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Abstract

We present in this paper the formulation and numerical analysis of a finite deformation model
of coupled poro-plasticity. Fully saturated conditions are assumed. The model is based on a
multiplicative decomposition of the deformation gradient in elastic and plastic parts, together
with an additive elastoplastic decomposition of the fluid content. The final relations describing
the evolution of the different fields are then obtained in the thermodynamic framework furnished
by the principle of maximum plastic dissipation. The particular case of an associated Drucker-
Prager model in effective stresses is considered as a model example. A complete characterization
of the dissipative structure of the problem of evolution is described through the derivation of an
a-priori stability estimate. We describe in detail the finite element implementation of the model
in the context of staggered algorithms for the solution of the physically coupled problem. Finally,
we present representative numerical simulations to illustrate the features of the proposed models.
In particular, the case of strain localization in globally undrained conditions is studied in the
proposed framework.

KEY WORDS: elastoplasticity; porous media; finite element method; stag-
gered schemes; strain localization under undrained condi-
tions.
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1. Introduction

The study of the deformation of porous media is of the main interest due to its
numerous practical applications. Perhaps the most important of all corresponds to the
modeling of the response of soils in geomechanics. In this context, we commonly have
the presence of a fluid, typically water, flowing through the pore space of the solid, with
different ranges of saturation. In general, the coupling that occurs between the deformation
of the solid skeleton and the fluid flow changes significantly the nature of the problem.
This situation is of particular interest in the elastoplastic range, a common case given the
characteristics of typical soils. The complete characterization and numerical approximation
of the resulting physically coupled system becomes then of the main importance. It is
the goal of this paper to address several issues regarding the formulation and numerical
simulation of these systems in the finite deformation range under fully saturated conditions.

A fundamental contribution to the field was made by Biot, who in a series of papers
formulated a general thermodynamic framework for the modeling of coupled poro-elastic
and poro-viscoelastic solids in the infinitesimal range (see B1OT [1941,54,55,56b]), with the
extension to the finite deformation case presented in B1OoT [1972]. Briefly, this framework
is characterized by the description of the fully saturated porous solid in terms of the
deformation of the solid’s skeleton and the fluid content distribution (fluid mass per unit
volume). The resulting boundary-value problem leads to a coupled system of equations
involving the equations of balance of momentum and the equation of conservation of fluid
mass. A typical consideration in the latter is Darcy’s law, characterizing the seepage of
the fluid through the solid. We refer to Coussy [1995] for a recent complete account
of the ideas behind this framework, together with some extensions as developed in the
references presented therein. We also note the close relation of this framework with the
study of stress assisted diffusion of solvents in solids, although the two bodies of literature
seem to be unconnected to a large extend. We refer to GOVINDJEE & SiMmo [1991] for a
representative example involving a finite viscoelastic solid. The main goal of this paper is
to extend the aforementioned framework to accommodate a multiplicative model of finite
strain plasticity.

Finite element solutions of elastic consolidation problems in the infinitesimal range
can be found in SANDHU & WILSON [1969], BOOKER & SMALL [1975], and CHRISTIAN
[1977], to mention just a few of the earliest works. Similarly, the finite element analysis
of infinitesimal elastoplastic consolidation problems has been considered in SMALL et al
[1976] and ZIENKIEWICZ & HUMPHESON [1977], among others. The formulation of finite
deformation poro-plastic models has been considered by several authors. For example,
we refer to the work presented in CARTER et al [1979], and PREVOST [1981], which also
included the development of finite element methods for their solution. The framework
considered in all these references makes use of a rate form of the constitutive relation.
Alternative treatments of finite deformation plasticity in the uncoupled range often con-
sider, however, a multiplicative decomposition of the deformation gradient in an elastic
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and a plastic part, together with an underlying hyperelastic response of the material; see
MANDEL [1971],S1MO & ORTIZ [1985] and LUBLINER [1986], among many others. These
models are becoming more popular due to recent advances in the development of robust nu-
merical integration schemes for their numerical simulation; see WEBER & ANAND [1990],
ETEROVICH & BATHE [1990], CUITINHO & ORTIZ [1992] and SiMoO [1992]. We refer to
SIMO [1994] for a comprehensive account in all these issues.

A recent example of the formulation of a multiplicative finite strain elasto-plastic
model of nonlinear consolidation can be found in BORJA & ALARCON [1995], in combi-
nation with a mixture-type framework (that is, accounting for e.g. stresses in the fluid
and solid). Except for the usual dissipative effects associated with the conduction of fluid
mass (following, e.g., Darcy’s law), the framework presented by these authors exhibits no
irreversible elastoplastic response associated to the evolution of the fully saturated porous
space. This situation is to be contrasted with several extensions of the aforementioned
Biot's framework that consider an additive elastoplastic decomposition of the fluid con-
tent, or related porosity of the solid, in the infinitesimal range. See Coussy [1995] and
BENALLAL & Cowi [1997].

We present in this paper a general framework that accommodates these two elastoplas-
tic decompositions in the finite deformation range, that is, an elastoplastic multiplicative
decomposition of the deformation gradient and an additive elastoplastic decomposition of
the fluid content. The final evolution equations for the different fields are derived in the
thermodynamical framework furnished by the principle of maximum plastic dissipation,
leading to an associated model in the usual sense. In particular, the role of the pore pres-
sure field, in the case of a barotropic fluid, as conjugate in the dissipation inequality to the
plastic change of fluid content is studied in this general finite deformation range. Specifi-
cally, the common example of a poro-plastic model in effective stresses is considered. We
note the relation of the resulting formulation with the treatments of multiplicative coupled
thermo-plasticity presented in SIMO & MIEHE [1992], given the formal analogy of the two
problems. See also the discussion in ARMERO & SIMO [1993]. To our knowledge, the
current paper is the first to consider the combination of these two known elastoplastic
decompositions in the formulation of a coupled finite deformation poro-plastic model.

We describe in detail the implementation of this model in the context of the finite ele-
ment method. In particular, we consider staggered methods for the solution of the resulting
physically coupled system. In the context of the coupled solid/fluid interaction system of
interest herein, complete reviews of these methods can be found in LEwis & SCHREFLER
[1987], WooD [1990] (Chapter 8), and ZIENKIEWICZ & TAYLOR [1991] (Chapter 11). We
presented in ARMERO & SIMO [1992,93] an analysis of standard staggered methods for
coupled thermomechanical problems in the framework of the method of fractional steps
(see e.g. YANENKO [1971]). In particular, we identified the breaking of the contractive
structure of the problem by the partition underlying standard staggered methods as the
cause for their inherent instability. In addition, the analysis identified alternative meth-
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ods that preserve this structure, leading to unconditionally stable single-pass staggered
algorithms. Noteworthy, the proposed analysis applies to the fully nonlinear finite strain
thermo-plastic problem, and apply by analogy to the poro-plastic case of interest herein.
We refer also to ARMERO & SIMO [1996] for the development of stable fractional step
methods for the MHD equations of fluid mechanics following similar ideas.

Given this formal analogy, we outline only briefly in this paper the extension of these
considerations to the finite strain poro-plastic model developed in the first part of the
paper. Specifically, two different partitions of the problem are available, both involving two
phases, a solid and a fluid phase, corresponding to the solution of the equilibrium equations
and fluid mass conservation, respectively. The difference between the two strategies stems
from the drained or undrained character of the solid phase, as it can be found in the
literature. In particular, staggered algorithms based on a drained solid phase can be found
in PARK & FELIPPA [1983] or WOOD [1990], among many others, and on an undrained
solid phase in ZIENKIEWICZ et al [1988] for the linear elastic consolidation problem. In
fact, the stability of the numerical schemes resulting from an undrained partition of the
problem is shown in this last reference through a classical von Neumann analysis of the
linearized problem. The results outlined herein show that the undrained split conforms
with the dissipative character of the problem of evolution by inheriting an a-priori stability
estimate of the exact coupled problem. The stability of the schemes based on this split,
with each sub-problem solved with a stable scheme, is then concluded in the general fully
nonlinear finite strain coupled poro-plastic range.

An outline of the rest of the paper is as follows. Section 2 summarizes the equations
governing the deformation and fluid flow in a fully saturated porous media. The finite strain
poro-plastic model proposed in this work is developed in Section 3, with the characteristic
example given by Drucker-Prager’s model in effective stresses described in Section 3.4. We
derive in Section 3.5 an a-priori stability estimate for the resulting boundary value problem.
The proposed model is then evaluated numerically in representative numerical simulations
presented in Section 4. Finally, and after presenting some concluding remarks in Section
5, we describe in Appendix I full details of the finite element implementation of the
proposed methods, including return mapping algorithms used in the numerical integration
of the proposed finite strain poro-plastic models.

2. The Governing Equations

We summarize in this section the equations governing the evolution of a porous media.
The thermodynamical framework first proposed by B1oT [1941,55,72] is considered. In this
context, Section 2.1 presents the equations governing the balance of linear and angular
momenta, as well as the equation describing the conservation of fluid mass. Crucial to the
formulation of the poro-elastoplastic model considered in Section 3 is the characterization
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of the dissipation inequality in this general framework. We summarize these issues in
Section 2.2. We refer to the recent account in Coussy [1995] for complete details in the
derivation and extensions of the equations presented herein.

2.1. The balance equations

We consider a porous solid occupying a reference placement B and composed of a
skeleton and a fluid flowing through the pore space. The motion of the solid’s skeleton,
consisting of the solid matrix and the (non-occluded) pore space, is characterized by the
deformation mapping ¢ : B x [0, T] = R™™ (ngim = 1,2, or 3), for a typical time interval
T. As customary, we denote by * = ¢(X,t) the current position of the skeleton particle
X € B; see Figure 2.1.

The pore space is assumed to be fully saturated with a single fluid phase. The open
system defined by the fluid flowing through particles of the porous solid’s skeleton can
be characterized by the fluid content M : B x [0,T] — R (fluid mass per unit reference
volume). The fluid content M is defined in terms of the components of the solid/fluid
mixture as

M=py ¢p J, (2.1)

where p,, is the current density of the fluid and ¢, is the current porosity of the solid. We
have introduced in (2.1) the standard notation for the Jacobian

J:=detF >0 for F := GRADp , (2.2)

with GRAD(+) denoting the material gradient with respect to the reference coordinates X.
The evolution of the deformation ¢ and the fluid content M are governed by the following
balance laws.

i. Conservation of fluid mass. Assuming that no volumetric sources of fluid exist, the
conservation of fluid mass reads

%M = —divgq, , (2.3)
for the material time derivative () = 0(-)/0t| x (that is, fixing the skeleton particle X),
the divergence operator div(-) with respect to the spatial coordinates * = (X ,t), and
the flow vector field gy, : B x [0,T] — R™™ of fluid mass. Indeed, the rate of change of
the fluid mass in the deformed configuration ¢ (Px) of any material part Px C B of the
solid’s skeleton (see Figure 2.1) is given by

d

S btpdv==[ gy mda, (2.4)
dt Joo(px) 0P(Px)
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FIGURE 2.1. Problem definition. A porous solid is subjected to a
deformation ¢ of the skeleton and a fluid flow characterized by the flow
vector Q.

where g, - n corresponds to the fluid mass flux across the bounding surface 9 (Px) with
unit normal n. A standard argument based on Gauss theorem leads to (2.3). In terms of
the mixture constituents, we can write

qu = _pw¢p(vw - U) 3 (25)

for the relative velocity of the fluid (v, — v) with respect to the velocity of the skeleton
v = pop~l. We note, however, that the formulation considered herein does not make use
of the fields characterizing the different phases of the mixture and, in particular, of the
porosity ¢,. Instead, and following B1oT [1941,55,72], the state of the porous solid/fluid
system is completely characterized by the two fields ¢ and M, with the addition of other
internal variables characterizing its inelastic response, as described in Section 3 below.

The consideration of the Piola transform (see e.g. MARSDEN & HUGHES [1983])
Q. :=J Flq, ( — Jdivg, = vaw) , (2.6)
for the material divergence operator DIV(-) (with respect to X), leads to
M=-DvQ,, (2.7)
the material form of fluid mass balance.

ii. The equilibrium equations. The local equation of equilibrium for the solid-fluid
system in the quasi-static limit of interest reads (see B1oT [1955])

dive +pf =0, (2.8)
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for the total Cauchy stress tensor o, the external body force f per unit mass (assumed the
same for both the fluid and the skeleton), and the apparent density p of the porous solid,
defined in terms of the mixture constituents by

p = Qppw + (1- ¢p)ps ) (2.9)

for the density ps of the solid phase. As usual, the balance of angular momentum in a
non-polar media leads to the symmetry of the total stress o7 = o. The material form of
equation (2.8) reads

DIVP + p,f =0, (2.10)

in terms of the first Piola-Kirchhoff stress tensor P := JoF~T and the reference density
po=pJ. (2.11)

Equation (2.11) follows through a standard argument imposing the conservation of mass of
the solid’s skeleton under the action of its deformation ¢ and the corresponding Jacobian J.

2.2. Energy balance and entropy production

Denoting the internal energy density (per unit reference volume of skeleton) of the
solid/fluid mixture by e : B x [0,T] — R, the conservation of energy leads to the following
local evolution equation under isothermal conditions

%—é =0 . d+ (f qQuw — div [hwau]) 3 (212)

that is, the rate of change of the internal energy e is given by the power of the total stresses
o on the rate of deformation of the skeleton d := FF'I, plus the contributions of the fluid
flow, the last two terms in (2.12). In particular, the macroscopic contributions of the fluid
flow are given by the extra power done by the external forces f on the relative velocity of
the fluid (f - g ), and the rate of energy leaving a particle of the solid’s skeleton due to
the actual conduction of fluid mass.

A typical example of external loading is furnished by the action of the gravity field, a
conservative load defined by the potential Vg,

f=-0Vez: =9, with Vezt = —¢ - g + constant, , (2.13)

for the gravity acceleration g € R™™. The contribution to the energy change due to the
conduction of the fluid mass is represented by the last term in (2.12), with h,, denoting the
enthalpy of the fluid (per unit fluid mass) transported by the fluid mass flow vector qy,.

Similarly, the postulate of positive entropy production (second law of thermodynam-
ics) can be written in terms of the entropy density of the solid/fluid mixture (per unit
reference volume of the solid’s skeleton), denoted by n: B x [0,T] — R, as

1 1d .
7Fentr = 'jd_z + div [qu'w] >0, (214)
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for the rate of entropy production Ien¢r (per unit reference volume), with the last term
representing the entropy of the fluid s, (per unit fluid mass) leaving a given skeleton
particle. Isothermal conditions are again assumed in (2.14). In fact, denoting by T, the
constant absolute temperature of the mixture and defining

Vvi=e—Tyn, and W := hoy — Tpsyy (2.15)

for the free energy of the porous solid v and the free enthalpy of the fluid p,, (or fluid’s
chemical potential), we can write the total dissipation D := T,lepnsr as

D=71:d+ oM -t — Jqy VY [the + Veat] > 0, (2.16)

. 7 N\ >4
"~ v

Dint Dcond

for the Kirchhoff stresses 7 = Jo and the spatial gradient V(-) (with respect to the spatial
coordinates x), after combining (2.12) and (2.14) with the Piola transform (2.6).

Darcy’s law furnishes an example for the definition of the fluid flow vector q,,. In the
notation introduced above and given the expression (2.16) of Dcong, it is given by

qQuw = _p?ukv(ﬂw + Ve:z:t) s (217)

with a positive semi-definite permeability tensor k; see Remark 2.1.1 below. This property
conforms with the observation of non-negative entropy production due to the seepage
process (that is, Deong > 0).

The common argument imposing separately a non-negative entropy production due to
the internal processes occurring in the porous solid (see e.g. TRUESDELL & NOLL [1965])
leads to the reduced Clausius-Planck inequality

Dint =7 :d+ p,M -9 >0. (2.18)

We note the conjugate character of the fluid content M and the fluid’s free enthalpy ..

The case of interest herein consists of a barotropic fluid whose state is characterized
by a pore pressure field p : B x [0,T] — R and the constitutive relation

Pw = pu(p) - (2.19)

In this case, the free enthalpy u,, is given by

My = ﬂw(p) = /p ;_5:(;1%777—) ’ (220)

Furthermore, Darcy’s law reduces in this case to the common expression

Qv = —puwk VP — pug] , (2.21)
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in terms of the pore pressure p. We note that the convention taken in this paper considers
positive tensile stresses o, and positive pore pressure p.

Remarks 2.1.

1. The spatial permeability tensor k in (2.17) and (2.21) is given by
k=Jk,, (2.22)

in terms of the positive semi-definite tensor k, specified per unit reference volume of
the porous solid. We have k, = k;_/n,, for the intrinsic permeability of the porous
space k;, (units of reference length?) and the viscosity n,,, of the fluid or, alternatively,
ko = kn, /7w, for the hydraulic permeability parameter (units of reference length per
unit of time) and the specific weight v,,, = py,g of the fluid. See e.g. BEAR [1972]
for more details and typical values. Note that the positive semi-definiteness of k
follows, since J > 0. The combination of the Piola transform (2.6) and the relation
V(-) = F~T GRAD(-) leads to the convected expression

Q.= —prKo GRAD(pty + Vext) with the relation k, = FK, FT , (2.23)
for the material flow vector Q.. The positive semi-definiteness of K, follows from

the same property of k,.

2. The general boundary-value problem of coupled poro-plasticity is defined by the bal-
ance equations (2.7) and (2.10) (or, equivalently, by their spatial counterparts (2.3)
and (2.8)), supplemented by the constitutive relations developed in the following sec-
tions, and the proper initial and boundary conditions. For example, the boundary
conditions

=@ on 90,BCIB, and PN=T on 0rBCOB, (2.24)

are usually considered, involving an imposed deformation @ and traction vector T on
different parts of the boundary 0B with material unit normal IN. The relations

9,BNorB=0@ and 9,BU0rB=0B, (2.25)

in each spatial component are required for a well-posed problem. Similarly, the bound-
ary conditions

p=p on O,BCIB and Qv -N=Q, on 9gBCIB, (2.26)

on the pore pressure field are usually imposed with requirements similar to (2.25). In
particular, the case of an impervious boundary is recovered by setting the nominal
fluid flux Q. = 0 in (2.26),. O
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3. A Multiplicative Poro-Elasto-Plastic Model

The governing equations summarized in the previous section need to be supplemented
with the constitutive relations characterizing the elastic and inelastic responses of the
porous solid, in general. The actual relations between the stresses and the deformation
and fluid content fields through the free energy 1 need to be developed. We formulate
in this section a general finite strain poro-elasto-plastic model. To this purpose, Section
3.1 introduces the assumed elastoplastic decompositions in this finite deformation range,
with the evolution for the different fields developed in Section 3.2 and 3.3 for the elastic
and plastic contributions, respectively. The model example furnished by a generalized
Drucker-Prager model in Biot effective stresses is presented in Section 3.4. Finally, Section
3.5 describes the dissipative structure of the resulting problem of evolution.

3.1. The elasto-plastic decompositions

We consider a multiplicative decomposition of the deformation gradient

F = F°F? (3.1)

identifying the plastic part of the deformation gradient F'? whose general evolution is to
be specified, and the elastic part of the deformation gradient F¢ defining the intermediate
configuration together with the mechanical elastic response of the material. See Figure
3.1 for an illustration.

Similarly, the scalar field of the fluid content M is assumed decomposed additively as

M = M®+ MP (3.2)

in elastic and plastic parts, respectively. We note that the additive decomposition (3.2) is
consistent with the extensive nature of the fluid content M, a scalar field. As given by the
constitutive relations developed in the forthcoming sections, it identifies the reversible M€
and irreversible MP changes of the fluid content in the porous solid.

The multiplicative decomposition (3.1) was first considered in LEE & LIu [1967] and
LEE [1969], and is nowadays common in modern treatments of uncoupled finite strain
plasticity; see the complete review in SIMO [1994] and references therein. The additive
decomposition (3.2) of the fluid content has been considered in Coussy [1995], and more
recently in BENALLAL & CoMI [1997], in the infinitesimal range. The analogy of the
proposed treatment of the coupled problem of interest with the formulations of finite strain
thermoplasticity considered in SitMO & MIEHE [1992] and ARMERO & SiMo [1993] is also
to be noted. See Section 3.5 below for additional details on this analogy.
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FIGURE 3.1. Multiplicative decomposition of the deformation gra-
dient F' = F'¢F'P in elastic and plastic parts, characterizing locally the
intermediate configuration OF%.

3.2. The elastic constitutive relations

The reversible response of the solid is given by the free energy function v, assumed to
be a function of the elastic fields identified in the previous section. In this way, we write

¥ =(C M®,q), (3.3)

where, for simplicity, we have considered a single scalar internal variable o characterizing
the (isotropic) hardening response of the material. The dependence of the free energy
function on the elastic right Cauchy-Green tensor C* rather than the elastic part of the
deformation gradient F¢ follows from a standard argument based on material frame indif-
ference with respect to superimposed rigid body motions to the current configuration (see
e.g. TRUESDELL & NOLL [1965]).

A classical argument, known as Coleman’s method, and based on the imposition of
the reduced dissipation inequality (2.18) (see e.g. TRUESDELL & NOLL [1965]), leads to
the following elastic relations

S = 26081,!1 and o = Ore? (3.4)

for the second Piola-Kirchhoff stress tensor S := Fe~T+F¢~! in the intermediate config-
uration. After some algebraic manipulations, the internal dissipation (2.18) reduces then
to

D=C°S: LP + qé + poy MP where LP = FPFP~1 | (3.5)
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and g := —0,%. The first two terms are common in uncoupled mechanical plasticity
theories and capture the inelastic response associated to the plastic strains and hardening
of the solid skeleton. We observe the addition to the local dissipation of a term proportional
to the irreversible change of the fluid content.

Of interest for the developments presented below is the consideration of the isotropic
case characterized by the dependence of the free energy v on the left Cauchy-Green tensor
b¢, due to the invariance relative to superimposed rigid body motions on the intermediate
configuration. The constitutive relation (3.4); is then given equivalently by

T =269, , (3.6)
in this case; see e.g. TRUESDELL & NOLL [1965]. After using the relation

—1£4b° = Fesym [LP] F*T,  where  £yb°:= F% [F~'oeF~T)FT, (3.7)

(that is, the Lie derivative £¢b® of the elastic left Cauchy-Green strain tensor b€), the
dissipation (3.5) is given by

D=1:(-3L£yb° b)) + gé& + pyy MP, (3.8)

in this isotropic case. We refer to SIMO [1994] for a comprehensive account of the details
of the above calculations involving the different mechanical tensor fields.

Remark 3.1. Asdiscussed in the Appendix I, the finite element solution of the resulting
boundary value problem uses the pressure field p rather than the fluid content M as the
primary variable for the numerical implementation. With this motivation, we define the

potential _
R(C°,p,0) = ~ max{uu (P)M® = $(C*, M*, )}, (3:9)

following a similar strategy as in BI1OT [1972] for poro-elasticity, that is, the Legendre
transform of the free energy function in the conjugate fields {M¢, p}. Given the definition
(3.9), the constitutive relations (3.4) read

S = QBC-.CX and M® = —py, Opx , (3.10)

after using the definition (2.20) for the free enthalpy of the fluid. O

3.3. The plastic evolution equations

The inelastic response of the material is characterized by a yield criterion

D(T,q, fw) <0, (3.11)
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defining the admissible elastic domain in terms of the thermodynamical forces identified
by the reduced dissipation inequality (2.18). The isotropic case, given the dependence on
the spatial Kirchhoff stresses of @, has been considered in (3.11).

The maximization of the dissipation (2.18) for fixed rates of the plastic internal vari-
ables leads to the plastic evolution equations

£vbe = —-27 87-45 b° s
&=7v0,9, (3.12)
MP=~9,9%,

for the plastic multiplier v satisfying the complementary Kuhn-Tucker loading/unloading
conditions
y>20, <0, 79=0, (3.13)

and the consistency condition
v =0, (3.14)

during plastic loading. Equations (3.12); and (3.12) correspond to the flow rule and hard-
ening law, respectively, whereas (3.12)3 identifies the irreversible change in fluid content
associated to the change in state of the fluid (through p,,). We refer to Section 3.4 below
for a complete discussion of this equation in the context of an effective stress model. As
usual, the proper use of the principle of maximum plastic dissipation requires the convex-
ity of the admissible elastic domain defined by the yield surface; we refer again to SiMO
[1994] for complete details.

Typical yield surfaces &(7, pq, q) are defined in the form

¢(Taq’ ll'w) = ds(T’ﬂ'w) - [Tyo - (I] ’ (3.15)

for an initial yield parameter 7,, > 0 and a (positively) homogeneous function 5(1‘, Hw),
that is, _ _
ST, Miw) = A O(T, poy) VAeR,:, and V7,4, (3.16)

implying

5(T,uw) =T 8—;—5—!— My Ou, P, (3.17)

by the Euler theorem of homogeneous functions. An example of yield criteria of the form
(3.15) is presented in Section 3.4 below. The intrinsic dissipation (2.18) reads in this case

Dint =T: (7 8‘1'5) + M (7 auwé) +q 7
=_%_{;vbe be-! =MP =&

:(5+q)’y=ry0720, (3.18)



F. Armero 14

due to the Kuhn-Tucker conditions (3.13). The proposed multiplicative model conforms
then with the dissipation inequality (2.18), a direct consequence of its maximally dissipative
character.

Remarks 3.2.

1.

3.4.

For the common case involving a barotropic fluid, as defined by (2.19), we observe
that the evolution of the plastic fluid content (3.12)3 can be written equivalently- as

Mp = A/pwapébaro ’ (3'19)

for @,,..(7,q,p) = D(7,q, pw(p))-

General anisotropic models in terms of the Mandel stresses X := C¢S, as identified
by (3.5), follow similarly. In particular, the flow rule (3.12); usually takes the general

form
L? = 185:9,... , (3.20)

for an anisotropic yield criterion @gn;s(X, g, fty). We refer to LUBLINER [1986] for a
discussion of the issues behind the derivation of (3.20) given the symmetry restriction

S=C'x=3T¢C" =87,

. A poro-visco-plastic model is readily obtained through the so-called Perzyna regular-

ization. The Kuhn-Tucker (3.13) and the consistency (3.14) conditions are replaced
by a constitutive law for the consistency parameter v of the form

7___{%g(q§,p), ifd>0

3.21
0, otherwise. ( )

where 1, > 0 is a viscous parameter and the regularization function g(®,p) : Ry xR —
R satisfies g(-,-) > 0. The simplest choice is given by g(®,p) := 3[®+|®|], independent
of the pore pressure. |

A model example: an effective stress model

Consider an elastic potential with the uncoupled form

X(C®,p,a) = 1, (C% a) — bpy, (1w (p) = buw,) S + Xpor (D) s (3.22)

for a general free-energy 1 characterizing the drained response of the solid skeleton and a
general function xpor. The common case of a barotropic fluid in terms of the pore pressure
field p is considered. In (3.22), we have introduced the notation of p,,, for a reference
density of the fluid, b for the so-called Biot’s coefficient, and

e; = log J¢, (3.23)
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for the (logarithmic) elastic volumetric strain with the elastic Jacobian J¢ := det F€.

Given (3.22) and after using equation (3.10), the total stresses read

— -1

5=8- bpuw, (1w (p) — ﬂwo) O = T=1- bpw, (e (p) — Pw,) 1, (3.24)
for the Biot effective stresses
§' =209k with 7/ = F°§'FT, (3.25)

given solely in terms of the deformation of the solid skeleton. Considering, for example,
the case of an incompressible fluid characterized by
p—Dp
pw(P) = pu, = fy = fly, + 2, (3.26)

Wo

we obtain the relation
T=7-b91, for V=p—po, (3.27)

recovering. as usual, the notion of the Terzhagi’s effective stress for a unit Biot coefficient
b= 1; see B1oT [1941].

The potential xpor in (3.22) characterizes the reversible response of the saturated pore
space. The simulations presented in Section 4 assume the quadratic potential

2

N Pw,

Rpor (0) = Mo (1 (p) = ) = 55 () = o)’ (3.28)
for an initial value of the fluid content (M, = py, ¢p, in terms of the initial porosity ¢p,)
and the (reference) Biot’s modulus Q. This simple example is appropriate for small changes
of the fluid content and results in

P2,
Q

leading to a linear relation between the elastic fluid content and the excess pore pressure
in the case of an incompressible fluid as given by (3.26).

M¢=M,+

(1w (P) = taw,) + bpu, €5 (3.29)

Similarly, we can consider the common assumption of a yield criterion given in terms

of the effective stresses
ds(‘r, Q7 ﬂw) = ¢:.zk(TI, Q) S 0 b) (330)

characterizing the drained plastic response of the solid’s skeleton. Isotropy and the case
of a barotropic fluid have been assumed in (3.30), without loss of generality. A simple
calculation shows that

87‘@ = 87-@“ and 6#1”@ = —bpwoa-,-:(bsk 0 1. (331)
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Then, the plastic evolution (3.12)3 can be written in this case

MP =~ 8,,8=~bpy, ¥ 0D, : 1 =bp,, L£,b° : 1

= bpy, Fesym [LP] FT : b7 = bp,, L : 1 = bp,,, tr [LP] , (3.32)
after using equation (3.7). We further note the relation
- : _rJP .
tr [LP] = FP: FP = 75 = er, where ¢ef :=log J? | (3.33)

for the plastic Jacobian JP := det FP and the (logarithmic) plastic volumetric strain &,
with

ey:=logJ =¢f +¢b, (3.34)
given the definition (3.23). We then conclude that
MP = bp,, €P . (3.35)

Equation (3.35) identifies the irreversible change of fluid content with the change of plastic
volume (the plastic dilatancy) in the considered effective stress model. We also note the
relation
M = =P+ bpy, &, 3.36
Q puw N

for the rate of the total fluid content, after combining equations (3.29) and (3.35). In
summary, the set of evolution equations (3.12) are then given by

.f:'vbe = —2’7 BTIQZk b° ’
& =7 0,P. , (3.37)
MP = bpy, &%,

for a multiplicative poro-plastic model in effective stresses.

Box 3.1 summarizes the constitutive equations describing the coupled poro-plastic
solid for the model example of an elastic response given by Hencky’s hyperelastic law
of isotropic finite elasticity and a generalized Drucker-Prager yield criterion in effective
stresses. A saturation hardening law is assumed. The yield criterion considered in Box
3.1 is of the form (3.15), and thus the resulting constitutive model example conforms with
the dissipation inequality (3.18).

Remark 3.3. The above developments, as well as the expressions in Box 3.1, assume a
smooth yield surface. Singularities in the yield surface can be treated following the classical
approach of KOITER [1953], through the generalized plastic evolution laws

£b¢ = -2 (Z 'y(")ng’)> b and & = Z ~(@) (3.38)
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BOX 3.1. Example: associated poro-plastic model based on Hencky'’s
hyperelastic law and a generalized Drucker-Prager yield criterion in
effective stresses.

1. Elastic stress-strain relations:
1.1 Drained logarithmic hyperelastic response (u,, > 0 and «,, > 0 constants),

7, (b%a) = 1k, log? I+ D pa[log(3%))? + H(a),
A=1,3

where \§ = J ‘5_1/3/\§1 for the elastic principal stretches A (square root of the
eigenvalues of b®).

1.2 The Biot effective Kirchhoff stresses are then given by
3
T - 2beabe sk = z 2/"’3’: 10g A,4 nA ® nA + h‘sk‘]e log ']e

for the spatial principal directions n 4 (eigenvectors of b¢), with the total stresses
given by (3.24)a.

2. Plastic response:

2.1 Generalized Drucker-Prager yield criterion
! 1 ! =/
2.(r',0) = = (ldevtr)]| +9() = [0 =) <0,

for 7/ := tr[r']/3, dev[r'] := 7' — 7' 1 (= dev[7]), and homogeneous function g(-).

For example, Drucker-Prager’s yield criterion is recovered by g(7') = 8, ¥ with
tan~! 3, = angle sustained by Drucker-Prager’s cone in the principal stress space.

2.2 Saturation hardening law
q:=—0oH =—[Ha+ (Tyo — Tyoo) (1 — 6_6"")] ,

for constants parameters 7, (= initial yield limit in shear) , Tyoo, H and d,.

2.3 The plastic evolution equations (3.37) read

1 / dev[7’]
e _ _ e h = (—Lt 1 4 10
Lot = ~2mab"  where o = 7 (g + 40001
&=n,
MP = bpu, P = bpy, —=¢'(F')
° °V2

for the derivative ¢'(-) of g(-), with the loading/unloading and consistency condi-
tions (3.13) and (3.14).
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accounting for the outward cone to the yield surface defined by the linear combination
Yo 'y(a)ng’). Equivalently, approaches based on convex analysis can be found in MOREAU
[1976], among others. For the simple case of a Drucker-Prager model consisting of a cone
in the principal (effective) stress space, with a vertex on the hydrostatic axis at 7,
the flow rule reads

ertex)

dev[r’
£ob* = —V2 | (ST 40 ) 44 45, 1 b (3.39)

with B5 = ¢'(7ertez) and the plastic multiplier v(2) imposing the constraint g(7')

<
G(7! orier) for the compressive cone of the yield surface (7(2) = 0 except in the vertex). ]

3.5. An a-priori stability estimate for multiplicative poro-plasticity

The equations summarized in Section 2, together with the multiplicative poro-plastic
model presented in the previous sections, define a dissipative abstract problem of evolution.
To characterize this dissipative structure, we consider in the quasi-static case of interest
the functional

L(e,p;T) ::/B [x(cp,p;I)Jruw(p) Me(p,I)—uwoM(so,p;I)] dv, (3.40)

N vl

~

&(‘PYMC (p,I) ;I)

for the constant reference value of the chemical potential of the fluid p,,,. In (3.40), we
have used the potential xy to emphasize the role of the pore pressure field p as primary
variable rather than the fluid content. As discussed in the Appendix, the finite element
methods employed in the solution of the problem consider the interpolation of the this
field p.

Consider equations (2.8) under the assumptions of no body forces and boundary trac-
tions (2.24)

F=0 in B (ie Ve =0) and PN =0 on 0rB, (3.41)

and constant in time essential boundary conditions @(X) in dpB. The evolution of the
functional £ along the solutions of the problem under these conditions is given by

%:/ [¢_uwoM] dV:/ ['r:d+uwM—-Dmt—uwoM] dv
d Jp B L- ~ -
¥ by (2.18)
=—/ [ Deond + Ding dV+/ (s — i) Qu - N dA
Bt/ a8
D>0
by (2.16)

< [ (b, = 1) Qu-N dd. (3.42)
anB
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We conclude that

IF  (pw, — Hw)Quw N <0 (<= (fw, — Hw)qw -1 <0) on 8B (3.43)
dl
= — <
- < 0, (3.44)

that is, the functional £ decreases along the flow defined by the solutions of the problem
if the fluid boundary conditions satisfy (3.43). This condition is satisfied by a general
boundary condition of the form

Qw -N = —Ks (»u'wo - /wa) 3 (345)

for a non-negative surface permeability coefficient x; > 0. In particular, impervious (Q -
N = 0) and free drainage (i, = py,) boundary conditions satisfy condition (3.43).

The functional £ can be recognized as the analog of the a-priori stability estimate
developed in ARMERO & SIMO [1993] for the analog system of multiplicative thermoplas-
ticity, an analogy usually referred to as Biot’s analogy (B10T [1956b]). The analogy follows
formally with the identification of p with the temperature field, ¥,, with the isothermal
free energy of the solid, 1/Q — ¢ with the heat capacity, k with the thermal conductivity
tensor, and b — 3k,,,ar in terms of the isothermal bulk modulus k;,, and the linear
coefficient of thermal expansion ar. The analogy is completed by identifying the fluid
content field M with the entropy of the thermoelastic solid.

In the case of finite strain thermoelastic theories, the functional £ corresponds to the
analog of the so-called canonical free energy as originally considered in DUHEM [1911]. For
the linearized problem of thermoelasticity, it was shown in DAFERMOS [1976] that £ defines
a Lyapunov functional under the classical assumption of positive definite tangent moduli.
Complete analyses identifying the conditions for £ to define a Lyapunov functional for the
finite strain thermoelastic problem can be found in ERICKSEN [1966], COLEMAN & DILL
[1973], GURTIN [1975], and BALL & KNOWLES [1986]. In the coupled fluid-solid system of
interest herein, the decay of the functional £ is related to the stability of the stress free-
state of the porous solid, as imposed by (3.41), and ambient constant reference chemical
potential p,,, for the fluid. In this setting, the estimate (3.42) can be found in Coussy
[1995] (page 108) for the case of poro-elasticity. The result (3.42) shows the applicability
of this estimate to the proposed multiplicative finite strain poro-plastic model.

It is important to emphasize that the stability of the solution follows rigorously only
for poro-elasticity under the proper conditions of the material parameters leading to a
convex free energy function. In the general case of finite deformation poro-plasticity, this
result does not apply since £ does not define a convex function (a norm) of the primary
fields {¢,p;Z}, so material instabilities are not precluded by the estimate (3.44). The
situation occurs also in infinitesimal theories of perfect and softening plasticity. Non-
smooth solutions involving highly localized patterns of the deformation and, in fact, the
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BOX 3.2. Two operator splits for the coupled poro-plastic problem

in the quasi-static range.

THE DRAINED SPLIT

Problem 1. (Drained Solid Phase)

DIVP + p,f =0
cp=20

Problem 2. (Fluid Phase)

$=0
cp=—DIVQ, + S

o
dp

9%y  se 9%y .

where c¢:= —— [pwg—;], and S :=pwé—c_'—egé:c +

THE UNDRAINED SPLIT

Problem 1. (Undrained Solid Phase)

DIVP+pof=0}

M=0

Problem 2. (Fluid Phase)

$=0
M =—-DIvQ,

limit case of strong discontinuities, with the associated singular strain fields, are observed
preceding the failure of the solid. We refer to ARMERO & CALLARI [1998] for a recent
analysis of these solutions in the coupled poro-plastic framework described herein, together
with the development of numerical tools for their simulation. However, the inequality (3.44)
still furnishes an a-priori stability estimate to be inherited by the solutions obtained by the
numerical algorithms approximating the exact flow, as discussed briefly in the following
remark.

Remark 3.4. Given the aforementioned analogy with thermomechanical problems, the
results presented in ARMERO & SIMO [1992,93] in the context of coupled thermo-elasto-
plasticity apply to this case, identifying the stable partitions of the coupled problem and
associated staggered algorithms. In particular, the analog of the so-called adiabatic split,
as developed in these references, has its counterpart in the coupled solid/fluid system of
interest herein in the partition of the problem in a mechanical solid phase involving the
solution of the equilibrium equation (2.8) at fixed fluid content M, followed by a fluid
phase corresponding to the dissipation of the excess pore-pressure through Darcy’s law
with the solution of (2.7). We refer to this operator split of the problem as the undrained
split, in contrast with the drained split consisting of an initial solid phase at fixed pore
pressure. See Box 3.2 for an illustration of these ideas. In particular, a simple calculation



Coupled Poro-plasticity at Finite Strains 21

following (3.42) leads to

%f,:o =—/I3Dintdv+/(93(ﬂwo—ﬂw)MdA» (3.46)
(drained) ) 0, in}eneral ’

%MZO =~ [ Duav <o, (3.47)
(undrained)

showing that the undrained split conforms with the dissipative character of the problem
of evolution by inheriting each phase of the partition the a-priori stability estimate (3.42)
of the exact coupled problem, in contrast with the drained split of the problem. The
numerical stability of the time-stepping schemes based on the undrained split, with each
sub-problem solved with a stable scheme (in the sense that (3.42) is preserved), is then
concluded in the general fully nonlinear finite strain coupled poro-plastic range. We refer
again to ARMERO & SiMO [1992,93] for full details of the analyses and to the Appendix
I for details in the numerical implementation for the problem of interest herein. In the
context of consolidation problems, staggered algorithms based on a drained solid phase
can be found in PARK [1983] or LEWIS & SCHREFLER [1987], among many others, and on
an undrained solid phase in ZIENKIEWICZ et al [1988] for the linear elastic consolidation
problem. O

4. Representative Numerical Simulations

The goal of this section is to assess numerically the finite strain poro-plastic framework
developed in this work. To this purpose, we present the results obtained with the proposed
formulation for two characteristic benchmark problems. Section 4.1 considers the finite
elastoplastic consolidation of a porous layer under the action of a rigid footing. The
analysis of strain localization in the plane strain compression test under globally undrained
conditions is considered in Section 4.2.

The constitutive models and numerical algorithms described in the previous sections
have been implemented in the finite element code FEAP (see ZIENKIEWICZ & TAYLOR
[1991]). In all the finite element simulations reported in this section, we make use of the
Q1/ET4 enhanced strain quadrilateral finite element presented in GLASER & ARMERO
[1997]. We note the need for the use of these improved elements in the solution of the
problems of interest herein. Even though the plastic flow given by the considered Drucker-
type models leads to a dilatant response, in contrast with typical applications in metal
plasticity, the quasi-incompressible nature of the problem can be traced back to the cou-
pling of the (quasi-) incompressible fluid. In particular, the quasi-incompressible character
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FIGURE 4.1. Finite strain consolidation. Problem definition with
assumed boundary conditions, and finite element discretization of half
of the specimen by symmetry (structured 25 x 20 mesh of Q1/ET4
enhanced quads).

of the undrained elasticities for typical large values of the Biot modulus @ is to be noted;
see the Appendix I. Furthermore, the implementation of the pressure dependent coupled
poro-plastic model developed in Section 3 becomes straightforward in the fully strain-
driven structure of this class of finite elements. This fact, together with the modular
structure of the considered staggered schemes, leads to a numerical implementation in-
volving simple modifications of existing program modules. We refer to the Appendix I for
further details regarding different aspects of the numerical implementation.

4.1. Finite strain elastic and elastoplastic consolidation

This section presents the results for a finite elastic and elastoplastic consolidation
problem. We consider the benchmark test presented in CARTER et al [1979]. The problem
consists of a rigid rectangular footing 2 x B wide resting on a layer of saturated soil 2 x 5B
wide by 4B deep. The value of B = 1 m has been considered in the actual numerical
simulations. This layer sits on a rigid rough base and it is confined by two rigid smooth
walls. Plane strain conditions are assumed. Figure 4.1 depicts the geometry and boundary
conditions considered in the problem. In particular, the top free boundary of the porous
layer is supposed to allow the drainage of the specimen. The contact surface with the rigid
footing is assumed impervious and rough (that is, stick boundary conditions are imposed).
Due to symmetry considerations, only the right half of the specimen is discretized, with a
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TABLE 4.1. Finite strain consolidation. Material properties.

Bulk Modulus Ksk 212.33 MPa
Shear Modulus Ksk 98.0 MPa
Initial Yield Limit in Shear Tyo 1732  MPa
Saturation Yield Limit in Shear 7y 2310 MPa
Saturation Hardening Parameter 4, 0.20

Pressure Yield Parameter Be 0.10

Fluid Density Pw, 1000.0 Kg/m?3
Biot Modulus Q 511.0 MPa
Biot coeflicient b 1.0

Hydraulic Permeability kp, 2.07-1072 m/s

structured mesh consisting of 25 x 20 Q1/ET4 enhanced strain quads. Similarly, the right
half of the rigid block is modeled with equal 5 x 1 quads.

The two cases of a finite elastic and finite elastoplastic porous layer are considered.
For the finite poro-elasto-plastic layer, the associated Drucker-Prager model described in
Section 3.4 and summarized in Box 3.1 is considered. Table 4.1 includes the material
properties assumed in the simulations reported herein. In particular, a saturation law is
considered for the hardening response of the solid skeleton. The fluid is assumed to have
the constant density p,, . The finite elastic case is recovered by simply considering high
yield limits 7y, and 7y, so yielding does not occur. The rest of the material parameters
are assumed the same. The final model consists then of a Hencky hyperelastic law together
with the fluid coupling characterized by relation (3.29). The rigid footing is modeled with
five finite elements having very large elastic constants compare to the corresponding values
in the layer. Gravity effects are neglected.

The specimen is loaded with a load P, applied rapidly at the center of the rigid footing.
The final value of P/(Bp,,) = 2.5 is considered in all the reported solutions. The layer
is then left to consolidate in time. The analysis of one-dimensional consolidation in the
infinitesimal range presented in BIOT [1941] identifies the consolidation constant

1 __'on 2 (1+Vsk) 1>
cv  kn, (b ko (1 = vyi) + Q)" (4.1)

for the Poisson ratio of the solid skeleton v,, = (3k,x — 2p,.)/ [2(Kor + Bok)]. As it is
customary in the literature, we report the results below in terms of the non-dimensional
time

(4.2)

for the assumed depth of the layer 45.
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FIGURE 4.2. Finite strain consolidation. Evolution of the deflec-
tion under the block A/B with the imposed load P/(Bpusk) (final non-
dimensional time T = 2.65 - 1076 at Pj;nq1/(Busk) = 2.5) for the
elastic and elastoplastic solutions, and different schemes. The insta-
bility of the drained split as the load increment decreases is apparent

(AP, = 10AP; = Pyinai/10).

To model a suddenly applied load, the load P is increased linearly from T = 0 to its
final value of P/(Bpu,) = 2.5 at T = 2.65- 1075, Figure 4.2 shows the load-deflection
curves obtained for the finite elastic and finite elastoplastic cases. The simulations are run
with the staggered schemes based on the undrained and drained split of the equations, and
the block Gauss-Seidel iteration scheme described in the Appendix I. As we can observe
in this figure, the scheme based on the undrained split is able to obtain the solution along
this sudden increase of the load. The solutions reported in Figure 4.2 were obtained
with a total of 20 time steps. In contrast, we can observe the instability inherent to the
scheme based on the drained split, as identified in Section 3.5. We obtain an uncontrollable
growth in time of the solution, which becomes worse as the time step (or, equivalently,
the load step) decreases. The solutions depicted in Figure 4.2 use load increments of
AP = 10AP; = Pfinai/10. The same instabilities are obtained when trying to converge
the block Gauss-Seidel scheme. This response is consistent with the results presented in
ARMERO & SiMO [1992] who identified in the analog context of thermoelasticity the
stability conditions of the type At/h? > constant for the convergence of these schemes
in the quasi-static case. We refer also to TURSKA & SCHREFLER [1993] who reported
similar experiences. Given this stringent stability restrictions, we have not been able to
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FIGURE 4.4. Finite strain consolidation. Evolution of the deflec-
tion under the block A/B with time for the elastic and elastoplastic
solutions, and different time steps. Note the difference in the vertical
scales.
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FIGURE 4.5. Finite strain consolidation. Deformed configuration
at T = 13.25 for the elastic and elastoplastic solutions (obtained with
AT = 2.65 - 1072, no magnification of the deformations).
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FIGURE 4.6. Finite strain consolidation. Evolution of the deflec-
tion under the block A/B with time for the elastic and elastoplastic
solutions, and different time steps for low Biot modulus @ = 100 M Pa
(note the difference in the vertical scales).

solve these early stages of the sudden imposition of the load with the schemes based on a
drained mechanical problem for the given mesh. Extremely fine meshes would be required.

This situation is to be contrasted with schemes based on the undrained split. The
solution at this initial stage (T = 2.65 - 107°) has been depicted in Figure 4.3. We have
included the distribution of the pore pressure in both the elastic and elastoplastic solu-
tions, as well as the equivalent plastic strain « in the elastoplastic solutions, all of them
superimposed over the deformed configuration of the solid. The different patterns of the
deformation between the elastic and the softer inelastic case are to be noted. In particular,
we observe that the appearance of the plastic zone leads to a decrease of the pore pressure
due to the plastic dilatancy predicted by the poro-plastic model under consideration. The
process is essentially undrained given the high rate of loading. In contrast, the excess pore
pressure exhibits a more smooth distribution in the finite elastic case. We note that the
reference (back) pressure of p, = 0 has been used in reporting the values in Figure 4.3.

The layer is left to consolidate thereafter. Figure 4.4 includes the evolution of the
vertical deflection under the rigid footing (A/B) as a function of the non-dimensional time
T. Both the elastic and elastoplastic solutions are included. We note, in this respect,
the different scales of the deflection, including the different initial and final settlement.
The characteristic parabolic-type curve predicted by Biot’s theory is obtained; see BioT
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[1941] for details in the infinitesimal linear elastic case. We have included in Figure 4.5 the
deformations obtained in the finite elastic and the finite elastoplastic simulations at the
consolidated state of T = 13.25, side by side for comparison. The softer response of the
elastoplastic solution is apparent.

Figure 4.4 reports the results obtained in simulations with different values of the time
step, with values ranging between AT = 5.30 - 107! to AT = 1.325-10~2. Equal time
increments are considered in a given simulation. All the simulations involve the undrained
split since, as noted above, no convergence was obtained with the drained split nor the
Gauss-Seidel schemes. For the finite elastic case, we have included the solution obtained
with an uncoupled drained simulation of the problem, which corresponds in the elastic
case with the final steady state solution. This situation is to be contrasted with the path
dependent elastoplastic case under consideration. Figure 4.4 show a good agreement in the
long term, in particular, with the steady state limit solution in the elastic case. We can also
observe, however, that the discrepancy of the different solutions in early stages is larger,
specially in the elastoplastic (path-dependent) case. This is an indication of the numerical
error associated to the scheme in the strongly coupled case. We recall that the considered
staggered schemes are only first order accurate in time due to the error associated with the
partition, regardless of the temporal accuracy of the algorithm employed in each individual
sub-problem. This feature, although undesirable, needs to be pondered with the stability
of the scheme based on the undrained split. No instabilities in time (that is, uncontrollable
growth of the solution) have been observed in the numerical experiments with this scheme.

We have included in Figure 4.6 the results obtained with a lower Biot modulus of
Q = 100 M Pa, all other parameters equal. In this less realistic case, the schemes based on
the drained split do not show instabilities for the time steps considered. We have included
also the solution obtained with a very small time step (AT = 1-1072) in combination
with the Gauss-Seidel iteration to convergence at each time step, obtaining effectively in
this way the fully coupled solution of the monolithic scheme. We note that a typical time
increment of this Gauss-Seidel scheme may take up to 40 passes (each pass involving the
solution of the two phases), to be compared in computational cost with the single-pass
undrained or drained staggered schemes. A good agreement is observed for the elastic
case between the different schemes and same time steps. We observe different steady state
solutions in the elastoplastic path-dependent case. As expected, the undrained and drained
splits lead to a stiffer and softer solutions, respectively, when compared to the fully coupled
solution. The same order of accuracy can be observed for these staggered schemes in this
case. Both are first order accurate as noted above.

4.2. The plane strain compression test

We report in this section the results obtained for the plane strain compression test
under globally undrained conditions. This test has become a classical benchmark problem
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FIGURE 4.7. Plane strain compression test. Configuration of the
problem with the assumed boundary conditions. Due to the symmetry,
only the right half of the specimen is modeled with 10 x 24 Q1/ET4
enhanced strain finite elements.

for the numerical study of strain localization under coupled fluid flow conditions. We refer
to the analytical study of the problem presented in VARDOULAKIS [1996a,b], and to LORET
& PREVOST [1991] and SCHREFLER et al [1995,97] for representative finite element studies
of this test, the last one involving a partially saturated model. To our knowledge, all the
results reported in the literature to the present involve the infinitesimal range.

For the case of study herein, we consider the same specimen studied in SCHREFLER
et al [1997], consisting of a rectangular block of dimensions H = 35 cm and W = 25 cm.
Figure 4.7 depicts the block under consideration with the assumed boundary conditions.
All the boundaries are assumed impervious, in order to study the formation of shear bands
under globally undrained conditions. Stick conditions in the displacement are assumed at
the bottom boundary, whereas an uniform vertical displacement ¥ is imposed at the top
boundary with the specimen free too move laterally. Gravity effects are neglected.

The isotropic Drucker-Prager model described in Section 3.4, and summarized in Box
3.1, is considered in the simulations. The assumed material properties are included in
Table 4.2. In particular, we note the consideration of linear strain softening to trigger the
formation of the localized solutions. To study the effect of the solid’s permeability, two
different values of the hydraulic permeability (see Remark 2.1.1) are considered, namely,
kn, =5-107° m/s and k,, = 1-10722 m/s, with the last one recovering effectively the
fully undrained case.

An fluid response characterized by a constant density p,, = pu,, as in (3.26), is
assumed. We note that cavitation effects has been observed in similar experimental tests;
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TABLE 4.2. Plane strain compression test. Material properties.

Bulk Modulus Ksk 250.0 MPa
Shear Modulus sk 1000 MPa
Yield Limit in Shear Tyo 577 MPa
Softening Modulus H —4.62 MPa
Pressure Yield Param. g, 0.2

Fluid Density Pw, 1000.0 Kg/m3
Biot Modulus Q 511.0 MPa
Biot coefficient b 1.0

see SCHREFLER et al [1997] and references therein. We consider in this first study at the
finite strain range the simplying assumption of an incompressible fluid. A high value of
the back pressure p, = 29 M Pa has been considered when reporting the pore pressure
values below. We note also that a uniform reference fluid content of M, = 200 kg/m3,
corresponding to an initial porosity of ¢, = 0.2 (with M, = ¢p_pw,), has been considered
in depicting the results below.

Due to the symmetry in the problem, only the right half of the specimen is considered
in the numerical simulations, with the corresponding symmetry boundary conditions at the
center. The simulations are carried out under displacement control of the imposed vertical
deflection of the top surface @, with the measurement of the corresponding reacting force
R. Quasi-static conditions are assumed, that is, neglecting the transient term in the solid’s
mechanical equation while maintaining the rate term in the equation of conservation of
fluid mass. A nominal strain rate of ¥/H = 2.86 - 1073 s~! is considered. We use the
algorithm based on the undrained split, consisting of an undrained solid problem solved
at the end of the time step t,4;, followed by the fluid phase problem, solved with the
backward-Euler scheme. See Appendix I for complete details.

A regular mesh of 10 x 24 quadrilateral finite elements is considered, with the Q1/ET4
enhanced strain finite elements presented in GLASER & ARMERO [1997]. We note that,
in this case, the need for these improved finite elements arises not only from the quasi-
incompressibility constraint added by the coupling of the incompressible fluid, but also
the need of finite elements capable of resolving the localized patterns of the deformation
observed in the final solutions. These elements have been shown to exhibit these properties,
with the added advantage of possessing a completely strain driven structure; see this last
reference. We also note that it is not our intention in this paper to study the possible
mesh-dependence of the solutions due to the presence of the strain-softening. We refer
to ARMERO & CALLARI [1998] for a discussion of these issues in the coupled framework
described herein for the infinitesimal range.

Figures 4.8 and 4.9 depict the solutions obtained for the higher permeability case. We
have included the distribution of the pore pressure p, fluid content M, equivalent plastic
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0.5 ¢m, and at two stages during

localization, ¥ = 2.0 cm and ¥ = 5.0 cm (kp, = 5 - 10~% m/s; no
magnification of the deformations).

kp, =5-107% m/s

kp, =1-10722 m/s

FIGURE 4.11. Plane strain compression test. Deformed configura-
tions at ¥ = 5.0 cm obtained for two different hydraulic permeabilities,
kho = 5-10"% m/s and ko, = 5- 10722 m/s (no magnification of the
deformations). Observe that the low permeability precludes the devel-
opment of strain localization when compared with the solution with
higher permeability.
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FIGURE 4.12. Plane strain compression test. Computed reaction
force versus imposed top vertical displacement curves for two different
permeabilities (kp, = 5-10"% m/s and kp, =1-10722 m/s).

strain «, and logarithmic volumetric strain ¢, for two values of the imposed displacement
?=1cm and ¥ = 5 cm. These values correspond to the solutions before and after
strain localization, which is clearly shown by the formation of two shear bands through
the specimen. We note that the non-symmetry of the boundary conditions (in particular,
the stick boundary conditions at the bottom) are enough to trigger the formation of the
shear bands without the need of any imperfection. The shear bands are observed to form
at the bottom right corner of the specimen and propagate in a straight manner through
the specimen. We note again that symmetry conditions are imposed at the center of the
specimen. Only the right half of the specimen is depicted in these figures.

We observe that the localized plastic response along the bands leads to a concentra-
tion of the fluid content in them. We first note the dilatant character of the assumed
Drucker-Prager model. In particular, we refer to equation (3.37)3 identifying the increase
of the plastic part of the fluid content due to the plastic dilatancy. The total logarithmic
volumetric strain has also been depicted in Figures 4.8 and 4.9, to observe the localiza-
tion of this strain following the same trend as the the equivalent plastic strain. We have
included in Figure 4.10 a plot of the fluid flow vectors q,, for different values of imposed
vertical displacement, including an early purely elastic stage of the solid and two different
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v.

stages in the localization process. The change in the pattern of the fluid flow once the
shear band forms is clear from these plots. In particular, we observe that the shear band
with its associated dilatancy and lower pore pressure drains the fluid flow from the rest of

specimen.

The load-displacement curve obtained in this simulation is reported in Figure 4.12.
The characteristic softening response common in localized solutions can be observed. We
have also included the load-displacement curve obtained for the case of a very low per-
meability k,, = 1-10722 m/s, recovering effectively the fully undrained case. We do not



F. Armero 38

observe in this situation this drop in the load applied to the specimen as the top deflection
increases. Instead, a monotonically increasing curve is obtained. This situation is due to
the load carrying capacity of the incompressible fluid, which is now unable to dissipate the
excess pore pressure due to the very low permeability of the solid.

This extra load carrying capacity added by the fluid in the very low permeability
solution leads also to a delay of the transfer of the load to the solid’s skeleton. This leads
to a completely different pattern of the deformation of the solid. We have included in Figure
4.11 the deformation obtained for both solutions at the imposed vertical displacement of
7 = 5 m. The clear presence of the shear band in the higher permeability solution is to
be contrasted with a lack of strain localization in the low permeability solution. Smooth
bulging is observed in the specimen instead.

To compare both solutions in more detail, we have included in Figures 4.13.a to
4.13.c the distribution of different quantities along an horizontal cut at a distance H/3
from the bottom of the specimen for different imposed vertical displacements ©. These
figures show clearly the development of the shear band for the higher permeability solution
kn, = 5-107% m/s (left column). Observe, in particular, the gradual localization of the
equivalent plastic strain. As noted above, we can observe the concentration of the fluid
content M in the band, with its main contribution being the plastic part MP due to the
associated localized plastic dilatancy €P. The volumetric strain outside the band is seen
to be much smaller than in the band, consistent with the almost incompressible response
of the porous solid in the elastic range due to the strong fluid coupling. Note also the
associated drop in the pore pressure in all the specimen as the band develops from an
increased value during the initial elastic stages of the deformation.

This situation is to be contrasted with the response in the undrained limit (right col-
umn). We can observe how basically all the quantities show a more uniform distribution
when compared with the localized solution. Still, slight concentrations around what it is
essentially the same position of the band for the high permeability solution can be ob-
served, but with much smaller values of these concentrations. Note that the pore pressure
eventually drops around that position, but the pore pressure level in the rest of the spec-
imen remains high compared to the high permeability solution, and close to the values
attained during the early stages of elastic deformation. We note the effectively absent
fluid flow, as reflected by the constant distribution of the fluid content M ~ M,. Still,
the plastic response with the corresponding plastic dilatancy leads to a local transfer of
fluid content from elastic M€ to plastic MP. This delay in the formation and propagation
of shear bands in highly undrained conditions is in agreement with the observed experi-
mental results, analyses and numerical simulations reported in the literature. We refer to
the numerical simulations presented in LORET & PREVOST [1991], and the analyses and
reported experimental results in VARDOULAKIS [1996a,b], among others.
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5. Concluding Remarks

The previous developments illustrate the use of the multiplicative elastoplastic decom-
position of the deformation gradient in the modeling of poro-plastic porous solids in the
finite strain range. This strategy allows for the developments of constitutive models in a
fully consistent thermodynamic framework, extending in this way the original formulations
of Biot to this finite strain poro-plastic case. This thermodynamic framework has shown
to be crucial in the characterization of the dissipative structure of the final coupled initial-
boundary value problem. To that purpose, we have presented the formulation of an a-priori
stability estimate for the problem of evolution. Regarding the numerical schemes, we have
presented complete details of the final expressions in the finite element implementation
of the proposed models. In addition, the conformity of numerical schemes based on an
undrained partition of the coupled problem with the aforementioned dissipative structure
identifies the numerical stability inherent in these schemes.

The formulation of stable staggered methods for physically coupled problems has been
one of the main driving goals in the previous research in the field. We believe that the
dissipative framework identified in the paper and its approximation by different partitions
of the problem lead to the identification of the origin of the instabilities observed in stan-
dard staggered solutions of this type of problems. The numerical results reported herein
confirm the superior stability properties of the schemes based on the undrained split in
contrast with the drained split. However, the first order of accuracy of all these staggered
schemes may be an issue for long-term simulations in strongly coupled problems. Appre-
ciable errors can accumulate for large values of the time step in strongly coupled problems,
especially in the path dependent elastoplastic case. This situation applies especially to the
stable schemes, given the ability to consider these large time steps. In particular, we have
observed that in these circumstances stable schemes based on an undrained solid phase
may lead to overly stiff response due to the quasi-incompressible character of this phase
as the Biot’s modulus @ increases; see the discussion of the results reported in Section
4.1 above. The study of second order alternatives through, for example, multiple pass
techniques is then of the main interest, and constitutes our current focus in this area.

Acknowledgments: Financial support for this research has been provided by the ONR
under contract no. N00014-96-1-0818 with UC Berkeley. We acknowledge also the support
of the NSF under contract no. CMS-9703000 with UC Berkeley.



F. Armero 40

References

ARMERO, F. & CALLARI, C. [1998] “Strong Discontinuities in Fully Saturated Porous
Media,” submitted to Proc. 4th World Congr. Comp. Mech,, to be held in Buenos
Aires, June 1998.

ARMERO, F. & SimMo, J.C. [1992] “A new unconditionally stable fractional step method
for nonlinear coupled thermomechanical problems”, Int. J. Num. Meth. Engr., 35,
737-766.

ARMERO, F. & SiMo, J.C. [1993] “A-priori stability estimates and unconditionally stable
product formula algorithms for nonlinear coupled thermoplasticity”, Int. J. Plast., 9,
749-782.

ARMERO, F. & SiMo, J.C. [1996], “Formulation of a New Class of Fractional-Step Meth-
ods for the Incompressible MHD Equations that Retains the Long-Term Dissipativity
of the Continuum Dynamical System”, Integration Algorithms for Classical Mechanics,
The Fields Institute Communications, 10, 1-23.

BaLL, J.M. & KNOWLES, G. [1986], “Lyapunov Functions for Thermomechanics with
Spatially Varying Boundary Temperatures”, Arch. Rat. Mech. Analysis, 92, 193-204.

BEAR, J. [1972], Dynamics of Fluids in Porous Media, Dover Publ., New York.

BENALLAL, A. & Cowmi C. [1997], “Properties of Finite-Step Problem in Numerical Analy-
sis of Unstable Saturated Porous Continua,” Proc. Comp. Plasticity V, ed. D.R.J.
Owen, E. Onate, & E. Hinton, CIMNE, Barvelona, 1612-1616.

BioT, M.A. [1941], “General Theory of Three-Dimensional Consolidation”, J. Appl.
Phys., 12 155-164.

BioT, M.A. [1954], “Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and
Relaxation Phenomena,” J. App. Phys., 25 1385-1391.

BroT, M.A. [1955], “Theory of elasticity and consolidation for a porous anisotropic solid”,
J. App. Phys., 26 182-185.

BioT, M.A. [1956a], “Thermoelasticity and Irreversible Thermodynamics,” J. App. Phys.,
27 240-253.

Biot, M.A. [1956b], “Theory of Deformation of a Porous Viscoelastic Anisotropic Solid”
J. App. Phys., 27 459-467.

Brot, M.A. [1972], “Theory of Finite Deformations of Porous Solids,” Ind. Univ. Math.
Journal, 21 597-620.

BOOKER, J.R. & SMALL, J.C. [1975], “An Investigation of the Stability of Numerical
Solutions of Biot’s Equations of Consolidation,” Int. J. Solids Structures, 11, 907-
917.



Coupled Poro-plasticity at Finite Strains 41

Borja, R.L. & ALARCON, E. [1995], “A Mathematical Framework for Finite Strain

Elastoplastic Consolidation. Part I: Balance Laws, Variational Formulation, and Lin-
earization,” Comp. Appl. Mech. Engr., 122, 145-171.

CARTER, J.P.; BOOKER, J.R. & SmaLL, J.C., [1979], “The Analysis of Finite Elasto-
Plastic Consolidation,” Int. J. Num. An. Meth. Geomech., 3, 107-129.

CHRISTIAN, J.T. [1977], “Two- and Three-Dimensional Consolidation,” Numerical Meth-
ods in Geothechnical Engineering, ed. by C.S. Desai and J.T. Christian, MacGraw Hill,
New York, 399-426.

CoLEMAN, B.D. & DiLL E.H. [1973] “On Thermodynamics and the Stability of Motions
of Materials with Memory”, Arch. Rat. Mech. Analysis, 51, 1-53.

Coussy, O. [1995] Mechanics of Porous Media, John Wiley & Sons, Chichester.

CuitiNHO, A.M. & ORrtiz, M. [1992], “A Material-Independent Method for Extending
Stress Update Algorithms from Small-Strain Plasticity to Finite Plasticity with Multi-
plicative Kinematics,” Eng. Comp., 9, 437-451.

DAFERMOS, C.M. [1976], “Contraction Semigroups and Trend to Equilibrium in Contin-
uum Mechanics”, Springer Lecture Notes in Math., 503, 295-306.

DUHEM, P. [1911], Traité d’Energetique ou de Thermodynamique Générale, Gauthier Vil-
lars, Paris.

ERICKSEN, J.L. [1966], “Thermoelastic Stability”, Proc. 5t" National Cong. Appl. Mech.,
187-193.

ETEROVICH, A.L. & BATHE, K.J. [1990], “A Hyperelastic Based Large Strain Elasto-
Plastic Constitutive Formulation with Combined Isotropic-Kinematic Hardening Using
Logarithmic Stresses and Strain Measures,” Int. J. Num. Meth. Engr., 30, 1099-1115

GLASER & ARMERO [1997] “On the Formulation of Enhanced Strain Finite Elements in
Finite Deformations,” Eng. Comp., 14, 759-791.

GOVINDJEE, S. & SiMo, J.C. [1991] “Coupled Stress Diffusion: Case II,” J. Mech. Phys.
Solids, 41, 863-887.

GURTIN, M.E. [1975], “Thermodynamics and Stability”, Arch. Rat. Mech. Analysis, 59,
53-96.

KoITER, W.T. [1953], “Stress-Strain Relations, Uniqueness and Variational Theorems
for Elastic-Plastic Materials with Singular Yield Surface,” Quarter. Appl. Math., 11,
350-354.

LoreT, B. & PRrEvosT, J.H. [1993] “Dynamic Strain Localization in Fluid-Saturated
Porous Media,” J. Eng. Mechanics, 117, 907-922.



F. Armero 42

LEE, E.H. AND L1y, D.T. [1967], “Finite Strain Elastic-Plastic Theory Particularly for
Plane Wave Analysis,” J. Appl. Phys., 38.

Leg, E.H. [1969], “Elastic-plastic Deformation at Finite Strains”, J. Appl. Mech., 36,
1-6.

LEWIS, R.W. & SCHREFLER, B.A. [1987|, The Finite Element Method in the Deformation
and Consolidation of Porus Media, Wiley.

LUBLINER, J. [1986], “Normality Rules in Large-deformation Plasticity”, Mech. Mat., 5,
29-34.

MANDEL, J. [1971], Plasticité Classique et Viscoplasticité, International Centre of Me-
chanical Sciences, Course 97, Udine, Springer Verlag.

MARSDEN, J. & HUGHES, T.J.R. [1983] Mathematical Foundations of Elasticity, Dover
Pub., New York.

MOREAU, J.J. [1976], “Applications of Convex Analysis to the Treatment of Elastoplastic
Systems,” in Applications of Methods of Functional Analysis to Problems in Mechanics,
ed. P. Germain and B. Nayroles, Springer-Verlag, Berlin.

PaRrk, K.C. [1983], “Stabilization of partitioned solution procedure for fluid-soil interac-
tion analysis”, Int. J. Num. Meth. Engr., 19, 1669-1673.

PArRkK, K.C. & FELIPPA, C.A [1983], “Partitioned Analysis of Coupled Problems”, in
Computational Methods in Transient Analysis, (ed. by T. Belytschko and T.J.R. Hughes),
North Holland.

PrEvosT, J.H. [1981] “Consolidation of Anelastic Porous Media,” J. Eng. Mech. Div.
ASCE, 107 (EM1), 169-186.

PREVOST, J. [1983] “Implicit-Explicit Schemes for Nonlinear Consolidation,” Comp. Meth.
Appl. Mech. Engr., 39, 225-239.

SANDHU, R.S. & WiLsoN, E.L. [1969] “Finite Element Analysis of Seepage in Elastic
Media,” J. Engr. mech. Div. ASCE, 95 (EM3, 641-652.

SCHREFLER, B.A.; MAJORANA, C.E. & SANAvIA, L. [1995] “Shear Band Localization
in Saturated Porous Media” Arch. Mech. 47, 577-599.

SCHREFLER, B.A.; SANAVIA, L. & GAwIN, D. [1997] “Strain Localisation Modelling in
Fully and Partially Saturated Porous Media, Proc. Comp. Plasticity V, ed. D.R.J.
Owen, E. Onate, & E. Hinton, CIMNE, Barvelona.

Smmo, J.C. [1992], “Algorithms for static and dynamic multiplicative plasticity that pre-
serve the classical return mapping schemes of the infinitesimal theory”, Comp. Meth.
Appl. Mech. Engr., 98, 41-104.



Coupled Poro-plasticity at Finite Strains 43

Simo, J.C. [1994] “Numerical Analysis of Classical Plasticity”, Handbook for Numerical
Analysis, Volume IV, ed. by P.G. Ciarlet and J.J. Lions, in press.

Simo, J.C. & MIEHE C. [1992] “Associative coupled thermoplasticity at finite strains: for-
mulation, numerical analysis and implementation”, Comp. Meth. App. Mech. Engnr.,
98, 41-104.

Simo, J.C. & ORTiz, M. [1985] “A Unified Approach to Finite Deformation Elastoplastic
Analysis Based on the Use of Hyperelastic Constitutive Equations,” Comp. Meth. Appl.
Mech. Engr., 49, 221-245.

SMmaLL, J.C.; BOOKER, J.R. & Davis, E.H. [1976], “Elasto-Plastic Consolidation of
Soil,” Int. J. Solids Structures, 12, 431-448.

TRUESDELL & NoOLL [1965] “The Nonlinear Field Theories of Mechanics,” Handbich der
Physik Bd. II1/3, ed. by S. Fluegge, Springer Verlag, Berlin.

TURSKA, E. & SCHREFLER, B.A. [1993], “On Convergnece Conditions of Partitioned
Solution Procedures for Consolidation Problems,” Comp. Meth. App. Mech. Engnr.,
106, 51-63.

VARDOULAKIS, I. [1996a] “Deformation of Water-Saturated Sand: I. Uniform Undrained
Deformation and Shear Banding. Shear Banding,” Géotechnique, 46, 441-456.

VARDOULAKIS, I. [1996b] “Deformation of Water-Saturated Sand: II. Effect of Pore Water
Flow and Shear Banding,” Géotechnique, 46, 457-472.

WEBER, G. & ANAND, L. [1990], “Finite Deformation Constitutive Equations and Time
Integration Procedure for Isotropic, Hyperelastic-Viscoplastic Solids,” Comp. Meth,.
Appl. Mech. Engr., 79, 173-202.

Woobp, W.L. [1990], Practical Time Stepping Schemes, Clarendon, Oxford University
Press.

YANENKO, N.N. [1971], The Method of Fractional Steps, Sprimger Verlag, New York.

ZIENKIEWICZ, O.C.; CHANG, C.T. & BETTES, P. [1980], “Drained, Undrained, Consol-
idating and Dynamic Behaviour Assumptions in Soilds,” Géotechnique, 30, 385-395.

ZIENKIEWICZ, O.C. & HUMPHESON, C. [1977], “Viscoplasticity: a Generalized Model for
Description of Soil Behavior,” Numerical Methods in Geothechnical Engineering, ed. by
C.S. Desai and J.T. Christian, MacGraw Hill, New York, 116-147.

Z1ENKIEWICZ, O.C.; PauL, D.K. & CHAN, A.H. [1988], “Unconditionally Stable Stag-
gered Solution Procedure for Soil-pore Fluid Interaction Problems”, Int. J. Num. Meth.
Engr., 26, 1039-1055.

ZIENKIEWICZ, O.C. & TAYLOR, R.L. [1991] The Finite Element Method, Volume 2,
McGraw Hill, London.



F. Armero 44

Appendix 1. Finite Element Implementation

We summarize in this appendix the numerical implementation of the finite strain
poro-plastic model described in the paper. To this purpose, we first summarize the weak
form of the governing equations of the problem.

i. The weak equations. Standard arguments lead to the weak form of the equilibrium
equation (2.10)

/‘r:sym[V(é(p)] dV:/pof-é(p dv + T -6p dA, (I.1)
B B arB

for all admissible variations (that is, satisfying the homogeneous essential boundary con-
ditions (2.24);). Similarly, the weak form of the conservation of fluid mass equation is
written as

/ M ép dV — / Guw - V(6p) dV = Qv 0p dA (1.2)
B B 8B

for all admissible variations of the pore pressure field (that is, satisfying homogeneous
essential boundary conditions (2.26);). Here, we have introduced the notation §, :=
Jqw = FQ,, as defined by the Piola transform (2.6).

ii. The finite element residuals. We consider a finite element discretization B =
UZelem Q8 of the domain of interest B as a basis for the interpolation of the displacement
and pore pressure fields

_ v _ NT
JQ:;—c,o(X) X =N,d and pﬂ.’:
with nodal displacements d and nodal pore pressures p, and corresponding set of element
shape functions N, = [Nﬂ and N, = [le’] (A = 1, Mnodew,p, = Number of displace-
ment /pore pressure nodes in element 2. Standard arguments lead to the discrete finite
element equations

Tlelem

.— fecxt T _
Ru..=Ff" - A / bl Tat1 dV =0,
e=1 .Qf;

Tlelem 1 -
—— t T T ~ _
Ry, =f — el /Qg [Np A7 (Mn+1 - Mn+1) —bpn+1qwn+l] dv =0,

where the symbol A?¢™ denotes the assembly over the different nejem elements. A typical
time step [ty,, tn+1], with At = t,4+1 —t5, has been considered in (I1.4). The converged values
of the nodal displacements d,,, nodal pore pressures p,, and internal variables {b¢, o, MF}

at the end of the previous time step are assumed known.
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The linearized strain operator b, is defined as

N‘l:‘,l 0
b, =[b, ... by**], where b;=| 0 N2, for A=1,n50den, (I.5)
Nia N,

for, e.g., the two dimensional case ngj, = 2. Similarly, the discrete gradient operator

node NA
by"°*"], where b= [N&’l} for A =1,nnodep » (L.6)
P2
is considered in (I.4);. The different components (-) ; of the spatial gradient of the shape
functions in a Cartesian reference system have been considered in these expressions.

In (1.4);, we consider the stresses 7,4+, = 7(dp+1, D), evaluated at d, 4, and P, where
P = pp41 for the monolithic scheme, and p = p, for the drained split. Iterative Gauss-
Seidel schemes are obtained through a multiple-pass strategy, with p = pfﬂl the value of
the pore pressure in the last iteration. For the undrained split, the nodal pressures are not
changed when solving (I.4); during the solid phase. Instead, the constant fluid content

equation is imposed locally at the quadrature points
Mg + ME = M*(dn41,p) + MP(dntr, D) , (L.7)

leading to the local pore pressure p. See Box 3.2 for details. For the simple case given by
(3.36) and an incompressible fluid (3.26), the linear expression

ﬁn+1 = DPn — Q b (€Un+1 - 5'0,,) ) (18)

is obtained. The quasi-incompressible character of the undrained solid phase for large
values of § = b2Q/k,, is apparent. We refer to ARMERO & SIMO [1992,93] for complete
analyses of the numerical properties of these different methods.

The numerical schemes based on the drained and undrained splits proceed then by
solving equations (I.4) in a staggered manner, with a first solid phase corresponding to
the solution of (I.4); followed by a fluid phase corresponding to the solution of (I.4), at
a fixed configuration. Each phase involves a Newton-Raphson type scheme involving the
linearization described below. Note that for the fluid phase of the undrained split we have

. 1 ~ 1
M= E (Mn+1 - Mn+l) = Xt‘ (Mn+l - Mn) s (19)
locally at each quadrature point, where the fluid content after the solid phase M,,; is
known since M,,y; = M,. Therefore, the final numerical implementation is independent
of the value of the pore pressure p after solving the undrained solid phase. The drained
split uses also the approximation (I.9). Similarly, the fluid flow vector §y,,,, and the fluid
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content M, . in the fluid equation (I.4), are given by the constitutive relations developed
in Sections 2.2 and 3.4, respectively.

ili. Return mapping algorithm. The numerical integration of the multiplicative poro-
plastic model summarized in Box 3.1, for the stresses 7,41 and the update of the internal
variables {b¢, an, MP} — {b% |, ant1, MY}, is obtained through an exponential return
mapping algorithm following similar arguments as in SiM0 [1992], with additional consid-
erations regarding the volumetric plastic response. For completeness, we outline here the
main steps, and refer to this reference for additional details for the common considerations.
The final equations are summarized in Box I.1. The reader is referred also to WEBER &

ANAND [1990], ETEROVICH & BATHE [1990], and CUITINHO & ORTIZ [1992].

The development of the return mapping scheme starts with the consideration of the
classical elastic predictor/plastic corrector split, which for the flow rule (??) is based on
the partition

L£ob° =0 —1b*—bIT = —2ymng b° | (1.10)

elastic predictor  plastic corrector

with the elastic predictor defining exactly the trial elastic state b%Y; as defined in Box I.1.
Upon detecting an inadmissible trial state through &, , > 0, the plastic corrector uses

the exponential mapping
b5, 41 = exp[-2Ay ng] bR, (1.11)

which leads to the relation
JE, 1 = exp[—2A7 tr(ne)) Joi (I.12)

for the elastic Jacobian. Noting that tr(ng) = g’/v/2, the use of the assumed Hencky’s
law for the elastic response

Tre1 = Kalog Jp g and dev[T, 1] = t. logbs . , (I.13)
with bg ,; := Je(_z/s)bth, leads to the relation

Ay

7_'1,1+1 = ﬁ'ﬁh - ’\7—‘5 Kakg,(;’:r,;+1) ’ (1.14)
for the volumetric part, and
dev[r, 4]
dev[‘r’r’1+1] = dev[‘rﬁ[l] - 2ouskA7ﬂ_dg,ﬁ == ” dev[r'rlz-l-l]“ = ” dev[r‘:l.f:l]” - 2uskA7 ’
n+

(I.15)
for the deviatoric part. The imposition of the consistency condition (3.14) at t,41, in
combination with (I.13), to the expression

1

“2‘(” dev Trllf:l” + g(:’:n+1)) — [Tyo — g(an+1)] — 2us Ay =0 (I.16)
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The more general case of a linear viscoplastic model, in the Perzyna form (3.21), is easily
incorporated by equating this last expression to Avn,/At instead. The system of two
nonlinear equations (I1.14) and (I.16) is solved for Ay > 0 using a Newton scheme as
described in Box I.1. For the case of linear hardening and linear volumetric response
(9(F") = B+ '), the following closed-form expression

1
V2 (ko + 360 B2+ H)

is obtained. The plastic updates follow in principal directions making use of the isotropy
of the model as summarized in Box I.1.

Ay =

(Il devirafyll + BoTay = V2(ryo + Hap)| 20, (L17)

We note that the above considerations apply to the case of a smooth yield surface.
In particular, the above solution is valid when it leads to g(7, ;) < 9(Tiertezns1) =
V2 (Tyo — g(@n+1)) or, equivalently, || dev[r, || > 0 in (I.15), after solving (I.16). Oth-
erwise, and as discussed in Remark 3.3, the flow rule (3.39) in the vertex of the Drucker-

Prager model is activated, which involves the additional plastic multiplier AY? as

_ Lir (A 4+ A®) _
T7,7,+1 = 7—In-{-l - \/5 Kskg,('r‘,l—l_'.l) ; (118)

for the volumetric part, keeping (I1.15) with Ay() instead of Avy. This case leads to the
closest-point-projection to the vertex, with

1

I dev[TrIH-l” =0 = A'Y(l) = I deV[Tr’xl” ) (L19)

sk

and the consistency condition (I.16) simplified accordingly. A Newton shceme is again
employed to determine Av(?), with the closed-form expression

1 1 1
H+ 35,02 (V2 V2 p,.
for the case of linear hardening and linear volumetric dependence. In this case, a simple

calculation shows that Ay(?) > 0 when A~ given by (I.17) leads to an inadmissible solution
(Il dev[7} .1]| < 0 in (1.15)3), so Ay in (1.19) is employed.

A‘r(z) = ﬁdfrllt-fl — (Tyo + Hay) | —

Il devir il (1.20)

iv. The linearized finite element equations. The set of nonlinear equations (I.4) are
solved using a Newton-Raphson scheme. The monolithic scheme leads to a non-symmetric
fully coupled system in the nodal increments Ad and Ap. For the staggered schemes under
consideration, we have the consecutive solution of each phase with the respective linearized
equations

K9 Adit) = RY (solid phase)

UUn+1 Un41
| ‘ | (L21)
KO  Apit) = RY (fluid phase)

PPn+1 Prn+1
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for the increments of the nodal displacements Ad = d®+t1) — d® and nodal pore pressures
Aps:'ll ) = pf:i'll ) pgfil, at iteration (7). To simplify the notation, the super-index (7) is
omitted in the following developments.

As usual, the stiffness matrix consists of a material and geometric part,
Kuun+l = Km,uun+1 + K91uun+1 . (122)

The expressions for the element contributions to the material part can be written as

T : .
KAB - /Qh bAn Cn+1 b’l?n-{-l dv e R dim XTdim ’ (Aa B = 1, nnodeu) 3 (123)
where ngim = 2 or 3 is the dimension of the space. The consistent algorithmic spatial
tangent ¢, defined by

-£Aun+1Tn+1 = Cp41 SYym [V(Aun+1)] ) (1.24)

has been used in (I.22). We have included in Box 1.2 the closed-form expression of this
tangent for the poro-plastic model summarized in Box 3.1. We note the symmetry of the
final tangent for the considered associated poro-plastic model. The geometric stiffness
contributions have the usual expression

/ hVnHN;‘ 1Vl NB dVI1 (A, B =1,n104e) , (1.25)
kP

€

where 1 is the ngim X ngim identity matrix.

The fluid phase involves the constant configuration defined by d,+;, avoiding then
any additional geometric contributions in the linearized equations. Furthermore, for an
effective stress model as considered in Section 3.4, we have no evolution of the inelastic
internal variables {b%_, any1, MY, }. This is the case since a change of pore pressure
does not lead to a change of effective stresses if the configuration of the solid remains
fixed. The tangent stiffness is then given by

AB _ AT B
KB = /Q Pu, by Kou by, AV

€

Cn 1 A B
+/937§+t‘ NANBQVER  (A,B=17nodep),  (126)

for the permeability tensor k, ., and hydraulic capacity c,,, = OMn41/0pn41. For the
model developed in Section 3.4, we have ¢, = py,/Q.
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Remarks I.1. The simulations presented in Section 4 consider the Q1/ET4 enhanced
strain finite element proposed in GLASER & ARMERO [1997]. We note the quasi-incompressible
character of the undrained solid phase due to the fluid coupling and, consequently, the need
of locking-free finite elements. One of the main features of these elements is their fully
strain-driven structure. In this way, the above developments extend to this case by ba-
sically modifying the gradients used in the linearized strain operators through a set of
enhanced strain parameters. These parameters are defined at the element level, allowing
for their static condensation at this level. We refer to the aforementioned reference for
complete details in the implementation. We note again that the return mapping algorithm
and algorithmic consistent tangent summarized in Boxes I.1 and 1.2, respectively, do not
need any modification, and are used directly in the implementation of these enhanced
elements. O
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BOX I.1.a. Return mapping algorithm for the generalized Drucker-
Prager poro-plastic model summarized in Box 3.1.

1. Kinematics:
1.1. Given the current displacement iterate ©,+1(X) = ¢n+1(X) — X, compute the
relative deformation gradient f,;

_ -1
frr1=FoF7 = [1-Vg,  una]

where T,41 := @n4+1(X) = X + up41(X).

1.2. Compute the trial elastic left Cauchy-Green tensor from previously converged b¢,
etr I
n+1 = f’n+1b fn+1

1.3. Compute the spectral decomposition
3

e tr t A tr (A
bfzzfl = Z ()‘A:H-l) nr+(1 ) ® nn-}-(l ) s
A=1

The trial elastic Jacobian is then given by

-1/3
etr __ yelr e tr e tr ye tr e e tr e tr
Jrt1 = Alnt1 A2nt1 ASnt1 and AAnt1 = (Jn+1> AAn+1 -

2. Trial state:

2.1. Compute the trial principal effective Kirchhoff stresses (e.g. Hencky’s law), de-
composed in their deviatoric component 34 .| and volumetric component 7.7, |

BY i1 = 21 logAq Y, (A=1,3) and i =k, logJo b

The plastic flow is fixed, i.e., a¥,; = ap41 and M,’l’_ﬂ = MP.

2.2. Compute the trial yield condition

Py = ( Z T nt1) ('nfl)) = [ryo — q(an)]

vy

|| dev ‘I‘,’Hfl”“

where g(ay,) corresponds to the hardening/softening law.
3. Check consistency of the trial step:

IF (@Y., <0) THEN
ELASTIC STEP: Update internal variables and stresses (:)n41 = ()&
GOTO 5

ELSE
PLASTIC STEP

ENDIF
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BOX I.1b. (cont.) Return mapping algorithm for the generalized Drucker-Prager poro-plastic
model summarized in Box 3.1.

4. Plastic step:
4.1. Solve for the consistency parameter Ay and the effective volumetric stress 7, , ;

s = 5 (14V T+ 0(704) = [ry0 = al@nan)] = 2y =0

_ _ Ay
T?:;-H = T'IIH—I 1,1,-{t-r1 + —= \/5 Ksk g( n-l—l) 0

al” + Av. This system of equations is solved using Newton’s

where an41
scheme

(
Ay = A4 (F) 4 5(A’Y)(k+1 ’ TIH(_I;+1) — :Hl_c)l +6(7 )(k+1) : }
(k) K g’(k)
g’ (k) (k) ok (
s (AN = 1) - —— Tl 2t + H® 4 — s
Ve o, k 264, (
1 \(k+1) (k) Rk kg,(k) (k+1)
6(Tr+1) =—— |t + —=—06(AY) ,
91(1-21 Tn+1 \/§ y,
where @;’Z}l = 1+ A~ n,,cg”(k)/\/i, and H®) = —g—g e with 0‘5321 =
n+1
al™ . + Ay for each iteration k = 0,1, 2, ... (Ay(® =0).
+1
4.2 Update the internal variables and compute the effective stresses:
V2 A'Y © BAnt1
— Atr 1— sk = )& n+ -1
ﬁA n+1 /BA n+1 _ (|dev n+1“ An+1 An+1 €XP zﬂsk (A ’3) ’
Je — Je tr A’)’ 1=t A ir A d
n+l = Yn+1 €XP —ﬁ 9 (Tri1)| s ny1=agy + Ay an
Jny1JE
MP = M”+1 + b pu, log (Tﬁ'l——’l) .
Jn+1 ‘]ﬂ
3
Compute A, 4, = (Ja +1)(1/3)’\A +1 bop = Z ’\An+1nAn+1 ®nAn+1’
3
and
Tot1 = Z Bant1MG 1 @0 + 70 1.
A=1

5. Compute the total stresses with updated pore pressure:

T=T’_bpwo (Nw(ﬁ)—ﬂwo) 1,

where § = pn41 for the monolithic scheme, p = p, for the drained split, and for the
undrained split p is obtained by solving locally at each Gauss point equation (1.7)

using Newton’s method.
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BOX I.2. Consistent tangent for the return mapping algorithm sum-
marized in Box I.1.

Exact consistent algorithmic tangent:

3 3
_ t'r (A,A) tr (B,B) tr
Cn+1 = Z Z ABn+1 My @My + Gnt1 s
A: :
where tr(A,B) ._ 1 [, tr(4) tr (B) tr (B) tr (A)
bl T g My O, N RN, T

The moduli g¥,; are independent of the plasticity model and are given by

3
tr (A,A tr (A,A tr (A,A AA
07 = D (<27ans1) (MY @mI Y 4 mI Y @ mI )]
A=1
3 tr e tr 2 tr p\: tr 2
TAn+1 ( Bn+1) ~ "TBn+1 ( An+1) tr (A,B) tr (B,A)
t Z etr \2 )& tr 2 n+l ® Mt
AB=1 (’\An+1) "( Bn+1)
A#B

where Tan+1 = Ban+1+ Tny1 — b puw, (Hw(P) — pw,). The elastoplastic contributions

are given by

i. FElastic step:

1
a;’ | =[Ka + 7] ERE+ 2p,, [1—§e®e]

where & =[11 1]7, 1 = identity 3 x 3 matrix, and 7 is defined below.

ii. Plastic step:

1AV !
g ) K’Sk -~ -~ \/iﬂsknskg ~
a’? [ns (1——(———)4—%} eXxe— ———2 3
nH * 2 @n+1 Sn+1 9n+1 =n+l nt
V2 A7 u X 1
2., |1- : [1 _Ze A]
" ‘”( Tdevrir, I 3e@e
Qe V2 AY o o —~
- 2 s — - ® m
ok (:n+1 [devrir, |l | "ot E et
(Fins1) g = —— B (Bust)ap = o Banss + Bansi]
n+l/A — ||dev Tn+1“ An+l > n+l)AB — ” dev Tn+1” An+l Bn+1] »
Ay 2
9n+1 =1+ \_/——2‘ Rskg" y Sn+l = 24+ Hn+1 + —2—6&?—-)1—
n+

In the above expressions m = 0 for the monolithic scheme and drained split, whereas

for the undrained split 7 = b2 Q , leading to the undrained elasticities.






