the 2D EM data at the receivers right above the injection zones.   
 
We jointly inverted time-lapse seismic and EM data for CO2 saturation, and compared these inversion 
results with those obtained from the inversion of seismic data only. The results for the model with CO2 
injection in the top injection zone are given in Table 3 and Figure 29. Figure 29a shows the estimated 
probability density functions (pdfs) of the unknown CO2 saturation using seismic AVA data only, while 
Figure 29b shows the estimated pdfs using both seismic AVA and EM data. In both cases, the inversion 
correctly predicts the presence of high CO2 saturation in the injection zone. Incorporation of EM data 
significantly reduces inversion uncertainty since the pdfs obtained using both seismic and EM data are 
much sharper than those obtained using seismic data only. Table 3 also shows that standard error and 
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95% probability intervals of the unknown CO2 saturation are lower if EM data are used in addition to 
seismic data.   
 
Table 3. Comparison between the CO2 saturation estimated using seismic AVA data only and that estimated using 
both seismic AVA and EM data for the case of one injection zone. 
 

 Median Mean Mode Standard 
deviation 

95% Predictive 
Interval 

CO2 saturation 
(seismic AVA 
data only)  

 
0.9844 

 
0.9791 

 
0.9891 

 
0.0183 

 
(0.9341, 0.9994) 

CO2 saturation 
(both seismic AVA 
and EM data)  

 
0.9999 

 
0.9999 

 
0.9999 

 
0.0001 

 
(0.9995, 1.0000) 

 
 

0.85 0.9 0.95 1 1.05
0

5

10

15

20

25

CO2 Saturation

Pr
ob

ab
ilit

y 
De

ns
ity

(a) Seismic AVA data only

0.999 0.9992 0.9994 0.9996 0.9998 1 1.0002 1.0004
0

500

1000

1500

2000

2500

3000

3500

CO2 Saturation

Pr
ob

ab
ilit

y 
De

ns
ity

(b) Seismic AVA and EM data

 
Figure 29. Estimated probability density functions (pdfs) of CO2 saturation in the top injection 
zone (a) using seismic AVA data only, and (b) using both seismic AVA and EM data 
 
 
The results for the model with CO2 injection in three injection zones are given in Table 4 and Figure 30. 
Figures 30a-c show the estimated probability density functions (pdfs) of the unknown CO2 saturation 
using seismic AVA data only, while Figures 30d-f show the estimated pdfs using both seismic AVA and 
EM data. Again, for the top two injection zones, the estimated CO2 saturations are close to 1.0 with a 
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small uncertainty, and the joint inversion of seismic AVA and EM data improves the estimation by 
reducing uncertainty significantly (Figures 30a-b, 30d-e). The advantage of EM data is clearly illustrated 
in Figure 30c and Figure 30f. The inversion of seismic AVA data gives misleading results and shows the 
injection zone with a low CO2 saturation (Figure 30c). This is far away from the true value of 95% CO2 
saturation. However, the inversion results after incorporating EM data clearly show there is a high CO2 
saturation zone (Figure 30f).  
 
 
Table 4. Comparison between the CO2 saturation estimated using seismic AVA data only and that estimated using 
both seismic AVA and EM data for the case of three injection zones. 
 

 Zones Median Mean Mode Standard 
deviation 

95% Predictive 
Interval 

Zone-1 0.9900 0.9855 0.9931 0.0140 (0.9495, 0.9997) 
Zone-2 0.9419 0.9303 0.9646 0.0528 (0.8217, 0.9976) 

Seismic 
AVA data 

only Zone-3 0.1067 0.1152 0.0813 0.0781 (0.0046, 0.2611) 
Zone-1 0.9996 0.9995 0.9997 0.0005 (0.9979, 1.0000) 
Zone-2 0.9984 0.9978 0.9987 0.0020 (0.9928, 0.9999) 

Seismic 
AVA and 
EM data Zone-3 0.9993 0.9991 0.9994 0.0008 (0.9972, 1.0000) 
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Figure 30. Estimated probability density functions (pdfs) of CO2 saturation in three injection 
zones (a-c) using seismic AVA data only, and (d-f) using both seismic AVA and EM data. 
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In all cases, the joint inversion of seismic AVA and EM data gives higher CO2 saturation than the 
corresponding true value (95%). This is possibly because the 1D approximation of 2D EM data 
underestimates the slopes in the EM data sets. To obtain more accurate results, and account for effects of 
finite site target zones, we may need to use 2D forward code in our inversion approach.  
 
Even though there is an uncertainty in a rock-physics model and a discrepancy between 1D and 2D 
models, we found that by inverting seismic and EM data jointly, we can obtain much better estimates of 
CO2 saturation, especially in the third injection zone where seismic AVA data fail to detect the high CO2 
saturation. Our synthetic studies show that time-lapse surface seismic and EM methods are a promising 
tool for CO2 injection monitoring in the scenario presented in this study, however further studies are 
needed for more complicated scenarios. 
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8. Conclusions 
 
 
• Literature reviews and contacts with other researchers have been conducted to obtain data on the 

geophysical properties of coal undergoing CO2 flood. No quantitative relationships (tabulated values) 
of acoustic velocity, shear velocity, density or electrical resistivity as a function of CO2 saturation 
have been found.  

• A relationship between seismic velocity, water saturation and CO2 saturation in a coal has been 
developed based on laboratory experiments conducted at LBNL. Seismic velocities were reduced on 
the order of 10% by the CO2 flood.  

• A relationship between electrical resistivity, water saturation and CO2 saturation in coal has been 
developed based on laboratory experiments at LBNL. Electrical resistivity increased by 160% in the 
core when flooded by CO2.  

• The coal density as a function of CO2 saturation under pressure and temperature conditions used in 
the flow simulation model was calculated using NIST14 code. The presence of CO2 reduces the bulk 
density of the coal layer, causing the decrease in the gravity response. Adsorption of CO2 into coal 
can affect the matrix density, and hence the total density change could be smaller than we predicted. 
The spatial pattern of the change in the vertical component of gravity is directly correlated with the 
net change in density of the coalbed. 

• Sonic, density and resistivity well-logs, from a deep disposal well a couple of miles from the pilot test 
site, were used to construct background geophysical models used in sensitivity studies. 

• The sensitivity studies showed that while the response to the 300 tons of CO2 injected into a single 
layer wouldn’t produce measurable surface response for either gravity or EM, the response due to an 
industrial-size injection would produce measurable surface signal for both techniques.  

• Inversion of gravity data is very important, since construction of density contrast models significantly 
increases the amount of information that can be extracted from the gravity data. We developed a new 
approach that uses a depth of the reservoir as a priori information and solves for a smooth density 
variation inside the reservoir. The inversion results illustrated that, provided we can collect high-
quality gravity data in the field and we have some a priori information about the depth of the 
reservoir, we can recover the spatial location of CO2 plume correctly, although with the smoothing 
constraint of the inversion, the area was slightly overestimated, resulting in an underestimated value 
of density change.   

• Even though there was an uncertainty in a rock-physics model and a discrepancy between 1D and 2D 
models, AVA analysis showed that by inverting seismic and EM data jointly, we can reduce 
uncertainty and obtain much better estimates of CO2 saturation, especially in the third injection zone, 
where seismic AVA data fail to detect the high CO2 saturation.  

• Analysis of spatial resolution and detectability limits show that gravity and EM measurements could, 
under certain circumstances, be used as a lower-cost alternative to seismic measurements.  
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11. List of Acronyms and Abbreviations 
 
CBM  Coal Bed Methane 
CO2  Carbon dioxide 
Ex  Electric field in x-direction 
Ey  Electric field in y-direction 
EM  Electromagnetic 
EOR  Enhanced Oil Recovery 
Im  Imaginary part of a complex number 
μGal  Microgal (gravity unit) 
NIST  National Institute of Standards and Technology 
Re  Real part of a complex number 
Rx  Receiver 
S  Saturation, (SCO2 = CO2 saturation, Sg = gas saturation) 
Tx  Transmitter 
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ABSTRACT 

In this study, we investigate the feasibility of monitoring of CO2 injection into a 

coalbed methane formation using time-lapse seismic and electromagnetic (EM) methods. 

At this injection site, there are three potential injection zones at depths from 400 m to 750 

m and with a lateral extent of 300 m. Since inversion of 2D (or 3D) seismic and EM data 

is computational intensive and hence time-consuming, we use an 1D convolution model 

to approximate 2D seismic data, and an 1D layered model to approximate 2D EM data. 

Comparison between the 1D and 2D seismic and EM data shows that (1) the 1D 

convolution model provides a good approximation to the 2D seismic data at small 

incident angles, and (2) the 1D layered EM model provides a fair approximation to the 

2D EM data at the receivers right above the injection zones. We jointly invert time-lapse 

seismic and EM data for CO2 saturation, and compare these inversion results with those 

obtained from the inversion of seismic data only. Even though there is an uncertainty in a 

rock-physics model and a discrepancy between 1D and 2D models, we found that by 

inverting seismic and EM data jointly, we can obtain much better estimates of CO2 

saturation, especially in the third injection zone where seismic AVA (amplitude vs. 

angle) data fail to detect the high CO2 saturation. Our synthetic studies show that time-

lapse surface seismic and EM methods are a promising tool for CO2 injection monitoring 

in the scenario presented in this paper, however further studies are needed for more 

complicated scenarios. 
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INTRODUCTION 

It has been recognized that monitoring a field-scale CO2 saturation is important for 

CO2 sequestration. Time-lapse geophysical methods, for example, surface seismic and 

electromagnetic (EM), have the potential of providing this information, and hence being 

candidate monitoring tools. However, analyzing and inverting two- (2D) or three-

dimensional (3D) geophysical data is still challenging and time-consuming. In this study, 

we explore the use of a joint inversion of seismic AVA (amplitude vs. angle) and EM 

data for estimating of CO2 saturation. We will first compare the calculated seismic AVA 

and EM responses using the 2D numerical methods with those using one-dimensional 

(1D) methods, and then invert the 2D data using 1D approximation. 

 

APPROXIMATION OF 2D GEOPHYSICAL DATA 

In this section, we compare synthetic 2D seismic and EM data with those obtained 

from their corresponding 1D models for common seismic and EM profiles. The 

comparison will justify the use of 1D models as approximations to the 2D numerical 

models. The comparison will also provide insight into how to use the 1D models. 

Seismic data 

We compare seismic data based on the seismic attribute profile obtained from 

velocity and density logs from nearby well. There are three potential injection zones. We 

calculate seismic responses using 2D finite-difference staggered-grid code which models 

elastic wave propagation in arbitrarily inhomogeneous media (Levander, 1988), and 1D 
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convolution methods (Chen et. al., 2007) for the following three cases: (1) background 

(pre-injection) model (Model-0) using the well logs from nearby well, (2) model with a 

10% decrease in P-wave velocity and a 5% decrease in density in the first injection zone 

(Model-1), and (3) model with the 10% decrease in P-wave velocity and the 5% decrease 

in density in all the three injection zones (Model-2). The decrease in P-wave velocity and 

density due to the presence of CO2 was based on our laboratory measurements on coal 

samples (Kneafsey et al., 2005).  

The 1D seismic data are calculated by convolving seismic reflectivity with a given 

wavelet. In this case, we use the Gaussian derivative wavelet with the center frequency of 

18 Hz. Seismic AVA reflectivity is a explicit function of seismic P- and S-wave 

velocities and density in the given layers. We use the Zoeppritz equations (Aki and 

Richards, 1980) to model the reflectivity, which is a function of seismic P- and S-wave 

velocities and density in the background model (Model-0). Those values in Model-1 and 

Model-2 are the summation of the values in the background model and the changes due 

to the presence of CO2. 

Figures 1 and 2 compare the normalized differences (i.e., (Model-1 minus Model-

0)/Model-0, and (Model-2 minus Model-0)/Model-0) in seismic AVA data caused by 

injection of CO2 using the 2D (black curves) and 1D (red curves) models. Overall, the 

differences obtained from the 1D convolution model are close to those obtained from the 

2D codes. In Figures 3 and 4, we take the first-order spatial difference of the seismic data 

shown in Figures 1 and 2. The discrepancies between the data calculated from 1D and 2D 

models are smaller than those without taking the first-order spatial difference. Although 
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the inversion results using the two types of data sets are very similar, we prefer to use the 

data after taking the first-order difference because it gives smaller data misfits. 

 

EM data 

2D EM model is based on a resistivity log from a nearby well. Model geometry is 

the same as in the seismic model; Model-0 is the background model, Model-1 is the 

model with CO2 present in the top injection zone, and Model-2 is the model with CO2 

present in all three injection zones. The CO2 injection zones are between x = 850 m and 

1150 m. Again, the change in resistivity due to the CO2 presence was based on our 

laboratory measurements (Kneafsey et al., 2005). We use both the 1D and 2D numerical 

methods to calculate EM responses for a given frequency, and source and receiver 

locations. We consider two frequencies (1 Hz and 10 Hz), five sources (x = -2000 m, -

1900 m, -1800 m, -1700 m, and -1600 m, respectively), and sixty receivers from -1000 m 

to 1900 m with an interval of 50 m.  

Figure 5 compares the ratios of Model-1/Model-0 EM responses calculated using 

the 2D numerical method (Newman and Alumbaugh, 1997) (black curves) and using 1D 

method (red curves). Similarly, Figure 6 compares the ratios of Model-2/Model-0 EM 

responses calculated using the 2D numerical method (black curves) and using 1D method 

(red curves). From both figures, we can see that the EM responses due to the presence of 

CO2 injection zones are very different in terms of values. The values obtained from the 

1D method are significantly larger than those obtained by the 2D method. This is 

understandable because in the 1D model the whole layer (infinite extent) is CO2 saturated 

while in the 2D model the CO2 zone is only 300 m wide. The 2D EM responses clearly 
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identify lateral boundaries of the injection zones, which are located between 850 m and 

1150 m. If we focus on the EM data within the injection zones, we found that the slopes 

in the 1D and 2D data show some similarities even though the slopes from 2D calculation 

are sharper than those obtained from the 1D method. They increase with the increasing 

source-receiver offsets, and the gradients are functions of the target resistivity. As a 

result, we may incorporate that information into our inversion. 

 

BAYESIAN MODEL 

In this section, we briefly show the Bayesian model for a joint inversion of 1D 

seismic AVA and EM data. We first show likelihood functions for seismic AVA and EM 

data based on the 1D approximation to the 2D data, then we show the prior distribution, 

and finally we give the sampling methods for drawing samples from the joint posterior 

probability distribution functions. The developed Bayesian model is an revision of the 

joint inversion model given by Chen et. al. (2007). 

Geophysical data 

The geophysical data used for this study are time-lapse seismic AVA and EM data. 

Let vectors , , and  represent the background model seismic P- and S-wave 

velocities and density for 40 layers. Let a vector  be the electrical resistivity in the 

same background model. The seismic AVA and EM responses of the background model 

are given as follows: 

( )bg
pv ( )bg

sv ( )bgρ

( )bgr

  (1) ( ) ( ) ( ) ( )
1( , , )bg bg bg bg

AVA p sG=Y v v ρ ,

and  
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  (2) ( ) ( )
2 ( )bg bg

EM G=Y r .

The presence of CO2 in the injection zone causes a decrease in seismic velocity and 

density and an electrical resistivity increase. Let vectors pΔv , sΔv , , and Δρ Δr  

represent the changes caused by the CO2 saturation in seismic P-wave and S-wave 

velocities, density and electrical resistivity, respectively . Notice that typically sΔ  is 

equal to zero as in this study. Thus, the time-lapse seismic data are the difference 

between the seismic AVA responses before and after the injection, which are given by: 

v

  (3) ( ) ( ) ( ) ( ) ( )
1( , , )AVA bg bg bg bg

p p s s AG= + Δ + Δ + Δ −Z v v v v ρ ρ Y .VA

.

As shown in Figures 6 and 7, the first-order difference of the normalized differences has 

smaller variations, and therefore the seismic data used in this study are the differences 

given by   ( ) ( )( )AVA AVAδ=d Z

For EM data, we first calculate the ratios of EM responses between the model with 

and without CO2 present, which is given below: 

  (4) ( ) ( ) ( )
2 ( ) /EM bg bg

EMG= + ΔZ r r Y

As shown in Figures 8 and 9, we use the EM data from the receivers at locations from 

850 m to 1150 m. Therefore the EM data used in this study are given by 

. ( ) ( ) ( )
850

EM EM EM= −d Z Z

 

Stochastic Model 

We developed a stochastic model to estimate unknown CO2 saturation given the 

seismic AVA and EM data described above. Let vector gS  be the CO2 saturation in the 

injection zones. If there is only one injection zone, we have one unknown variable. If 

 47



there are three injection zones, we have three unknown variables. The Bayesian model 

for the inversion is given below: 

 ( ) ( ) ( ) ( )( | , ) ( , | ) (AVA EM AVA EM )g gf f∝S d d d d S Sgf

).g

)

 (5) 

The first term on the right side of Equation (5) is referred to as the likelihood 

functions, which is the link between seismic AVA and EM data and unknown CO2 

saturation. The second term on the right side of the equation is referred to as the prior 

distribution, which summarizes the information that is not included in the current data.  

 

Likelihood Models 

We assume that errors in seismic AVA data are independent of the errors in EM 

data, and thus we can write the likelihood function as the product of two terms: 

  (6) ( ) ( ) ( ) ( )( , | ) ( | ) ( |AVA EM AVA EM
g gf f f∝d d S d S d S

For seismic data, we assume that the total number of data is m , which is equal the 

product of the total number of incident angles and the total number of data points for each 

incident angle. We assume that errors in the seismic data have the normal distribution 

with zero mean and the standard error determined by a given signal-to-noise (S/N) ratio 

(5 in this study). Let  represent the i-th AVA data and  represent the i-th 

calculated AVA data. Thus, we have  

(obsAVA
id (calc

i
)a

 
( ) ( ) 2

( )
2

1

(1( | ) exp )
22

obsAVA calcm
AVA i i

g
i

d af
σπσ=

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
∏d S .  (7) 

Similarly, we can derive the likelihood function of EM data. Let  be the total 

number of EM data and 

n

rσ  be the relative errors in EM data (5% in this study). Let 
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(obsEM
id )  be the i-th EM data and  be the corresponding calculated EM responses. 

Thus, we obtain the following function: 

( )calc
ie

 
2( ) ( )

( )
2 ( )

1

1 1( | ) exp
22

obsEM calcn
EM i i

g obsEM
i r ir

d ef S
dσπσ=

⎛ ⎞⎛ ⎞−⎜= − ⎜⎜ ⎝ ⎠⎝ ⎠
∏d .⎟⎟ ⎟

3g

 (8) 

 

Prior Model 

The prior distribution is determined using prior knowledge and other information 

about the unknown parameters. We assume unknown CO2 saturation in each zone are 

independent of each other. As a result, we can write the prior distribution as the product 

of several terms, given below: 

 1 2( ) ( ) ( ) ( )g g gf f S f S f S=S  (9) 

We assume that CO2 saturation in each zone is uniformly distributed on (0, 1). 

 

MCMC Sampling Methods 

We use Markov Chain Monte Carlo (MCMC) sampling methods to obtain 

estimates of unknown parameters from the Bayesian model defined in Equation (5). 

Unlike optimization-based methods seeking a single optimal solution of unknown 

parameters, MCMC sampling-based methods draw many samples from the joint posterior 

distribution. Using those samples, we can make inferences about the marginal 

distributions of each parameter, such as its mean, variance, and predictive intervals.  

MCMC sampling methods have been found to be useful for inverting complex 

geophysical data set (e.g., Bosch, 1999; Malinverno, 2002; and Buland et al., 2003). The 
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main steps for using MCMC methods entail: (1) deriving conditional probability 

functions given all the data and other unknown variables, which are referred to as full 

conditional distribution functions; (2) generating samples using suitable algorithms; (3) 

making inferences about each unknown. In the following, we first show the full 

conditional distribution functions of unknown vectors given in Equation (1), and then 

describe the sampling algorithms used in this study, which include the Metropolis-

Hasting methods (Hasting, 1970) and the slice sampling methods (Neil, 2003).  

 

INVERSION RESULTS 

In this section, we investigate the feasibility of using time-lapse seismic AVA and 

EM data to monitor CO2 injection into coal beds through synthetic case studies. We 

assume that the background information, such as thickness of each layer, seismic P- and 

S-wave velocities, density, and electrical resistivity in each of these layers, can be 

obtained from borehole logging. The background models for seismic attributes and 

electrical properties may be different, but the CO2 injection zones are located at roughly 

same depths in both models. Our main focus is on the following issues: 

(1) Can seismic methods detect the change due to the CO2 presence in the injection 

zones? 

(2) How accurate are the seismic methods for quantitatively estimating those 

changes? 

(3) What are the benefits of incorporating EM data into the estimation of CO2 

saturation?  

We will try to answer above questions through two case studies. 
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Synthetic data 

We consider three CO2 injection zones in the seismic model in depths – (1) from 

405 m to 442 m (thickness of 37 m), (2) from 592 m to 610 m (thickness of 8 m), and (3) 

from 740 m to 750 m (thickness of 10 m), respectively. The three injection zones in the 

resistivity model are slightly different; they are located at depth ranges of (1) 399 - 433 m 

(thickness of 34 m), (2) 590 - 611 m (thickness of 12 m), and (3) 740 - 760 m (thickness 

of 20 m). We consider two injection strategies. The first one (referred to as Model-1) 

injects CO2 only into the first zone, and the second one injects CO2 into all three zones 

(referred to as Model-2). The case of one injection zone is an ideal situation for 

monitoring CO2 change using seismic and EM methods because we can avoid possible 

complex effects from multiple layers. 

Synthetic seismic data were generated using a 2D finite-difference staggered-grid 

code which models elastic wave propagation in arbitrarily inhomogeneous media with a 

18 Hz Gaussian derivative source wavelet (Levander, 1988). After normal moveout 

(NMO) correction, we created a common depth point (CDP) stack, and from that AVA 

data. We first generated seismic AVA for the background model, and then we assumed 

that the injection zone has 95% CO2 saturation, and generated seismic AVA responses 

again. The differences in seismic AVA attributes are our time-lapse AVA data . As only 

first four incident angles (corresponding to 0, 1.9, 3.8, and 5.7 degrees, respectively) have 

responses to all the zones, we only use them for inversion. The comparison between 2D 

seismic data and 1D convolution approximation were given in Section 2. 

 51



Synthetic EM data were also generated using 2D numerical methods (Newman and 

Alumbaugh, 1997) at two frequencies (1 Hz and 10 Hz), with five transmitter locations (-

2000 m, -1900 m, -1800 m, -1700 m, and -1600 m, respectively), and 60 receivers 

located from -1000 m to 1900 m with a separation of 50 m. Since only the changes in EM 

responses from the receivers between 850 m and 1150 m show similar patterns to those in 

1D approximation (see Section 2), we assume that EM data are available only at seven 

receivers (850 m, 900 m, 950 m, 1000 m, 1050 m, and 1100 m, respectively). In 

summary, the EM data used in this inversion have two frequencies (1 Hz and 10 Hz), five 

transmitters, and seven receivers. 

 

Rock physics model 

It is difficult to obtain a reliable rock physic models for this study given limited 

information. Since our focus is on the change of CO2 saturation in the injection zones, we 

only need relationships that tie the CO2 changes to the changes of seismic attributes (e.g., 

seismic P- and S-wave velocities and density) and to the changes of electrical resistivity.  

Our rock physics model is based on the following assumptions: 

(1) Seismic S-wave velocity does not change with the change of CO2 saturation. 

(2) Seismic P-wave velocity and density linearly decrease with the increasing CO2 

saturation. 

(3) Electrical resistivity linearly increases with the increasing CO2 saturation. 

(4) 95% CO2 saturation leads to 10% decrease in seismic P-wave velocity, 5% 

decrease in density, and 150% increase in electrical resistivity.   
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Based on the above assumptions, we developed linear relationships between the 

changes in CO2 saturation and the changes in seismic and electrical attributes. We 

assumed that the injection zone has 95% CO2 saturation both in the seismic and EM 

model. Our rock physics model can be improved if more information is available. 

 

One injection zone:  Model-1 

In the first case, we only inject CO2 into the top injection zone (depths between 405 

and 442 m). We strive to estimate CO2 saturation from time-lapse seismic AVA and EM 

data sets. The prior distribution of the unknown CO2 saturation is assumed to be uniform 

on (0, 1), and therefore it is non-informative. 

Figure 7 shows the estimated probability density functions (pdfs) of the unknown 

CO2 saturation. The curve in Figure 7a shows the estimated pdf using seismic AVA data 

only, and the curve in Figure 7b shows the estimated pdf using both seismic AVA and 

EM data. The results show that in both cases - using seismic data only and using both 

seismic and EM data the inversion correctly predicts the presence of high CO2 saturation 

in the injection zone. Notice that the median, mean, and mode of the pdfs (see Table-1) 

are higher than the true value of 95%. The possible cause for the higher values are the 

discrepancies between 2D data and 1D approximations, and errors in the empirical rock 

physics model for linking the change in CO2 saturation to the changes in seismic and 

electrical attributes. 

In addition, by comparing the curve in Figure 7a with the one in Figure 7b, we 

found that the incorporation of EM data can significantly reduce uncertainty associated 

with the inversion since the pdf obtained using both seismic and EM data are much 
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shaper than that obtained using seismic AVA data only. Table-1 also shows that the 

standard error (5th column), and 95% probability intervals (6th column) of the unknown 

CO2 saturation obtained using seismic AVA data only are larger than those obtained 

using both seismic and EM data. 

 

Three injection zones: Model-2 

In the second case, we assume that CO2 is injected into three isolated injection 

zones. Therefore, we need to estimate three CO2 saturations (one for each injection zone) 

from seismic AVA and EM data sets. We still use the non-informative prior for each 

unknown CO2 saturation, with its uniform distribution on (0, 1).  

As shown in Figure 8, for the first injection zone, we can see similar patterns to 

those seen in the first case study. The estimated CO2 saturation is close to 1.0 with a 

small uncertainty, and the joint inversion of seismic AVA and EM data improves the 

estimation by reducing uncertainty significantly. For the second injection zone, the 

estimated CO2 saturation is also close to 1.0, and uncertainty is little larger than that in 

the first injection zone. Again, the inclusion of EM data reduces uncertainty associated 

with the estimation. 

For the third injection zone, the inversion of seismic AVA data gives misleading 

results and shows the injection zone with a low CO2 saturation. This is far away from the 

true value of 95% CO2 saturation. However, the inversion results after incorporating EM 

data clearly show there is a high CO2 saturation zone. 

In all the cases, the joint inversion of seismic AVA and EM data gives us higher 

CO2 saturation than the corresponding true value (95%). This is possibly because the 1D 
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approximation of 2D EM data underestimate the slopes in the EM data sets. To obtain 

more accurate results, and account for effects of finite site target zones, we may need to 

use 2D forward code in our inversion approach.  

 

DISCUSSION AND CONCLUSIONS 

In this study we have demonstrated the utility of time-lapse seismic and EM for 

monitoring of CO2 saturation in the coalbed methane environment using Bayesian 

stochastic inversion models. Through the synthetic studies, we have shown that  

(1) 1D convolution methods can provide a good approximation for the 2D 

seismic data. 

(2) The ratio of 2D EM responses for the model with and without CO2 at the 

receivers located above the injection zones can be approximated using 

the ratio of 1D EM responses for the same models at the same receivers. 

(3) Stochastic inversion of seismic AVA data can provide good estimates of 

CO2 saturation in the first two injection zones. 

(4) The incorporation of EM data can reduce uncertainty in the estimates of 

CO2 saturation. 
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TABLE 1. Comparison between the CO2 saturation estimated using seismic AVA 
data only and that estimated using both seismic AVA and EM data for the case of 
one injection zone.  
 
 Median Mean Mode Standard 

deviation 
95% Predictive 

Interval 
CO2 saturation 
(seismic AVA 
data only)  

 
0.9844 

 
0.9791

 
0.9891 

 
0.0183 

 
(0.9341, 0.9994) 

CO2 saturation 
(both seismic AVA 
and EM data)  

 
0.9999 

 
0.9999

 
0.9999 

 
0.0001 

 
(0.9995, 1.0000) 

 

 

TABLE 2. Comparison between the CO2 saturation estimated using seismic AVA 
data only and that estimated using both seismic AVA and EM data for the case of 
three injection zones.  
 
 Zones Median Mean Mode Standard 

deviation 
95% Predictive 

Interval 
Zone-1 0.9900 0.9855 0.9931 0.0140 (0.9495, 0.9997) 
Zone-2 0.9419 0.9303 0.9646 0.0528 (0.8217, 0.9976) 

Seismic 
AVA 

data only Zone-3 0.1067 0.1152 0.0813 0.0781 (0.0046, 0.2611) 
Zone-1 0.9996 0.9995 0.9997 0.0005 (0.9979, 1.0000) 
Zone-2 0.9984 0.9978 0.9987 0.0020 (0.9928, 0.9999) 

Seismic 
AVA and 
EM data Zone-3 0.9993 0.9991 0.9994 0.0008 (0.9972, 1.0000) 
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Figure 1: Comparison of differences in normalized seismic AVA data, (Model-1 - 

Model-0)/Model-0 for four angles, where the black curves are calculated using the 2D 

numerical methods and the red curves are calculated using the 1D convolution method. 
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Figure 2: Comparison of differences in normalized seismic AVA data, (Model-2 – 

Model-0)/Model-0 for four angles, where the black curves are calculated using the 2D 

numerical methods and the red curves are calculated using the 1D convolution method. 
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Figure 3: Comparison between the first-order spatial difference of seismic AVA data 

shown in Figure 1 using 2D codes (black curves) and 1D codes (red curves). 
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Figure 4: Comparison between the first-order spatial difference of seismic AVA data 

shown in Figure 2 using 2D codes (black curves) and 1D codes (red curves). 
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Figure 5: Comparison between the real and imaginary components of EM data (ratio of 

Model-1/Model-0) calculated using the 2D numerical model (black curves) and those 

calculated using the 1D model (red curves). The response for frequency of 1 Hz is shown 

in (a) and (b), and the response for frequency of 10 Hz in shown in (c) and (d). The 

regions within the blue vertical parallel lines are CO2 injection zones. 
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Figure 6: Comparison between the real and imaginary components of EM data (ratio of 

Model-2/Model-0) calculated using the 2D numerical model (black curves) and those 

calculated using the 1D model (red curves). The response for frequency of 1 Hz is shown 

in (a) and (b), and the response for frequency of 10 Hz in shown in (c) and (d). The 

regions within the blue vertical parallel lines are CO2 injection zones. 
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Figure 7: Estimated probability density functions (pdfs) of CO2 saturation in the 

injection zone of Model-1: (a) using seismic AVA data only, and (b) using both seismic 

AVA and EM data. 
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Figure 8: Estimated probability density functions (pdfs) of CO2 saturation in the three 

injection zones of Model-2: (a-c) using seismic AVA data only, and (d-f) using both 

seismic AVA and EM data. 

 66


	CCP2_coal_LBNL_finalreport_10152009
	appendix1



