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Dynamical graph grammars (DGGs) are capable of modeling and simulating the dynamics

of complex biological systems using an exact simulation algorithm derived from a master

equation; however, the exact method is slow for large systems. To accelerate the simulations

of DGGs we have developed an approximate simulation algorithm that is compatible with

the DGG formalism. The approximate simulation algorithm uses a spatial decomposition

of the domain at the level of the system’s time-evolution operator, to gain efficiency at the

cost of some rules or reactions firing out of order, which may introduce errors. The decom-

position is coarsely partitioned by effective dimension (d=0 to 2 or 0 to 3), to expose the

potential for exact parallelism between different subdomains within a dimension, where most

computing will happen, and to confine errors to interactions between adjacent subdomains

of different effective dimensions. Additional efficiency can be achieved through maintaining

an incrementally updated match data structure for all possible rule matches. To demon-

strate these principles we have developed the Dynamical Graph Grammar Modeling Library

(DGGML), and two DGG models for the plant cell cortical microtubule array (CMA). In

the first model, we find evidence indicating that the initial formulation of the approximate

algorithm is substantially faster than the exact algorithm, and one experiment leads to net-

xvi



work formation in the long-time behavior, whereas another leads to a long-time behavior of

local alignment. In the second model, we restrict ourselves to the CMA in the periclinal face

of a plant cell and explore the effects that different face shapes and boundary conditions

have on local and global alignment. In the case of a square face shape, we find the array

orientation to be multi-modal, and in the case of a rectangular face shape, we find that dif-

ferent boundary conditions reorient the array mainly between the long and short axes. The

periclinal CMA DGG demonstrates the flexibility and utility of DGGML and highlights its

viability to be used as a computational means of testing, screening or inventing hypotheses

to explain emergent phenomena.
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Chapter 1

Introduction

1.1 Motivation

Static graphs are a fundamental concept in mathematics and computer science [36], and in-

tuitively allow us to represent relationships between objects and concepts. Dynamic graphs,

on the other hand, are graphs that can change over time and allow us to intuitively represent

changing relationships. The theory of graph grammars found in [95] provides a comprehen-

sive mathematical framework to understand how dynamic graphs become dynamic by means

of expressive rewriting systems. A dynamic graph, and in turn a graph rewriting system

can, be further equipped with a high-level language that maps graphs to a master equa-

tion resulting from an operator algebra framework, effectively enabling the dynamic graph

to become dynamic through a stochastic rewriting process. Dynamical Graph Grammars

(DGGs) [76] allow for an expressive and powerful way to declare a set of local rules to model

a complex dynamic system with graphs.

DGGs also have a well-defined meaning. They map graph dynamics into a master equation, a

set of first-order linear differential equations governing the time evolution of joint probability
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distributions of state variables of a dynamic system. Using operator algebra [75], DGGs can

be simulated using an exact algorithm (Chapter 4, Algorithm 1) that subsumes Gillespie’s

Stochastic Simulation Algorithm (SSA) [48], which is closely related to the kinetic Monte

Carlo algorithms of statistical physics [131]. As does the SSA, the exact algorithm becomes

slow for large systems and signals a need to develop a faster and more scalable algorithm.

Using operator splitting, an approximate faster and scalable algorithm can be derived for

spatially embedded graphs (Chapter 4, Algorithm 4).

The original implementation of the DGG formalism is realized by the software Plenum [129]

with powerful symbolic processing provided by Mathematica [128], but only uses the exact

algorithm and does not use native graph data structures or graph algorithms. To allow for

a more graph and performance-oriented implementation, we have developed the Dynamical

Graph Grammar Modeling Library (DGGML) in the C++ programming language. DG-

GML trades the symbolic processing found in Plenum for native graph data structures and

performance. DGGML also serves as a way to directly demonstrate the utility of the new

approximate algorithm. The design and usage of DGGML discussed in this thesis also serves

as a base or guide for future implementations of the DGG formalism as an independent lan-

guage with its own compiler, along with informing any designer or user of the trade-offs

between simulation algorithms.

To demonstrate the usage and utility of DGGML, particularly on the user side, we focus on

two different biological models for the plant cell cortical microtubule array (CMA), where all

graph rules are for graphs spatially embedded in Euclidean space. The first model (Chapter

8 and Appendix A) is implemented using the precursor [73] to DGGML, while the second

model (Chapter 9, and Appendix B) is completely defined with the DGGML user-interface

and simulated using the implementation of Algorithm 4 of Chapter 4 provided by DGGML.

Both models are presented to showcase the evolution of DGGML and the flexible power of

DGGs.

2



These models are also presented to demonstrate how DGGs can be used to search for corre-

sponding wet-lab experiments that would distinguish between and test alternative hypothe-

ses. In our case, these digital stand-ins enable our investigation of the CMA in plant cells.

Within the CMA, the mechanisms and the general principles governing the organization of

cortical microtubules into functional patterns have long been studied [123], but there are

still many outstanding questions [39]. The inspiration for the models presented in this thesis

comes from this yet-to-fully-be-explored frontier, and the simplified models we have devel-

oped using DGGs and simulated using DGGML for CMA dynamics come with the potential

to be extended to include more complex dynamics and interactions working together at

different scales of space.

Work has already been done to simulate the dynamics of MTs in plants [84], [24]. However,

to our knowledge, there is no other known formalism that does it by using dynamic graphs.

The only previous work is found in Plenum [129] and theoretically discussed in [76] and [130].

Finally, the algorithms, library, and models with corresponding simulations presented in this

thesis are intended to fully demonstrate the synergy between the technical computing side

of computational science and the mathematical modeling side of systems biology.

1.2 Overview of Contributions of the Dissertation

The dissertation makes several significant novel contributions to the research area of Dy-

namical Graph Grammars (DGGs) and makes efforts to make the entry point into this field

clear. It begins by introducing key concepts such as stochastic chemical kinetics, the stochas-

tic simulation algorithm (SSA), and graph theory fundamentals, laying the groundwork for

developing an approximate algorithm to improve simulation performance. The iterative in-

troduction of the DGG formalism from Stochastic Parameterized Grammars to Dynamic

Grammars to DGGs keeps the historical evolution of the topic intact while building out the
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general formalism. The dissertation also details the original approximate hybrid parame-

terized ODE SSA algorithm (Algorithm 3), leveraging operator splitting and an expanded

cell complex to decompose simulation spaces effectively while maintaining accuracy. We also

present and even more efficient and improved version (Algorithm 4). The algorithm includes

an incrementally updated match data structure composed of all rule instances and all pos-

sible LHS connected component instances, greatly reducing the need to recompute matches

after every rule firing event. We also have contributed novel methods for mapping rules to

geometric cells (geocells) in the form of the function φ.

The Dynamical Graph Grammar Modeling Library (DGGML) is presented as a realization

of the DGG formalism and the approximate hybrid parameterized ODE SSA algorithm.

Notable developments to this thesis made through the implementation of DGGML include

Yet Another Graph Library (YAGL), the expanded cell complex (ECC), an incremental

update mechanism for the collection of possible rule firings, a unique solution to the subgraph

recognition problem for labeled graphs, and guidelines for grammar creation and language

interfacing. We have also implemented a first-of-its-kind analysis framework for the left-hand

side of DGG grammar rules. Collectively, these developments have enhanced DGGML’s

versatility and usability for dynamic system modeling.

Two practical applications of DGGs are presented as well. The first DGG model is for

the plant cell cortical microtubule array (CMA) (Appendix A), which demonstrates the

performance gained by using the approximate algorithm. Simulations of the CMA DGG

had two outcomes: the formation of a highly connected network, and the local alignment

of microtubules (MTs). The second model, the periclinal CMA (PCMA) (Appendix B),

demonstrates DGGML in action, along with providing a unique experimental framework for

analyzing array orientations. Through the use of the PCMA DGG, we were also able to

demonstrate that the shape of the periclinal cell face and the dynamics that play out on

the boundary may have an impact on the types of orientations observed in the long-time
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behavior. In the case of a square face, we discovered that the orientations could be multi-

modal, regardless of the boundary. In the rectangular case, we found that a collision-induced

catastrophe boundary led to alignment with the longest axis and that an influx of MTs on

the boundary was enough to switch the axis of alignment to the shortest.

1.3 Chapter Summaries

This chapter (Chapter 1) introduces the motivation for the thesis, highlights key contribu-

tions, and provides chapter summaries. Chapter 2 introduces several concepts required to

understand the DGG formalism and its origins, plus essential concepts for discussing the

implementation of the library. Stochastic chemical kinetics and the stochastic simulation

algorithm (SSA) are discussed [49] to support the need for the approximate algorithm [73]

presented in this work, along with performance improvements. Some graph theory [36] is

presented to make statements about graphs and related concepts more precise, since graphs

are at the core of the DGG formalism [76]. Several methods for representing dynamic graphs

and trade-offs are discussed, and this transitions directly into the topic of graph rewriting

systems. Both dynamic graphs and rewriting systems play a key role in the design choices

made to implement the Dynamical Graph Grammar Modeling Library (DGGML). Building

upon the notion of graphs, extended objects [76] and cell complexes are introduced to clarify

what types of objects are simulated and to provide a background for the expanded cell com-

plex. Chapter 2 concludes with a formalization of DGGs as a declarative modeling language

and claim 1 (model existence), followed by a brief overview of related biological modeling

tools.

Chapter 3 introduces the DGG formalism iteratively. Dynamical Graph Grammars (DGGs)

are a further refinement of the Dynamic Grammars, which generalized the Stochastic Pa-

rameterized Grammars by the inclusion of differential equation rules. DGGs include all the
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related formalisms of SPGs and DGs, along with an additional and expressive modeling

language framework for graphs. In this dissertation, the DGG formalism contributes to the

design and implementation of the Dynamical Graph Grammar Modeling Library (DGGML).

Chapter 4 presents the original hybrid parameterized ODE SSA (Algorithm 1) [75], along

with contributing suggestions for a parallelized version (Algorithm 2) and most importantly

introduces the approximate hybrid parameterized ODE SSA (Algorithm 4). The approx-

imate algorithm is a major contribution, providing an operator splitting algorithm that

imposes a domain decomposition using a novel expanded cell complex that corresponds to

summing operators, over pre-expansion dimensions d, and cells c of each dimension. Two

notable assumptions were made for the approximation of the exact algorithm: spatial lo-

cality of the rules and well-separatedness of the cells in the expanded cell complex used to

decompose the simulation space into domains. We also introduce the match data structure

at the heart of Algorithm 1 and several methods to map rules to geocells by means of the

function φ.

Chapters 5, 6, and 7 detail the DGGML framework and its realization of Algorithm 4.

Chapter 5 presents an overview of DGGML along with its essential components. Notable

contributions include Yet Another Graph Library (YAGL), a dynamic graph library designed

for DGGML, and several foundational elements such as the spatial variant node, subgraph

specific pattern recognizer (SSPR), expanded cell complex (ECC), and the process for incre-

mentally updating the set of rule matches after graph rewrites occur.

YAGL, which functions as a header-only library, complements DGGML by handling the re-

quirements of a dynamic graph. The ECC, a crucial development, offers a specialized graph

data structure essential to capture both geometric and topological aspects of the simulation

space, a key component of the Algorithm 4. The SSPR embodies a heuristic approach to

address the subgraph recognition problem for labeled graphs, significantly enhancing DG-

GML’s versatility. The incorporation of an incremental update mechanism allows for partial
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invalidation of matched rule instances post-rule firing, facilitating more efficient system up-

dates. The chapter also includes a section on graph transformations for a more comprehensive

understanding of rewriting.

Chapter 6 provides general guidelines for creating a grammar, and demonstrates how these

guidelines are applied in DGGML through interactions with library interfaces and how they

inform modeling choices. Furthermore, it aims to demonstrate what the integration of the

DGG language and formalism into another programming language looks like. Chapter 6 also

describes the user interface for DGGML and contributes two examples. The first example

presented describes how to transform a higher-level description of a stochastic rule using

the DGG formalism into a format compatible with the programming interface exposed in

DGGML. The same process is also applied to a deterministic solving rule. Chapter 6 con-

tributes and opens up an accessible entry point into the design of DGG language interfaces,

while offering insights into the considerations necessary when translating Dynamic Graph

Grammars (DGGs) into a working implementation in a target language.

The insights are further carried into Chapter 7, which builds on Chapters 5 and 6 to explore

the fundamental details of how DGGML internally analyzes and simulates a grammar. The

analysis phase contributes a novel hierarchy for creating a set of pattern matchers for spatially

embedded graphs with connected components used as fundamental pattern objects. The

simulation phase takes the building blocks and puts them into action, completing the picture

of how Algorithm 4 is implemented in the library.

Chapter 8 uses DGGs to discuss a model for the cortical microtubule array (CMA) in plant

cells (Appendix A), which is a complex system with many subsystems that are well-suited to

be modeled with DGGs. The chapter is taken from previously published preliminary work

[73] using the approximate algorithm (Algorithm 4) implemented as a prototype simulator,

where three simple experiments are run to test the viability of simulating the CMA and

the algorithm. From these results, we find evidence indicating the initial formulation of
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the approximate algorithm is substantially faster than the exact algorithm, and one exper-

iment leads to network formation in the long-time behavior, whereas another leads to local

alignment.

Chapter 9 revisits the CMA using DGGML. A new model is developed (the periclinal CMA

(PCMA) Appendix B) to investigate what effects the shape of the periclinal face and bound-

ary conditions near the edges of the face have on the alignment orientation of the array. In

particular, we focus on two face geometries: square and rectangular. For the boundaries,

we focus on two cases: collision-induced catastrophe (CIC) and entry and exit of micro-

tubules (MTs) mediated by cytoplasmic associated linker proteins (CLASP). In the case of

the square geometry, we were able to determine that the orientation of the array was multi-

modal except when a high crossover rate led to network-like behavior. In the case of the

rectangular domain, we found that changes to the boundary conditions reorient the array

between long and short axes. Finally, Chapter 10 concludes the dissertation and provides

direction for future work.
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Chapter 2

Background

2.1 Introduction

Dynamical graph grammars (DGGs) offer a powerful formalism for modeling and analyz-

ing complex systems, particularly those characterized by dynamic and evolving structures.

Driven by a stochastic process defined by a master equation, DGGs are directly related

to foundational work on stochastic chemical kinetics. However, DGGs are more expressive

and form a declarative modeling language based on the rewriting of graphs. The graphs

themselves are used to represent objects, relationships, and spaces. This chapter presents

background information on stochastic chemical kinetics, graph theory, dynamic graphs and

their representations, graph rewriting systems, extended objects and cell complex theory,

grammars, and languages. Additionally, examples of modeling tools similar to the dynam-

ical graph grammar modeling library (DGGML) are presented. The topics in this chapter

form a foundation for the DGG formalism and the remainder of the thesis.
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2.2 Stochastic Chemical Kinetics

The SSA is an example of stochastic modeling, as opposed to the deterministic modeling

approach [68]. In a deterministic approach, the time-continuous processes are wholly pre-

dictable and can be governed by the reaction-rate equations [67], a set of coupled ordinary

differential equations (ODEs). The stochastic approach is a type of random-walk process

that is completely encoded in the master equation. The master equation itself is a high-

dimensional linear differential equation, P
′(t) = W ⋅ P (t), which governs the rate at which

probability p flows through different states in the system. However, systems can become very

large due to an exponential state-space explosion with respect to the number of biological

variables, and the systems may have infinite-dimensional state spaces, making the analytical

solution to the master equation computationally intractable or impossible.

Kinetic Monte Carlo methods have been used in different applications, such as Ising spin sys-

tems [16] and the work of Gillespie [50], where he uses the Monte Carlo method and kinetic

theory to rigorously derive the exact stochastic simulation algorithm (SSA) for chemical

kinetics. The derivation in chemical kinetics makes a case based on several assumptions

about the systems, the most important being that the system contains a large number of

molecules well-mixed at thermal equilibrium. After making key assumptions, it is necessary

to set reaction rates - which can be difficult to determine. Three routes for determining

rates are lab measurements, giant ab initio quantum mechanical calculations or machine

learning generalizations thereof, and parameter optimizations in the context of system-level

observations together with the use of other known reaction rates that are more easily mea-

surable. Finally, an event is sampled from a conditional density function (CDF). The event

that occurs or “fires” is effectively a reaction. The Monte Carlo procedure does not give the

analytic solution to the master equation, but it does yield an unbiased sample trajectory of

a system. It effectively provides a realization through numerical simulation.
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As powerful as the exact SSA is, it is prohibitively slow, since each reaction event must be

computed in order. Numerous methods have been proposed to speed up the exact SSA.

τ -Leap [51] fires all reactions in a window of τ before updating propensity functions, saving

computation at the cost of errors. Later, it was made even more efficient [21]. R-Leaping

[8] lets a preselected number of reactions fire in a simulation step, again at some cost in

accuracy. The Exact R-Leap, “ER-Leap” [79] modifies the R -Leaping algorithm to be

exact and provides a substantial speed-up over SSA. ER-leap was later improved upon and

parallelized in HiER-Leap [85]. More recently, S-Leap [70] was introduced as an adaptive,

accelerated method that bridges the methods of τ -Leaping and R-Leaping. There are many

other works on speeding up the original SSA as well.

This dissertation work builds on this rich history and complements it. The goal is not to

just enable the simulation of a master equation for stochastic chemical kinetics. Instead,

the goal is to enable the solving of a broader class of problems in biology and beyond, by

representing the dynamics of spatially extended objects using graphs. The foundational work

for the mathematical theory will be briefly discussed in the DGG formalism section and the

curious reader may refer to [75, 80, 76] for more detailed information.

2.3 Graph Theory

The following graph theory and notation are presented as references. A graph (undirected)

G = (V,E) is a set of V vertices and a set of edges E ⊆ {{u, v}∣u, v ∈ V }, each an unordered

pair of V , where elements u, v ∈ V are vertices. V (G) is the set of vertices of graph G and

E(G) is the set of edges of graph G. Now, let G = (V,E) and G′ = (V ′,E′). There is

a homomorphism from G to G′ if there exists a mapping f ∶ V Ð→ V ′ that preserves the

adjacency of vertices, i.e. (v, v′) ∈ E Ô⇒ (f(v), f(v′)) ∈ E′. This is called a homomorphism

from G to G′. If the function f is bijective and its inverse is a homomorphism, then f is
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Figure 2.1: A visual example of a graph labeled by number and color.

also a [36] isomorphism, and graphs G and G′ are isomorphic.

A labeled graph G is defined as G = (V,E,α), where (V,E) is a graph and α ∶ V Ð→ L

is a function that assigns labels to vertices. To each labeled graph, there corresponds an

(unlabeled) graph (V,E) without the labels. A label-preserving homomorphism of labeled

graphs is defined to be a graph homomorphism that preserves the labels exactly, without

remapping them. A match is defined as an injective label-preserving graph homomorphism

G ↪ G′. Informally, a match locates a “copy” of G as a subgraph inside G′ for which all

vertices, edges, and labels are preserved.

A labeled graph can be seen in figure 2.1. Here, the nodes are uniquely labeled using positive

integers and the edges remain unlabeled. The discrete vertex labels have been mapped to a

color set and visualized with those colors. In this case, the graph has no spatial embedding,

so it could be visualized in many different ways.

If an isomorphism, G⇐⇒ G′, exists then G and G′ are isomorphic and G ≃ G′. A corollary

of isomorphism is automorphism i.e. an isomorphism from the graph G to itself is an
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automorphism. Now, let G ∪ G′ ≡ (V ∪ V ′,E ∪ E′) and G ∩ G′ ≡ (V ∩ V ′,E ∩ E′). If

G ∩ G′ = G, then G′ is a subgraph of G can be written as G′ ⊆ G. On the other hand, if

G ∩G′ = ∅, the two graphs are disjoint. Let H be a graph. If G′ ⊆ G and H ≃ G′, then H is

isomorphic to a subgraph of G.

The set of neighbors for a vertex v ∈ V can be denoted as NG(v). Sometimes this is referred

to as the frontier of v in G. The degree of the vertex d(v) ≡ ∣NG(v)∣, and represents the

cardinality of the set of neighboring vertices connected to v in the graph G. Any vertex of

degree 0 is said to be isolated. Let δ(G) ≡ min{d(v)∣v ∈ V } and ∆(G) ≡ max{d(v)∣v ∈ V },

where the former is the minimum degree of G and the latter is the maximum degree of G.

Take the average degree to be: d(G) ≡ 1
∣V ∣ ∑v∈V d(v). It follows then, δ(G) ≤ d(G) ≤∆(G).

We let a path graph be of the form P = (V,E) and the vertex set V = {x0, x1, . . . , xk} and the

edge set E = {(x0, x1), (x1, x2), . . . , (xk−1, xk)}, where all vertices xi are distinct. The vertex

x0 is the start of the path and the vertex xk is the end of the path. So, the graph P forms a

path between x0 and xk. Further, k is the number of edges, and a graph of path length k can

be written as P k. If however E = {(x0, x1), (x1, x2), . . . , (xk−1, xk), (x1, x0)} has all vertices

distinct except for x0 = xk, this is called a cycle. Any edge e ∈ G that joins two vertices,

(xi, xj), of a cycle but is not itself contained in the cycle is a chord of G. A cycle without a

chord is a circle. A graph with cycles is cyclic and a graph without cycles is acyclic.

A graph is connected if any two of its vertices can be reached by a path P k ⊆ G. The negation

of connected is disconnected. A component of G is a maximally connected subgraph. The set

of connected components of a graph G is NC(G) and the cardinality of the set, i.e. number

of connected components, is ∣NC(G)∣. So, ∣NC(G)∣ ≤ 1 if G is connected and disconnected

if ∣NC(G)∣ > 1. If ∣NC(G)∣ = ∣V ∣, then it can be said that the graph is fully disconnected.

An interesting example of this would be a set of n particles represented as vertices, each of

which has no connections to any other.
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An acyclic graph is also called a forest. A forest that is connected is a tree. A forest is then

a graph with components that are trees. A directed graph (digraph) is a graph where edges

have a direction. For a tree, it is sometimes useful to treat one vertex of the tree as unique.

The selected vertex is the root. When the root is fixed, it is a rooted tree. Now, let G be a

graph and T be a tree. T is a spanning tree of G if T ⊆ G and T includes all of the vertices

of G. If one vertex of T is selected to be considered special and kept fixed, then it is a rooted

spanning tree. Rooted spanning trees can be used to construct depth-first search trees [36].

This fact is used in the heuristic pattern recognition and matching code derived in Chapter

5. Additionally, in the context of this thesis, a spatially embedded graph is a labeled graph

where the label map α maps vertex v to a feature vector belonging to the d-dimensional real

number space, Rd.

A dynamic graph, G(t) is a graph that changes over time. The change can either be in

the form of vertex/edge creation or destruction, the change of label parameters, or both.

Mathematically, G(t) = (V (t),E(t), αt), where αt ∶ V (t) Ð→ L.

2.4 Representing Dynamic Graphs

Dynamic graphs are graphs that change over time, in contrast to static graphs that remain

fixed. Two primary methods for representing static graphs are adjacency matrices and

adjacency lists. The adjacency matrix, despite its higher space complexity of O(∣V ∣2), where

∣V ∣ denotes the number of vertices, offers quick O(1) lookup times, making it suitable for

dense static graphs. In contrast, adjacency lists, which store only vertex connections, are

more space efficient, with a space complexity of O(∣V ∣+ ∣E∣) where ∣E∣ represents the number

of edges. The space efficiency is particularly valuable for sparse graphs. However, their

lookup speeds are comparatively slower, with a time complexity ranging fromO(1) toO(∣V ∣),

depending on the data structure used (e.g., arrays, linked lists). These differences between
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design choices highlight the careful consideration that must be made between the trade-offs

of space efficiency and lookup time complexity, especially in dynamic graph scenarios where

frequent rewrites and alterations to the node and edges occur.

Variations of adjacency matrices and lists, including Compressed Sparse Row (CSR), Com-

pressed Sparse Column (CSC), and Coordinate List (COO), have been developed to optimize

efficiency for specific use cases. CSR and CSC formats are ubiquitous in numerical comput-

ing, optimizing the data’s structure for matrix-vector operations such as matrix multiplica-

tion. On the flip side, the COO format excels in random access times and offers flexibility

for sorting algorithms, making it advantageous for scenarios where a specific edge or vertex

order is required. COO effectively stores the contents as a list of tuples in the format (row,

column, value).

While these representations excel in optimizing operations on static graph operations, re-

cent efforts have concentrated on accelerating these operations and crafting algorithms that

harness GPU computing power for dynamic graphs. Recent work has been done to aid in

this effort by designing algorithms that run on the GPU [124, 122, 20].

For dynamic graphs, a specialized combination of approaches is required. In this thesis,

a dynamic graph representation defined explicitly for the CPU has been developed and

implemented in Yet Another Graph Library (YAGL) with more details found in Chapter 5.

A potential future improvement for YAGL would be to extend the library to work for GPUs

as well. This type of extension would ensures adaptability and scalability across diverse

computing architectures, effectively addressing the evolving use cases of dynamic graphs.
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2.5 Graph Rewriting Systems

Generalized graph rewriting systems [56], also known as graph transformation systems, rep-

resent another powerful formalism for modeling and analyzing complex systems, particularly

those with inherently dynamic and evolving structures. At their core, graph rewriting sys-

tems describe transformations that occur on graphs, where nodes represent objects, and

edges denote relationships or connections between these objects. These transformations

capture the dynamic behavior of systems by specifying rules that dictate how the graph can

be modified over time, further motivating the need for a dynamic graph and illuminating

the relationship between rewriting systems and DGGs.

In a graph rewriting system, a rule typically consists of a pattern graph (in the DGG formal-

ism, a left-hand side graph). The pattern graph defines the structure to be matched within

the existing graph (in the DGG formalism, the system graph). A rule also has a replace-

ment graph, which specifies the new structure to be generated upon successful application

of the rule or, in the DGG case, a firing of a rule. In a general rewriting system, when a

rule’s pattern matches a subgraph of the current graph, the corresponding portion of the

graph is “rewritten” (as defined in Chapter 5) according to the rule, resulting in a modified

graph. This process of applying rules iteratively enables the system to transition from one

state to another, reflecting changes due to whatever process is driving the underlying system

dynamics.

Graph rewriting systems are peculiar because they tend to hide in plain sight and have

a rich field of applications in computer science, biology, chemistry, and other fields. In

the computer science world, they can be used for modeling and analyzing concurrent and

distributed systems [34], formal verification [127], programming [7], query languages [94], and

the emerging plethora of graph databases [71]. In biology and chemistry, graph rewriting

systems can be used to model biochemical reaction networks [105], enabling researchers to
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simulate and study complex biological processes, as is made evident in this dissertation.

One of the key advantages of graph rewriting systems lies in their expressive power and

flexibility, allowing for the representation of a broad range of dynamics, different systems,

and structural transformations. The graph rewriting framework can be further specialized,

by defining a graph rewriting system where rewrites are driven by a stochastic simulation

algorithm derived from the master equation, P
′(t) = W ⋅ P (t). From the specialization, a

formal mathematical framework is available by means of the operator algebra in the DGG

formalism [76, 77]. Using the mathematical framework of the DGG formalism, automated

theorem provers [31] could take advantage of the operator algebra to derive new algorithms or

mathematically bound errors in the approximate algorithm discussed in Chapter 4, effectively

providing a new means of analysis not offered by traditional graph rewriting systems. A

definitive source for graph rewriting systems can be found here [95]. While it is very powerful,

it takes a dense category theory approach and can be inaccessible to newcomers. However,

for the most curious of curious readers, it is highly worth at least browsing.

2.6 Extended Objects and Cell Complex Theory

Declarative modeling of complex systems requires a way to describe non-point-like extended

objects and the space in which they are embedded [76]. In the context of biological systems,

extended objects include polymer networks in the cytoskeleton and multicellular tissues.

The embedding space could be the surface or interior of a cell or a whole organism. In

this section, a mix of standard and nonstandard definitions is used in the construction of

extended objects and cell complexes.

Graphs augmented with labels are expressive mathematical objects capable of a high level

of abstraction, and these are used for the representations of extended objects. As defined in
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[76], numbered graphs are special cases of labeled graphs that have unique consecutive non-

negative integer labels for vertices. If the graph in figure 2.1 did not have colors assigned to

the nodes, it would be a numbered graph. A graded graph, on the other hand, is a graph where

vertices are labeled non-uniquely with a level number, associated with a spatial resolution

which can only differ by {0,±1} between neighbors. A stratified graph labels the vertices by

a non-negative integer “dimension” of the stratum to which they belong. Graded stratified

graphs have both dimension and level number vertex labels with suitable constraints.

Continuing as in [76], a special case of stratified graphs is the abstract cell complex. The

abstract cell complex is a graph that is used to represent the topology of a space in the

manner of a CW cell complex [55]. It has further constraints on the dimension labels. A

graded abstract cell complex can represent the topological properties of the space with the

addition of level numbers associated with spatial resolution.

In topology, mappings that preserve all the topological properties of a given space are homeo-

morphisms. They are continuous functions in both directions. A manifold is a mathematical

object (topological space) that is locally homeomorphic to Euclidean space “near” (within

an open set including) each point [81] [64]. And so, a d-manifold is a topological space that

locally looks like d-dimensional Euclidean space [18].

Now, let k ∈ Z+, then for any positive integer k ≥ 0, denote an open unit k-ball by Bk and a

closed unit k-ball as Bk. A mathematical k-cell is a topological object that is homeomorphic

to Bk. Further, the k-cell is defined by all the k − 1-cells . . . to 0-cells that compose its

boundary. For example, ∂B3 includes the 2-cells, 1-cells and 0-cells. For any k-cell, ∂ is the

operator that returns the k-cell’s boundary if it exists.

A cell complex C is a collection of mathematical n-dimensional n-cells, along with all of the

lower-dimensional cells that make up their boundaries, and so on iteratively down to the

0-cells. For example, if a cell complex is built to represent the topology of a square as in
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Figure 2.2: Left: A square. Center: The 2-cell, 1-cells, and 0-cells are labeled for the square.
Right: The incidence (relationship) graph for the cell complex of a square.

figure 2.2, the square itself is {A}, the 2-cell. The four 1-cells are the edges, {e, f, g, h},

and the four 0-cells are corners, {1,2,3,4}. In addition, the corners are contained in the

boundaries of the 2-cells and the boundaries of the 1-cells.

In figure 2.2, we have defined the topology of a square, but we have not provided a geometric

interpretation. In [110] they say topological collection is a cell complex where values (e.g.,

they could be real-valued position vectors, an integer label, etc.) are associated with each

cell. Take again the example of a square. If 0-cells are assigned points (x, y) ∈ R2, 1-cells

are mapped to the line segments between two such points, and the 2-cell given a continuous

mapping to the region in R2 associated with the interior of the square, then there is now a

spatial embedding [59].

In the graph theory section, it was observed that graphs are mathematical objects that can

be used to describe relationships. Labeled graphs add additional expressiveness in the form

of features requiring “vector labels” i.e. the cross product of feature spaces. Depending on

the use case, a graph is itself a cell complex of dimension one with restrictions [47]. On

the right in figure 2.2, the incidence graph is depicted for the previous square example.

An incidence graph represents the boundary relationships between k-cells. Note that the
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incidence graph in figure 2.2 already has vertices named with unique labels. So, it naturally

follows from the notion of a topological collection that a spatially embedded cell complex

graph can be defined by providing additional labels, one of which is a spatial embedding.

Therefore:

Definition 2.1 (Spatially Embedded Cell Complex Graph)

Let GC = (V,E,α) be a labeled graph where:

1. V ≡ k-cells

2. E ≡ k-cell boundary relationships

3. α ≡ {unique names, k-cell dimension, spatial embedding}, where α is a mapping to a

cross product of feature spaces.

Then, GC is known as a Spatially Embedded Cell Complex Graph.

Further discussion of the theory of cell complexes can be found in [17, 18, 64, 81, 55].

2.7 Grammars and Languages

In any formal language, grammars describe the syntactical structure of an acceptable sen-

tence and allow for varying levels of expressiveness. Linguists introduced generic grammars

as a way to study formal languages [26, 27]. Grammars themselves can be classified into a

formal language hierarchy, with one of the most well-known being the Chomsky hierarchy.

The hierarchy classifies languages into the categories of recursively enumerable, context-

sensitive, context-free, and regular, also known as type 0, 1, 2, and 3. Type 0 is the most

expressive and type 3 is the least.
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Stochastic grammars are built on top of generative grammars and are grammars that asso-

ciate probabilities with rules. Another related, but orthogonal formalism, L-systems, was

introduced [87] to model biological processes. L-systems represent a different kind of for-

mal language that can translate generated strings into geometric structures; however, they

remain deterministic. Stochastic parameterized grammars (SPGs) [80] and dynamic gram-

mars (DGs) [80] were inspired by these notions and lead to the definition of dynamic graph

grammars [76]; however, only in SPGs and DGs is there a linear summation W = ∑rWr of

rule operators Wr to get grammar operator W , in the master equation P ′(t) =W ⋅ P (t).

Along with grammars, programming languages can be categorized. Computer programming

languages are broadly divided into two categories: declarative and imperative. A declara-

tive programming language describes “what is” the goal to be reached. Some examples of

declarative languages are HTML, Haskell, YACC, and Make. An imperative programming

language describes “how ”the goal is to be reached. Some well-known examples are C++,

Python, and Java. However, it is worth noting that the listed examples broadly fall into

the mentioned categories, but some also have capabilities to be multi-paradigm as well. The

DGG formalism falls into the category of a declarative modeling language, but in this work,

its implementation is written in C++, a language that can be used imperatively. Under-

standing the context justifies the following definition and its subsequent claim:

Definition 2.2 (Declarative Modeling Language [76])

Let L be a declarative modeling language. L is a formal language with:

1. a compositional map Ψ ∶ L Ð→ S that maps all syntactically valid models M ∈ L into

some space S of dynamical systems

2. Conditionally valid or conditionally approximate valid families of Abstract Syntax Tree

(AST) Transformations

Given definition 2.2, it can be proposed:
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Claim 1 (Model Existence)

Given a Dynamical Graph Grammar modeling language LDGG, and a model MDGG ∈ LDGG,

there exists some implementation map ℓ to the imperative supporting language C++, that

implements a mapping Ψ, to a valid dynamical system in S.

In this thesis and the following chapters, a mapping is exhibited to support Claim 1. A

similar claim for Mathematica is supported by the thesis in which Plenum is presented [129].

The key difference is that the dynamical graph grammar modeling library (DGGML) in this

work provides improved scalability due to efficiency in both serial and in principle, parallel.

2.8 Related Work

The dynamical graph grammar modeling library (DGGML) developed for this thesis draws

direct inspiration from Plenum [129]. Plenum implements dynamical graph grammars within

the Mathematica environment and leverages the power of the built-in symbolic programming

capabilities. However, despite its mathematically friendly and expressive interface, Plenum

encounters scalability challenges due to its reliance on exact algorithms, making it less suit-

able for larger and more complex systems. Additionally, while Plenum accommodates graphs

indirectly via unique object identifiers (OIDs), it does not treat graphs as native data struc-

tures, which also causes performance issues. Related modeling libraries similar to those used

in this dissertation include MGS [47], MCell [111], and PyCellerator [105].

MGS is a declarative spatial computing programming language for cell complexes with ap-

plications in biology such as neurulation [110], where it is the process by which the neural

tube is formed, for example, in vertebrate development. Other works such as [64] by Lane

used cell complexes for the developmental modeling of plants and simulating cell division.

MCell is used for the simulation of cellular signaling and focuses on the complex 3D sub-
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cellular microenvironment in and around living cells. It is designed around the assumption

that at small subcellular scales, stochastic behavior dominates. Therefore, MCell uses Monte

Carlo algorithms to track the stochastic behavior of discrete molecules in space and time

as they diffuse and interact with other molecules. PyCellerator, on the other hand, is a

computational framework for modeling biochemical reaction networks using a reaction-like

arrow-based input language (a subset of Cellerator [104]). Although these tools share simi-

larities with DGGML and are worth independent exploration, this dissertation concerns the

simulation of spatially embedded dynamical graph grammars and applications.
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Chapter 3

Dynamical Graph Grammar

Formalism

3.1 Introduction

Dynamical Graph Grammars are a further refinement of Dynamical Grammars (DGs) [80],

which generalized Stochastic Parameterized Grammars (SPGs) [80] by the inclusion of dif-

ferential equation rules. SPGs function to unify the formalism of generative grammars,

stochastic processes, and dynamic systems. While SPGs can be applied to graphs DGGs

include all the related formalisms of SPGs and DGs, along with an additional and expres-

sive modeling language framework for graphs. The semantics of the DGG formalism starts

with DGG models MDGG in language LDGG and using a compositional map ΨDGG maps the

declarative grammar rules in the model to a valid dynamical system expressed by a master

equation. Consequently, a DGG can be seen as a graph rewriting system, where rewriting

events comprise a stochastic process.
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3.2 Master Equation

The master equation represents the time evolution of a continuous-time Markov process. It

can be written in the form:

d

dt
P (t) =W ⋅ P (t) , (3.1)

with the equation having the formal (but usually not practical) solution:

P (t) = etW ⋅ P (0). (3.2)

W is called the model system’s “time-evolution operator”, since it entirely specifies (in a

probabilistic way, which can specialize to deterministic dynamics if need be) how the model

evolves in time.

3.3 Operator Process Maps

Let Ψ(M) = W (M) be a semantic map over DGG models comprising rules indexed by r,

and Ŵr ≡ ŴLHSr→RHSr be an operator that specifies the non-negative flow of probability

between states under each rule r. Then Ψ is “compositional” if it sums the operators Wr

over rules thusly:

W = ∑
r

Wr (3.3a)

Wr ≡ Ŵr −Dr (3.3b)

Dr ≡ diag(1 ⋅ Ŵr) (3.3c)
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where equation (3.3a) states that rule operators sum up to the grammar operator, equation

(3.3b) states rules conserve probability, and equation (3.3c) represents the summed condi-

tional probability outflow per state. The operators for rules indexed by r ∈ M map to the

operator sum and the dynamics can be defined under the ME.

3.4 Chemical Reaction Rules

The formalism for DGG rules starts with understanding pure chemical reaction notation and

contextualizes what we mean by declarative modeling. Pure reaction rules can themselves be

represented in a production rule notation. For example, if we have a pure reaction system,

the standard chemical reaction notation [74, 76] would be of the form:

Amax

∑
α=1

m
(r)
α Aα

k
(r)Ð→

Amax

∑
β=1

n
(r)
β Aβ (3.4)

Here we use r to represent the r-th reaction channel. We have m
(r)
α and n

(r)
β as the left and

right-hand side nonnegative integer-valued stoichiometries. We do this because we cannot

physically have negative chemical reactants. Finally, we let k(r) be the forward reaction rate

function.

We can write equation 3.4 in a more compact form [76] using multi-set notation denoted as

{⋅}∗, where ⋅ is a mathematical placeholder and ∗ symbolically indicates multi-set. So:

{m(r)α Aα}∗
k
(r)Ð→ {n(r)β Aβ}∗ (3.5)

Either way, a simple example of the notation in action is the reaction rule for the formation

of water:
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2H2 +O2
krÐ→ 2H2O (3.6)

In equation 3.6 the left-hand side of the equation represents the reactants, consisting of

two molecules of hydrogen gas H2 and one molecule of oxygen gas O2. The right-hand side

represents the products, consisting of two molecules of water H2O. The coefficients in the

equation indicate the stoichiometric ratios of reactants and products involved in the reaction.

The reaction occurs with a rate of kr > 0. We can make this more generic and summarize the

resulting process as LHSr Ð→ RHSr for rule r. Consequently, this understanding allows us

to encode this formal description into the master equation and derive Gillespie’s SSA [48]

for a well-mixed system using operator algebra [75].

3.5 Stochastic Parameterized Grammar Rules

Parameterized grammar rules extend the pure reaction rules to an additional parameterized

space and allow for a more expressive form of modeling. This gives rise to the SPG. We can

also go even further than the Gillespie SSA, and do away with the assumption that we will

always have a well-mixed system by adding spatial location parameters
⇀
x. The probability

space for the SPG was defined in [129]. A form of a stochastic parameterized rule is:

{τα(p)[xp]∣p ∈ Lr}∗ Ð→ {τβ(q)[xq]∣q ∈ Rr}∗

with ρr([xp], [yq])
(3.7)

where τα(p)[xp] and τβ(q)[xq] are the object types accompanied by parameters xp and xq.

Note that xp and xq may be vectors. Again, r is the rule index, and Lr, Rr are the left and

right-hand side argument list indexed sets. So, p and q represent the position of τα(p)[xp] and

τβ(q)[xq] in their respective argument lists. Finally, in the with clause ρr([xp], [yq]) is the

reaction rate function of both the incoming and outgoing parameters. ρr([xp], [yq]) Ð→ R+ is
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a non-negative propensity rate function. If ρr([xp], [yq]) is integrable over output parameters

it can be decomposed into a rate function over input parameters and a conditional probability

over the output parameters:

ρr([xp]) ≡ ∫ ρr([xp], [yq])∆[yq]

P ([yq] ∣ [xp]) ≡
ρr([xp], [yq])

ρr([xp])

ρr([xp], [yq]) ≡ ρr([xp]) ∗ P ([yq] ∣ [xq])

(3.8)

For clarity, grammar rules will generally be written decomposed in this manner.

An example of a parameterized rule is cell division:

Cell1[x1,R1] Ð→ {Cell1[x′1,R′1],Cell2[x2,R2]}

with ρ([x1,R1, x
′
1,R

′
1, x2,R2]) .

(3.9)

On the left-hand side, a single cell is parameterized by position x, where xi is the position

for cell i. It has a radius of R, where Ri is the radius of cell i. Upon selection of a firing

rule, indicative of a reaction event, two cells are produced on the right-hand side replacing

the one on the left. The unfactorized propensity function, dependent on input parameters

of the left and right, weights the likelihood of the reaction occurring. Specifically, it can be

defined such that cell division only occurs when the radius R1 of the initial cell surpasses a

predetermined threshold.

Effectively, parameterized rules are encoded into the master equation and we can derive a

simulation algorithm [75]. We can elevate these parameterized rules to include graphs by

adding unique discrete object IDs [130] as parameters.
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3.6 Dynamical Grammars Rules

Using operator algebra we can derive an exact time warping simulation algorithm [75] (Al-

gorithm 1), and add in differential equation rules:

{τα(p)[xp]∣p ∈ Lr = Rr}∗ Ð→ {τβ(q)[xq]∣q ∈ Rr = Lr}∗

solving {
dxp,j

dt
= vp,j([xk])∣p, j} .

(3.10)

Here, everything remains the same regarding notation, except the left-hand side and right-

hand side do not change in number or object type, but the parameters can evolve by solving

a differential equation in the new solving clause. When we combine these differential rules

with the parameterized rules, we get Dynamical Grammars [85].

An example of a dynamic grammar rule is a cell growth rule:

Cell1[x1, r1] Ð→ Cell1[x1,R1]

solving
dR1

dt
= k .

(3.11)

Similar to equation 3.9, a single cell is parameterized by position x on the left-hand side

and radius R. Instead of two new cells being produced, a firing of this rule consists of an

update to the parameter space by solving an ordinary differential equation. In this case, the

equation indicates the radius grows at a constant rate of k as long as the cell exists.

3.7 Dynamical Graph Grammar Rules

Dynamical grammars [130] include all the previous formalism and can handle graph repre-

sentations, for example by using unique object ID (OID) parameters. However, using OIDs

to represent graphs decreases readability and natural expressiveness. Alternatively, using a
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formal graph notation [76], DGGs can be represented using a different form:

G⟪λ⟫ Ð→ G′⟪λ′⟫ with ρr or solving
.
x = v. (3.12)

Here G⟪λ⟫ is the left-hand side labeled graph with label vector λ and G′⟪λ′⟫ is the right-

hand side labeled graph with label vector λ′. G and G′ without their label vectors λ and λ′

are numbered graphs so that the assignment of label component λi to graph node member

i is unambiguously specified. We have the usual solving and with clauses.

The following is a simplified example of a stochastic dynamic graph grammar rule from the

cortical microtubule array (CMA) grammar discussed further in Appendix A:

Stochastic Retraction:

( ∎1 #2 #3)⟪(x1,u1), (x2,u2), (x3,u3)⟫

Ð→ ( ∎1 #3)⟪(x1,u1),∅, (x3,u3)⟫

with H(⋅) (3.13)

Equation 3.13 represents a discrete rule used to shorten a microtubule (MT). Specifically

within the context of the CMA DGG (more details in Chapter 8 and Appendix A), this rule

removes the middle open circle node (node 2) and its corresponding edges. A new edge is

created between node 1 and 3. When this rule is combined with the deterministic retraction

rule in equation A.3 we get the effect of retraction. A Heaviside function, denoted as H

with a placeholder input, signifies the instantaneous propensity activation once a threshold

is crossed. One choice for input in H is to compute the distance between the filled square

(node 1) and the middle open circle (node 2) and subtract a threshold.

The following is another stochastic rule taken from a morphodynamic grammar for dendritic

spine heads [62]:
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Actin Arp2/3 Branching:

( #1 #2 #3) ⟪(x1,θ1), (x2,θ2), (x3,θ3)⟫

Ð→ (
#1 #2 #3

 4

) ⟪(x1,θ1), (x2,θ2), (x3,θ3), (x4,θ4)⟫

with kbranch N(Arp, free)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

branchSide ∼ U(±1)

θbranch ∼ N( 70
180π × branchSide, σθ)

x4 = x2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos(θbranch) sin(θbranch)

− sin(θbranch) cos(θbranch)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(x2 −x1)

(3.14)

The rule in equation 3.14 is a branching rule for an actin polymer within the spinehead.

Effectively, based on the branching factor kbranch and the Arp-related factor, the polymer

graph depicted in the LHS can branch. The graph with a branch is produced on the RHS.

The branching angle is sampled from a normal distribution, and the resulting newly created

graph node is rotated and set a distance away. The rule in equation 3.14 provides an example

of how the where clause, not shown in the purely destructive retraction rule of equation

3.13, works.

Switching back to the CMA grammar (discussed further in Appendix A and B), the following

rule is a simplified example of a dynamic graph grammar ordinary differential equation rule

used to model retraction of the depolymerizing end of a microtubule:

Deterministic Retraction:

( ∎1 #2)⟪(x1,u1), (x2,u2)⟫

Ð→ ( ∎1 #2)⟪(x1 + dx1,u1), (x2,u2)⟫

solving dx1/dt = ρ̂retract(⋅)u1 (3.15)
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The rule in equation 3.15 is a deterministic solving rule used to shorten an MT. In the context

of the CMA DGG, this rule exclusively updates the position parameter, x1, associated with

the filled square (node 1). The function ρ̂retract can be any function and directly determines

the growth rate along the unit vector direction. Collectively, a set of deterministic and

stochastic rules r, where each is defined over a probability density function, constitutes the

grammar for a model M . For additional examples of graph grammar rules, please refer to

Appendix A and B.
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Chapter 4

Simulation Algorithms

4.1 Introduction

In this chapter, a brief description of the exact hybrid parameterized ODE SSA-like algorithm

is provided, along with suggestions for the appropriate context to use it. A parallel version of

it is also proposed and briefly discussed. This is followed by the core of this chapter, which

is about the approximate algorithm. An overview of how to construct the approximate

algorithm and the pieces required are detailed. Additionally, different strategies for parallel

implementations are discussed.

4.2 Exact Hybrid Parameterized ODE SSA

The exact algorithm simulates a single trajectory of a continuous time stochastic process.

Propensity functions are factored into a product of the rate function and a distribution of

output parameters conditioned on input parameters, as in equation 3.8. While the simulation

time is less than the maximum, we sample the time until the next reaction and modify the

33



system when such a reaction occurs. The process is very similar to the standard SSA but

with the inclusion of parameter update sampling and ODE solving, including the time-

warping equation. The warp equation is an ODE to keep track of the time until the next

event and must be solved as part of the system of ODEs governing the time evolution of the

parameters. When a reaction does occur, the state of the system is modified according to

the rule instance selected and the parameters are sampled from the conditional distribution

of the factored propensity function.

Algorithm 1: Exact Hybrid Parameterized SSA/ODE Algorithm [75]

factor ρr([xp], [yq]) = ρr([xp]) ∗ P ([yq] ∣ [xp]);
while t ≤ tmax do

initialize SSA propensities as ρr([xp]);
initialize ρ(total) ∶= ∑r ρr([xp]);
initialize τ ∶= 0;
draw effective waiting time τmax from exp (−τmax);
while τ < τmax do

solve ODE system, plus an extra ODE updating τ ;
dτ
dt = ρ(total)(t);

draw reaction r from distribution ρr([xp])/ρ(total);
draw [yq] from P ([yq] ∣ [xp]) and execute reaction r;

The exact algorithm accommodates the expressive nature of DGGs, but it exhibits dimin-

ished performance when applied to large systems. Plenum [129], in particular, is slowed even

further by a symbolic implementation entirely written in a computer algebra system. In the

development of Plenum, the internal implementation of the exact algorithm and internal

algorithmic design considerations were made to fit within the framework of Mathematica,

effectively trading performance for expressiveness. Grammar rules were defined symbolically

with parameterized objects using object IDs (OIDs). To find matches of left-hand side (LHS)

grammar rules, Plenum made use of Mathematica’s pattern matching capabilities to find LHS

rule matches by considering the LHS pattern as a tuple of object combinations. The match-

ing tuple is generated by searching a pool of objects and eliminating invalid matches by using

constraints and constraint-solving [32, 33]. Plenum handled discrete events and continuous
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rules by integrating rate functions and solving differential equations using Mathematica’s

numerical ODE solver. In this context, the implementation of Algorithm 1 is realized in an

expressive and symbolic framework. In contrast, DGGML is less expressive, but it realizes

the exact algorithm with far less overhead and with native graph support.

In terms of performance, for small non-spatial systems, the exact algorithm is a fitting and

straightforward solution. Moreover, the exact algorithm effectively extends to ensemble

simulations of non-spatial systems, where simulations may be executed concurrently. This

approach is useful in broad applications, such as conducting parameter sweeps and computing

the statistical properties, including mean and variance, across numerous runs.

4.3 Parallel Exact Hybrid Parameterized ODE SSA

When the system in question is sufficiently complex, the exact algorithm can be sped up

by introducing parallelism at key points, as demonstrated in Algorithm 2. While reactions

(rules) still must be fired in order to maintain accuracy, a parallel solution can effectively

leverage modern multi-core architectures, significantly expediting the simulation of a single

trajectory. This optimization not only improves computational efficiency but also increases

the algorithm’s scalability, particularly when confronted with medium-sized systems where

fewer simulations and massive ensembles are not required.

In Algorithm 2, there are three distinct points of parallelization. The first point is the

propensity computation. Every iteration each propensity for each matching rule instance

found in the system must be computed. While there are methods [129] to reduce how often

the propensities are recomputed, computing them can not be entirely avoided. A simple

solution to speed up this bottleneck is introducing a parallel for loop. Since computing each

propensity is independent of any other and the parameters are read-only operations, the
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Algorithm 2: Parallel Exact Hybrid Parameterized SSA/ODE Algorithm

factor ρr([xp], [yq]) = ρr([xp]) ∗ P ([yq] ∣ [xp]);
while t ≤ tmax do

ParFor initialize SSA propensities as ρr([xp]);
ParReduce initialize ρ(total) ∶= ∑r ρr([xp]);
initialize τ ∶= 0;
draw effective waiting time τmax from exp (−τmax);
while τ < τmax do

ParFor solve ODE system, plus an extra ODE updating τ ;
dτ
dt = ρ(total)(t);

draw reaction r from distribution ρr([xp])/ρ(total);
draw [yq] from P ([yq] ∣ [xp]) and execute reaction r;

operation is well suited for parallelization.

The second point of parallelization is the computation of the total sum of propensities. In

serial computing, the computational complexity of the sum would be O(n), where n is the

number of propensities to the sum. The parallel construct analog to the summation is a

parallel reduce, which can be run O(np + logn), where n is the same, and p is the number of

processors.

The third point concerns the performance of Ordinary Differential Equation (ODE) systems,

which represents a critical computational task within many scientific simulations. The effi-

cacy of parallelization strategies is dependent upon the specific characteristics of the system

under consideration. However, the sequential solving of sizable ODE systems serves as a

notable bottleneck, and warrants optimization efforts. A pragmatic approach to mitigate

this bottleneck is to leverage solvers built with parallel capabilities [58, 2]. Such solvers offer

promising routes for improving computational efficiency and scaling computational resources

effectively in the context of ODE system solving.

Algorithm 2 becomes useful when testing more complex grammars or when quicker results

and analysis of a single trajectory are appropriate. It is important to note though, that

parallel algorithms have substantially more overhead (e.g. thread creation) compared to
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serial algorithms. This overhead is particularly noticeable in multi-CPU compute nodes

where maintaining cache coherency imposes additional computational costs. Generally, the

effectiveness of this method should be seen when the number of propensities/ODEs exceeds

several orders of magnitude and/or the propensity/ODE calculations exhibit considerable

complexity. Finally, depending on the available resources, the ODE solving process could

potentially be offloaded to a GPU accelerator for further performance gains. In the case of

GPU offloading the problem size, throughput, and latency should be carefully considered.

In DGGML, which is discussed in further detail in Chapters 5 through 7, Algorithm 4

from section 4.4 is used; however, Algorithm 2 can be implemented within an expanded

cell in Algorithm 4, with the constraint that all expanded cells are processed in serial. The

system would need to be decomposed into expanded cells that are large enough to maximize

the multi-core performance of the hardware, but small enough so that the domain can be

decomposed into expanded cells that will run in a reasonable amount of time. In the case

where no domain decomposition exists in the approximate algorithm, we have exactly the

exact parallel algorithm.

Within DGGML, the aforementioned points of parallelization can be made within the algo-

rithm run for an individual geocell. Since DGGML already makes use of SUNDIALS [58], a

future upgrade to enable parallelization on the CPU or GPU is built in [46]. The primary

consideration before implementing this algorithm is to assess if the problem size justifies

parallelization benefits over running a serial version of Algorithm 4 in ensemble mode.
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4.4 Approximating the Exact Hybrid Parameterized

ODE SSA

The foregoing exact algorithm is powerful and works for multiple rules of different forms

[75]; however, it is prohibitively slow for large systems. A single run of the exact algorithm

yields only one trajectory. In practice, thousands or more may be needed to be run to

compute meaningful statistics or to recover outcome density functions. Algorithm 1 will

quickly become computationally intractable, since it must compute the next event to occur

based on every potential rule firing in the system. To address this problem we introduce

Algorithm 3 (the original approximate hybrid parameterized ODE SSA) and Algorithm 4

(the improved approximate hybrid parameterized ODE SSA) below.

We make two key assumptions in our approximation of the exact algorithm: spatial locality

of the rules, and well-separatedness of cells of the same dimensionality within the cell complex

used to decompose the simulation space into domains. Consider the spatial locality constraint

for graphs. The system state comprises extended objects taking the form of labeled graphs.

Each of the nodes in a graph is labeled with a vector-valued position parameter. Additional

parameters are allowed that have no spatial constraint. Our graph grammar rules are made

spatially local by virtue of their propensity functions. We use spatial locality to define local

neighborhoods of rule firings. Any rule instantiations outside this neighborhood have zero or

near-zero propensity that decreases rapidly, for example exponentially, with distance. Hence

any two objects in the system that are too far apart have a very small chance of reacting,

and their potential interactions can be ignored at a small approximate error cost.

Spatial locality also allows us to decompose the domain of the simulation space into smaller,

well-separated geometric cells. In the context of the simulation algorithm, a “cell” refers

to a computational spatial domain, which differs from the biological notion of a cell. Such

a geometric cell or “geocell” is a cell of an expanded cell complex (ECC), labeled by the
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dimension of the corresponding (geo)-cell in the unexpanded cell complex. Lower dimensional

cells of the cell complex are expanded in their perpendicular directions to be wide enough to

keep rule instances from spanning multiple same-dimensional geocells. An example can be

seen in figure 5.6. By setting these geocells to be wide enough (at least several factors larger

than the exponential “fall off distance”), we can logically map rule instances to well-separated

geocells.

The operator W in equation 3.1 assumes a state space and specifies the probability flow

on that space for all of the extended objects in our system. Considering equation (3.3a),

W = ∑Wr, the method we propose to approximate etW is an operator splitting algorithm that

imposes a domain decomposition by means of an expanded cell complex that corresponds

to summing operators, W = ∑(d)W(d) = ∑(d,c)W(c,d), over pre-expansion dimensions d, and

cells c of each dimension:

etW ≈
⎛
⎝∏d↓

e
t
n
W
(d)
⎞
⎠

n→∞

(4.1a)

et
′W
(d) = ∏

c ⊂ d

et
′W
(c,d) where [W(c,d),W(c′,d)] ≈ 0 and t′ ≡ t

n
(4.1b)

W(c,d) = ∑
r

Wr,c ≡ ∑
r

∑
{ R ∣ φ(R)=c,
R instantiates r

}
Wr( R ∣ c, d) (4.1c)

Sub-equation (4.1a) is a first-order operator splitting, by solution phases of fixed cell di-

mension, where d ↓ means we multiply from right to left in order of highest dimension to

lowest. It incurs an approximate error of O((t/n)2). Sub-equation (4.1b) is an even stronger

refinement of sub-equation (4.1a) because it uses the fact that the resulting cells c of fixed

dimension d are all well-separated geometrically with enough margin (due to the expanded

regions of dimension d′ ≠ d [89]) so that rule (reaction) instances R, and R′ commute to

high accuracy if they are assigned to different cells c, c′ of the same dimensionality, by some

rule (reaction) instance allocation function φ. The commutators of equation (4.1b) can be
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calculated as derived in [77], but they will inherit the product of two exponential falloffs

with separation that we assumed for the rule propensities (c.f. [77], equation 12 therein),

which is an even faster exponential falloff. Hence the dynamics etW(c,d) of different cells c, c′

of the same original dimension d and can be simulated in any order, or in parallel, at little

cost in accuracy.

The operator splitting and the function φ introduce a major opportunity for parallel com-

puting because the exponentials etW(c,d) defined in each cell c of a given dimensionality d can

all be sampled independently of one another. This potential parallelism includes the possibly

heavy computation of solving ODEs specific to cell c. Sub-equation (4.1c) then defines the

geocell-specific operator for the process to be simulated by Algorithm 1 [75], specialized to

the case of graphs. The resulting parallel algorithm is outlined in Algorithm 3.

Algorithm 3: Original Approximate Spatially Embedded Hybrid Parameterized
SSA/ODE Algorithm

while t ≤ tmax do
foreach dimension d ∈ {Dmax,Dmax − 1, . . . ,0} do

using function φ map rule instances to the geocells of the expanded cell
complex ;
ParFor expanded geocell ci ∈ ExpandedCellComplex(d) do
run Exact Hybrid Parameterized SSA/ODE algorithm for ∆t in ci;

t + = ∆t;

Algorithm 3 is the original version of the approximate algorithm and is ran in serial (no

ParFor) for the model discussed in Chapter 8 [73]. On the highest level, it specifies that φ

must be used to map reactions to geocells and those have the potential to be processed in

parallel and fully encapsulates sub-equations (4.1b) and (4.1c). However, it leaves the details

of how to keep the state of rule matches in the simulated system consistent across geocells

after a rule fires and rewrite occurs unspecified.

Algorithm 4, which is the algorithm used in DGGML and the model in Chapter 9, improves

upon the original by filling in the details on how to keep the state of rule matches in the
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simulated system consistent across geocells after a rule fires and rewrite occurs. To keep

a consistent state of rule matches, we must specify how rule matches are represented. The

match data structure, which is initialized at the beginning of Algorithm 4, is a data structure

composed of all possible rule instances matching the grammar rules and all possible corre-

sponding left-hand side (LHS) connected component instances. The match data structure

is then the representation of all current rule instances and must be updated every time a

rule fires and the system graph is rewritten. To make this work we take advantage of an

incremental updating procedure (Chapter 5, section 5.6) within a geocell, which allows us

not to have to recompute all new matches after distant events occur in the system.

Algorithm 4: Improved Approximate Spatially Embedded Hybrid Parameterized
SSA/ODE Algorithm

initialize the match data structure with all rule instances ;
while tglobal ≤ tmax do

foreach dimension d ∈ {Dmax,Dmax − 1, . . . ,0} do
using function φ map rule instances to the geocells of the expanded cell
complex ;
ParFor expanded geocell ci ∈ ExpandedCellComplex(d) do
tlocal = tglobal;
factor ρr([xp], [yq]) = ρr([xp]) ∗ P ([yq] ∣ [xp]);
while tlocal ≤ tglobal +∆tlocal do
initialize SSA propensities as ρr([xp]);
initialize ρ(total) ∶= ∑r ρr([xp]);
initialize τ ∶= 0;
draw effective waiting time τmax from exp (−τmax);
while τ < τmax and tlocal ≤ tglobal +∆tlocal do

solve ODE system, plus an extra ODE updating τ ;
dτ

dtlocal
= ρ(total)(tlocal);

draw rule instance r from distribution ρr([xp])/ρ(total);
draw [yq] from P ([yq] ∣ [xp]) and execute rule instance r;
incrementally update match data structure;

synchronize and remove invalid rule instances from data structure of matches ;

recompute rule level matches (as needed);
t + = ∆tglobal;

Another detail filled in with Algorithm 4, is the point of synchronization and rule invalida-
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tion that comes after processing all expanded cells of a given dimension. In DGGML, after

φ maps all rules to a cell ci of dimension d, the exact algorithm running within ci is re-

sponsible for incrementally updating its state and keeping track of any rule invalidation that

may share objects with rules belonging to neighboring cells of differing dimensions. Hence,

the need for the synchronization point in Algorithm 4. Synchronizing for consistency is a

consequence of the commutator approximation in equation (4.1b). When running in serial

the synchronization point still exists, and functions as a logical point in the algorithm for

inserting any custom code for correcting and creating a consistent state of rule matches and

potentially measuring any errors. Algorithm 4 also has the potential to be made parallel in

a lock-free way thanks to the synchronization point because it leaves resolution of the global

state until after the fact, making it a huge improvement over Algorithm 3.

Algorithm 4 also greatly improves upon Algorithm 3 by introducing the aformentioned match

data structure with an incremental update process to ensure that distant rule firings do not

require the matches to be recomputed and that full system matches are only ever recom-

puted as needed. The primary need for recomputation even after synchronization is because

spatially embedded and spatially local graph grammar rules are composed of distinct con-

nected components (motifs) as discussed in Chapter 7 section 7.2. By virtue of a solving

rule, these components may move in or out of the propensity “fall-off” distance. While

these connected components themselves can always be incrementally updated i.e. the set of

connected component matches is fully online, the rules instances that are comprised of them

can only be incrementally updated for a short period of time. As a result, they need to be

recomputed as needed, making the match data structure semi-online.

For further details of the incremental update and invalidation procedures see Chapter 5 and

for the implementation details of Algorithm 4 in DGGML see Chapter 7. Additionally, it

can be seen that without domain subdivisions, Algorithm 3 reduces to the exact algorithm

(Algorithm 1) and Algorithm 4 reduces to a version of the exact algorithm but with an
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incremental update. A more complete mathematical treatment of the approximate algorithm

using DGG commutators computed as in [77] to bound operator splitting errors is a topic

for future work. Algorithms 3 and 4 are also specifically designed for spatially embedded

graphs, but there are situations where they could be used in other non-spatial instances if

we had a way to reasonably measure locality in the parameter space and that is also another

topic for future work. For a more detailed derivation of the theory behind the approximate

algorithms, please refer to Appendix C. For DGGML Algorithm 4 is used, but we present

Algorithm 3 as an intermediate step in defining the algorithm used in DGGML.

4.5 Phi Function

The process by which rules get mapped to a particular dimensional cell in Algorithm 4

hinges on the choice of the φ function (Appendix C). This function plays a pivotal role in

establishing a suitable mapping from reactions (rules) to geocells, ensuring that each reaction

corresponds precisely to one geocell. This approach guarantees complete accountability for

all rules. Because φ assigns a geometric cell to every match, φ serves to partition the set

of matches. Various implementation choices exist for defining φ, each presenting distinct

trade-offs, although we will focus on two primary approaches to demonstrate how they work

within DGGML.

For the remainder of the section, assume that the following is a match of the left-hand side

of a graph grammar rule, and the associated parameters and unique IDs are as follows:

( ∎10 #11 #12)⟪(x10,u10), (x11,u11), (x12,u12)⟫

Here, the match has a closed square type with integer ID 10 and two open circle types with

integer IDs 11 and 12. Each of the graph grammar rules has an associated position vector
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x and a unit vector u. For this section, only the position parameter is used. For further

details on the semantics of DGG rules, please refer to Chapter 3. Now, let cid(xi) be a

function that returns the unique cell id of which an object at position xi belongs and let

the function dim(cid(xi)) be a function that returns the dimension of the respective cell.

For example, assume that dim(cid(x10)) = 2, dim(cid(x11)) = 1, and dim(cid(x12)) = 1. Also,

assume cid(x10) = 4, cid(x11) = 5, and cid(x12) = 5. Therefore, x10 belongs to a cell 4 of

dimension 2 and the other nodes belong to cell 5 of dimension 1. Also, keep in mind that

the spatial-locality and well-separated constraints ensure that all matched objects in the rule

will not belong to more than one cell of the same dimension. Thus, restricted to a given

match, the dim(⋅) function has an inverse dim−1(⋅).

The first approach we discuss uses the single-point anchored φ function, which involves

selecting an “anchor node” from the left-hand side and determining the geocell containing

its spatial coordinates. The selection process may be randomized or guided by a user-defined

heuristic such as a root of a spanning tree. Using the section example, we could pick the root

to be node 10. In this way, we simply have φ(x10) = cid(x10) = 4, which is a cell of dimension

2. Hence, a single-point anchored mapping function maps node 10 to cell 4. This method

boosts computational efficiency by necessitating only a single point for lookup. However, a

trade-off arises wherein automorphisms of the same rule match may be assigned to different

dimensions. When an invalidation occurs, each geocell containing the invalidate rule must

be updated. Invalidations are discussed further in Chapter 5.

Alternatively, the minimum dimensions function φ can be defined to map the rule match to

the minimum dimension of the geocells to which each node maps. Using the section example,

it would be φ(x10, x11, x12) = dim−1(min[dim(cid(x10)),dim(cid(x11)),dim(cid(x12))]) = 5,

which is a cell of dimension min[dim(. . . )] = 1 where dim−1 exists by well-separatedness.

Additionally, this function can be further extended to consider all rules in which any node of

the current rule participates, subsequently determining the dimensions of the corresponding
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geocells as discussed in Appendix C. In either scenario, each instance of the φ function

calculates the minimum dimension for any match and assigns the rule to the corresponding

geocell. Leveraging the well-separated property ensures that no node in the rule or its

associated rules can be assigned to multiple geocells of identical dimensions. The minimum

dimension φ ensures that all automorphisms are consistently assigned to the same dimension

because the min function returns the same result, regardless of the ordering of the input.

Computationally, the cost of using the minimum dimension φ means checking the spatial

coordinates of each node on the left-hand side and possibly all the nodes of the rules it

participates in.

4.6 Conclusion

The original simulation algorithm in [75] can be sped up by processing the reactions out-of-

order at the cost of accuracy. The approximate hybrid ODE SSA is an operator splitting

algorithm that imposes a domain decomposition by means of an expanded cell complex that

corresponds to summing operators, over pre-expansion dimensions d, and without loss of

accuracy over cells c of each dimension. This algorithm is specifically designed for spatially

embedded graphs, but there are situations in which it could be used in other non-spatial

instances if we had a way to reasonably measure locality in the parameter space. Two

key assumptions were made in our approximation of the exact algorithm: spatial locality

of the rules, and well-separatedness of the cell complex used to decompose the simulation

space into domains. Furthermore, we proposed parallelization points for Algorithm 1 in

Algorithm 2 and proposed a clear parallelization point for Algorithm 4. Also, we proposed

an incremental match data structure composed of all rule instances and all possible LHS

connected component instances, greatly reducing the need to recompute matches after every

rule firing event. In addition, the choices of the φ functions were briefly discussed. In
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Appendix C we provide more work on the algorithm and justification that can lead to a

formal proof of an error bound in future work. In this thesis, the performance difference

between using the exact and approximate algorithm is demonstrated in Chapter 8.
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Chapter 5

Overview and Building Blocks of

DGGML

5.1 Overview of the Design

The initial implementation of the approximate simulation algorithm was specific to a plant

cell cortical microtubule array model [73] and not generalized to work with different model

types. Since then it has been reworked into the modeling library DGGML, to enable reuse

and generic construction of simulations for different grammars. Further, the modeling library

is written in C++17 with minimal dependencies, making it portable and accessible. A

conceptual overview of the library is shown in figure 5.1.

In figure 5.1, the library is structured into seven distinct categories: core, grammar, geome-

try and topology, state monitoring, differential equations, utility, and dependency. The core

group contains essential functionality required for simulating a grammar. Within the gram-

mar category are components necessary to define a grammar as a model and to initialize

data structures for interaction with the core components. The geometry and topology com-
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Figure 5.1: Conceptual overview of library design and organization. The library organiza-
tion is grouped by components falling into the core, grammar, geometry and topology, state
monitoring, differential equations, utility, and dependency categories. The hierarchy of the
grouping is visualized as a central blue squircle (square with rounded corners) designating the
library itself surrounded by exterior grey squircles, each representing a group of components,
where the black directional arrows depict compositional relationships. Within these exterior
squircles, blue rectangular boxes represent individual components. We have acronyms ODE
(ordinary differential equations), VTK (visualization toolkit), SUNDIALS (SUite of Nonlin-
ear and DIfferential/ALgebraic equation Solvers), SIMD JSON (single input, multiple data
JavaScript object notation), and YAGL (yet another graph library).

ponents facilitate spatial organization, partitioning, and search queries. State monitoring

components track and collect information on simulation progress. While differential equa-

tions could be grouped within the core, their potential for extensibility to accommodate more

complex solvers favors a separate categorization. The utility grouping contains components

that are used by the core and other categories. Finally, the dependencies are used through-

out the library, but are the components that could be replaced by alternatives or a custom
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version of the type of component could be specifically written and included as part of the

library itself. Overall, amongst the seven groups, twenty-seven key components work and

interact with each other in different ways. In the remainder of the DGGML chapters, figure

5.1 serves as a conceptual point of reference. The relationships of components within and

between groups, along with the necessary details of components, will be exposed through

discussions on building blocks, and in later chapters by specifying how to define a grammar,

how grammar analysis works, and how the grammar simulation takes place.

Finally, in this thesis, the implementation of the Dynamical Graph Grammar Modeling

Library (DGGML) and CajeteCMA (used in Chapter 8) natively supports undirected graph

grammar rules. However, other implementations could include native support for directed

graphs. In a directed graph implementation, undirected links can be simulated by a pair of

directed links in opposite directions. In an undirected graph implementation, directed links

can be simulated by replacing each node with a triple of labeled nodes: a front door node for

all incoming edges, connected undirectedly to a central node bearing all the original labels,

and a back door node for all outgoing edges. Furthermore, the user-defined node type space

or label space can be combined with a new 3-valued field for (in, central, out) labels. This

dual encoding ensures the flexibility to represent both directed and undirected connections

as needed.

5.2 Yet Another Graph Library

The DGG simulator relies on graphs as its core data structure. While the DGG formalism

specifies graph rewrite types declaratively, it does not detail how these rewrites should be

implemented in code or how graphs should be represented computationally. To address this

gap, a dynamic graph library, Yet Another Graph Library (YAGL), was developed. YAGL

serves as a versatile, header-only (i.e. can be included in any project without compiling first)
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library designed to accommodate various graph types. Unlike the commonly used monolithic

and powerful Boost Graph Library (BGL) [108], YAGL was designed for its compatibility

and flexibility when used in conjunction with modern C++17 features. This deliberate

choice allows for greater adaptability and the possibility of future extension without reliance

on external dependencies.

Internally, the Yet Another Graph Library (YAGL) graph, as initially described in [73],

defines lists for nodes, edges, and adjacency. Nodes and edges are implemented as generic

key-value pairs, allowing for versatility in the types of data they can store. This flexibility

is achieved through the use of static polymorphism and template meta-programming tech-

niques. In the YAGL implementation, nodes are stored in a C++ unordered map, functioning

as a hash table for efficient constant-time lookup. Additionally, the edge list is maintained

as an unordered multi-map to enable future support for multiple edges between nodes and to

put no constraints on how the stored edges are to be ordered in the list, although this extra

generality currently remains unused within the DGGML context. The adjacency list, which

can be generated by sorting an edge list or independently constructed as in the case of the

current version of YAGL, is for representing the incoming and outgoing edges for the graph.

Fundamentally the adjacency list differs from an edge list because it does not store any data

that could be associated with an edge. The adjacency list is realized as an unordered map

where the key is the node key and the value is a pair of unordered sets of keys. The un-

ordered map allows for constant time lookup of adjacency. The first key set is for outgoing

edges, and the second set is for incoming edges. These two sets provide a comprehensive

representation of the graph’s connectivity and allow for quick lookup and dynamic insertion

or removal.

The choice of an unordered map (hash table) for the node list in the graph structure is

largely inspired by the library-sort algorithm [13]. A similar design is adopted for the adja-

cency list, with node data fully decoupled from relationship information. This design results
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in an average lookup time complexity of O(1), making it highly efficient, particularly for

smaller, sparsely connected graphs containing approximately 105 nodes. The design choices

for the node list and adjacency list exhibit significant advantages in terms of lookup effi-

ciency and graph rewrite flexibility when compared to alternative representations such as

linked lists or inflexible matrix-based implementations of the adjacency list. Additionally,

YAGL includes graph rewrite operations such as adding or removing nodes/edges, along

with other useful algorithms such as identifying connected components, various versions of

depth-first and breadth-first searches, generating rooted spanning trees, determining graph

isomorphism, and at a higher level of functionality providing a generalized solution to the

injective homomorphism algorithm for subgraph specific pattern recognition.

In the context of DGGML, which leverages spatial graphs, node types in the graph definition

provided by YAGL are implemented using a specialized spatial variadic templated variant

node type. The data structure for the specialized node type has a field for the position

type, which is what provides the specialized node type with the position (spatial) data.

The variadic template referred to in the “spatial variadic templated variant node” ensures

a variable number of types can be used to define a single node type, hence the terminology

variadic. A variant, on the other hand, functions like a sum type. Sum types are a concept

from type theory that represents a type that can take on different types. So here, variant

means the type can change whereas variadic means the variant can be constructed out of a

variable number of types and be changed into any one of them at any time in the program.

This feature is used during graph rewrites to change a node on the left-hand side of a

grammar rule to a node of a different type on the right-hand side of a grammar rule.

Essentially, graph nodes can be any type built out of any number of types, and will always

have a position in simulated space. This design enables the exposure of spatial positions

to the algorithm while concealing user-defined values within the variant. Notably, in C++,

the ‘variant’ is a C++17 feature that serves as a mechanism for accommodating values of
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differing types. It also ensures type safety through compile-time checks and automatically

manages memory reallocation when the type is changed.

5.3 Subgraph Specific Pattern Recognizer

A key part of any algorithmic implementation of the DGG formalism detailed in Chapter 3

is finding all the applicable instances of left-hand side (LHS) grammar rule matches in the

system graph. Here, the system graph is our search space, and the LHS graph is the target

graph. The process of recognizing a single instance of the target graph in the search space is

what we mean by graph pattern recognition. Finding every valid instance of the target graph

is matching.

Graph pattern matching algorithms can be categorized as either exact or inexact, with our

focus in this work being exclusively on exact matching algorithms. These algorithms fall

into three main categories [22]: tree search [117, 30], constraint programming [118, 33], and

graph indexing [90]. The previous DG/DGG implementation by Yosiphon [129] was based

on constraint programming for paramaterized objects [32]. Tree search algorithms, such as

backtracking via depth-first search (DFS), exhaustively explore the search space to identify

all potential solutions. In contrast, constraint programming strategically eliminates non-

viable solutions early and may have a different search strategy. Graph indexing, optimized for

static graphs, finds utility primarily in graph databases due to its efficiency in data retrieval

and manipulation. Although graph pattern matching problems are well-studied, solutions

often rely on heuristic approaches due to the NP-completeness of (sub-)graph isomorphism

problems, as referenced in [117, 118, 41, 29, 30, 63, 22, 90, 118].

Our approach to addressing pattern recognition makes the design choice to do recognition

by (sub)-graph isomorphism, and we implement a hybrid heuristic [96] tree search method
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with backtracking and constraints. Backtracking, often implemented recursively within a

tree structure, gradually constructs the solution set while exploring the state space. It

offers the flexibility to also be formulated iteratively, leveraging the known structure of

the search tree for efficient exploration. Representing the state space also as a tree, each

branch signifies a partial solution path, and every leaf node represents a variable to be

matched. While a manually generated nested search loop was used iteratively in [73], our

generalized approach in DGGML incorporates the recursive strategy for versatility. However,

an iterative solution could have been used and the following discussion primarily focuses on

the iterative handwritten version that runs in polynomial time, since the same logic applies

to a generalized recursive version.

Expanding the discussion, we integrate the search process into a subgraph-specific pattern

recognizer (SSPR), tasked with identifying all matching left-hand sides (LHS) of each gram-

mar rule. A recognizer identifies labeled subgraphs that match one-to-one with a given

LHS-labeled graph. While the SSPR in [73] includes a specific search code for each LHS

grammar rule in the model and its respective connected components patterns, the subgraph

pattern recognizer (SPR) in DGGML dynamically handles patterns generated from the user-

defined grammar analysis (Chapter 7, section 7.2) at runtime. When the SPR in DGGML

is ran on a specific pattern, it functions as an SSPR.

To develop an SSPR, we must determine methods to identify all relevant matches of a given

LHS grammar rule in the system graph, denoted as GSY S. The LHS of any rule is represented

as GLHS, and the system graph serves as our search space, with the left-hand side pattern

as our target. Subgraph pattern recognition refers to recognizing a single instance of the

target graph in the search space, while matching involves finding every valid instance of

the target graph GLHS. Chapter 7 elaborates on this concept during the grammar analysis

phase, focusing on finding matches of connected components and utilizing those matches to

identify patterns created from combinations of the connected component matches.

53



Since it would be expensive to directly search for all possible functions f ∶ GLHS Ð→ GSY S,

where f is an injective graph homomorphism, we need to apply some heuristic filter. For

simplicity, assumeGLHS is a single connected component in this case. If there were more than

one, each LHS would have multiple rooted spanning trees, and we would need to apply this

process for each of them. This is specifically what we refer to as multicomponent matching,

and address this with the “cell list” in Chapter 7. Let GT be a rooted spanning tree (RST)

of target graph GLHS and let h be its inclusion map into into GLHS. If GT and f exist, then

there must exist some injective graph homomorphism g ∶ GT Ð→ GSY S. We can represent

the entire process using the commutative diagram of injective graph homomorphisms as in

equation 5.1:

GLHS

f
- GSY S

GT

⊆ h
∪

6

⊂

g

-
(5.1)

We can demonstrate what we mean by finding the mappings f and g. In figure 5.2 we have

a visualization of the graph to be searched and in figure (5.3a) example of a target pattern.

Figure (5.2) is GSY S and figure (5.3a) is GLHS also known as the target graph/pattern.

Figure 5.2: The graph to be searched.

54



Instead of trying to find the direct match for the target graph, we first find all matches g

for some rooted spanning tree GT ⊆ GLHS, and then filter to “lift” g to f , if possible. In the

process of filtering all the relevant additional constraints are applied. We can see an example

of a valid rooted spanning tree in figure (5.3b). The height of the tree directly impacts how

deep we need to search the system graph for valid patterns.

(a) The graph target pattern to find. (b) Tree transformation of the pattern graph
in figure (5.3a) with a tree height of 3.

Figure 5.3: A side-by-side view of the target graph to find one of its transformations.

In figure 5.4 we can see what an algorithm searching the graph using the transformation

of the target pattern seen in figure (5.3b) does when we pick the starting node (node 5) as

depicted and start our rooted search. The rooted tree directly corresponds to our search

path. The shorter the tree, the less deeply we need to search and the more search branches

that can be pruned. Starting on node five in the search graph as seen in figure 5.2 we search

and find two matches as can be seen in figure 5.4. A search started from every node in the

target graph would yield all possible matches. In this case, there are twelve matches (we

include all valid permutations of a target match).

We can see the pseudo-code in Algorithm 5. For this particular graph, we have asymptotic

complexity on the order of O(N6). However, that is for the worst case and without filtering.

For a sparse graph, we expect it to be more likely on the order of O(N2). Using the logic
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Figure 5.4: Example of how a search graph works to find an optimal path.

for an iterative SSPR, it is possible to write a generic solution recursively.

The generalized version implemented in DGGML directly creates a runtime equivalent [119]

of Algorithm 5. Within DGGML, the SSPR algorithm takes user-constructed graphs, gener-

ates a rooted spanning tree for each of its connected components, and conducts a search for

the component match, ensuring an identical systematic exploration of the search space as in

Algorithm 5. This approach to SSPR design not only enables efficient pattern recognition

but also sets the stage for potential parallelization in both specific and generalized cases.

For example, one strategy for parallelizing the SSPR is to parallelize over the outer loop

of graph nodes for a search pattern. This parallelization process can be replicated for each

left-hand side (LHS) graph to be searched. By distributing the workload across multiple

processes, parallelization can significantly reduce the overall search time for large graphs. A

further optimization could be to combine searches for multiple graphs into one by merging

their RSTs and setting additional ways to reach acceptance states.
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Algorithm 5: Heuristic Pattern Matching Example for the Pattern Graph in figure
5.3b
match = {∅};
for i ∈ G(V ) do

if λi = type 1 then
continue;

for j ∈ nbrs(i) do
if λj = type 0 then

continue;

for k ∈ nbrs(j) ∖ {i} do
if λk = type 1 then

continue;

for l ∈ nbrs(j) ∖ {i, k} do
if λl = type 1 then

continue;

for m ∈ nbrs(l) ∖ {j} do
if λm = type 0 then

continue;

for n ∈ nbrs(j) ∖ {i, k, l} do
if λn = type 1 then

continue;

match.append(i, j, k, l,m,n);

In terms of optimization, certain LHS graph rules might share isomorphic connected com-

ponents and based on this observation, a more efficient approach to utilize the SSPR is

discussed in the grammar analysis section (Chapter 7, section 7.2). Given DGGML’s focus

on spatially embedded graphs, connected component matches of an LHS can be treated as

separate nearby graphs to be searched for. This observation eliminates the need for graph

rules with multiple connected components to search extensively for each component in order.

In Chapter 7, the simulation section introduces a “cell list” as a data structure to expedite

this search process.

The SSPR plays a crucial role in efficiently identifying relevant matches of LHS grammar

rules within the system graph in DGGML. By using a generalized algorithm based on the it-
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erative approach to dynamically search for specific patterns generated from the user-defined

grammar analysis (Chapter 7, section 7.2) at runtime, the SSPR offers powerful graph pattern

recognition and matching capabilities. Making use of a heuristic tree search method with

backtracking and constraints to address the NP-complete (sub-)graph isomorphism prob-

lem, the SSPR optimizes search efficiency while maintaining flexibility for complex matching

scenarios. The rooted spanning tree generation is an effective strategy for clarifying com-

putational complexity, which is highlighted by the handwritten pattern matching solution.

Additionally, the SSPR is compatible with adding additional search strategies to improve

performance, which is particularly beneficial for spatially embedded graphs. The SSPR

discussion includes useful theoretical concepts and practical strategies for implementation,

resulting in the effective graph pattern recognition and matching capabilities found within

DGGML.

5.4 The Expanded Cell Complex

Before expanding a cell complex (defined in Chapter 2, section 2.6), it must first be gener-

ated. An outline of the cell complex generation process is shown in figure 5.5. Beginning

with simulation space (in the context of DGGML rectangular) the initial step involves ap-

plying any amount of subdivision. Subsequently, a regular lattice grid graph is constructed

with twice the original subdivision, which is then labeled. The doubling ensures that there

will be enough nodes for each dimension and that the nodes will be in the geometric center

of their respective dimensional cell. The labeling of nodes within this new graph depends on

the chosen subdivision, with labels assigned according to respective dimensions i.e. 2D for

interior, 1D for edges, and 0D for vertices. This labeled regular lattice graph, serving as the

cell complex, contains all the necessary information for expansion. In terms of implementa-

tion, the cell complex is represented using a labeled graph in YAGL with a future possibility
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of making the cell complex dynamic under a meta-DGG.

Figure 5.5: Cell complex generation and labeling. We start with a square domain, and then
subdivide it into a 3×3 grid. From the grid, we generate a regular lattice graph representing
the topology of the subdivided space. The regular lattice graph is then labeled by the
dimension it belongs to resulting in the cell complex being labeled by dimension.

The mathematical idea behind the “expanding” of a cell complex is a process of consistently

mapping each lower dimensional cell in a cell complex to a cell of the highest dimension in

a new “expanded” cell complex. By expanding as in [89, 40] all of the abstract cell complex

cells with dimension numbers less than the maximum, we get an expanded cell complex

(ECC). We only apply expansion to the interior of lower dimensional cells. In our case,
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(a) The pre-expansion cell complex. (b) The expanded cell complex.

Figure 5.6: The pre-expansion of the cell complex generated in figure 5.5 and its expansion
into well-separated lower dimensional cells.

we apply expansion to a two-level graded abstract cell complex with a coarse-scale 2D grid

that is refined to a finer-scale 2D grid. Figure 5.6 exhibits a side-by-side visualization of a

pre-expansion (5.6a) cell complex and its post-expansion (5.6b) cell complex.

In figure (5.6b), lower dimension interior cells are expanded such that they always have a

“collar” width more than that of the cell of the dimension above, so that cells of the same

dimension are always separated by at least a dimension-specific minimum distance. This

key criterion of the ECC is well-separatedness, which means expanded cells of the same

dimension do not even come close to overlapping. The “collar” we refer to is related to the

idea of a tubular neighborhood in differential topology [60]. The ECC is implemented as a

graph data structure in DGGML. Fundamentally it inherits from the cell complex and uses

YAGL as the underlying graph representation.
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5.5 Graph Transformation

Graph transformations are a fundamental part of rewriting systems, and within a category-

theory approach there are two algebraic category-theoretic constructions: single-pushout

(SPO) [72] and double-pushout (DPO) universal diagrams [38]. SPO focuses on local trans-

formations, directly replacing a subgraph in the original graph with another subgraph. In

contrast, DPO has more flexibility, allowing for the replacement subgraph to be embedded

in a larger context. To accomplish this, DPO requires two additional constraints to ensure

uniqueness and keep transformations well-defined. The dangling condition, the first con-

straint in DPO, requires all edges incident to a deleted node to be deleted as well. The

second constraint, the identification condition, ensures that each element set for deletion has

only one copy in the left-hand side subgraph. The combination of the two conditions is the

gluing condition, which allows for a consistent and unambiguous transformation.

Alternatively, graph transformations can be described and given a formal semantics using

the operator algebra in the mathematical framework for DGGs. The following equation from

[76] demonstrates this fact:

Ŵr ∝ ρr(λ,λ′) ∑
⟨i1...ik⟩≠

[( ∏
p∈Br

∏
i≠iq ∣∀q∈Brp

Eip i)( ∏
p∈Cr

∏
i≠iq ∣∀q∈Crp

Ei ip)]

×[( ∏
p′,q′∈rhs(r)

(âip′ iq′)
g′
p′q′][( ∏

p′∈rhs(r)

(âip′λ′p′)
hp′

]

×[( ∏
p,q∈lhs(r)

(aipiq)
gpq
][( ∏

p∈lhs(r)

(aipλp)
hp

].

(5.2)

Equation 5.2 is a generalized form of graph rule semantics that allows for the elimination of

hanging edges as part of the grammar’s operator algebra. When reading from right to left,

all vertices and vertex labels of the LHS graph are annihilated (destroyed) in an arbitrary

order and then all edges are annihilated in any order, then all vertices and vertex labels of
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the RHS graph are created in any order then all edges of the RHS are created in any order.

The final operators on the first line are the dangling edge erasure operators that enforce

that edges must connect active vertices. In this way, the erasure operators presented in this

context ensure that hanging edges are removed. For a more detailed explanation please see

[76].

In DGGML, the methodology used to perform graph rewrites follows the semantics presented

in the operator algebra and works similarly to the DPO approach. The logic takes advantage

of sets for the structural aspect of rewrites in the library. To clarify this, first let r ∶ GLHS Ð→

GRHS be the production of a grammar rule r. For shorthand GLHS = L and GRHS = R. The

vertices of the L are then V (L) and the vertices of R are then V (R). The edges of L are

E(L) and the edges of R are E(R).

To determine how to structurally transform the L into R we need four sets, arising from the

creation of new vertices and edges and the annihilation with restoration of no longer valid

vertices and edges. Let K be the creation graph, and D be the destruction graph. The set

of vertices to create consists of the vertices found in the right-hand side vertex set, but not

in the left. Hence, V (K) = V (R)∖V (L), i.e. the set difference. The edges to be created are

then, E(K) = E(R) ∖ V (R). For the creation graph, we simply have K = R ∖ L. The set

of vertices and edges to destroy is the opposite of the vertex and edge sets of the creation

graph. So, vertices and edges in the left-hand side that are not found in the right-hand side

must be removed. Hence, the destruction graph is D = L ∖ R. Once we have the creation

and destruction sets for a particular rule type r, we can take the node/edge numberings of

any injective homomorphism of L denoted as Li found in the system graph, GSY S, and build

corresponding sets Ki and Di. Here the new vertices and edges in Ki are created using the

key generator mentioned in figure 5.1. To get the new state of vertices in the system graph,

G′SY S we can use the following equation:
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V (G′SY S) = (V (GSY S)∖V (Di))∪V (Ki) = (V (GSY S)∖(V (Li)∖V (Ri)))∪(V (Ri)∖V (Li))

(5.3)

When removing nodes, YAGL in DGGML cleans up hanging edges automatically. Finally,

it should be noted that L and R are technically labeled graphs i.e. G = (V,E,α) where α

is the labeling function. So, the labels of L are α(V (L)) and the labels of R are α(V (R)).

However, in the context of the library, YAGL and in turn DGGML store the label information

as data within the graph node itself, meaning the label is a type in the context of C++.

So, the final step after building the creation and destruction sets for the vertex and edges

sets and structurally transforming the graph is to set the new label data for any newly

created nodes by copying the types from K to Ki, effectively equating to a relabelling. In

DGGML, this is realized by switching all the newly created nodes to the correct type in the

specialized spatial variadic templated variant node described in section 5.2 when discussing

YAGL. In line with the DGG formalism, after the structural rewrite and type change of

the rewrite occurs, the values the label data take on will be populated by the user-defined

update function (described in Chapter 6, section 6.4) for the rule.

5.6 Incremental Update

A critical design decision in an efficient algorithmic implementation of the DGG formalism

in DGGML concerns the state of the system following a graph rewrite event. Once a rule

is selected to fire and fires, the system’s state must be updated. The most straightforward

approach would involve recomputing all matches in the system, which is clearly resource

intensive. The following discussion presents an alternative solution to incrementally update

the matches pertaining to connected components of the LHS graphs, instead.
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Before proceeding, it is useful to clarify some terminology. In the context of DGGML,

matches of the LHS graph for a rule r are stored hierarchically. We store them in this way

because the LHS graph of a grammar rule may be a graph with more than one connected

component. This is what we mean by a multicomponent rule/graph. From the grammar,

there may be several rules that have connected components that when taken as subgraphs

are isomorphic to one another. This common set of connected component patterns is what

we mean by motifs for a grammar. For more details on motifs and grammar analysis in

please see Chapter 7 section 7.2.

The component match set (represented as a map data structure) of all matches (injective

homomorphisms) of these motifs. Since LHS grammar rules can be multicomponent, com-

binations of the matches in the component set are what form the rule match set (also repre-

sented as a map data structure). Together, the component match set and the rule match set

form what we mean by the match data structure (introduced in Chapter 4, section 4.3). To

accelerate the search for new rule matches, components matches are also sorted into a cell

list i.e. a data structure allowing for fast queries of components matches nearby in space.

For more details on the cell list in action see Chapter 7 section 7.3.

The goal of the incremental update is to keep the match data structure up to date following

a graph rewrite. By using the incremental update, the connected component match set can

be kept fully online, since connected component matches are invariant to motion. The rule

match set, on the other hand, is incrementally updated within a geocell, but is periodically

recomputed (Chapter 4, section 4.3) after all dimensional geocells have run. The recomputa-

tion occurs because the connected components of the rule matches move with respect to one

another and may eventually go out of or come into the “fall-off” distance for the propensity

function. So, we can say that the match data structure is semi-online.

Next, it is important to clarify the impact of certain rewrite operations on the system graph.

Adding a node or an edge invariably triggers the SSPR, as it opens up new search paths
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and the possibility for more patterns to be found and added to the component and rule

match sets. Conversely, removing a node or an edge solely invalidates, without initiating a

search, owing to the graph rewrite semantics. In the context of DGGML, altering the node

type is identical to adding a new node in terms of match invalidation, whereas modifying

parameters such as position results in a passive rewrite. These passive rewrites affect multi-

component spatial pattern matches and are addressed periodically by recomputation of all

multicomponent matches globally (Chapter 7). As rewrites always involve a combination of

these operations, there exists a systematic approach to processing them.

Following a rewrite event, the incremental update process involves the following steps: com-

ponent invalidation, rule match invalidation, component matching, component validation,

rule matching, and rule match validation. The ordering is similar to reading equation 5.2

from right to left, where nodes/edges are destroyed and then created. However, the in-

cremental update differs from the operator equation being an implementation rather than

semantics, because it is cast in the context of the data structures and internal implemen-

tation of DGGML. These details should be thought of as the mapping laid forth in Claim

1.

Initially, component invalidation requires searching the component set for all connected com-

ponent match instances of any components containing the nodes and edges marked for re-

moval from the graph rewrite discussed in the previous section, and removing those compo-

nents. Due to the well-separated nature of geocells (Chapter 4 and Appendix C) and the

localized execution of rewrites on the matches homomorphic to a subgraph of the spatially

embedded system graph, concurrent processing of geocells of the same dimensions is possi-

ble. By using a suitable data structure for the set of component instances and optimizing

the function φ of section 4.5, component matches can be safely removed in parallel or in a

serialized manner by locating them in the component match data structure.

Rule match invalidation presents a more complicated challenge. Because rules are directly
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mapped to the geocell, only those rules mapped to the current geocell via φ can be invali-

dated. Given that the current geocell lacks the state of rules mapped to other geocells, it

must temporarily store the list of invalidated components for future potential invalidation

of rules owned by nearby geocells, which are of different dimension and therefor not being

simulated at the same time. An optimization would be to only track the invalidated com-

ponents near the boundary of the geocell. The future invalidation of rules occurs during the

synchronization point in Algorithm 4. Also, for both component and rule match invalidation,

spatial locality can be leveraged to improve the search efficiency for components containing

an invalid node/edge or rules containing an invalid component. Using a grid of cells and a

list of components found in that cell, neighboring cells can be quickly queried. So, instead of

searching everywhere for a potentially invalidated component, the search is only performed

within a local region. This method is leveraged within DGGML and is discussed more in

Chapter 7.

In component matching, once all the invalidations of components are processed, new com-

ponent matches must be found. A simple and slightly greedy way to accomplish this is to

precompute the height of the tallest rooted spanning tree generated from all left-hand side

motifs in the common set of components for the grammar. For each of the newly created

nodes, we perform a depth-first search to the depth of the precomputed height and add newly

visited nodes to a visited set. This does not need to be done for any removed node, since

removal will only generate invalidations. Using the visited set, a subgraph Ssearch ∈ Gsys is

induced. The SSPR is then run on subgraph Ssearch to find all new component matches.

The search is specifically designed to only accept matches and add them into the component

match data structure if they contain a new node or newly added edge from the creation

set generated by graph rewrite - this is what is meant by component validation. Once the

components are validated, a spatial hash function is applied to map them to their respective

cells in the cell list.
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For rule matching the set of cells in the cell list new components were inserted into, and

their collective neighbors, constitute a new search space Snbr. This time the search space is

not an induced subgraph to find component matches, but instead comprises all component

matches in nearby cells to be combined to find new rule matches. To accomplish this, we

search for all combinations of component matches that match the component(s) in the LHS

of a rule. To ensure that only new rule matches are identified, matches involving newly

validated components are exclusively considered and the others are rejected - this is what is

meant by rule match validation. Additionally, φ is applied to determine the geocell to which

the new rule matches are mapped. If the geocell is the current one, the rule matches are

inserted into the rule list. Otherwise, they are set aside and inserted into the correct geocell

during the synchronization phase of Algorithm 4, provided they still exist.

While alternative approaches exist for this incremental update procedure, the algorithmic

idea proposed squarely addresses the problem as a graph algorithm. Moreover, given the

assumption of a system significantly larger than the local search space, new matches can be

identified and updated with considerably less overhead when compared to having to search

the space globally. An alternative approach involves storing an entire copy of the full search

space in the form of completed and partial matches, resulting in a complex hierarchy of

search trees. While potentially faster than the approach employed in DGGML, this method

would necessitate more storage.

5.7 Differential Equation Solving

To solve the ODEs for deterministic grammar rules, a state-of-the-art numerical solver,

ARKODE [92, 91] is used. It offers adaptive-step time integration modules for stiff, nonstiff

and mixed stiff/nonstiff systems of ordinary differential equations (ODEs). ARKODE is part

of the suite of nonlinear and differential/algebraic equation solvers (SUNDIALS) [58, 46].
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The solvers in the library offer well-tested methods for handling complex systems of equations

efficiently and have the functionality to be run on GPUs [10]. In DGGML, ARKODE is

wrapped into an interface class that allows solving functions to be implemented as lambda

functions. In a scenario where DGGs are implemented as a language rather than a library,

a transpiler could directly generate these functions from the DGG language.

Before the use of SUNDIALS, numerical finite difference schemes, including forward Euler

and Runge-Kutta methods [52], were used directly. Direct implementation of these methods

provides alternative approaches to using heavyweight ODE solvers and offers the advantage of

simplicity. When choosing which ODE solving method to use, there are trade-offs. Forward

Euler, for instance, is a simple and intuitive method that is quick to code in the absence

of SUNDIALS and works as a placeholder until more advanced methods can be added.

However, it lacks accuracy. On the other hand, Runge-Kutta methods, such as the classic

fourth-order Runge-Kutta (RK4), are more accurate and versatile. RK4, in particular, uses

a weighted average of different slope estimates to improve accuracy, making it suitable for a

wide range of ODE problems. But, it can be more computationally intensive compared to

simpler methods like forward Euler.

An advantage of using SUNDIALS is its built-in root-solving capabilities, which are surpris-

ingly lacking in many solvers, and are essential for solving the time-warping equation in all

of the algorithms presented in Chapter 4. For example, ODEINT [2], another alternative

solver available as part of the Boost libraries does not have built-in root solving. In cases like

ours where root finding is necessary in order to find the time at which ODE solving should

yield to discrete event firing, having this capability readily available can significantly reduce

the amount of code required to get a solution. For an example of what ODE libraries should

strive for, the Julia differential equation library [88] is an excellent source.

For the case when root solving is required and SUNDIALS is not used, several methods are

available to implement root-solving algorithms. Newton’s method and the bisection method
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are two commonly used techniques for finding roots of equations. These methods involve

iteratively refining estimates of the root until a desired level of accuracy is reached.

While not included in DGGML, DGGs can include reaction-diffusion equations [129]. In

this case the Crank-Nicolson method [112] is a standard choice, offering stability proper-

ties. Another approach that could be used is Mimetic methods [23]. In the context of

reaction-diffusion equations, mimetic methods offer several advantages. More importantly,

they maintain local and global conservation properties, ensuring that mass, momentum,

or other quantities are conserved accurately over time. This is particularly important in

applications where conservation laws play a critical role.
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Chapter 6

Defining a Grammar in DGGML

6.1 Introduction

This chapter provides general guidelines for creating a grammar and demonstrates how these

guidelines are applied in DGGML through interactions with library interfaces and how they

inform modeling choices. The primary user-facing interface components discussed include

the model interface, grammar rule interface, configuration file reader interface, and metric

collection interface (figure 5.1). Further, in the context of DGGML, a model represents

the user’s code-defined implementation of a grammar. These guidelines are also broadly

applicable to any instantiation of a DGG simulator.

6.2 Building a Model

Understanding how to define grammars and build models in DGGML is essential for creating

the connection (Claim 1) between implementation and the DGG formalism. There are six

recommended steps for defining a grammar and building a model: (1) identify the initial
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conditions, (2) define a set of structure changing rules, (3) determine rate functions and

differential equations, (4) define the simulation domain’s geometry and topology, (5) set

boundary conditions, and (6) determine time scale and other parameter settings. Steps (2)

and (3) are arguably the central ones of the DGG formalism, because they encapsulate the

solving and with clauses. All of the information from these steps can be defined in a derived

subclass from the modeling interface in figure 6.1.

1 template<typename GraphGrammarType>

2 class Model {

3 public:

4 NameType name;

5 GraphGrammarType gamma;

6

7 using GraphType = typename GraphGrammarType::graph_type;

8 using KeyType = typename GraphGrammarType::key_type;

9

10 KeyGenerator<KeyType> generator;

11 GraphType system_graph;

12 ExpandedComplex2D<> geoplex2D;

13 SettingsType settings;

14

15 virtual void initialize() = 0;

16 virtual void checkpoint(unsigned int);

17 virtual void collect(unsigned int) {};

18 virtual void print_metrics(unsigned int) {};

19 };

Figure 6.1: A simplified example of the abstract base class for the modeling interface, tem-
plated based on the type of graph grammar provided. The GraphGrammarType defines
the grammar (gamma) and provides type information for essential data structures: the key
generator and system graph. The expanded cell complex is necessary for simulation space
generation. The main functions include an initialize function, which must be defined, and
optional check-pointing, metric collection, and metric printing functions that take in the
current step as input.

Figure 6.1 presents a simplified overview outlining the required components and functions

of a DGGML model. A notable component is the key generator, supplied for initializing the

system graph. Its role is to guarantee consistent key generation throughout the simulation.

This ensures that user-created keys do not conflict with those generated during simulation
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runs. Users must also subclass from the model class and define an initialization function but

otherwise have freedom for customization. Ultimately, the model is passed into the simulator

interface object provided by DGGML, with user-specific details. Example code illustrating

the main program structure is available in figure 6.2. This design choice offers flexibility in

model creation and execution while ensuring DGGML remains open for future extensions.

For example, because the library does require how the settings in figure 6.1 must be set,

there does not have to be a parser or user-defined parameter setting function in figure 6.2.

The settings could be set internally in the model upon its construction.

1 int main()

2 {

3 ParserType parser;

4 DocType settings = parser.iterate(load("settings.json"));

5 UserModel model;

6 model.set_parameters(settings);

7 SimulatorInterface<UserModel> simulator;

8 simulator.setModel(model);

9 simulator.simulate();

10 }

Figure 6.2: An example program for simulating a grammar. Initially, a parser is constructed,
and a configuration file is parsed. Subsequently, a user-defined model is created and its
parameter settings are configured. A simulation is then instantiated based on the type of
model provided by the user. Once the model is set, the simulator executes the simulation.

A configuration file reader interface is provided by default, utilizing ‘simdjson” [65] for pars-

ing JavaScript Object Notation (JSON) format files. These files contain custom input param-

eters and experimental settings that may change between program runs without requiring

recompilation. The library facilitates parsing and enables users to initialize settings for their

models. The JSON file’s contents are entirely customizable by the user, as the parser solely

handles parsing and delivers parsed results. These settings can then be stored in any suitable

data structure. An example of a configuration file for a cortical microtubule array grammar

is shown in figure 6.3.
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1 {

2 "META": {

3 "EXPERIMENT": "experiment name"

4 },

5 "SETTINGS": {

6 "TOTAL_TIME": "simulation time units",

7 "CELL_NX": "number of cells in x direction",

8 "CELL_NY": "number of cells in y direction",

9 "CELL_DX": "cell size in x direction",

10 "CELL_DY": "cell size in y direction",

11 "GHOSTED": "does the simulation have a halo boundary",

12 "NUM_MT": "number of microtubules in the system",

13 "MT_MIN_SEGMENT_INIT": "minimum initial size of microtubules",

14 "MT_MAX_SEGMENT_INIT": "maximum initial size of microtubules",

15 "LENGTH_DIV_FACTOR": "dividing length factor",

16 "DIV_LENGTH": "dividing length",

17 "DIV_LENGTH_RETRACT": "retraction end dividing length",

18 "V_PLUS": "growing end velocity",

19 "V_MINUS": "retraction end velocity",

20 "SIGMOID_K": "sigmoid function coefficient"

21 }

22 }

23 }

Figure 6.3: Example of a JSON-formatted configuration file for a user-defined cortical mi-
crotubule array grammar.

Within the initialization function, the initial state of the system graph can be generated using

a user-defined function. The sole requirement is that this function utilizes the key generator

from figure 6.1 to ensure unique keys for nodes in the system graph. For instance, in the

CMA model, microtubule positions are sampled from uniform probability distributions and

randomly rotated. Generally, users could adopt similar approaches or take other creative

paths, such as incorporating image analysis to determine the initial state of the system.

Furthermore, structure changing rules should likewise be defined within the initialization

function and added to the grammar after creation, as elaborated in subsequent sections.

The specifics of their definition should come from theoretical models, observations, and ex-

periments conducted within the relevant domain. Similarly, rate functions, affecting the
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frequency of stochastic graph rewrites, and differential equations, governing parameter evo-

lution deterministically, should be defined comparably. Hence, both rate functions and

differential equations are determined by theoretical or observed dynamics specific to the

domain.

The simulation domain’s geometry represents the physical space to be simulated, with cur-

rent support limited to 2D simulations via the expanded cell complex (ECC). User-defined

parameters should be set for the ECC within the initialization function. Currently, since the

ECC encodes information about the simulation space’s connectedness and dimensionality of

each spatial domain, it aids in configuring the initial state of the graph, so it’s up to the

user to initialize it. However, since the ECC serves as a crucial component in the simulation

algorithm, it could also be initialized internally based on user-provided parameters.

Regarding boundary conditions, DGGML imposes no restrictions. Graph rewrite rules and

domain constraints on solving ODEs can be used to bound dynamics to a spatial region and

can allow for custom-shaped boundaries inside the ECC. Reflective boundary conditions

can be explicitly incorporated into stochastic rules. However, for runtime safety, a feature

to enable “ghost cells” for the Expanded Cell Complex (ECC) has been included. In this

work, “ghost cells” are inspired by the concept in numerical computing, where additional

grid cells are introduced around the boundaries of the computational domain to enable the

application of boundary conditions in finite difference methods. In the context of the ECC

in DGGML, “ghost cells” function differently. When activated, ODE solving occurs solely

within non-ghosted geocells, and any rule instance assigned to a “ghosted” geocell has a zero

propensity. For a visualization of “ghosted cells” in context, refer to Figure 7.5.

Currently, the output file writer is not customizable through the user modeling interface. It

saves graphs in the Visualization Toolkit file format (VTU), which is a variation of Extensible

Markup Language (XML) files. VTU files can be rendered using a combination of the

Visualization Toolkit (VTK) [100] and ParaView [9]. The Expanded Cell Complex (ECC)
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is conveniently saved at the initial time step, and the simulator periodically saves system

graphs during simulations. As all graphs are spatially embedded, the system evolution can

be visualized and observed.

Optional metrics from the simulation, such as the number of connected components (com-

puted by YAGL), total node count, counts of individual node types, etc., can be defined in

the metric collection interface which takes the form of the collect and print functions in figure

6.1. During the checkpointing phase, the simulator executes the collect function, which can

contain any functionality defined by the user to gather information about the system state

provided through the modeling interface. Additionally, metrics can be printed via a metric

printing function, either to the console or to a file in a format specified by the user. As an

example, a metric collection function can work with a metric printing function to transform

and output data collected during the run in a format compatible with the numerical Python

library (NumPy) [54], enabling visualization with Matplotlib [61].

Overall, the process of building models within the DGG formalism using DGGML is meant

to be flexible to enable users to customize simulations to their specific requirements. The

structured six-step methodology presented here can be used to loosely guide and allow users

to translate theoretical concepts into practical simulations effectively. Furthermore, while

this general approach serves as a foundation for model construction, the subsequent sections

of the chapter delve deeper into defining the API for grammar rules.

6.3 Defining Stochastic Rules

Defining a rule in DGGML is simple and flexible. The grammar rule interface allows the

construction of the two types of rules as objects: stochastic rules denoted as with rules

and deterministic rules denoted as solving rules. The process of defining a grammar rule
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in DGGML first starts with understanding how the grammar of a rule can be parsed at a

higher level.

The following equation is an example of a stochastic DGG rule, which uses a Heaviside

propensity function:

(1) Stochastic Growth:

(2) ( #1  2)⟪(x1,u1), (x2,u2)⟫

(3) Ð→ ( #1 #3  2)⟪(x1,u1), (x2,u2), (x3,u3)⟫

(4) with H(∥x2 −x1∥;Ldiv)

(5) where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = x2 − (x2 −x1)/100.0

u3 = u1

(6.1)

In Equation 6.1, (1) represents the rule’s name with the complete listing of the name and

rule definition in figure 6.9. (2) depicts the left-hand side (LHS) graph, while (3) shows

the right-hand side (RHS) graph with code for each found combined in figure 6.6. (4) is

the propensity function, which is a Heaviside function of LHS parameters and is found in

figure 6.7. Lastly, (5) is the where clause, defining how parameters are updated upon rule

selection and rewriting and found in figure 6.8. In this case, parameters are sampled exactly

to match computed values, but choices like sampling from a normal distribution are also valid.

Thus, essential components of a stochastic rule include the name, LHS graph, RHS graph,

propensity function, and sampling function for parameter updates in the where clause.

DGGML constructs stochastic rules using these components through an object constructor,

as depicted in figure 6.4.

In C++ and other object oriented programming languages, objects are created using a con-

structor, which is a function that initializes the state of the object upon declaration and

subsequent creation. However, a FluentAPI [45] is also another choice, and functions by
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1 // Signature of a stochastic rule constructor

2 WithRule(NameType, GraphType&, GraphType&, PropensityType&&, UpdateType&&);

Figure 6.4: A constructor for building a stochastic rule in DGGML, where the type of rule
is named by its with clause keyword. The arguments in order from left to right: NameType
is the rule name, GraphType is the left-hand side graph type, GraphType is the right-hand
side graph type, PropensityType is the type of the propensity function, and UpdateType is
the type of the updating function.

chaining methods together to initialize the object after the declaration. Figure 6.5 demon-

strates how this could work. A fluent interface can work well in certain contexts and is

included for completeness, but to keep it simple and familiar DGMML uses object construc-

tion as in figure 6.4.

1 // Building a with rule using method chaining

2 WithRule rule;

3 rule.name(n).fromLHS(g1).toRHS(g2).with(p).where(u);

Figure 6.5: An alternate design choice for defining a rule, not used in DGGML, is the
method chaining approach. It starts by constructing the rule and then allows the user to
continue building using a fluent-like interface. The sequence from left to right is as follows:
the method name initializes a name with NameType n and calls fromLHS, which sets the
left-hand side with GraphType g1. This process repeats for setting the right-hand side with
GraphType g2, then setting the propensity with PropensityType p using with, and finally,
calling where to set the update with UpdateType u.

At a finer level, each of the five individual parts in equation 6.1 is treated as its own object.

Part (1), the name, is simply a string of characters and can be defined either ahead of time

or when the object is constructed, as depicted in figure 6.9. The LHS and RHS graphs, parts

(2) and (3) of equation 6.1 are created and initialized first and can be utilized in multiple

rules. Figure 6.6 provides a direct insight into the code construction of the LHS and RHS

graphs in Equation 6.1.

The propensity function, part (4) of equation 6.1 defined in figure 6.7, is created using

an anonymous lambda function, meaning it lacks a name. Despite being assigned to a
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1 GraphType lhs_graph;

2 lhs_graph.addNode({1, {Intermediate{}}});

3 lhs_graph.addNode({2, {Positive{}}});

4 lhs_graph.addEdge(1, 2);

5

6 GraphType rhs_graph;

7 rhs_graph.addNode({1, {Intermediate{}}});

8 rhs_graph.addNode({3, {Intermediate{}}});

9 rhs_graph.addNode({2, {Positive{}}});

10 rhs_graph.addEdge(1, 3);

11 rhs_graph.addEdge(3, 2);

Figure 6.6: The left-hand side graph is constructed by creating nodes with corresponding
numbering and node types. Node 1, of type Intermediate, includes a position and unit vector.
Node 2 follows suit with a type of Positive. An edge is then added between nodes 1 and 2.
The process is repeated for constructing the right-hand side graph.

variable, it remains unnamed in the traditional sense. The lambda’s type and signature are

intentionally chosen for automatic deduction of argument types and consistency, regardless

of internal content. This ensures alignment with the constructor’s type requirements since

propensity functions inherently depend on the LHS and any unique mapping from the rule

to the matching. In certain cases, the lambda function can be detected by a C++ compiler

and be optimally placed inline, avoiding the need for a function pointer call. This design

choice also allows for the defining of propensity functions as function objects (functors) and

provides a way for users to inject code into the generic structure of a simulation algorithm,

which only requires understanding the propensity’s inputs and outputs.

The update function, part (5) in Equation 6.1, is depicted in figure 6.8. Similar to the

propensity function, the update function is also a lambda. However, in this case, updates

are functions of the LHS and RHS, as noted in the DGG formalism. The lambda’s type

and signature are still intentionally chosen for automatic deduction of argument types and

consistency, regardless of internal content. This ensures alignment with the constructor’s

type requirements, as update functions inherently depend on the LHS, RHS, and two distinct
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1 auto propensity = [&](auto& lhs, auto& m)

2 {

3 auto& node1 = lhs.findNode(m[1])->second.getData();

4 auto& node2 = lhs.findNode(m[2])->second.getData();

5 auto len = calculate_distance(node1.position, node2.position);

6 double propensity = heaviside(len, settings.DIV_LENGTH);

7 return propensity;

8 };

Figure 6.7: The propensity function is defined as an anonymous lambda function. Its signa-
ture includes a bracketed ampersand to indicate the compiler can capture external variables,
such as the settings variable. The function arguments are automatically deduced types,
enabling the user-defined function to access the left-hand side graph’s matching and its
associated mapping to the true labeling in the system without being concerned with resolv-
ing types. Within the function, data from the current matching is accessed, distances are
calculated, and a threshold check determines the returned propensity.

unique mappings from the rule to the matching. Choosing a lambda may also compatibly

facilitate defining the update functions as functors and allow a user to inject code into the

generic structure of a simulation’s rewriting algorithm, requiring only an understanding of

the update’s input.

Combining all five parts and considering the constructor from figure 6.4, a rule can be defined

as shown in figure 6.9. The resulting constructed object precisely represents and possesses

the same semantics as the rule defined in equation 6.1 using the DGG language. Once

defined, the rule can be added directly into a data structure that stores all these grammar

rules as data.
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1 auto update = [](auto& lhs, auto& rhs, auto& m1, auto& m2) {

2 for(int i = 0; i < 3; i++) // set position

3 rhs[m2[3]].position[i] = lhs[m1[2]].position[i]

4 - (lhs[m1[2]].position[i] - lhs[m1[1]].position[i])/100.0;

5 for(int i = 0; i < 3; i++) // next set the unit vector

6 std::get<Intermediate>(rhs[m2[3]].data).unit_vec[i]

7 = std::get<Intermediate>(lhs[m1[1]].data).unit_vec[i];

8 };

Figure 6.8: The update function in the where clause is defined as an anonymous lambda
function. The function arguments are automatically deduced types, allowing the user-defined
function to access the left-hand side graph’s matching and its associated mapping, m1, to
the true labeling of the matching in the system, which is passed into the function. The same
applies to the right-hand side (RHS) graph. Within the function, mappings are utilized to
access and update the positions and unit vector of the resulting RHS created after a rewrite.
The use of get functions is essential for retrieving the unique data associated with a given
node, as it gets obfuscated due to the graph node being defined using a type that can assume
several different types. Consequently, this information is only accessible to users who possess
knowledge of the numbering and type of a corresponding node.

1 using RT = WithRule<GraphType>; // rule type

2 RT stochatic_growth("with_growth", lhs_graph, rhs_graph, propensity, update);

3 gamma.addRule(stochatic_growth);

Figure 6.9: The code translation of equation 6.1 involves defining the rule’s name during
construction. The left-hand side and right-hand side graphs are defined before construction,
as illustrated in figure 6.6. Similarly, the propensity function is defined before construction,
as shown in figure 6.7, and the updating function is defined likewise, as seen in figure 6.8.
Finally, the rule is added to a grammar named gamma.
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6.4 Defining Deterministic Rules

Along with stochastic rules, there are also deterministic rules. The following rule is a dynamic

graph grammar ordinary differential equation (ODE) rule:

(1) Solving Growth:

(2) ( #1  2)⟪(x1,u1)(x2,u2)⟫

(3) Ð→ (#1  2)⟪(x1,u1), (x2 + dx2,u2)⟫

(4,5) solving dx2/dt = vgrowu2

(6.2)

In equation 6.1, part (1) represents the rule’s name with the complete listing of the name

and rule definition in figure 6.14. Part (2) is the left-hand side (LHS) graph of the rule, and

part (3) is the right-hand side (RHS) graph with code for each found combined in figure 6.11.

Solving rules deviate from stochastic rules in parts (4) and (5). Part (4), found in figure 6.12,

is used to provide the memory addresses of the variables with associated ODEs to the solver.

Lastly, part (5) constitutes the right-hand side of the ODE solving function and is found in

figure 6.13. Hence, key components of any solving rule include the rule name, LHS graph,

RHS graph, variable binding function, and ODEs to solve in the associated solving clause.

In DGGML, solving rules are constructed using these five pieces with an object constructor.

Figure 6.10 provides the signature of the respective constructor.

1 // Signature of a solving rule constructor

2 SolvingRule(NameType, GraphType&, GraphType&, NEqType, VarType&&, ODEType&&);

Figure 6.10: A constructor for building a deterministic rule in DGGML, where the type
of rule is named by its with clause keyword. The arguments in order from left to right:
NameType is the rule name, GraphType is the left-hand side graph type, GraphType is the
right-hand side graph type, NEqType is the number of variables to be bound, VarType is
the variable binding function, and ODEType is the type of the ordinary differential equation
solving function.
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Zooming in, each of the five individual parts in equation 6.2 is treated as its own object.

Part (1), the name, is simply a string of characters and can be defined either ahead of time

or when the object is constructed, as depicted in figure 6.14. On the other hand, parts (2)

and (3) are created and initialized first. Figure 6.11 provides a direct insight into the code

construction of the LHS and RHS graphs in equation 6.2.

1 GraphType lhs_graph;

2 lhs_graph.addNode({1, {Intermediate{}}});

3 lhs_graph.addNode({2, {Positive{}}});

4 lhs_graph.addEdge(1, 2);

5

6 GraphType rhs_graph = lhs_graph;

Figure 6.11: The left-hand side (LHS) graph is constructed by creating nodes with corre-
sponding numbering and node types. Node 1, of type Intermediate, includes a position and
unit vector. Node 2 follows suit with a type of Positive. An edge is then added between nodes
1 and 2. Since the graph structure of ODEs is unchanged after a rewrite, the right-hand side
graph can just be a copy of the LHS.

The variable binding function (part (4) in equation 6.2), defined in figure 6.12, is created

using an anonymous lambda function as well. The lambda’s type and signature are again

intentionally chosen for automatic deduction of argument types and consistency, and this

ensures alignment with the constructor’s type requirements. All the previous discussion of

functors and inlining also applies here. Just like the propensity function in figure 6.7, there

is an input for the LHS and a respective mapping from the rule to the true labeling in

the system graph. However, there is also an automatically deduced type named “varset”,

facilitating the binding of variables to ensure correct system solving by the ODE solver.

The solving function itself, part (5) in equation 6.2, is translated to code in figure 6.13.

Similar to the propensity function, the solving function is also a lambda. However, utilizing

it can be somewhat tricky due to a couple of factors. First, C++ lacks the introspection.

Essentially, the names of the variables themselves cannot be used internally by the solver

i.e. position, etc. As a workaround, their memory addressees are instead given to the solver.
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1 vars = [](auto& lhs, auto& m1, auto& varset)

2 {

3 for(int i = 0; i < 3; i++)

4 varset.insert(&lhs[m1[2]].position[i]);

5 },

Figure 6.12: The variable binding function is defined as an anonymous lambda function. Its
function arguments are automatically deduced types, allowing the user-defined function to
access the left-hand side graph’s matching and its associated mapping to the true labeling in
the system without resolving types. Additionally, there is “varset”, which is an automatically
deducible type defined by DGGML. It provides the ability to insert memory addresses of
variables, effectively giving them a name that DGGML can understand. Within the function,
the position variables for the node in the matching passed in as the LHS corresponding to
node 2 in Equation 6.2, are bound and inserted into the “varset”.

Additionally, DGGML permits users to inject code into the generic structure of a simulation’s

ODE solver, placing responsibility on the user for correct variable access.

Combining all five parts of the grammar rule decomposed in figure 6.1 and considering the

constructor from figure 6.10, a rule can be defined as shown in figure 6.14. The resulting

constructed object precisely represents and possesses the same semantics as the rule defined

in equation 6.2 using the DGG language. Once defined, the rule can be added directly into

a data structure that stores all these grammar rules as data.

83



1 auto solve = [&](auto& lhs, auto& m1, auto y, auto ydot, auto& varmap) {

2 //growth rule params

3 auto v_plus = settings.V_PLUS;

4 auto& node1 = std::get<Positive>(lhs[m1[2]].data);

5 auto& node2 = std::get<Intermediate>(lhs[m1[1]].data);

6 for(auto i = 0; i < 3; i++) {

7 auto search = varmap.find(&data1.unit_vec[i]);

8 if (search != varmap.end()) {

9 NV_Ith_S(ydot, varmap[&lhs[m1[2]].position[i]])

10 += v_grow * data1.unit_vec[i]*NV_Ith_S(y, search->second);

11 } else {

12 NV_Ith_S(ydot, varmap[&lhs[m1[2]].position[i]])

13 += v_grow * data1.unit_vec[i];

14 }

15 }

16 }

Figure 6.13: The solving function is defined as an anonymous lambda function. Its function
arguments are automatically deduced types, enabling the user-defined function to access the
left-hand side graph’s matching and its associated mapping, m1, to the true labeling of the
matching in the system, which is passed into the function. The y and ydot types are utilized
for integration with the ODE solver, and via the varmap (built by DGGML from the varset),
they can be employed to update a local portion of the ODE system’s state vector. Within
the function, the solving equation from (4,5) in equation 6.2 is defined and a condition
is included to check if a variable is coupled to another equation, using the correct value if
necessary.

1 using ST = DGGML::SolvingRule<GraphType>; // solving type

2 ST solving_growth("solving_growth", lhs_graph, rhs_graph, 3, vars, solve);

3 gamma.addRule(solving_growth);

Figure 6.14: The code translation of equation 6.2 involves defining the rule’s name during
construction. The left-hand side and right-hand side graphs are defined before construction,
as illustrated in figure 6.11. The number of vars is also included. Similarly, the vars function
is defined prior to construction, as shown in figure 6.12, and the solving function is defined
likewise, as seen in figure 6.13. Finally, the rule is added to a grammar named gamma.
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6.5 Conclusion

This chapter serves as a guide to understanding the flexibility inherent in defining models

within DGGML, highlighting the general approach to model definition. Furthermore, it aims

to demonstrate what the integration of the DGG language and formalism into another pro-

gramming language looks like. Thus, the chapter serves a dual purpose: providing general

instructions on utilizing DGGML while also laying the groundwork for nonnegotiable con-

structs required for a language implementation. The subsequent chapter will delve deeper

into analysis and simulation, offering a more comprehensive view of DGGML’s capabilities.
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Chapter 7

Grammar Analysis and Simulation in

DGGML

7.1 Introduction

Following the grammar definition, model creation, and initialization phases, a two-stage pro-

cess begins: first, the grammar analysis phase occurs, and then the simulation phase occurs.

Grammar analysis takes the user-defined grammar and transforms the data into a mean-

ingful format for the core simulation algorithm. The analysis of the grammar optimizes the

representation, as well. The simulation phase takes the transformed grammar and effectively

simulates a single realization of the grammar according to Algorithm 4, and in the case of

no subdivision Algorithm 4 is equivalent to Algorithm 1. In the analysis section (section

7.2), a novel method is proposed to build a set of motifs, a set of fundamental pattern types

that is comprised of the unique connected components of all left-hand side graphs in the

grammar. In the simulation section (section 7.3), the cell list and its use for multi-object

(multi-component) matching of graph objects (connected components) represent a unique
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contribution to this thesis. The following sections further detail both the analysis and sim-

ulation phases and build on the groundwork laid out in Chapters 4, 5, and 6.

7.2 Analyzing a Grammar

In DGGML, the grammar analysis phase starts after the initialization function of the user-

defined model is called within the simulate function shown in the sample code of figure

6.2 in Chapter 6. The grammar, which is defined inside the initialization function of the

user-defined model, is defined using the API in Chapter 6. During runtime, this data, along

with relevant simulation information, populates core data structures. In a fully featured

language rather than a library like DGGML, this phase would be integrated into a DGG

transpiler, occurring during semantic analysis and code generation. However, DGGML is a

library with some similarities to an embedded language in C++, so analysis happens during

the simulation execution rather than inside a compiler.

Figure 7.1 gives a general overview of what an abstract syntax tree would look like for the

grammar rules and motivates the analysis discussion. At the topmost layer is the grammar

with its name, and that is composed of all of the stochastic rules and all of the deterministic

rules. Each of the terminal nodes in the “WithRule” and “SolvingRule” subtrees in figure

7.1 directly map to what is seen in the constructors in Chapter 6, figures 6.4 and 6.10. So,

when a rule is constructed and then added to the grammar it is transforming the model into

a data format that can be semantically analyzed.

Figure 7.2 emphasizes the relationship between the AST and the data by zooming in on

the stochastic rules subtree and transforming it into a data representation. The distinction

importantly allows the “WithRule” to be thought of as a data structure, composed of the

syntactic pieces of data in the leaf nodes. The same holds for the “SolvingRule”. DGGML
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Figure 7.1: A section of an abstract syntax tree (AST) for a DGG, where circle nodes
depict syntactic constructs composed of other nodes, while square nodes represent “leaf” or
“terminal nodes”, denoting the smallest syntactic units. Arrows pointing out from a node
indicate its composition of the pointed to nodes. Dotted lines signify the repetition of a
subtree with similar properties.

effectively stores all instances of these rule-type data structures in a map, where the keys

are the name of the rule and the value is the rule instance itself. A fundamental requirement

of this type of mapping requires rule names to be unique, which is enforced by the library.

Another benefit of this naming convention lies in its ability to directly map user-defined

functions to matches of rule instances, serving as a method to bind and resolve functions at
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runtime.

Figure 7.2: A transformed stochastic rule subtree, originating from an abstract syntax tree
representing a grammar. In this hierarchy, squares represent data with arrows leaving a
square indicating its composition with the pointed elements. Dotted lines denote the possible
omission of additional instances of the names and “WithRules.”

Once the grammar rules are structured into an efficient data format, grammar analysis

can begin. The initial step, which may occur in any order during this phase, involves

precomputing the transformation from the LHS to the RHS. This ensures that when a rewrite

occurs, a set of predefined steps will be applied. The “Rewrite” node in figure 7.1 represents

this functionality, interpreted through its semantics. The rewrite is represented by four sets:

nodes to be created, nodes to be destroyed, edges to be created, and edges to be destroyed.

For a more comprehensive understanding of this procedure, the logic and motivation further

detailed in the graph transformation building block are discussed in Chapter 5.

Next, the LHS graphs undergo analysis, as shown in figure 7.3. Each rule is processed,

irrespective of being a solving or with rule. Every LHS graph is searched, and its connected

components are identified. The components are stored and a mapping between them and
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the LHS is created. The ordering of how these connected components are stored represents

the search pattern for the rule match. The components themselves serve as the fundamental

objects in the pattern. The unique connected components that build the rules in the grammar

are known as “motifs”. Subsequently, the components of all the LHS graphs are consolidated

into a set containing unique motifs. The numbering of motifs in this set is a renumbering

and not specific to each rule’s component. However, as multiple LHS graphs may share

the same motif structure (i.e. they are isomorphic), a mapping between the LHS of a rule

and the motif is stored to ensure proper usage when invoking user-defined functions within

the simulation. The uniqueness is determined using a custom graph isomorphism algorithm

implemented in YAGL and largely inspired from reference [119].

Figure 7.3: An overview of the parsing process, elucidating how graphs from the left-hand
side of all grammar rules are parsed into their fundamental components (motifs) for each
graph. Subsequently, these motifs are consolidated into a set of unique motifs, the shared
components. In this hierarchy, squares represent data, with arrows leaving a square indicat-
ing its composition with the pointed to elements. Dotted lines denote the possible omission
of additional instances at that particular layer.

The set of constructed motifs is then used to identify all unique instances in the system

graph for each motif, using the subgraph-specific pattern recognizer (SSPR) building block

described in Chapter 5. Figure 7.4 illustrates the relationship between a shared component
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and an instance of the motif pattern found. In the unique component set layer, each motif

can be associated with multiple matching instances. This relationship is characterized as

one to many, with instances in the figure 7.4 intentionally arranged in an unordered manner.

This configuration emphasizes the potential for non-uniform access patterns for components,

highlighting the fact that grouping components of the same type may not always be logi-

cal. This is especially apparent when considering rule matches, which are combinations of

components themselves.

Figure 7.4: A pattern matching hierarchy, elucidating how fundamental components graphs
(motifs) from a consolidated set of unique motifs are utilized to identify instances of the
matching motif pattern. In this hierarchy, squares represent data, with arrows leaving a
square indicating its composition with the pointed elements. Dotted lines denote the possible
omission of additional instances at that particular layer.

In DGGML, this association is realized through a “component match map” data structure.

Each component match includes keys that correspond to the component’s order as defined

by the rooted spanning tree (RST) generated by the SSPR. Additionally, each component

match is assigned a unique key from a random key generator, a distinct identifier indicating

the type of motif it matches, and the key of a node designated as the match’s anchor.

Considered a compressed representation of the original motif graph pattern, a component

match does not explicitly retain edge information, although this information can be easily

reconstructed using the original pattern. Other storage alternatives for these matches exist as

well. Matching components are stored in a map and hashed by their unique IDs, facilitating
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various operations involving components such as building rule matches, which merely require

querying this set.

Rule matches follow a structure similar to the map of component matches. Each rule match

consists of a list of unique keys representing the associated components, accompanied by an

anchor chosen from the first component in the list. Rule matches are then collected into a

data structure just like the component matches. Each rule is hashed by a uniquely generated

key and stored in the map.

7.3 Simulating a Grammar

Following the initialization of the model and grammar analysis, additional steps are necessary

to fully initialize the simulation before execution. First, empty lists must be created to

store all rules associated with each geocell. The number of lists required for each geocell

dimension can be conveniently determined from the expanded cell complex (ECC) building

block described in Chapter 5, which is constructed during model initialization. For example,

figure 7.5 has nine 2D geocells, twelve 1D geocells, and four 0D geocells. We would then

have twenty-five lists in total.

Each geocell is responsible for its own exact simulation and monitors components that be-

come invalid i.e. no longer matching, during the process. This monitoring is used in the

synchronization phase of the approximation of the exact algorithm (Algorithm 4) where any

inconsistencies between rule matches owned by other geocells are corrected. This is the

stage where errors from the commutator can manifest in the simulation. Since each geocell

operates locally as an exact simulation, it requires its own propensity and warped waiting

time, denoted by τ . Initially, the geocell’s propensity is set to zero, and its waiting time is

sampled from an exponential distribution as in Algorithm 4, Chapter 4.
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At this point, DGMML creates a checkpoint by default, and if the user defines it - the ECC

and the initial state of the system graph can be saved. By default, DGGML includes a

file writer for the visualization toolkit (VTK) [100] file format to visualize the simulation in

Paraview [9]. Initial metrics, if defined from the metric collection interface, are collected at

this step and also optionally saved or printed as defined by the user. The generic nature of

how and what metrics to collect during the simulation runtime reflects an inherent additional

layer of analysis that could be interspersed between simulation steps.

Next, a specialized cell list is constructed. A “cell list” is a spatial data structure commonly

utilized in Molecular Dynamics simulations [109], and is integral to efficiently simulating par-

ticles making use of Verlet integration [4]. This data structure acts as a spatial partitioning

grid, dividing the space into cells or buckets, with each cell representing a distinct spatial

region. Objects or data points, such as components in the case of DGGML, are assigned

to these cells based on their spatial positions. The cell size is determined by a user-defined

parameter known as the reaction radius. The reaction radius is the distance at which nearby

objects in a system can interact with each other with non-negligible probability. Typically

the cell size will be set to a multiple of the reaction radius so that the cell list can stay valid

for a short period of time. Eventually, motion in the system will cause it to become out of

date. While it is still up to date, the cell list is advantageous because it enables rapid spatial

queries by confining searches to neighboring cells’ lists. Cell lists address geometric search

problems which are important for collision detection [43], with other well-known methods

including K-d trees [14] and bounding volume hierarchies [66].

The cell list can be thought of as a spatial reaction grid. Its existence is justified by the

propensity function “fall off” of a rule instance, i.e. when the components of a match are too

far apart, they are skipped because the propensity is assumed to be negligible. The ECC

and a reaction grid are visualized in figure 7.5. For this work, a cell complex of a regular

Cartesian grid is expanded. A cell complex graph is used for the expansion and it is labeled
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with additional data for the well-separatedness criteria. The reaction grid is a finer-scale

Cartesian grid and it is aligned with the coarser scale of the ECC. Regions of the same

pre-expansion dimension are separated from each other by a minimum distance, and so are

the reaction cells contained in them. The grid spacing of the reaction cells in DGGML is

set using the reaction radius, and this in turn represents the “fall off” distance. Therefore,

reaction grid cells keep the search space for reactions spatially local and are smaller than the

minimum separation distance of geocells.

The cell list functions as a spatial reaction grid, and is necessitated by the propensity func-

tion’s “fall-off” behavior in rule instances; when match components are too distant, they

are disregarded due to their assumed negligible propensity. Both the ECC and the reaction

grid are depicted in figure 7.5. In DGGML, the ECC and its underlying reaction grid meet

the well-separatedness criteria. Regions of identical pre-expansion dimensions are separated

by a minimum distance, as are the reaction cells within them. The reaction grid, aligned

with the ECC’s coarser scale geocells, constitutes a finer-scale Cartesian grid essential for

the function of the cell list. Furthermore, reaction grid cells maintain spatially local search

spaces for rule firings and are much smaller than the geocells’ minimum separation distance.

Therefore, the reaction grid essentially implements the concept of a cell list. Given a cell list

aligned with the ECC, the components must have a way to be mapped to cells in the cell

list, and DGGML uses a 2D spatial hashing method [93]. The hashing function is designed

for single points; however, since component matches in DGGML refer to subgraphs of the

spatially embedded system graph, they typically span more than a single node. To simplify,

the anchor node of a component match serves as the input for the spatial hashing function.

The spatial hashing function used in the cell list bears a striking resemblance to the single

point φ function, and this similarity is not coincidental. Using a single point, the spatial

hashing function uses modular arithmetic to determine in O(1) time the (i, j) index pair of

the grid cell to which a point belongs. Accordingly, this pair is converted into a 1D cardinal
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Figure 7.5: Expanded cell complex (ECC) with well-separated lower dimensions. Regions
of the same pre-expansion dimension are separated from each other. Note how only interior
lower dimensional cells are expanded. A reaction grid is aligned with the geocells, and
reaction cells are smaller than the geocells. The outer boundary of the ECC is padded
with optional ghosted geocells. Ghosted geocells are just geocells that are not processed by
Algorithm 4. These optional ghost cells operate as a buffer for any computational errors or
as a capture condition in the case of no grammar rules addressing boundary conditions.

index, serving as the hash code for the corresponding cell covering a region of space. This

approach enables a quick mapping of spatially embedded objects associated with a cell.

Using the newly constructed cell list of component matches, all rule matches can be computed

by performing spatial queries and searching for a matching pattern in the results. Essentially,

for each component in each cell in the cell list, all component matches within a nearby radius

are queried, providing a set of candidates. Given the ordering of the pattern of components of

an LHS determined during the grammar analysis phase, only component matches that were

previously matched by the SSPR will complete the pattern for the rule match. A consequence

of finding all combinations rather than just a single permutation is that automorphisms of

the matching graph rules LHS are also found.
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After identifying all rule matches, the matches are mapped to the appropriate geocell using

the minimum-dimension function φ from Chapter 4, section 4.5. This choice ensures that all

automorphic matches, regardless of component ordering, are assigned to the same dimension

and therefore the same geocell. These matches are then stored in the list of rules associated

with that geocell. While other storage options such as a tree structure could be considered,

this decision is a design choice that does not affect the algorithm’s function.

Next, the core simulation loop begins. For each dimension, the simulation runs for a brief

period, as described in Algorithm 4. While there are no restrictions on the order in which

dimensions can be simulated, DGGML defaults to simulating in the order of 2D, 1D, and

then 0D, in a cycle. The geocells within each dimension can be executed in parallel or serially,

although the current version utilizes a serialized mode of Algorithm 4. Parallel execution

on the CPU requires thread-safe data structures for accessing and updating the system’s

state. Similarly, running in parallel on accelerators like GPUs would require a design that

maximizes throughput while keeping in mind similar considerations.

For each geocell in Algorithm 1, the simulation requires the grammar, rule matches, com-

ponent matches, ECC, cell list of components, and geocell related properties. In the core

of the simulation algorithm, the initial step involves computing the propensities for all rule

instances in the system individually, followed by summing them globally to obtain the total

propensity for each of the user-defined stochastic with rules. For each rule match in the

map of rule matches, the associated propensity function is queried based on the rule’s unique

name (e.g. such as the name “with growth” in figure 6.9 in Chapter 6). The rule match and

its associated component matches are then passed into the user-defined propensity function,

along with a map facilitating manipulation of a matching graph consistent with its original

numbering in the grammar. Summing the propensities of each rule yields the total propen-

sity of the system. As mentioned in the parallel version of the exact algorithm (Algorithm

2, this calculation is a great opportunity for a parallel reduce, and could be accomplished
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using performance portable parallel libraries like Raja [12] and Kokkos [116].

Next, the ODE solver is initialized. When processing a match, the function outlined in

Chapter 6 to bind variables dynamically constructs a local set of equations. Since different

grammar rules may define equations involving the same variables, a set of memory addresses

is used. The value of each variable in the set is copied to an array compatible with the

solver, representing the state vector for the ODE system. Additionally, a map (hash table)

is created to map the variable’s memory address to its location in the state vector. This

enables locally named access to variables within the user-defined solving function. An extra

equation for the τ time warping is included as in [129, 76], along with a function to check if τ

has exceeded the sampled waiting time for the geocell. The initial condition of the warping

equation is set as the total propensity.

After initializing, the ODE solver solves for a specified period, which is always shorter than

the longer time period for which a geocell for a given dimension can be run or until the

waiting time is reached, signaling the occurrence of rule firing. Between solving steps

the total propensity calculation is carried out, as mentioned earlier. Upon surpassing the

sampled threshold according to the time warping equation, a rule is chosen to fire. The

selection method constructs a discrete distribution from the computed propensities for rule

types and samples from it to make the selection.

Once the rule is selected, the set of rewrite operations produced during the grammar anal-

ysis phase is applied. Consequently, the incremental update, as discussed in Chapter 5, is

performed using the resulting rewrite operations applied to the system graph. This process

begins with the invalidation of any component and rule matches. Next, new matches are

incrementally updated using the rule matches. Any invalidated components that may par-

ticipate in a rule of a differing dimension are then set aside (recorded) for future processing.

Additionally, rules that are valid but should be mapped to another geocell are also set aside.

Finally, the waiting time, τ is resampled, and the ODE solver is reinitialized. This involves
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removing any old equations invalidated by the rewrite and adding any new equations created

by completing a new match for a solving rule.

The entire process continues until the specified time for that dimensional geocell simulation

is reached. Upon completion, the current propensity and waiting time of the geocell are

returned. Additionally, any instances of invalidated component matches that may participate

in rules assigned to neighboring geocells of a lower dimension, or potentially still valid rules

belonging to geocells of a lower dimension, are returned. The remaining geocells in the same

dimension are processed. Rules belonging to geocells of lower dimensions are checked, and

any appropriate rules are invalidated. The returned rule matches are then checked to see if

they still contain valid components. If so, they are mapped to the correct geocell using φ.

After completing this full loop, i.e., simulating for a sufficient ∆t, the set of rule matches

and the cell list can optionally be fully rebuilt or repaired. The duration of simulation time

a collection of matches stays valid is crucial, as matching patterns of spatially embedded

graph grammar that move may eventually have the propensity to “fall off” and should no

longer be considered. At least a couple of options are available. When the overall motion

of component matches in the system is considered to change infrequently, only incremental

local updates to the data structure are necessary. However, in a high resolution chemical

reaction DGG where many molecular graphs are moving and interacting with each other,

the cost of incremental updates to recompute new rule matches after a firing may become

more expensive than simply recomputing all rule matches.

By default, the simulator periodically recomputes all rule matches but does not recompute

component matches. These component matches represent fundamental patterns that only

change when a structural rewrite occurs and will never become invalid due to rewrites of the

position parameter - a sort of invariant. In a more fully featured simulator, monitoring the

position and velocity of component matches in the system could potentially automatically

detect when recomputing all rule matches is necessary. Finally, optional metrics specified by
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the user are collected and optionally saved. The simulation repeats the core simulation loop

until it reaches its stopping criteria.

7.4 Conclusion

In DGGML, grammar analysis is integrated into simulation initialization, enabling semantic

analysis of user-defined grammar rules. The efficiency of grammar simulation is achieved

through incremental updates and the use of a cell list. DGGML offers customizable simu-

lation of DGGs, leveraging features like dynamic ODE solving, while also providing metric

collection during the simulation loop. The model building interface of DGGML abstracts

away much of the complexity of the underlying simulation algorithm, opening up the path

for higher-level usage and modeling applications.

99



Chapter 8

Modeling the Cortical Microtubule

Array

8.1 Introduction

The primary work in the chapter is taken from [73]. Dynamical graph grammars (DGGs) are

capable of modeling and simulating the dynamics of the cortical microtubule array (CMA)

in plant cells by using an exact simulation algorithm derived from a master equation; how-

ever, the exact method is slow for large systems. In Chapter 4 we presented work on an

approximate simulation algorithm that is compatible with the DGG formalism. The ap-

proximate simulation algorithm uses a spatial decomposition of the domain at the level of

the system’s time-evolution operator, to gain efficiency at the cost of some reactions firing

out of order, which may introduce errors. The decomposition is more coarsely partitioned

by effective dimension (d=0 to 2 or 0 to 3), to promote exact parallelism between different

subdomains within a dimension, where most computing will happen, and to confine errors

to the interactions between adjacent subdomains of different effective dimensions. In this
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chapter, to demonstrate these principles we implement a prototype simulator (CajeteCMA)

that is the precursor to DGGML, and run three simple experiments using a DGG for testing

the viability of simulating the CMA. We find evidence that the initial formulation of the

approximate algorithm is substantially faster than the exact algorithm, and one experiment

leads to network formation in the long-time behavior, whereas another leads to a long-time

behavior of local alignment.

8.2 Biological Motivation

Eukaryotic organisms comprise complex cells with many subsystems that are well-suited to

be modeled with dynamic graphs. Over time cells can divide, allowing for a plant to grow,

among other processes. Understanding the exact biomechanical mechanisms taking place

during cell division in plants is a long-standing question [123], but it is known that there

is a connection between division plane orientation in plants and a change in the orientation

of cortical microtubules (MTs) associated with the plasma membrane [24], as they form the

pre-prophase band (PPB). For example, one hypothesis for the PPB orientation process is

“survival of the aligned” [115], and another is alignment through selective katanin mediated

severing [35]. The ensemble of MTs associated with the plasma membrane of the cell is the

cortical microtubule array. The question of how MTs contribute to cell shape and other

processes during cell division motivated us to develop a simplified model for the dynamics

found in the CMA, with the potential to extend this work to larger systems with more

complicated dynamics and interacting networks at different spatial scales.
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8.2.1 Mapping biology and relevant physics to dynamical graph

grammars

In plant cells, the cortical microtubule array (CMA) plays an important role in cell division

and determining shape [98]. A microtubule is a polymer composed of alternating α and β

tubulin proteins arranged in a cylinder of usually 13 longitudinal protofilaments [19]. MTs

can be thought of as relatively stiff tubes around 25 nanometers in diameter. They can

be coarsely represented in a graph as chains of stiff rod segments. Cortical microtubules

(CMTs) in the CMA undergo structural dynamics such as treadmilling, zippering, induced

catastrophe, and crossover [24] - all of which can be represented as DGG rules.

The graph representation of CMTs is compatible with elastic dynamics and beam theory

[69]. For example, in [84], MTs are represented as a string of points, using the standard

formula for bending elasticity to allow MTs to bend under external forces and resist these

forces elastically. The persistence length is one way to measure a microtubule’s resistance

to bending, and it characterizes the length scale over which the microtubule maintains its

direction while indicating its stiffness or flexibility. External forces include random thermal

fluctuations, which can be described using the Boltzmann distribution. Thermal fluctua-

tions can cause the MT to lose directionality over short length scales, resulting in a shorter

persistence length [86]. The Boltzmann distribution plays a crucial role in determining the

probability of the MT moving to a different energy state with a particular conformation and

persistence length.

Currently, the model does not include the exact physics of these internal and external forces

directly; however, these dynamics could be added as ODEs attached to nodes in the graph.

The ODEs supported within the DGG formalism can also be extended to stochastic dif-

ferential equations (SDEs) that include random fluctuations. In the current work, we have

simply approximated fluctuations in the direction of the growing end by adding in small
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perturbations in the direction of growth when an instance of the stochastic rewrite rule in

equation 8.1 below is selected to occur.

While microtubules are stiff (but still bendable) and can function to provide structure to a

cell, they also have dynamic properties. In particular, it has been observed that MTs have the

ability to undergo rapid growth and shrinkage, known as dynamic instability [107]. Dynamic

instability and dynamic MTs provide a means for the cell to reorganize the cytoskeleton

rapidly during cell division [19] or because of changes in the environment [15]. It has also

been hypothesized that microtubules can act as tension sensors [53], providing biomechanical

feedback.

During dynamic instability, the microtubule can grow by rapidly polymerizing tubulin pro-

tein sub-units bound to guanosine triphosphate (GTP) [19]. The cell must keep the concen-

tration of GTP-tubulin high to allow for polymerization [19]. As long as the end remains

stable, the microtubule will continue to grow, but as soon as instability is reached the mi-

crotubule begins to splay apart and shrink [53]. In the grammar, we encode these dynamics

into our stochastic/deterministic growth/retraction rules. These processes are called rescues

and catastrophes, respectively. Dynamic instability is regulated by microtubule associated

proteins (MAPs) and incorporating them is a possible path for future work.

CMTs in the CMA also are subject to additional structural graph-changing dynamics. Three

primary processes have been observed when one MT collides with another [24] and the

mechanisms that control them are still a subject of debate. They are: zippering, crossover

(junction formation), and induced catastrophe. If we let θ be the angle of collision and θcrit

be the critical angle of collision, zippering occurs at a higher probability with θ < θcrit and

catastrophe and crossover occur at θ ≥ θcrit [37]. Grammar rules for the mentioned dynamics

are provided in the supplementary material.

For this chapter, we restrict our simulation to be an idealized version of a region of the
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plasma membrane and leave an exact physical interpretation for future work. We focus

on replicating the simplified dynamics mentioned and using an implicit capture condition

(growing MTs reaching the boundary are no longer simulated) for MT segments that reach

the simulation boundary [121]. In the future, we could impose a more realistic boundary

condition on the domain (such as capture and release) and add additional grammar rules to

model transport dynamics within cells [98].

The following is an example of a stochastic dynamic graph grammar rule for growth:

Positive MT Overgrowth:

( #1  2)⟪(x1,u1), (x2,u2)⟫

Ð→ ( #1 #3  2)⟪(x1,u1), (x2,u2), (x3,u3)⟫

with σ(∥x2 −x1∥
Ldiv

;k = 10)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = x2 − (x2 −x1)γ

u3 = x3−x2

∥x3−x2∥

(8.1)

In equation 8.1, σ(ℓ/Ldiv;k) = 1/(1 + e−k(ℓ/Ldiv)) is a sigmoid activation rate function. Here

ℓ = ∥x2 − x1∥ is the length of the edge, Ldiv is the maximal dividing length and k = 10 is

a “gain” parameter that determines how quickly the function turns on as the edge length

gets close to the dividing length. Other k values could work, but we choose 10 for a rapid

activation. The rate function increases rapidly when an MT segment grows too long which

increases the propensity that a growth rewrite rule-firing event will occur. The quicker the

rate function activates, the sooner a new segment is added when the threshold is reached.

In the results section we make use of the term “starting MT”. What we mean by “starting

MT” is a graph of the form:

(∎1 #2  3)⟪(x1,u1), (x2,u2), (x3,u3)⟫ (8.2)
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A “starting MT” has a retraction node (closed square), an intermediate node (open circle),

and a growth node (closed circle). Edges simply represent relationships between nodes and

the distance between the nodes in space can be computed by using the l2 norm and node

position vectors X⃗i. As rewrite operations are applied to the MT using e.g. the rule in

equation (8.1), growth is simulated.

Figure 8.1: Summary of all the rules used in the CMA grammar.

In figure 8.1 we include a high level overview of all the graph rewrite rules used in the CMA

grammar. Rule 1 is a deterministic rule that models the elongation of a polymerizing MT

(growth) with an ODE. Rule 2 is a stochastic rule also used to model growth. When an MT

segment becomes too long under the action of Rule 1, Rule 2 can insert another node and

split the segment into two segments as seen in equation 8.1. Rules 3 through 5 are stochastic

rules that determine what outcomes may occur when a growing end of an MT comes close to

two intermediate segments. In Rule 3, the outcome is zippering (bundling) if the MT comes

in at a shallow angle. In Rule 4, the outcome is the MT crossing over the other and forming

a junction. In Rule 5, the outcome is a catastrophe event and the colliding MT destabilizes

and begins to retract. Rule 6 is another deterministic ODE-solving rule like Rule 1, but in
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this case, it models retraction. Rule 7 is the stochastic version of retraction, like Rule 2,

and determines what happens when an MT segment gets too short. Whereas Rule 2 adds a

node, Rule 7 removes a node. Rule 8 is a reversible stochastic rule that allows the growing

end and retracting ends to change states, to effectively model dynamic instability. Further

details on ODEs, propensity functions, and rules may be found in the Appendix A.

8.2.2 Overview

We have developed and implemented preliminary work on an approximate algorithm (Chap-

ter 4, Algorithm 4) implemented in C++ for accelerating the simulation of spatially em-

bedded DGGs. Our simulator is also capable of running the exact algorithm (Chapter 4,

Algorithm 1), which is used as a baseline for the performance comparison. The current

code is serial and single-threaded, leaving substantial room for parallel speedup due to the

“parfor” in Algorithm 4. We have tested and evaluated our prototype simulator by running

three experiments using the example CMA DGG found in Appendix A. The CMA DGG uses

artificial parameters to demonstrate proof of concept, and in the future more biologically

inspired ones should be used.

In the first experiment, we simulated the CMA DGG several times for 1600 MTs and we

evaluated the long-time behavior of the realizations. Our realizations include the change in

the quantity of the five types of nodes of the microtubule graphs over time: retraction (nega-

tive growth), intermediate (interior nodes), elongation (positive growth), zipper (bundling),

and junction (crossover). A plot of each of these node types and the several realizations of

the simulations for the first experiment can be seen in figure 8.5.

In the second experiment, we simulate the CMA DGG for 1600 MTs again, but with a

low crossover rate and all other conditions remaining the same. We evaluate the long-time

behavior of the simulation and compare it to the long-time behavior of the first experiment.

106



A side-by-side comparison of the ending states can be seen in figure 8.11.

In the third experiment, we analyze the run-time performance of 3200 MTs with different

domain decompositions. In the performance section, we include a comparison plot (figure

8.13) of performance using the exact algorithm (1x1 case) vs. the approximate algorithm

(remaining cases) for the CMA DGG. The approximate algorithm allows for speedup by

breaking the system into well-separated reaction sub-systems, which obviates the need to

evaluate most possible matches, and by firing some rules out of order as defined by operator

splitting, at the cost of accuracy.

8.2.3 Experiment 1: Long-time Network Formation

We initialize each simulation of the system with 1,600 MTs. An example of the starting

state of a realization is seen in figure (8.2a). The initialization follows a uniform distribution

of MTs over the domain space, where MTs are randomly rotated. The domain is Ω = {0 ≤

x, y ≤ 100 ∣ x, y ∈ R}, a 100 × 100 square area in R2. For each simulation, we subdivide the

domain into a uniform 8 × 8 grid resulting in 64 grid cells. The subdivided domain is then

transformed into a cell complex and expanded.

The average number of initial MTs per highest dimensional cell is 25, since we have 1,600

uniformly distributed MTs over 64 subdomains. The average node density is then 75 i.e.

25×3 when using the starting MT as specified in equation 8.2. The initial average MT density

is chosen to be 25 per subdomain, rather than a larger quantity to keep the starting MTs

well-separated and to allow for polymerization to occur before junction/zipper formation

begins (room for growth). We take the boundary conditions to be the capturing condition

[121].
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System Dynamics and Long Term Behavior

For the experiment, we let the simulations run for 1600 units of simulated time. We define

one unit of coarse-scale simulated time τref = l/v to be the time it takes one MT positive

node to move a segment distance l, given a velocity v. Conceptually, this is similar the the

Courant–Friedrichs–Lewy (CFL) condition in numerical PDEs [112]. Under our constraint,

we ensure that not too much happens in the system in one time unit as required by our

approximate simulation algorithm.

Propensity function model parameters are chosen to evaluate the simulation algorithm and

code, by equally exercising all the DGG rules derived from recent literature, rather than to

represent biophysical knowledge.

Figure (8.2b) is the final state of the realization of the third simulation after time = 1600 τref .

It shows network formation and the onset of a steady state in the long-term behavior of the

system. A side-by-side comparison of the starting state and ending state can be seen in figure

8.2. The starting state in figure (8.2a) shows 1600 disconnected starting MTs uniformly

distributed. In figure (8.2b) the ending state consists of a highly connected network, and the

same behavior occurs in the other realizations. We verify this with a plot of the connected

components for all simulations in figure 8.3.

In figure 8.3, we start with 1600 connected components for each simulation. One connected

component for each MT is exemplified in figure (8.2a). Over time, we see the connected

components decrease and trend toward the long-time behavior of a highly connected network.

A fully connected network is expected to emerge if we ran the simulations for longer. To

make the difference in connected components of each realization clear, figure 8.4 is included.

In figure (8.4a) all realizations are plotted from the beginning to iteration 400. Figure

(8.4b) plots the realizations from iteration 400 to the end and distinctly indicates the slight

difference between realizations in the number of connected components over time.
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(a) Starting state of the simulation (t =
0 τref ). A uniform distribution of 1600 MTs.

(b) Ending state of the simulation (t =
1600 τref ). A highly connected network has
formed.

Figure 8.2: Side by side comparison of beginning and end state of the CMA DGG simulation
of 1600 MTs for realization 3.

Figure 8.3: Six realizations of the change in connected components over time.

In figure 8.5 we see the long-term behavior of each node type in the system for all of the

realizations. The plot shows how many of each node type we have in the system after every

iteration. The top line in the plot is the total number of nodes. In each simulation, we start

with 4,800 nodes (three for each starting MT - equation 8.2). In all of the end states of the
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(a) Six realizations of the number of con-
nected components from iteration 0 to itera-
tion 400.

(b) Six realizations of the number of con-
nected components from iteration 400 to it-
eration 1600.

Figure 8.4: Zoomed in plots of the beginning and end of six realizations of the number of
connected components changing over simulation iterations, where one realization becomes a
fully connected network

realizations we have over 17,000 nodes, indicating an average increase by at least a factor of

three.

Figure 8.5: Plot of the long-term behavior of all node types, including all six realizations of
the CMA DGG simulations.

The number of junction nodes in the system is different than the number of zippering nodes

(on average three times as many junction nodes as zippering nodes), but they still follow

a similar long-time trajectory as seen in figure 8.5. Since the zipper node dynamics are

similar to the junctions, we only provide analysis for one. In figure 8.6, we can see how
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the zipper nodes change for each realization. Figure 8.6 indicates the number of zippering

nodes increase rapidly at first and then begins to slow as we reach the long-term asymptotic

behavior.

Figure 8.6: Plot of the change of zippering nodes over time for all six realizations of the
CMA DGG simulations.

Figure 8.7 shows how the number of positive growth nodes in the system changes. The

positive nodes are primarily responsible for the creation of new MT segments because of

their participation in the growth rule, with the only other creation of new segments occurring

during a junction/zippering rule firing. The rate of MT polymerization was set to be four

times as fast as the rate of depolymerization. If the capturing boundary condition (BC)

had not been imposed, the number of positive nodes in the system may have grown without

bounds, since the rate of polymerization exceeds that of depolymerization. There is also a

state change rule, which occasionally switches a negative end to a positive end or a positive

end to a negative end.

Initially, we see a drop in the number of positive nodes at the beginning of the simulation.

The cause is likely a combination of the state change rule, along with the capturing BC.

Eventually, the growth recovers, and over time the positive nodes begin to again be captured

by the BC or restricted in their directional dynamics due to the onset of zippering and

junction formation. Any time a junction or zipper is formed, it creates a permanent and
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on average irreversible directional barrier for the growing end. The barrier is on average

irreversible since there is no CMA DGG rule yet included to reverse the formation of a

junction or zippering node. The growing rule does include a stochastic unit vector wobble,

which means an MT could eventually circle around to form a new junction or zippering node,

but that behavior is not likely. Thus, in general, the number of new positive nodes added

into the system is expected to decrease over time and the total number of positive nodes is

expected to reach a steady state depending on the particular realization, as seen in figure

8.7.

Figure 8.7: Plot of the change of positive nodes over time for all six realizations of the CMA
DGG simulations.

The negative nodes in the simulations follow inverted dynamics when compared to positive

nodes (figure 8.8). Each simulation starts with a fixed number of negative nodes that should

decrease over time due to the BC and junction/zipper formation. We see this exact behavior

but with a slight initial increase in negative nodes before long-term decay into a steady state.

If the simulations ran longer, it is expected that no negative nodes would exist, because they

state-changed to positive and got captured.

Finally, figure 8.9 is a plot of how the number of intermediate nodes change over time in each

realization. In the CMA DGG simulations presented, the number of intermediate nodes in

the system directly corresponds to the number of MT segments that exist. The growth rule
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Figure 8.8: Plot of the change of negative nodes over time for all six realizations of the CMA
DGG simulations.

Figure 8.9: Plot of the change of intermediate nodes over time for all six realizations of the
CMA DGG simulations.

functions to add more intermediate nodes; however, the zippering/junction rules and the

capturing BC lock the system into place and slow growth. Consequently, network formation

is encouraged, but longer-term growth is discouraged. So the more a network begins to

form, the more intermediate nodes we get. As it forms, the addition of intermediate nodes

decreases. Eventually, a steady state is reached and the number of intermediate nodes

existing stabilizes.

113



Reactivity and Iteration Analysis

The MT dynamics of even a relatively simple system can be complicated. More complex

dynamics require more computation and make performance a concern. We measure perfor-

mance over the duration of one simulation step of τref time, an iteration. We use reactivity

per iteration as a quantitative measure of performance, where reactivity is the wall clock

time of an iteration. Wall clock time is an appropriate measure because iteration time is

correlated to the number of reactions occurring. For example, preliminary experiments with

a grammar including a katanin-mediated severing rule had reactivity increase rapidly.

For the previous experiment of 1600 MT, the initial density was chosen to be low enough

for each simulation to keep MTs in the starting state far apart from interacting with each

other and to leave room for growth. Figure 8.10 shows how the system run-time dynamics

change over time for different realizations. The plot is the actual real-world run-time per

iteration. The reactivity plotted is the sum of the run-time for all of the geocells in an

iteration. In general, the exact algorithm run within a geocell of a given operator-split

dimension for any subdivision may not run in the exact amount of time as other geocells in

that same dimension; however, in this experiment, they should on average because the MTs

are initially uniformly distributed (figure 8.2a).

In figure 8.10, the reactivity of the system increases rapidly over most of the first 50 iter-

ations. The reactivity observed is reflective of the dynamics as detailed in figure 8.5 and

a consequence of MTs growing at a rate faster than they shrink. The peak reactivity oc-

curs just before iteration 50. After the peak, the network begins to form as irreversible

junction/zippering nodes are created and the reactivity of the system decreases. By around

iteration 100 and onwards, the reactivity trends downward towards a steady state, which

corresponds to the realized system dynamics in figure 8.5 and the network in figure (8.2b).
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Figure 8.10: Plot of run-time per simulation iteration of six realizations of the CMA DGG
simulations.

8.2.4 Experiment 2: Long-time Local Alignment

We use the same parameters and CMA DGG (figure 8.1) as experiment 1, but with the rate

of crossover events lowered to near zero. Effectively, zippering and catastrophe events are

favored. The starting state is the same as in figure (8.2a).

Figure 8.11 compares the ending state of the system with a low crossover rate to the system

with the original crossover rate. In figure (8.11a) a highly connected network has formed,

whereas in figure (8.11b) we can see that lowering the crossover rate leads to less connectivity,

inhibits network formation, and reduces the number of surviving MTs. Significantly, figure

(8.11b) exhibits localized alignment where the first experiment did not.

We compare how aligned the two ending states are by by computing an MT orientation cor-

relation function defined as the squared cosine between the orientation of the MT segments,

and average within bins of roughly constant distance. (This measure can be derived [73] as

the trace of the product of the two rank-one projection matrices defined by the two unit
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(a) Ending state of the simulation with high
crossover (t = 1600 τref ). A highly connected
network has formed.

(b) Ending state of the simulation with low
crossover (t = 1600 τref ). Local alignment
has occurred, instead of network formation.

Figure 8.11: Side-by-side comparison of the end states of the CMA DGG simulation of 1600
MTs on a 100x100 unit grid showing the effect crossover has on the system.

vectors; it is invariant to sign reversals of these unit vectors. We then have:

Tr((ui ⊗ ui) ⋅ (uj ⊗ uj)) = (ui ⋅ uj)2 = cos2(θij). (8.3)

The function measures on average how “aligned” MT segments a distance away are from one

another. The square is needed to remove anti-symmetry, since nearby MTs may be aligned

but in anti-parallel directions, and anti-parallel alignment is not visibly distinguishable from

parallel alignment in typical MT imagery. Values close to 0 using this measure indicates

orthogonality and therefore no alignment, whereas values close to 1 indicate complete parallel

or anti-parallel alignment. Typical intermediate values for lines at 45 degrees (equivalently

135 degrees) to one another are 1/2. Consequently, we subtract 1/2, the “uncorrelated”

value, before averaging within distance bins of width defined by the reaction radius and

fitting an exponential decay as a function of distance.

We can see the fitted correlation vs. distance functions in figure 8.12. When we fit an

exponential decay Ae−d/ξ as seen in figure (8.11b), we get the fit c(d) = 0.34e(−d/3.14) with
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a mean absolute squared error (MASE) of 0.797. We initially have a high correlation and

then a quick drop off with a correlation length ξ2 ≈ 3.14 with a standard error (SE) of 0.06

for the plot in figure 8.12. When we fit to an exponential decay on figure (8.11a), we get the

fit c(d) = 0.09e(−d/1.34) and a MASE of 0.709. There is a much lower initial correlation and

then a rapid drop off with a correlation length ξ1 ≈ 1.34 with a SE of 0.039 for the plot in

figure 8.12. Even if we were to very conservatively zoom in on figure (8.11a) by a factor of

1.6 to equalize the number of MT segments in each window, the resulting correlation length

of ξ̂1 ≈ 2.14 is (as detailed in Appendix A) many standard deviations short of ξ2 ≈ 3.14; even

more so for ξ1 vs. ξ2. Similar statistics, among many others (e.g. [102] for graph structure),

could in the future be used to compare model-generated with biological-experiment imagery.

Figure 8.12: Sampled correlations of alignment over distance and their exponential fits of
ending system states seen in 8.11

Our comparison indicates that zippering and catastrophe may lead to local alignment, par-

tially supporting the “survival of the aligned hypothesis” [115]. The results seen in figure

(8.11b) also look closer to what a real system of CMTs might look like. Alternatively, exper-

iment 1 indicates that zippering, catastrophe, and high crossover lead to network formation.

The addition of a selective katanin-mediated severing rule using an alternative hypothesis

[35] also has the potential for global alignment of MTs in the system after the network has

formed, but is a topic for future work.
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8.2.5 Experiment 3: Approximate vs. Exact Performance

As a computational performance experiment, we started the simulation with an initial con-

dition of 3200 microtubules randomly uniformly distributed across a 100x100 unit grid. We

use the same grammar rules and parameters as the first experiment, along with identical

node-capturing boundary conditions.

Figure 8.13: Plot of performance analysis of five separate simulation runs for 10 iterations.

We ran the simulation five times, once with no subdivisions and four times with different

subdivisions as seen in figures 8.13 and 8.14. The first run, with no subdivisions, is the

1x1 domain. The 1x1 case does not use an operator splitting by geocell dimension and is

equivalent to the Exact Hybrid Parameterized ODE SSA in Algorithm 1 [75].

For each step of τref , the maximum time step that can be achieved is the adaptive step,

Max{ 1
reactions ,

lmax

vmax
}. If we move beyond this step size, the ODE solver may miss reaction

dynamics. As can be seen in figure 8.13, the exact algorithm is prohibitively slow because it

must take more steps to solve the system. The step time of iteration 10 for the 1x1 subdivision

in figure 8.13 reflects the slowdown and takes over 2,000 seconds or approximately 33 minutes

on a single core of an Intel Core i7-7700HQ CPU @ 2.80GHz. This is not practical for long-

term simulations with serial computation and server-grade CPUs would not fare significantly

better. In parallel computation, similar bottlenecks for individual geocells would show up if
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the experiment was scaled up so that each of the 8x8 subdivisions was the same size as a

1x1 subdivision; however, there would still be the benefit of running parallel computations.

The subdivisions 2x1, 2x2, 4x4, and 8x8 each show a significant speedup over the original

1x1 Exact SSA. Each of these runs uses Algorithm 4. In the 2x1 case, we see a speedup

(caused by subdividing the domain) of around a factor of four instead of a factor of two. The

difference may be because larger steps can be taken and the search space is smaller. In the

2x2 case, it becomes a factor of twenty. In figure 8.13 the 8x8 and 4x4 cases look similar due

to the time scale, however, there is also a significant speedup. There may be diminishing

returns to scale beyond 8x8, for our initial condition of 3200 MTs. We include the semi-log

plot (figure 8.14) of the same data in figure 8.13 to make the step time differences more clear.

Figure 8.14: Natural log scaled plot of performance analysis of five separate simulation runs
for 10 iterations.

From these results, we find that the approximate algorithm achieves a significant speedup

over the exact algorithm. The resulting speedup comes with a few trade-offs. First, we

get the speedup at the potential cost of accuracy due to some reactions firing out of order.

Second, there is a saturation speedup point for every system. Simulation cells can only be

minimized to a factor of the “fall off” distance and still need to maintain well-separatedness.

Finally, the practical lower limit of the ODE solver step size depends on the dynamics being
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simulated. Whereas simulation speed is limited by cell size and ODE solving step size, there

is no such limit on scalability - making this algorithm appropriate for modeling very large

systems, or smaller systems in greater detail.

8.3 Conclusion

DGGs can be used to simulate complex biological systems using a simulation algorithm

derived from their corresponding master equation. We have introduced an initial imple-

mentation of the approximate algorithm, for spatially embedded and local DGG dynamics,

which achieves improvements to performance over an exact algorithm at some potential cost

of accuracy. We demonstrated the speedup in simulated dynamics of a Dynamical Graph

Grammar (DGG) model of a plant cortical microtubule array, which forms a cytoskeletal

network and can exhibit localized alignment. The work in this chapter represents in initial

implementation of Algorithm 1, but comes with the cost of being rigid and inflexible in its

design. The model in the next chapter makes use of the flexible, customizable, and more ef-

ficient DGGML. Nonetheless, the work in the chapter lays down the foundation for building

an even more complex CMA model.
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Chapter 9

Revisiting the Cortical Microtubule

Array Model with DGGML

9.1 Introduction

In the previous chapter (Chapter 8), we introduced a simplified model for a CMA DGG using

the precursor [73] to DGGML. Building upon this model, we have further refined the model

to be more biologically realistic. This refinement includes the addition of new rules, which

effectively demonstrate the capabilities of DGGML. On the modeling side, we use these new

rules to investigate the mechanisms underlying the formation of specific array patterns of

cortical microtubules in the absence of other cell information by incorporating well-known

dynamics observed in the outer periclinal face of plant cells.

In this chapter, we conduct a novel simulation study using the new DGG model to investigate

the plausibility of various dynamics in driving self-organization. We vary parameters such

as periclinal face geometry and other boundary conditions. Additionally, we briefly explore

the impact of the crossover rule on global alignment. Our findings also underscore the role
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longer-lived aligned MTs [115] play in suppressing the survival of shorter, unaligned MTs.

The study is also designed to explore the long-time behavior emerging from the addition of

the new rules and determine the influence geometry and underlying mechanisms have on the

selection of alignment axes. Instances where alignment fails to emerge indicate a reevaluation

of parameters is required or signal there may be the unaccounted-for biological mechanisms

driving array alignment that does not exist in the the current DGG model.

Finally, the core of the work in this chapter assumes the periclinal face of a plant cell is

either a square or rectangle with sharp edges (high curvature) during the transition from

the periclinal to anticlinal face. We also add in an approximation of the proteins associated

with attaching/linking microtubules to the cell cortex (cytoplasmic linker associated proteins

(CLASP) [113]) on the edges to generate different boundary conditions to broaden the types

of array alignment dynamics we can observe.

9.2 Background

The mechanics of plant morphogenesis are complex and play out on many different scales

of space [28], and these mechanics are well suited to be used to develop DGG models [76].

The reorganization of the cortical microtubule array (CMA) [106] is one part of the scale

hierarchy. The CMA is significantly complex and there are still many outstanding questions

[39], such as what general principles govern the organization of cortical microtubules into

functional patterns?

The Periclinal CMA (PCMA) model presented in this chapter approximates the periclinal

face of a cell, which is the face parallel to the organ’s surface. The anticlinal face is perpen-

dicular to it [1]. A common approximation of the shape of a plant cell for CMA simulations

is a cube [3] or polygonal prism, or a curved surface such as a cylinder [114, 42]. In our
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case, the cell is approximated to be a rectangular prism, which includes the cube and could

be extended to other polyhedral prisms. Therefore, the approximated cell has six faces, 12

edges, and 8 vertices. Using this notion of prisms, we choose the base faces of the prism

to be the top and bottom periclinal faces of the cell. During in vivo experiments, the top

periclinal face is easier to observe, so we chose this location as a reasonable representation

of the simulation space for our model.

CLASP (Cytoplasmic linker associated protein) is a well studied microtubule associated

protein (MAP) that is found in different types of plant, fungal, and animal cells. In the

plant cells of Arabidopsis it has been observed to facilitate transitions between CMA patterns

[113]. The localization of the Arabidopsis thaliana CLASP (AtCLASP) protein to specific

cell edges was shown experimentally and computationally to mediate MT polymerization

when encountering cell corners of high curvature and the selective localization biased the

alignment of the CMA [5]. In our model, we use this observed behavior to make broad

idealized assumptions about the effects it has on the boundaries.

In terms of CMA orientation, a common hypothesis for MT array pattern formation is

“survival of the aligned” [115], where lower rates of crossover and higher rates of zippering

lead to an organized orientated array and MTs that are created but do not align do not

survive. A common pattern in the CMA is observed band formation [99] where several

bands form along the cell face’s horizontal or vertical axis, indicating the network has fully

wrapped around the surface in that alignment configuration. There is also a “picket fence”

phenomenon, whereby MTs forming and aligned to existing MT orientation in the anticlinal

faces are oriented to enter the periclinal faces at angles perpendicular to the edge with some

variance [120]. The entering MTs, to an extent, are aligned in parallel arrays in the anticlinal

plane [106]. A visualization of the approximation we make can be seen in figure 9.1. There

is also evidence showing that light can have an effect on the reordering of the array and

can result in an influx of MTs from the lateral anticlinal walls in light-sensing mutants and
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hormone stimulated plants [97].

Figure 9.1: Visualization of our approximation of the cell as a polyhedral prism (top: per-
iclinal, sides: anticlinal) with our approximation of the “picket fence” phenomena, where
microtubules (MTs) in the anticlinal faces are aligned in a perpendicular array pattern
[106]. Newly created MTs forming in the anticlinal face or those aligned to existing MT
orientation in the anticlinal faces are likely oriented to enter the periclinal faces at angles
perpendicular to the edge with some variance [106].

9.3 Modified CMA Grammar

The Periclinal CMA (PCMA) DGG used in this chapter extends, modifies, and refines the

grammar used in Chapter 8 with rules found in Appendix A. A full listing of all the grammar

rules for the PCMA along with their corresponding parameters can be found in Appendix

B. We also note that the CMA model used artificial parameters and this new PCMA model

uses more bio-inspired parameters, so the parameter regimes are not clearly comparable.

In this section, we highlight several of the grammatical distinctions. For example, we have

added an alternate zippering rule that does not zipper directly into the extant MT graph
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segment (i.e. have the snap on action) but rather functions as an entrainment rule with a

stand-off separation distance [25]. By introducing this alternative zippering rule, MTs are

now capable of “piling up” and forming high alignment on the local scale for the array. A

zippering guard rule has been added to act as an approximation to bundling proteins [39],

to prevent a funneling effect that can otherwise occur. Essentially, another MT can enter

the gap between zippered MTs unless there is a rule to prevent it.

The previous grammar started with a fixed number of MTs that did not change over time.

The PCMA now includes nucleation and destruction of MTs to simulate full depolymeriza-

tion and removal from the system. For nucleation, we have included a grammar rule for

uniformly random nucleation of MTs in the background using a nucleation rate [3] function-

ing independently from the existing array of MTs. We have not, however, included a rule

for MT dependent nucleation, where new MTs are nucleated on existing MTs [82, 83] or

MT creation by means of severing at crossover site [125]. In our previous CMA model [73]

the closest comparison to nucleation was what occurred when a MT depolymerized. In that

case, it would enter a dormant state until a rescue occurred to effectively change the state

of one of the ends back to a growing node.

We have also modified how the boundary works. In the previous model, the boundary

worked by implicitly exploiting the functionality of the simulator by ignoring any MTs that

moved outside the simulation space, effectively functioning to capture the MTs. In the new

model, the boundary is now explicitly defined as a graph. An example of this can be seen

in figure (9.2a). To prevent any MTs from leaving the interior of the space bounded by the

boundary graph, an induced catastrophe rule has been added. Alternatively, the ODE in

the deterministic growth rule could have an additional constraint that decays the velocity

to zero when a boundary is reached, which would work as another route for using the DGG

to specify boundary conditions.

The Periclinal CMA (PCMA) also includes new special boundary rules, to approximate the
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(a) System after a short time of simula-
tion. Nucleation points are shown in the in-
terior and the exterior graph is the boundary
graph. A single microtubule exists within
the simulation box.

(b) Same system as figure (9.2a) after a short
time of simulation. The visualization is with-
out nodes and makes the structural model
clearer.

Figure 9.2: Side by side example of what simulated system looks like, and what we mean by
boundary graph and nucleation points.

effects of CLASP in the case of high curvature on the boundary between face transitions.

Biologically, there are different types of CLASP, but for the simulation study, we use CLASP

as a means to explore one of its functions, which is the ability to mediate MT polymerization

from the periclinal into the nearest anticlinal face in the context of an idealized plant cell. In

reality, CLASP likely can localize to only parts of the edge [3], but we make the assumption

that CLASP has localized uniformly on the edge. When an MT reaches the boundary, two

outcomes may occur: the MT will cross over to the periclinal plane mediated by CLASP or

it will collide and induce catastrophe.

MTs can also fully depolymerize from the periclinal plane into the anticlinal, and this is

modeled as a rewrite rule that removes the MT attached to the boundary from the system.

There is also the ability to allow the MT to statistically unstick from the boundary which

models the collision of an MT entering the anticlinal face, and encapsulates the unknown

dynamics that play out in the “hidden” plane, one of which is the “picket fence” phenomena
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mentioned in the background section and illustrated in figure 9.1.

Finally, a noticeable distinction between the CMA model in Chapter 8 and the PCMA is

the lack of a wobble added to the stochastic growth rule. Due to the inclusion of the new

zippering rule, wobble could only be added with the addition of more yet-to-fully-be explored

modeling rules for bundling proteins. As a result, we have opted to keep the MTs straight

for simplicity; however, every MT is still made up of many smaller segments (as in figure

9.2a).

9.4 Results: Boundary Conditions and Alignment

For the Periclinal CMA, we explore the effects boundary conditions have on the alignment

axis. In the previous chapter, we ran experiments where the boundary had an implicit

capture condition. Effectively, any MT that made it to the boundary was put into a pause

state. In this chapter, we explore two categories of periclinal domain geometry: squares and

rectangles. Within each of these categories, we run six different computer experiments.

In the first experiment, we have a collision-induced catastrophe (CIC) boundary, where any

MT that collides with the boundary will begin to rapidly depolymerize. The CIC boundary is

used as a baseline for the default behavior for predicting the alignment axis and the remaining

five experiments investigate perturbations of the system through means of rule changes and

parameter variations. In the second experiment, we enable the CLASP-mediated crossover

boundary conditions to stabilize the array at the boundaries and explore the effects of high

MT crossover rate on the respective array. By high we mean we change the initial rate found

in Appendix B from 200 to 8,000 (a fortyfold increase), which makes crossover nearly as

likely as CIC (which has a default rate of 12,000). In the third experiment, we introduce

an influx of MTs from the boundary and increase the initial rate of 0.001 to 0.008, meaning
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new MTs enter the system 8 times as often. Finally, in experiments 4 through 6, we again

have the CLASP-mediated boundary crossover enabled, but we accordingly vary the range of

angle of entry and exit of MTs from the perpendicular to the boundary in increments of 15○:

[−30○,30○], [−45○,45○] and [−60○,60○]. In experiments 4 through 6, all other parameters

and rates are the default.

In total, there are twelve different experiments, with half being run for each respective domain

geometry. Each of the individual experiments is run as ensembles of sixteen simulations,

culminating in a total of 192 realizations run using DGGML. Unless otherwise specified, the

experiment will use the default parameters. For a complete overview of the grammar and

the default parameters, please see the appendix.

Each of the simulations is run for two hours of biological time, and checkpoints are taken

every 24 seconds of that time. At each step, the angles of all intermediate, retracting, and

growing MT nodes are collected and projected to the right half of the plane with 0○ being the

positive x-axis (−90○ (negative y-axis) to 90○ (positive y-axis)). These projected angles are

binned by increments of 15○, creating a histogram [57]. The correlation length vs. distance

histogram discussed in Chapter 8 is also computed at each checkpoint. From the correlation

length vs. distance histogram, we take the average over the first third of the correlation

vs distance function to get the local correlation average, and over its entirety to get the

global average. While there are other measures of alignment [11], the local and global mean

correlations work as a sufficient measure to quantify alignment when combined with the

histogram.

9.4.1 The array orientation of square domains is multi-modal

The area of the simulated domain is a 5µm × 5µm = 25µm2 and is initially empty. New

microtubules can be created by background nucleation or enter from the boundary when
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CLASP rules are enabled. For each of the experiments, we have N = 16 samples of the local

and global correlations. In figure 9.3 we present the square CIC boundary experiment data

used to calculate the mean local and global correlations shown in figure 9.4.

For the local correlation (left in figure 9.3), we have plotted all individual samples from the

square domain with the collision-inducing catastrophe (CIC) boundary condition experiment.

From these samples, the mean and standard deviation are computed and plotted. Using the

mean, a best-fit logarithmic curve (f(t) = a log(bt)+ c) is estimated and works as a sufficient

fit for the 120 minute range of interest. The same approximation is made for the global

correlation. The plots for all remaining square experiments can be found in Appendix B.

Figure 9.3: For the square experiment with a CIC boundary, the plot contains the following:
all N = 16 samples of local correlations (left) and global correlations (right), the correspond-
ing mean of all the samples with the standard deviations, and the best-fit curve for the mean.

In figure 9.4 the local and global correlation mean fits are plotted for each of the experiments.

The initial step is omitted which has undefined local and global correlation, since the system

is empty. For all simulations of the square domain, except CLASP mediated boundary

crossover and the high MT crossover experiment (which remains near the fully uncorrelated

value of 0.5), both correlation measures reach a steady state after about one hour. These
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simulations all become locally aligned, but according to the global correlation measure appear

not to ever become fully aligned.

Figure 9.4: The plot contains the a best-fit logarithmic curves (f(t) = a log(bt) + c) for the
120 minute range of interest fitted to the local and global mean correlation over time for each
of the square simulation experiments. All simulations start empty and have zero correlation.

In figure 9.5, we have the histograms for the CIC boundary (figure 9.5a) and the CLASP

with Crossover (figure 9.5b). In figure (9.5a), the most likely to occur angles are clustered

around −90○, 0○, and 90○ with relatively small error bars. That is, in the absence of any

boundary condition aside from collision, the network will tend to align in horizontal and

vertical directions. It is also possible for it to align in the diagonal direction. When we

introduce the CLASP rules for the boundary and allow for a high rate of crossover (change

the default rate from the low value of 200 to the high value 8,000) the orientation of the array

quickly becomes uncorrelated and the behavior persists for the remainder of the simulation,

as evident by the dotted line with near constant long time behavior in figure 9.4. The effect

of the lower global and local correlation can be observed in figure (9.5b), where the computed

histogram is more uniform.

In figure 9.6 we have the ending state mean histogram for the experiment with an influx of
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(a) Baseline histogram estimating the prob-
ability mass function for array orientation
for the square domain with CIC boundary,
including standard error bars and averaged
over 16 runs.

(b) Histogram estimating the probability
mass function for array orientation of square
domain with a CLASP boundary condition
and high crossover, including standard error
bars.

Figure 9.5: Histograms of the mean angular orientation for the arrays at t = 120 minutes for
the square CIC boundary and CLASP+Crossover and averaged over 16 runs.

MTs at the boundary (figure 9.6a) and a sample image of an ending state used to compute the

histogram (figure 9.6b). In figure (9.6a), where the influx of MTs occurs at the boundary, we

see a seemingly more uniform histogram with larger error bars. The key distinction between

figure (9.5b) and (9.6a), can be observed from the local and global correlation data in figure

9.4. While they both have fairly uniform angle distributions, they have very different local

and global correlations. The simulations with the influx of MTs on average become highly

correlated at a local length of approximately 1.67µm and somewhat correlated at the global

scale. The CLASP+Crossover experiment stays uncorrelated the entire simulation. In figure

(9.6b), we show a sample of the simulation of the high influx exhibiting vertical alignment.

The local correlation = 0.93, and global = 0.8 in the sample and is quite different than what

the angular orientation histogram initially appears to be indicating. The histograms for the

other CLASP experiments look similar and the behavior follows a similar pattern.

Looking deeper, we analyze some of the samples of the CLASP (30○, 45○, and 60○) experi-

ments. Kernel density estimation (KDE) is a method for estimating the probability density
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(a) Histogram estimating the probability
mass function for array orientation for the
square domain with an influx of MTs, includ-
ing standard error bars and averaged over 16
runs.

(b) Sample of a network used to compute the
PMF in figure (9.6a), with local correlation
= 0.93, and global = 0.8

Figure 9.6: Histograms of the mean angular orientation for the arrays at t = 120 minutes for
the square influx of microtubules averaged over 16 runs, along with an ending state sample
of the influx experiment.

function of a random variable [103]. The Gaussian kernel is a commonly used kernel function

in KDE, which assigns weights to data points based on their distance from a given point.

The Scott bandwidth is a parameter used to control the smoothness of the estimated density,

with larger bandwidths resulting in smoother estimates. For this study, the KDE is used as

a qualitative way to visualize and reason about the orientation of the array. A closer look at

how KDE estimates a density function using the histogram from an individual CLASP 30○

experiment can be found in figure 9.7. Samples using the KDE for the square CLASP 30○,

45○, and 60○ experiments are presented in figure 9.8 and figure 9.9.

In figure (9.8a), we see the results for the CLASP 30○ experiment. Sample 5 from the figure

(9.8a) has the distinct characteristics of vertical alignment, which is represented by peaks

at both ends of the plot. However, in sample 7 of the figure (9.8a), the PDF indicates an

array with mixed orientations. This can be effectively visualized in figure (9.8b). Looking

towards the center of the image we see a mix between horizontal alignment and the partial

formation of a diagonal alignment from upper left to lower right. These two alignments
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Figure 9.7: A closer look at the KDE with a Gaussian kernel and the Scott bandwidth
[103] of the orientation PDF from sample 4 of the CLASP 30○ experiment, along with the
histogram it was estimated from. In this case, the resulting density is a close match for a
qualitative representation of the shape of the histogram.

are characterized by the right-shifted central peak in the plot. The remaining orientations

angled around the border are effectively represented by the peaks at the ends. Cases like this

occur when no central aligning axis can win out. In line with the “survival of the aligned”

hypothesis, only aligned MTs tend to survive, which strengthens the staying power of these

multiple locally aligned arrays. Once a mixed state such as the one in figure (9.8b) is reached,

the system may stay in this state indefinitely.

In the examples from the CLASP 45○ experiment (figure 9.9a), we observe a situation where

there are three identifiable clusters of orientations: vertical, diagonal left, and diagonal

right. In the examples for the CLASP 60○ experiment (figure 9.9b), we observe a situation

where there are three identifiable cluster orientations: horizontal, diagonal left, and diagonal

right. However, in all the plots of figure 9.9a and figure 9.9b there are multiple peaks with

wide bases, which indicates that there may be mixed orientations as well. Returning to

the seemingly uniform histogram in figure (9.6a), we can see that the histogram is correctly

uniform; but, not because there is no alignment. The reason for the uniform behavior is

there appear to be several underlying modes of orientation that are being averaged out. If

enough samples were taken and then clustered, we might be able to recover the underlying

133



(a) Three PDFs fit using kernel density esti-
mation with a Gaussian kernel and the Scott
bandwidth [103] from the histograms com-
puted for individual samples of the CLASP
30○ experiments.

(b) Sample 7 from (9.8a) with local correla-
tion = 0.84 and global correlation = 0.51

Figure 9.8: An example with three samples of an estimated orientation PDF from the CLASP
30○ experiments, along with the ending state of sample 7 from the CLASP 30○ experiment.

modes of the angle orientation for the square geometry.

(a) Three PDFs fit using kernel density esti-
mation with a Gaussian kernel and the Scott
bandwidth [103] from the histograms com-
puted for individual samples of the CLASP
45○ experiments.

(b) Three PDFs fit using kernel density esti-
mation with a Gaussian kernel and the Scott
bandwidth [103] from the histograms com-
puted for individual samples of the CLASP
60○ experiments.

Figure 9.9: Two examples with three samples of estimated orientation PDFs from the CLASP
45○ and 60○ experiments

Through each of these experiments, we were able to find that the high crossover rates lead

to no defined axis of alignment, and the remaining simulations lead to multiple defined

134



and sometimes mixtures of global and local alignment. Without additional mechanisms of

control, the rules combined with a square domain do not lead to a preferred axis of align-

ment. However, if they do align it will be in the horizontal, vertical, or diagonal directions.

Therefore, the array orientations of square domains are actually multi-modal.

9.4.2 Boundary conditions reorient arrays in rectangular domains

The area of the simulated rectangular domain is initially empty and has dimensions of

8.33µm × 3µm and is set to be equal to the area of the square simulation domain. For each

of the experiments, we have N = 16 samples of the local and global correlations. In figure

9.10 we present the rectangular CIC boundary experiment data used to calculate the mean

local and global correlations shown in figure 9.11.

Figure 9.10: For the rectangular experiment with CIC Boundary, the plot contains the
following: all N = 16 samples of local correlations (left) and global correlations (right), the
corresponding mean of all the samples with the standard deviations, and the best-fit curve
for the mean.

For the local correlation (left in figure 9.10), we have plotted all individual samples from the

rectangular domain with the collision-inducing catastrophe (CIC) boundary condition ex-
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periment. From these samples, the mean and standard deviation are computed and plotted.

Using the mean, a best-fit logarithmic curve is estimated (f(t) = a log(bt) + c) and works

as sufficient fit for the 120 minute range of interest. The same approximation is made for

the global correlation. The plots for all remaining rectangular experiments can be found in

Appendix B.

Figure 9.11: The plot contains the best-fit logarithmic curves (f(t) = a log(bt) + c) for the
120 minute range of interest fitted to the local and global mean correlation over time for
each of the rectangular simulation experiments. All simulations start empty and have zero
correlation.

In figure 9.11 the local and global correlation mean fits are plotted for each of the experiments.

The initial step is omitted. It has an undefined local and global correlation since there

are no MTs present in the system. For all simulations of the rectangular domain, except

CLASP-mediated boundary crossover and the MT crossover experiment with the higher

rate of 8,000 (which remains near the fully uncorrelated value of 0.5), both correlation

measures reach a steady state after about one hour. The behavior is similar to the square

case. On average these simulations all become locally aligned. According to the global

correlation measure, only the collision-induced catastrophe (CIC) boundary experiments and

the influx experiments become correlated enough to be considered globally aligned. Crossover
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is globally uncorrelated, and the remaining experiments show a mixture of alignments.

The defining alignment behavior for the CIC boundary experiments is illustrated in figure

9.12 by a mean histogram and a sample from the data used to compute it. The histogram

in figure (9.12a) prominently centers around 0○, which indicates a high occurrence of angles

oriented in the horizontal (long axis) direction. The sample array in figure (9.12b) is mostly

aligned horizontally, with some deviation towards the diagonals, which can be seen in the

histogram as well. The local alignment is 0.93 and the global is 0.83. What we have found

is that given enough time, under these conditions, the array orientation is uni-modal, and

oriented horizontally i.e. the long direction of the rectangle. Given a CIC at the boundary,

the array likely orients horizontally because the longest axis allows the MTs to survive for

longer.

(a) Histogram estimating the probability
mass function for array orientation of rect-
angular domain with CIC boundary, includ-
ing standard error bars and averaged over 16
runs.

(b) Example of one of the samples used to
calculate the array orientation. The array
is oriented horizontally, with some variation.
Local correlation = 0.93 and global correla-
tion = 0.83.

Figure 9.12: Histogram of the mean angular orientation for the arrays at t = 120 minutes
for the rectangular case with a CIC boundary averaged over 16 runs, along with an ending
state sample of the CIC experiment.

Given the uni-modal behavior of this baseline case, we attempt to see if we can modulate

(switch) it to another mode. In figure 9.13 we have increased the rate of crossover from

200 (default value in Appendix B) to 8,000 and enabled the CLASP boundary conditions

137



to stabilize the edges of the array. The histogram in figure (9.13a) is markedly flatter than

the histogram for the CIC case. In figure (9.13b) we have a sample ending state of the

simulation used to calculate the histogram. It has a local correlation = 0.5 and a global

correlation = 0.49. The MTs in the array for the sample are completely uncorrelated and a

network is formed, just like the array with high crossover in Chapter 8, figure (8.11a).

(a) Histogram estimating the probability
mass function for array orientation of rectan-
gular domain with a CLASP boundary and
a crossover rate of 8,000, including standard
error bars and averaged over 16 runs.

(b) Example of one of the samples used to
calculate the array orientation. The array
has no preferred orientation as has network-
like behavior. Local correlation = 0.5 and
global correlation = 0.49

Figure 9.13: Histogram of the mean angular orientation for the arrays at t = 120 minutes
for the rectangular case CLASP rule enabled and a crossover rate of 8,000 averaged over 16
runs, along with an ending state sample of the CLASP+Crossover experiment. The ending
state has network-like behavior similar to figure (8.11a) in Chapter 8.

In the next experiment, we activate an influx of MTs (by changing the influx rate from 0.001

to 0.008) on the boundaries and lower crossover back to the default rate of 200. MTs can

still exit the simulation through the CLASP exit rule as well. In figure 9.14 we have another

side-by-side of the mean histogram for the ending state of the realizations of the experiment,

along with a sample. In the histogram in figure (9.14a), we observe the angle orientations

have switched to be clustered around −90○ and 90○. In this case, this indicates a vertical

alignment i.e. aligned with the shortest side of the rectangle (projecting the angles to the

right half of the plane causes vertical alignment to appear this way in the histogram). The

sample shown in figure (9.14b) verifies the behavior. The sample has a local correlation
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= 0.94 and a global correlation = 0.86. In the rectangular domain, the influx of MTs is

enough to allow for the majority of MTs on the longer axis to reach the other side first and

have a chance to cross over into the anticlinal face. Once they do, they will stay attached

until periodically released from the boundary to approximate collision in the hidden plane

and any other potential severing effects at the boundary not included in the model. Any

newly nucleated MTs will then be forced to align with the dominant axis and entering MTs

in the non-dominant axis will be unable to overcome the effects of alignment.

(a) Histogram estimating the probability
mass function for array orientation of rectan-
gular domain with a CLASP boundary and
an influx of microtubules entering, includ-
ing standard error bars and averaged over
16 runs.

(b) Example of one of the samples used to
calculate the array orientation. The array is
oriented vertically. Local correlation = 0.94,
global correlation = 0.86.

Figure 9.14: Side-by-side comparison of estimations of the array orientation and a sample
for the rectangular case with CLASP and an influx of microtubules entering the boundary.

Finally, in the last set of experiments, we lower the rate that MTs can enter back to the

default value of 0.001 and vary the entry and exit angles in increments of 15○ from 30○ to

60○. Instead of analyzing the histograms in this case, we investigate samples and estimations

of the density functions of histograms. In figure 9.15 we have two sets of three samples, one

set for CLASP 30○ (figure 9.15a) and one set for CLASP 45○ (figure 9.15b). Comparing the

two, we observe different types of orientations. In one case, we get horizontal alignment and

in another we have vertical. There are also mixtures.
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(a) Three PDFs fit using kernel density esti-
mation with a Gaussian kernel and the Scott
bandwidth [103] from the histograms com-
puted for individual samples of the CLASP
30○ experiment in a rectangular domain.

(b) Three PDFs fit using kernel density esti-
mation with a Gaussian kernel and the Scott
bandwidth [103] from the histograms com-
puted for individual samples of the CLASP
45○ experiment in a rectangular domain.

Figure 9.15: Two examples with three samples of estimated orientation PDFs from the
CLASP 30○ and 45○ experiments in rectangular domains.

In figure 9.16, we have the CLASP 60○ (figure 9.16a) and sample 3 (figure 9.16b), which

is the ending state array. We can use these two plots to effectively observe mixtures of

orientations. Sample 3 is a representative example, where there are two distinct diagonal

orientations. The local correlation is = 0.81, indicating we have a fairly tight local alignment.

The global correlation is = 0.42 and effectively shows how distinct clusters of local alignment

can still exist even when the global state appears uncorrelated.

From the final sets of experiments, we have demonstrated that lower rates of MT entry on

the boundary can put the orientation in a state where multiple orientations for alignment

are possible. However, when one axis fails to win on the global scale, we end up with a

mixture of alignment orientations on a local scale. From each of the experiments, we have

demonstrated that is possible to shift to different alignment orientations by changing the

boundary conditions and modifying the rate at which MTs can cross over one another.
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(a) Three PDFs fit using kernel density esti-
mation with a Gaussian kernel and the Scott
bandwidth [103] from the histograms com-
puted for individual samples of the CLASP
60○ experiment in a rectangular domain.

(b) Sample 3 from 9.16a Local correlation
= 0.81 and global correlation = 0.42, which is
less than 0.5 due to the inverse orientations
at the ends.

Figure 9.16: An example with three samples of an estimated orientation PDF from the
CLASP 60○ experiment, along with the ending state of sample 3 from the CLASP 60○

experiment.

9.5 Conclusion

In this chapter, we have presented a new model based on cortical microtubule array dynamics

observed in the periclinal face of a plant cell and run simulations, both of which demonstrate

the capability of the Dynamical Graph Grammar Modeling Library (DGGML). In both the

rectangular and square domains, we have shown that boundary conditions, as well as MT-

MT crossover, can have an impact on the axis of alignment both on a local and a global

level. In both domain geometries, we observe that the default set of rules with a collision-

inducing catastrophe (CIC) boundary condition alone is insufficient to act as a mechanism for

orientation control. We also find that increasing the crossover rate is enough to uncorrelate

the array on a local and a global scale. Greater control of alignment is possible, however, in

a way that depends on periclinal face geometry.

In the case of square domains, there are actually multiple modes of orientation that can

occur: vertical, horizontal, diagonal, and a mixture - regardless of the boundary conditions
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when using the parameters given in Appendix B. In contrast, boundary conditions play an

important role in the alignment results for the rectangular domain. In the CIC case, there

is a high likelihood of horizontal (along the longest axis) alignment. In the experiment with

an influx of MTs from the boundary, the orientation of the array in the rectangular domain

results in a vertical (along the shortest axis) alignment. When the influx is lowered back

to the default value and the entry/exit angles are varied, the resulting array is a mixture of

orientations. From the rectangular experiments, we find that different boundary conditions

in rectangular domains can reorient the axis of alignment for the array.

As a future path forward for the experimental setup outlined in this chapter, we could instead

simulate the top periclinal face of the cell using different domain shapes. For example,

we could use a hexagonal face for the simulation space. As a further variation, different

stretching and skewing transformations could be applied the the cell face. More experiments

can also be added with different variations of parameters and rules. For example, we could

introduce the severing of MTs at crossover sites with a Katanin rule [35] or add in a stochastic

wobble to growth to model thermal fluctuations [86].

The computational nature of the experiment outlined in this chapter also makes collecting

more measurements of the system, which are often difficult to collect during lab experiments,

more feasible that for real wet-lab biological experiments, and can effectively enable a more

sophisticated analysis of the system that would not otherwise be available. For example, we

were able to collect MT angular orientations by just defining a metric collection function.

An added benefit of DGGML is that it can be used to computationally screen biological

experiments that are too costly or cumbersome to perform en masse. DGG models defined

using and simulated by DGGML can also be used to search for and find corresponding

wet-lab experiments that would distinguish between and test alternative hypotheses.

Finally, DGGML offers several other key advantages over the simulation code of Chapter 8.

A generic interface for defining rules is exposed, allowing for the creation of more complicated

142



grammars with far less effort as discussed in Chapter 6. The library is also more efficient

thanks to improvements such as the incremental update discussed in Chapter 5. Most

importantly, DGGML is flexible and customizable.
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Chapter 10

Conclusion

10.1 Summary of Motivation

Dynamical Graph Grammars (DGGs) [76] allow for an expressive and powerful way to declare

a set of local rules to model a complex dynamic system with graphs. DGGs also have a well-

defined meaning. They map graph dynamics into a master equation, a set of first-order linear

differential equations governing the time evolution of joint probability distributions of state

variables of a dynamic system. Using operator algebra [75], DGGs can be simulated using

an exact algorithm (Chapter 4, Algorithm 1). The exact algorithm becomes slow for large

systems and signals a need to develop a faster and more scalable algorithm. Using operator

splitting, an approximate faster and scalable algorithm was derived for spatially embedded

graphs (Chapter 4, Algorithm 4).

The original implementation of the DGG formalism is realized by the software Plenum [129]

with powerful symbolic processing provided by Mathematica [128], but only uses the exact

algorithm and does not use native graph data structures or graph algorithms. To allow for

a more graph and performance-oriented implementation, we have developed the Dynamical
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Graph Grammar Modeling Library (DGGML) in the C++ programming language. DGGML

also serves as a way to directly demonstrate the utility of the new approximate algorithm.

Two different biological models for the plant cell cortical microtubule array (CMA) were

developed. The first model (Chapter 8 and Appendix A) is implemented using the precursor

[73] to DGGML, while the second model (Chapter 9, and Appendix B) is completely defined

with the DGGML user-interface and simulated using the implementation of Algorithm 4 of

Chapter 4 provided by DGGML. Both models are presented to showcase the evolution of

DGGML and the flexible power of DGGs.

Work has already been done to simulate the dynamics of MTs in plants [84], [24]. However,

to our knowledge, there is no other known formalism that does it by using dynamic graphs.

The only previous work is found in Plenum [129] and theoretically discussed in [76] and [130].

Finally, the algorithms, library, and models with corresponding simulations presented in this

thesis are intended to fully demonstrate the synergy between the technical computing side

of computational science and the mathematical modeling side of systems biology.

10.2 Conclusions and Future Work

The original Dynamical Graph Grammar (DGG) simulation algorithm in [75] can be sped

up by processing reactions out-of-order at the cost of accuracy. We have presented the

approximate hybrid ODE SSA (Algorithm 4), which is an operator splitting algorithm that

imposes a domain decomposition by means of an expanded cell complex that corresponds

to summing operators, over pre-expansion dimensions d, and without loss of accuracy over

cells c of each dimension. There were two key assumptions made in our approximation of the

exact algorithm: spatial locality of the rules and, well-separatedness of the geometric cells

(geocells) comprising the expanded cell complex. These two assumptions provide a strong
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connection between the algorithm and its use for accelerating models rooted in the natural

sciences, where dynamics play out locally to sculpt emergent behavior observed at a larger

scale in space.

While the approximate hybrid ODE SSA is specifically designed for spatially embedded

graphs, it may also have uses in other non-spatial instances if equipped with a measure for

locality in the parameter space. Using Algorithm 4 for non-spatial instances could be a topic

for future exploration. Further, in Algorithm 2 we have proposed points of parallelization

for the exact hybrid ODE SSA (Algorithm 1) in the form of a parallel propensity compu-

tation and parallel solving of ODEs. We also introduced an incrementally updated match

data structure to greatly improve efficiency and proposed a clear point of parallelization for

Algorithm 4, where geocells of the same dimension can be processed in parallel for a short

time before the remaining dimensions can be processed and the global inconsistencies in

local geocell states can be repaired during the synchronization phase. For all algorithms,

the best-suited use cases were also discussed. Additionally, choices for the φ function were

briefly discussed. In Appendix C, we provide more work on the algorithm and justification

that can lead to a formal proof of an error bound in future work. The performance difference

between using the exact and approximate algorithm is also demonstrated in Chapter 8.

Following the discussion of the algorithms, the Dynamical Graph Grammar Modeling Library

(DGGML) was introduced. Chapter 5 introduced the overall design of the library, along

with fundamental building blocks. Notable contributions from it include Yet Another Graph

Library (YAGL), a dynamic graph library designed for DGGML, and several foundational

elements such as the spatial variant node, subgraph specific pattern recognizer (SSPR),

expanded cell complex (ECC), and the process for incrementally updating the set of rule

matches after graph rewrites occur.

YAGL, which is responsible for handling the dynamic graphs and providing standard graph

algorithms, is full of opportunities for extension and future work. More of the standard
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graph algorithms could be added, support for all static graph data structures could be added,

and most importantly the graph data structure could be adapted to work for parallel graph

rewrites both on the CPU and GPU. Moreover, YAGL could be extended to include different

modes of parallelization that support different types of concurrent insertion and removal

patterns. The SSPR could also benefit from parallelization. More importantly, a C++

implementation of subgraph matching may have the potential to be improved beyond state-

of-the-art performance by first doing away with runtime recursion [22] and instead producing

unrolled, optimized iterative subgraph pattern matching functions that are precompiled for

a specific pattern as was done in the precursor to DGGML [73]; however, this approach is

only appropriate for an inflexible, hard-coded DGG model or from one generated from a

future DGG compiler.

The ECC, which offers a specialized graph data structure essential to capture both geometric

and topological aspects of the simulation space and was a key component of Algorithm 4,

also has a clear future path for extension. Currently, the ECC in DGGML is defined for

rectangular domains; however, it can also be upgraded to 3D. A 3D ECC for a rectangular

prism would also allow Algorithm 4 to be extended to the same dimension. In a higher

dimension, we could use the DGG formalism to develop grammars working on the interior or

surface of an actual plant cell. ECCs can also be generated for other shapes as well. In fact,

DGGs are cabled of being defined on any higher dimensional manifold [76]. The primary

issue, however, is the curse of dimensionality. In the case of a higher dimension or the 2D

ECC discussed the cell complex can be extended to create a cell complex with different levels

of cell complexes that are hierarchically connected at different scales of space.

Chapter 6 functioned as a brief tutorial on how to use DGGML and the user interface created

for defining DGGmodels. Furthermore, it also demonstrated what an embedding of the DGG

language and formalism into another programming language looks like. Chapter 7, on the

other hand, fully detailed the DGGML framework and its realization of Algorithm 4 by using
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the building blocks of Chapter 5 and diving deeper into what happens behind the scenes in

Chapter 6. We discussed how grammar analysis in DGGML works and how fundamental

patterns (motifs) in the grammar are found and used in conjunction with the cell list to

accelerate the search for matching patterns for the left-hand side of graph grammar rules.

We also discussed the performance improvements gained through the use of incremental

updates to the match data structure of possible matches to connected components of left-

hand side (LHS) labeled graphs and rule matches that are comprised of component matches.

Effectively, DGGML has been shown to offer customizable simulation of DGGs, leveraging

features like dynamic ODE solving, while also providing observable metric collection during

the simulation loop. The model-building interface of DGGML abstracts away much of the

complexity of the underlying simulation algorithm, opening up the path for future higher-

level usage and modeling applications such as the synaptic morphodynmaics of neurons [62].

We also demonstrated how DGGs, DGGML, and our new approximate hybrid ODE SSA

(Algorithm 4) can be used to simulate and accelerate simulations of complex biological

systems through our development of two models for the CMA. In the first model, (Chapter

8), we introduced an initial implementation of the approximate algorithm, for spatially

embedded and local DGG dynamics, and achieved improvements to performance over an

exact algorithm with the caveat that there may be some potential cost in accuracy. We

ran two experiments for the CMA DGG (Appendix A). In the first we observed a long-time

behavior of cytoskeletal network-like formation, and in the second we observed a long-time

behavior of localized alignment for the simulated array.

In the follow-up chapter (Chapter 9), we presented a new model based on cortical microtubule

array dynamics observed in the periclinal face of a plant cell, and ran simulations, both of

which demonstrated the capability of the Dynamical Graph Grammar Modeling Library

(DGGML). In the model, we restricted ourselves to the CMA in the periclinal face of a plant

cell and explored the effects that different face shapes and boundary conditions had on local
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and global alignment. In the case of a square face shape, we found the array orientation to be

multi-modal, and in the case of a rectangular face shape, we found that different boundary

conditions reorient the array. As a future modeling path, we could instead simulate the

top periclinal face of the cell using different domain shapes. For example, we could use

a hexagonal face for the simulation space. As a further variation, different stretching and

skewing transformations could be applied the the cell face. More experiments can also be

added with different variations of parameters and rules. For example, we could introduce

the severing of MTs at crossover sites with a Katanin rule [35] or add in a stochastic wobble

to growth to model thermal fluctuations [86].

The computational nature of the experiment outlined in this thesis also makes collecting

more measurements of the system, which are often difficult to collect during lab experi-

ments, more feasible and can effectively enable more sophisticated analysis of the system

that would not otherwise be available. For example, we were able to collect MT angular

orientations by just defining a metric collection function. An added benefit of DGGML is

that it can be used to computationally screen biological experiments that are too costly or

cumbersome. DGG models defined using and simulated by DGGML can also be used to

search for corresponding wet-lab experiments that would distinguish between and test al-

ternative hypotheses for emergent phenomena. There is also potential to reduce the model

or learn governing equations for emergent behavior by using machine learning, as in [44] or

[101].

As made evident by now, the applications for Dynamical Graph Grammars are vast, and the

field of DGG research is expansive. As the landscape for computing continuously changes and

evolves, new implementations scaling with and accelerated by new hardware will be needed,

and new, more complex models will finally be unlocked or discovered. The clearest future

path for the Dynamical Graph Grammar Modeling Library is the evolution to a Dynamical

Graph Grammar compiler for the Dynamical Graph Grammar Modeling Language. If Dy-
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namical Graph Grammars were combined with a modeling language and machine learning,

even more powerful and intelligent graph rewriting systems could emerge.
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Appendix A

Minimal CMA DGG

A.1 Overview and Definitions

There are two different classes of rules, continuous and discrete. A continuous rule is a rule

that updates parameters by solving an ordinary differential equation (ODE). A discrete rule

is a rule that rewrites the system graph and may modify parameters by sampling new ones

from a factored propensity function. In the main text, we discussed the factorized form

of rules and the general form for rules. The discrete rules for this grammar are written

in a more compact shorthand form. Newly sampled output values and variables used in

rate calculations are sub-parts of a where clause. Parameters are exactly sampled to be

those values by using a Dirac delta distribution. As stated in the results section, artificial

parameters are chosen to evaluate the simulation algorithm and code, rather than ones chosen

to represent biophysical knowledge.

Table A.1 lists the symbols used to represent nodes types in the DGG CMA rules. Table A.2

lists the commonly used rule parameters in the grammar, and includes a brief description of

their meaning. In table A.3 we do the same, but for model parameters. Finally, table A.4
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Graph Symbol Type Name
 growing
# intermediate
∎ retraction
▲ zipper
⧫ junction

Table A.1: Graph Node Type Symbol Table

Rule Parameter Description
xn a point in R2

un a unit vector in R2

L current length of the MT segment
β minimum distance from collision point
I an intersection point

Table A.2: Rule Parameter Definitions

lists commonly used functions and a description as well.

Model Parameter Descpription Value
Ldiv the maximal dividing length of a segment 1.2 units
Lmin the minimal length of a segment 0.125 units
[Yg] tubulin concentration 1.0 units
vplus growth rate 1.0 units per time
vminus retraction rate 0.25 units per time

γ parametric line parameter 1.0
ϵ maximal reaction radius 2.0 ∗Ldiv

θcrit critical angle 2π
9

radians
c a constant factor 1.0
k sigmoid factor 10

ρ̂retract←growth retraction to growth conversion rate 0.01
ρ̂growth←retract growth to retraction conversion rate 0.01

Table A.3: Model Parameter Definitions

The cortical microtubule array (CMA) grammar presented is a minimal set of rules capable

of leading to the long-time behavior of network formation. The grammar consists of six

rules: two for growth, two for retraction, a collision rule with three different outcomes, and

a reversible state change of growing to retracting. We introduce and briefly discuss these in

the following subsections.
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Function Description
ρ̂grow(x) = (x)(vplus) growth rate function

ρ̂retract(x) = (x)(vminus) retraction rate function
ρ̂zipper(x) = x zipper rate function
ρ̂junction(x) = x junction rate function
σ(x;k) ≡ 1

1+e−kx
sigmoid function

H(x;a) =
⎧⎪⎪⎨⎪⎪⎩

1 x ≥ a
0 x < a

unit step function

Θ(stmt) =
⎧⎪⎪⎨⎪⎪⎩

1 if stmt is true

0 if stmt is false
indication function

Table A.4: Function Descriptions

A.2 Positive MT Growth

The positive growth rule models polymerization and effectively elongates the MT. The rule in

equation A.1 describes MT growth (polymerization), and is a continuous rule. The position

of x2 is updated by solving an ordinary differential equation limited by the dividing length

in the direction of the growing node. The function ρ̂grow (table A.4) can be any function of

tubulin concentration, but is set to be a linear function with a constant rate of growth vplus

and [Yg] both of which are set in table A.3.

( #1  2)⟪(x1,u1)(x2,u2)⟫

Ð→ (#1  2)⟪(x1,u1), (x2 + dx2,u2)⟫

solving dx2/dt = ρ̂grow([Yg])(1 −L/Ldiv)u2 (A.1)

A.3 Positive MT Overgrowth

Equation A.2 is a discrete rule. When a MT segment becomes long enough, a new node

is added in between the previous two nodes and splits the edge. This process is called

“overgrowth” with respect to the CMA DGG. A sigmoid function provides a fully activated
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rate when a dividing threshold has been reached. The new node, #3, is placed at a point

controlled by the γ parameter on the line between x1 and x2. An additional constant c can

be used to further scale the rate, but for these simulations it is set to unity.

( #1  2)⟪(x1,u1), (x2,u2)⟫

Ð→ ( #1 #3  2)⟪(x1,u1), (x2,u2), (x3,u3)⟫

with cσ(∥x2 −x1∥
Ldiv

;k = 10)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = x2 − (x2 −x1)γ

u3 = x3−x2

∥x3−x2∥

(A.2)

A.4 Negative MT Retraction

Negative MT retraction is a continuous rule used to model depolymerization. Equation A.3

is similar to the growth rule in A.1, but instead functions to limit how much the MT segment

can retract. The function ρ̂retract (table A.4) can be any function of tubulin concentration,

but is set to be a linear function with a constant rate of growth vretract and [Yg] both of

which are set in table A.3. The limit, Lmin, is primarily added to prevent instability from

round off errors in the ODE solver caused by two points being too close to one another.

( ∎1 #2)⟪(x1,u1), (x2,u2)⟫

Ð→ ( ∎1 #2)⟪(x1 + dx1,u1), (x2,u2)⟫

solving dx1/dt = ρ̂retract([Yg])(L/Lmin )u1 (A.3)
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A.5 Negative MT Undergrowth

The rule in equation A.4 is a discrete rule used to shorten a MT. In the context of the CMA

DGG, the process of shortening is “undergrowth”. The rule in equation A.2 inserts more

intermediate nodes into the system and the negative MT undergrowth rule removes them.

Here, a Heaviside function H scaled by a constant c set to unity is used. When the retraction

node gets close enough to its intermediate neighbor, the rate function activates. If this rule

is selected to occur, the neighboring intermediate node is removed.

( ∎1 #2 #3)⟪(x1,u1), (x2,u2), (x3,u3)⟫

Ð→ ( ∎1 #3)⟪(x1,u1),∅, (x3,u3)⟫

with cH(−∥x2 −x1∥;−0.2 ∗Ldiv) (A.4)

A.6 MT Collision

The collision rule is more combinatorially complex than the rest of the rules, having three

alternative discrete outcomes. The LHS of the grammar rule can be seen in equation A.5. It

represents the case where a growing end of a MT is close enough to the interior of another

MT.

( #1 #2 #3
#4  5

)
⟪(x1,u1), (x2,u3), (x3,u3),

(x4,u4), (x5,u5)⟫
(A.5)

Each of the three discrete outcomes makes use of locally defined rule specific parameters

from the where clause in equation A.6. Normally, the where clause would follow the with

clause like in equation A.8, but it is separated out for clarity. In equation A.6, I1, I2 are

intersection points of lines parameterized by α1, α2 ∈ (−∞,∞) starting at the point x2 in the
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directions u1, u2. The parameter α1 indicates where the growing edge (#1, 5) intersects

edge (#1,#2) and α2 indicates where the growing edge (#1, 5) intersects edge (#2,#3).

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = (x5 ⋅ (x1 −x2) −x2 ⋅ (x1 −x2))/∣∣x1 −x2∣∣2

α2 = (x5 ⋅ (x3 −x2) −x2 ⋅ (x3 −x2))/∣∣x3 −x2∣∣2

I1 = x2 + α1(x1 −x2)

I2 = x2 + α2(x3 −x2)

β1(α1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣x5 − I1∣∣2, 0 < α1 < 1

∣∣x5 −x1∣∣2, α1 ≥ 1

∣∣x5 −x2∣∣2, 0 ≤ α1

β2(α2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣x5 − I2∣∣2, 0 < α2 < 1

∣∣x5 −x3∣∣2, α2 ≥ 1

∣∣x5 −x2∣∣2, 0 ≤ α2

β =min(β1, β2)

(A.6)

The functions β1, β2 are used to calculate the minimum distance to intersection along the

respective segments. Since the growing edge (#1, 5) could intersect (#1,#2) or (#2,#3),

we must find the closest of the two. Hence, we use β =min(β1, β2).

The first discrete outcome is zippering (equation A.7), with additional parameters defined in

the where clause in equation A.6. The rate function primarily depends on the incoming MT

being at a critical angle and the incoming MT being on a collision trajectory with another

MT in the reaction radius. If these conditions are met, the rate function becomes non-zero

and increases as the collision gap narrows. The rewrite on the right hand side (RHS) attaches

the growing end to the segment and transforms it into a zippering node.
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Ð→ (
#1 ▲2 #3

#4

)
⟪(x1,u1), (x2,u2), (x3,u3),

(x4,u4),∅⟫

with

ρ̂zipper(∣u2 ⋅u4∣/∣cos(θcrit)∣) exp(−β2/2ϵ2)

×(Θ(0 < α1 < 1) +Θ(0 < α2 < 1)

+Θ(α1 = α2))

where {u4 = x2−x4

∥x2−x4∥
(A.7)

The second case is junction formation (equation A.8), with additional parameters defined in

the where clause in equation A.6. The rate function, like zippering, depends on the critical

angle and the collision trajectory. If the conditions are met, the propensity increases and a

junction is formed if the rule is selected to occur. The rewrite effectively crosses the growing

MT over the intermediate MT segment.

Ð→

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

 5

#6

#1 ⧫2 #3

#4

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⟪(x1,u1), (x2,u2),

(x3,u3), (x4,u4),

(x5,u4), (x6,u4)⟫

with

ρ̂junction(∣u2 ⋅u4∣/∣cos(θcrit)∣) exp(−β2/2ϵ2)

×(Θ(0 < α1 < 1) +Θ(0 < α2 < 1)

+Θ(α1 = α2))

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u4 = x2−x4

∥x2−x4∥

x6 = x2 + Lmax

4 u4

x5 = x2 + Lmax

2 u4

(A.8)

The third discrete outcome is catastrophe (equation A.9), with additional parameters defined
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in the where clause in equation A.6. In this case, we have the propensity increasing as long

as the MT is on a collision course with the nearby MT segment. The rewrite causes the

incoming MT to change from a growing to a retracting state, simulating catastrophe.

Ð→ (#1 #2 #3
#4 ∎5

)
⟪(x1,u1), (x2,u3), (x3,u3),

(x4,u4), (x5,u5)⟫

with
c (exp(−β2/2ϵ2)) (Θ(0 < α1 < 1)

+Θ(0 < α2 < 1) +Θ(α1 = α2))
(A.9)

A.7 State Changes

The state change rule in equation A.10 is a bi-directional discrete rule. Growing ends become

retracting ends at a rate of ρ̂retract←growth. Retracting ends become growing ends at a rate

of ρ̂growth←retract. These rates are typically chosen to be near zero, so that they occur less

frequently than the other discrete rules [126]. More rates can be found in [107].

( 1)⟪x1,u1)⟫ ←→ (∎1)⟪x1,u1)⟫

with (ρ̂retract←growth, ρ̂growth←retract) (A.10)

A.8 Calculation of correlation length difference z-score

The first and second experiments produced angle correlation lengths as detailed in the main

text of ξ1±σ‘ = 1.34±0.039 and ξ2±σ2 = 3.14±0.06. We estimate the z-score for the difference

ξ2 − ξ1 as

Z = ξ2 − ξ1
σ2 + σ1

≃ 3.14 − 1.34

0.06 + 0.039
≃ 18.2
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The two experiments resulted in different numbers of microtubule segments. If we zoom in

on the first experiment window by a factor of 1.6 this population becomes equal, although

other parameters of the model become different. So a very generous interpretation of ξ1 is

to multiply it by 1.6 yielding ξ̂1 ± σ̂1 = 1.34 ∗ 1.6 ± 0.039 ∗ 1.6 and a z-score of

Ẑ = ξ2 − ξ̂1
σ2 + σ̂1

≃ 3.14 − 1.34 ∗ 1.6
0.06 + 0.039 ∗ 1.6

≃ 8.14

This is larger than the Z = 5 standard deviations sometimes used for high certainty because

the corresponding p-value for a Gaussian distribution is roughly 3 × 10−7. Such p-values

are ≪ 0.05, a commonly used threshold for “statistical significance”. Of course, we may

not have a Gaussian distribution. The worst case distributions however must still obey the

Chebyshev inequality under which the p-value must be at most 1/Z2 ≃ .003 ≪ .05 or even

1/Ẑ2 ≃ .015≪ .05, in an extremely conservative calculation.

A.9 Rule Firing Examples

(a) Starting State, No Growth ODE Solving (b) Growth ODE has been solved for ∆t

Figure A.1: Example of MT Growth with ODE
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(a) Starting State, No Growth Rewrite (b) Ending State, Growth Rewrite Occurred

Figure A.2: Example of MT Growth with Stochastic Polymerization

(a) Starting State, No Retraction ODE Solving (b) Retraction ODE has been solved for ∆t

Figure A.3: Example of MT Retraction with ODE

(a) Starting State, No Retraction Rewrite (b) Ending State, Retraction Rewrite Occurred

Figure A.4: Example of MT Retraction with Stochastic Depolymerization

(a) Treadmilling IC (b) Treadmilling has Occured

Figure A.5: Example of MT Stochastic and ODE Growth and Retraction Rules Leading to
Treadmilling
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Appendix B

Periclinal CMA DGG

B.1 Overview and Definitions

There are two different classes of rules, continuous and discrete. A continuous rule is a rule

that updates parameters by solving an ordinary differential equation (ODE). A discrete rule

is a rule that rewrites the system graph and may modify parameters by sampling new ones

from a factored propensity function. In the main text, we discussed the factorized form

of rules and the general form of rules. The discrete rules for this grammar are written in

a more compact shorthand form. Newly sampled output values and variables used in rate

calculations are sub-parts of a where clause. Parameters are exactly sampled to be those

values by using a Dirac delta distribution unless otherwise stated. The where clause also

contains other calculated parameters for convenience.

Rule Parameter Description
xn a point in R2

un a unit vector in R2

L current length of the MT segment

Table B.1: Rule Parameter Definitions
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Graph Symbol Type Name
 growing
# intermediate
∎ retraction
▲ zipper
⧫ junction
⧄ nucleator
⊡ boundary

Table B.2: Graph node type symbols for the periclinal cortical microtubule array (PCMA)
grammar.

Table B.2 lists the symbols used to represent node types in the periclinal cortical microtubule

array (PCMA) dynamical graph grammar (DGG) rules. Table B.1 lists the commonly used

rule parameters in the grammar and includes a brief description of their meaning. In table

B.3 we do the same, but for model parameters. Finally, table B.5 lists commonly used

functions and a description as well. Where appropriate, relevant sources for parameters are

cited. Otherwise, they are declared as estimated with a citation to where the estimation

came from, if applicable.

Model Parameter Description Value Source
Ldiv the maximal dividing length of a segment 0.075 µm Estimated [19, 39]
vplus growth rate 0.0615 µm/sec [37, 3]
Lmin the minimal length of a segment 0.0025 µm Estimated [19, 39]
vminus retraction rate 0.00883 µm/sec [37, 3]
θcic CIC angle threshold 40○ Estimated [37, 3, 24]
ϵ maximal reaction radius 0.1 µm Estimated [19, 39]

θcrit critical zippering angle threshold 40○ [37, 6]
σsep MT separation distance 0.025 µm [25]
θcross crossover angle threshold 40○ Estimated [37, 3, 24]
θexit CLASP entry angle threshold 15○ Estimated [120]
θangle CLASP exit angle threshold 15○ Estimated [120]
σcol MT collision distance 0.025 µm Estimated [24, 39]
smin Minimum MT segment initialization length 0.005 µm Estimated [39]
smax Minimum MT segment initialization length 0.01 µm Estimated [39]

Table B.3: Model parameter definitions with default values.

In an alternative model, the rates in table B.4 could also be replaced by propensity functions.

The rates themselves are propensities per unit of time, and so in the context of the PCMA

(in which the unit of time is seconds) a rate of 40,000 means that given the rate is active,
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the rule will fire nearly instantaneously. On the other hand, a rate of 1 means the event

occurs on average once per second.

Model Parameter Description Propensity Rate Source
ρ̂grow growth rate factor 100.0 Estimated
ρ̂retract retraction rate factor 10.0 Estimated

ρ̂bnd cic std boundary CIC standard rate factor 40,000 Estimated
ρ̂bnd cic clasp boundary CIC for CLASP rate factor 40,000 Estimated

ρ̂int cic intermediate CIC rate factor 12,000 Estimated [37]
ρ̂grow cic growing end CIC rate factor 12,000 Estimated [37]
ρ̂retract cic retracting end CIC rate factor 12,000 Estimated [37]
ρ̂zip hit zippering entrainment rate factor 4,000 Estimated [37]

ρ̂zip guard zippering guard rate factor 12,000 Estimated [37]
ρ̂cross crossover rate factor 200 Estimated [37]
ρ̂uncross uncrossover rate factor 0.01 Estimated

ρ̂clasp entry clasp entry rate factor 0.001 Estimated [120, 97]
ρ̂clasp exit clasp exit rate factor 40,000 Estimated [120, 97]
ρ̂clasp cat clasp catastrophe rate factor 1,000 Estimated

ρ̂clasp detach clasp detachment rate factor 0.016 Estimated
ρ̂destruct destruction rate factor 0.0026 Estimated
ρ̂create creation rate factor 0.0026 Estimated [3]

ρ̂retract←growth retraction to growth conversion rate 0.016 Estimated [126]
ρ̂growth←retract growth to retraction conversion rate 0.016 Estimated [126]

Table B.4: A table of model rate factors with default values.

Function Description
Md(x1, x2, x3) Minimum distance

from x1 to the line
through x2 and x3

Mθ(u1, x1, u2) Given a point x1

in the direction u1

find the angle
made with u2

H(x;a) =
⎧⎪⎪⎨⎪⎪⎩

1 x ≥ a
0 x < a

unit step function

rotate(x, θ) = [ cos(θ) sin(θ)
− sin(θ) cos(θ)] ⋅ x rotation function

Θ(stmt) =
⎧⎪⎪⎨⎪⎪⎩

1 if stmt is true

0 if stmt is false
indication function

Ip(p1, u1, p2, p3) =
⎡⎢⎢⎢⎢⎣
( u1x −(p3x − p2x)
u1y −(p3y − p2y)

)
−1

.( p2x − p1x
p2y − p1y

)
⎤⎥⎥⎥⎥⎦
= [ α1

α2
] Line intersection

Table B.5: Function Descriptions
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B.2 Growing Rules

The positive growth rule models polymerization and effectively elongates the MT. The rule

in equation B.1 describes MT growth (polymerization) and is a continuous rule. The position

of x2 is updated by solving a linear ordinary differential equation for constant growth in the

direction of the growing node. The velocity for growth, vplus, is set in table B.3.

( #1  2)⟪(x1,u1)(x2,u2)⟫

Ð→ (#1  2)⟪(x1,u1), (x2 + dx2,u2)⟫

solving dx2/dt = vplus u2 (B.1)

Equation B.2 is a discrete rule. When an MT segment becomes long enough, a new node

is added in between the previous two nodes and splits the edge. This process is called

“overgrowth”. A Heaviside function provides a fully activated rate when a dividing threshold

has been reached, and it is multiplied by a growth rate factor. The new node, #3, is placed

at a point controlled by the γ parameter on the line between x1 and x2 and here it is set to

γ = 0.01 to place the new segment right before.

( #1  2)⟪(x1,u1), (x2,u2)⟫

Ð→ ( #1 #3  2)⟪(x1,u1), (x2,u2), (x3,u3)⟫

with ρ̂grow H(∥x2 −x1∥;Ldiv)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = x2 − (x2 −x1)γ

u3 = x3−x2

∥x3−x2∥

(B.2)
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B.3 Retraction Rules

Negative MT retraction is a continuous rule used to model depolymerization. Equation B.3

is similar to the growth rule in B.1, but instead functions to limit how much the MT segment

can retract. The ODE has a constant rate of retraction velocity, vminus, which are set in

table B.3. The limit, Lmin, is primarily added to prevent instability from round-off errors in

the ODE solver caused by two points being too close to one another.

( ∎1 #2)⟪(x1,u1), (x2,u2)⟫

Ð→ ( ∎1 #2)⟪(x1 + dx1,u1), (x2,u2)⟫

solving dx1/dt = vminus(L/Lmin )u1 (B.3)

The rule in equation B.4 is a discrete rule used to shorten an MT. In the context of this

DGG, the process of shortening is “undergrowth”. The rule in equation B.2 inserts more

intermediate nodes into the system and the negative MT undergrowth rule removes them.

Here, a Heaviside function H scaled by the rate ρ̂retract (table B.4) is used. When the

retraction node gets close enough to its intermediate neighbor, i.e. the distance is less

than Lmin, the rate function activates. If this rule is selected to occur, the neighboring

intermediate node is removed.

( ∎1 #2 #3)⟪(x1,u1), (x2,u2), (x3,u3)⟫

Ð→ ( ∎1 #3)⟪(x1,u1),∅, (x3,u3)⟫

with ρ̂retract H(∥x2 −x1∥;Lmin) (B.4)
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B.4 Boundary Catastrophe Rules

The boundary in the PCMA grammar is also represented as a graph. To ensure that MTs

cannot grow outside the boundary, we implement two rules. The first rule is the standard

boundary collision-induced catastrophe (CIC):

( #1  2 , ⊡3 ⊡4)⟪(x1,u1), (x2,u2), (x3,u3)(x4,u4)⟫

Ð→ ( #1 ∎2 , ⊡3 ⊡4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂bnd cic std Θ(Md(x2, x3, x4) ≤ σcol)

where u2 = −u2 (B.5)

If the minimum distance from the incoming MT to the boundary segment is less than the

collision distance, the incoming MT enters a catastrophe state. Node  2 changes its type to

#2. The corresponding unit vector is reversed. The rate ρ̂bnd cic std is set to a large value so

that given this condition, the rule will fire nearly instantaneously. Low rates, would lead to

a situation where the “window of opportunity” is missed and the MT exits the domain.

The second rule is another CIC rule, but for the case when a grow MT gets too close to a

boundary segment with an attached MT:

( #1  2 , ⊡3 #4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→ ( #1 ∎2 , ⊡3 #4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂bnd cic clasp Θ(Md(x2, x3, x4) ≤ σcol)

where u2 = −u2 (B.6)

If the minimum distance from the incoming MT to the boundary with an attached MT is less

than the collision distance, the incoming MT enters a catastrophe state. Node  2 changes
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its type to #2. The corresponding unit vector is reversed. The rate ρ̂bnd cic std is set to a

large value so that given this condition, the rule will fire nearly instantaneously. Low rates

again, would lead to a situation where the “window of opportunity” is missed and the MT

exits the domain. If the reader were instead looking to create rules for a particle grammar,

it would be worth considering different types of deflections that can occur upon collision.

See the zippering rule (equation B.12) for inspiration.

B.5 MT Collision Induced Catastrophe Rules

When two MTs (or possibly itself) hit each other, one outcome that occurs is collision-

induced catastrophe (CIC). In the PCMA, there are three distinct types of MT-MT inter-

actions. The following rule is a collision rule that induces catastrophe when a growing end

hits an intermediate segment:

( #1  2 , #3 #4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→ ( #1 ∎2 , #3 #4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂int cic Θ(Md(x2, x3, x4) ≤ σcol) Θ(α1 ≥ 0) Θ(Mθ(u2, x2, u3) ≥ θcic)

where u2 = −u2, and α = Ip(x2, u2, x3, x4) (B.7)

In equation B.7, three conditions determine if the rule can be activated. One, the incoming

MT is within the minimum distance for a collision to occur. The expanded cell complex in

DGGML enables nearby components to be found, but σcol is used to enforce that they must

be even closer. Two, the growing MT must be on a collision course with the intermediate

segment, denoted by α1 ≥ 0. Three, the angle formed between the incoming MT and the

segment it collides with must be above an angle threshold. If all three conditions are true,

the rate is then ρ̂int cic otherwise it is zero.

177



The following rule is a collision rule that induces catastrophe when a growing end hits another

growing end:

( #1  2 , #3  4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→ ( #1 ∎2 , #3  4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂grow cic Θ(Md(x2, x3, x4) ≤ σcol/2)

where u2 = −u2 (B.8)

The logic for a growing end colliding with another growing end in equation B.8 is similar

to equation B.7, but instead, we only require the first condition to be true. Given the max

length Ldiv of a segment is already close to the actual width of a MT, we make the modeling

choice to only implement catastrophe for grow-grow interactions. Further, we set it to be

half the distance previously used. We half the collision distance because not doing so would

cause “false” collisions to occur since the separation distance of zippered MTs is σsep = σcol

for this particular model. If the minimum distance condition is true, the rate is then ρ̂grow cic

otherwise it is zero.

The following rule is a collision rule that induces catastrophe when a growing end hits a

retracting end:

( #1  2 , #3 ∎4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→ ( #1 ∎2 , #3 ∎4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂retract cic Θ(Md(x2, x3, x4) ≤ σcol/2)

where u2 = −u2 (B.9)

The logic for a growing end colliding with another growing end in equation B.9 is similar

to equation B.8. Again, given the max length, Ldiv of a segment, we make the modeling
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choice to only implement catastrophe for grow-retract interactions. If the minimum distance

condition is true, the rate is then ρ̂retract cic otherwise it is zero.

B.6 Crossover Rules

When two MTs (or possibly itself) hit each other, one outcome that occurs is crossover. The

following is a rule for crossover:

( #1  2 , #3 #4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

 6

#5

#3 ⧫2 #4

#1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⟪(x1,u1), (x2,u2), (x3,u3),

(x4,u4), (x5,u2), (x6,u2)⟫

with
ρ̂cross Θ(Md(x2, x3, x4) ≤ σcol) Θ(Mθ(u2, x2, u3) ≥ θcross)

×Θ(α1 ≥ 0) Θ(0 < α2 < 1)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α = Ip(x2, u2, x3, x4)

x2 = x4 + α2(x3 −x4), x5 = x2 + 0.01 x2, x6 = x2 + 0.011 x2

(B.10)

In the crossover rule (equation B.10) a junction, ⧫2, is formed. The crossover will only

occur if four conditions are met. One, the growing end is within a minimum distance of the

intermediate segment. Two, the collision angle must be above an angle threshold. Crossover

uses a different angle θcross than the angle θcic in the intermediate CIC rule (equation B.7).

This allows for the angle that allows the crossover to be set differently than CIC. However,

for the default parameters, they are the same. Next, the third and fourth conditions are

that a growing end must be growing in the direction of the intermediate segment and will
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intersect with it given the current trajectory. The condition Θ(α1 ≥ 0), guarantees the MT

is growing towards the intermediate segment and not away. The condition Θ(0 < α2 < 1)

guarantees the intersection point is on the segment between the points x3 and x4. If the

four conditions are met, activating the rate ρ̂cross, then the new nodes are placed just ahead

of the collision point in the direction of the collision.

For completeness, we have also included a rule to allow MTs to uncross:

⎛
⎜⎜⎜
⎝

#3

∎1 #2 ⧫5

#4

⎞
⎟⎟⎟
⎠

⟪(x1,u1), (x2,u2), (x3,u3),

(x4,u4), (x5,u5)⟫

Ð→ ( #3 #4
∎1 #2 #5

)
⟪(x1,u1), (x2,u2), (x3,u3),

(x4,u4), (x5,u2)⟫

with ρ̂uncross Θ(∣u2 ⋅u4∣ ≤ 0.95 and ∥x4 −x3∥ ≤ Ldiv) (B.11)

This uncrossover rule (equation B.11) should not be thought of as katanin severing [35], but

rather an example of how to write a rule that reverses the effect of crossover in the case

that we don’t want the crossover sites to persist. The rule works by finding a retracting end

attached to a junction. If the intermediate segment of the MT perpendicular to the retracting

end is nearly parallel, we know that it is the crossed MT. A check like this is needed because

the LHS pattern could match an intermediate node that is part of the segment associated

with the retracting end. So, this allows an invalid pattern to be rejected. We then check if

the retracting segment is short enough. If both conditions pass, then the rate for the rule is

ρ̂uncross otherwise it is zero.
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B.7 Zippering Rules

When two MTs (or possibly itself) hit each other, one outcome that occurs is zippering. The

following is a rule for zippering, where an incoming MT is oriented parallel to the MT it

collides with:

( #1  2 , #3 #4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→
⎛
⎜
⎝

#3 #4
▲2 #6  5

#1

⎞
⎟
⎠

⟪(x1,u1), (x2,u2), (x3,u3),

(x4,u4), (x5,u5), (x6,u6)⟫

with ρ̂zip hit Θ(Md(x2, x3, x4) ≤ σsep) Θ(Mθ(u2, x2, u3) ≤ θcrit) Θ(α1 ≥ 0)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α = Ip(x2, u2, x3, x4)

u2 = u3, u6 = u3, u5 = u3, x6 = u2 + 0.005 u3, x5 = u2 + 0.01 u3

(B.12)

In the zippering rule (equation B.12) the incoming MT only becomes entrained with the

other MT if three conditions are met. One, they must be separated by a minimum distance.

In this case, σsep, the separation distance. Second, the angle between them must be less

than the critical angle, θcrit. Both of the default values for these parameters can be found

in table B.3. Third, the incoming MT must be on a collision course with the other MT i.e.

the condition on α1. If all three conditions are true, then the rate at which zippering occurs

is ρ̂zip hit otherwise zero. The growing node ( 2) is then transformed into a zippering node

(▲2) and then two new nodes and edges are added. The new nodes along with node 2 are

then oriented to be parallel to the MT they are entrained with.

In a real system, when zippering occurs, the MTs are linked by proteins [106]. Therefore,

the gap in-between them can’t be entered. The following is a zippering rule that guards the

space between two MTs in the absence of modeling linker proteins:
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( #1  2 , #4 ▲3 #5)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4), (x5,u5)⟫

Ð→ ( #1 ∎2 , #4 ▲3 #5) ⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4), (x5,u5)⟫

with ρ̂zip guard Θ(∥x3 −x2∥ ≤ σsep)

where {u2 = −u2
(B.13)

The zippering guard rule (equations B.13) is fairly straightforward. If an incoming MT is

within the separation distance of the zippering node, then the rate is ρ̂zip guard otherwise

zero. Accordingly, if the rule fires, the incoming MT enters a catastrophe state and the unit

vector is reversed.

Finally, we have included a rule that allows an MT to effectively unzipper from another.

The following is the unzippering rule:

( ∎1 #2 ▲3)⟪(x1,u1), (x2,u2), (x3,u3)⟫

Ð→ ( ∎1 #3)⟪(x1,u1),∅, (x3,u3)⟫

with ρ̂retract H(∥x2 −x1∥;Lmin) (B.14)

The unzippering rule (equation B.14) works the same as the retraction rule in equation B.4.

The difference is we have a retracting node attached to an intermediate node attached to

a zippering node. When this rule fires, the zippering node is simply removed and the MT

continues depolymerizing in parallel to the MT it had entrained with.
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B.8 CLASP Rules

The PCMA model has four rules to approximate the effects CLASP may have on the bound-

ary of the periclinal face. The first rule, models MTs entering the periclinal face from the

anticlinal face:

( ⊡1 ⊡2)⟪(x1,u1), (x2,u2)⟫

Ð→ (
⊡1 #3 ⊡2

 4

) ⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂claps entry

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = (x1 +x2)/2, u4 = u3

θrot ∼ U(−θentry, θentry), x4 = rotate(x3 + σcol u3, θrot)
(B.15)

The CLASP entry rule (equation B.15) is fairly straightforward. If there is an available

boundary edge for a new MT to emerge from it occurs at a rate of ρ̂claps entry. The new MT

is perpendicular to the boundary and the growing end is set at a distance of σcol away. The

segment is then rotated by a randomly sampled entry angle.

The second rule models MT exiting the periclinal face into the anticlinal face:
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( ⊡1 ⊡2
#3  4

)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→ (
⊡1 #3 ⊡2

#4

) ⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with
ρ̂clasp exit Θ(Md(x4, x1, x2) ≤ σcol) Θ(Mθ(x4, u4, u1) ≤ θexit)

×Θ(α1 ≥ 0) Θ(0 < α2 < 1)

where {α = Ip(x4, u4, x1, x2), x3 = x1 + α2(x1 −x2) (B.16)

The CLASP exit rule (equation B.16) is similar to the crossover rule in equation B.10. There

are four conditions required for the rate to be ρ̂clasp exit otherwise the rate is zero. First, the

incoming MT must be within the minimum distance of the boundary. Second, the incoming

MT must be within the exit angle threshold. In the third and fourth conditions, the MT

must be on a collision path with the boundary. The MT then “exits” the boundary at the

location where it would have collided.

(
⊡1 #3 ⊡2

#4

)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→ ( ⊡1 ⊡2
∎3 #4

) ⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂clasp detach (B.17)

The third rule models an MT depolymerizing in the anticlinal plane and entering the peri-

clinal in a catastrophe state. The CLASP detachment rule (equation B.17), is very simple.

Given a rate ρ̂clasp detach the MT will detach from the boundary every so often with a fre-

quency directly related to how small or large the rate is.

The fourth rule models the opposite of equation B.17 and functions to model an MT depoly-
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merizing from the periclinal plane into the anticlinal:

(
⊡1 #3 ⊡2

∎4

)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

Ð→ ( ⊡1 ⊡2) ⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂clasp cat Θ(∥x4 −x3∥ ≤ ϵ) (B.18)

The CLASP catastrophe rule (equation B.18), is also very simple. The MT will detach

from the boundary under the condition that the retracting MT is short enough. Given the

condition is met, the rate of removal is ρ̂clasp cat and the MT will be removed.

B.9 Destruction and Creation Rules

The PCMA grammar includes two destruction rules and one creation rule. The following is

the destruction rule to remove an MT that becomes too short:

( ∎1 #2 ∎3)⟪(x1,u1), (x2,u2), (x3,u3)⟫ Ð→ ∅

with ρ̂destruct Θ(∥x1 −x2∥ ≤ smin) Θ(∥x3 −x2∥ ≤ smin) (B.19)

The short MT destruction rule (equation B.19) will occur when two conditions are met.

One, the left segments are shorter than a minimum length smin. The second condition is

identical, but for the other segment. If both conditions are met the rate is ρ̂destruct otherwise

it is zero. If the destruction rate is small, the MT will exist for a longer period of time

before removal when compared to a large value for the rate. Also, as a modeling choice, the
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destruction rule is specific to the case when an MT has two retracting ends. We consider

the MT unrecoverable if the two segments become short enough.

Before describing the second destruction rule, we describe the creation rule and introduce

the nucleator node:

(⧄1)⟪(x1)⟫ Ð→ (⧄1 , ∎2 #3  4)⟪(x1), (x2,u2), (x3,u3), (x4,u4)⟫

with ρ̂create

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3 ∼ U([x1x − 0.5ϵ, x1x + 0.5ϵ] [x1y − 0.5ϵ, x1y + 0.5ϵ])

θrot ∼ U(0,2π), and d ∼ U(smin, smax) so x4 = rotate(x3 + d, θrot)

x2 = x4 − 2d, u4 = x3−x4

∥x3−x4∥
, u3 = u4, u2 = u4

(B.20)

The creation rule (equation B.20) matches a nucleator node. The nucleator node is a graph

node introduced into the PCMA grammar to allow new MTs to be created in the absence

of modeling concentrations by using reaction-diffusion equations [129]. The rule uses the

position of the nucleator, x1, as the center of a uniform sampling box with the diameter of

half of the reaction radius, ϵ. The intermediate node position, x3 is sampled from this box.

The point x4 is put a distance away from x3 based on the minimum and maximum length an

MT segment can be initialized to and then it is randomly rotated. The retracting end node

position x2 is calculated using x4. Following the initialization of the positions, the correct

unit vectors are created.

The following rule is the second destruction rule and works to remove an MT that is created

too close to an existing MT:
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( ∎1 #2  3 , #4)⟪(x1,u1), (x2,u2), (x3,u3), (x4,u4)⟫ Ð→ ∅

with ρ̂destruct Θ(∥x4 −x3∥ ≤ σcol) (B.21)

The nearby MT destruction rule (equation B.21) removes nearby MTs with a rate of ρ̂destruct

if a single condition is met. Otherwise, the propensity for the nearby MT destruction rule

is zero. The condition for removal is met when the newly created MT is within the collision

distance of another intermediate node not included in the new MT. There is evidence that

new MTs are created near existing MTs [3, 39], but for the PCMA grammar these effects

are not included.

B.10 State Changes

The state change rule in equation B.22 is a bi-directional discrete rule. Growing ends become

retracting ends at a rate of ρ̂retract←growth. Retracting ends become growing ends at a rate

of ρ̂growth←retract. These rates are typically chosen to be near zero so that they occur less

frequently than the other discrete rules [126]. More rates can be found in [107].

( 1)⟪x1,u1)⟫ ←→ (∎1)⟪x1,u1)⟫

with (ρ̂retract←growth, ρ̂growth←retract)

where {u1 = −u1
(B.22)
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B.11 A Note on Rates, Boundary, and Creation

This section discusses how rates work within the model. A rule with a propensity of 1 means

given the condition a rule firing can occur, it will with an average of 1 per unit of time. In

the case of the PCMA, time is measured in seconds. Therefore, a rate of 1 gives us an event

occurrence of once a second. A rate of 60 is then 60 times per minute. A rate of 1/60 ≈ 0.016

means the event will occur on average once per minute. When rates are set very high, i.e.

12,000, the rule fires nearly instantaneously. When two rules could occur at the same time,

such as crossover or zippering, having an equally high rate means they are both equally likely

outcomes. Lowering one or the other will then shift the odds.

There are other cases, where we have included boundary nodes and edges to allow new MTs

to enter or exit. In this case, the spacing between these nodes is set to be the reaction radius

of 0.1. Meaning, that at any one of the edges, the default entry rate is 0.001 or approximately

every 16 minutes. In the square case, where we have a 5µm × 5µm domain, there are 195

boundary nodes and 194 edges. So, the rate of entry is 0.001 × 194 ≈ 0.194 or about every

11 seconds.

For the nucleators, they have been initialized uniformly within the domain. There are

46 × 46 = 2116 nucleators. Each one is meant to cover a 0.1µm × 0.1µm region. Using the

default rate allows for new MTs to be nucleated at a rate of 10/µm2 as estimated in [3].

B.12 Additional Plots

B.12.1 Curve Fits
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Figure B.1: For the square experiment with CIC Boundary, the plot contains the following:
all N = 16 samples of local correlations (left) and global correlations (right), the correspond-
ing mean of all the samples with the standard deviations, and the best-fit curve for the mean.

Figure B.2: For the square with CLASP+Crossover where the crossover rate is 8,000, the plot
contains the following: all N = 16 samples of local correlations (left) and global correlations
(right), the corresponding mean of all the samples with the standard deviations, and the
best-fit curve for the mean.
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Figure B.3: For the square experiment with an influx of MTs experiment where the entry
rate is 0.008, the plot contains the following: all N = 16 samples of local correlations (left)
and global correlations (right), the corresponding mean of all the samples with the standard
deviations, and the best-fit curve for the mean.

Figure B.4: For the square CLASP 30-degree experiment, the plot contains the following: all
N = 16 samples of local correlations (left) and global correlations (right), the corresponding
mean of all the samples with the standard deviations, and the best-fit curve for the mean.
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Figure B.5: For the square CLASP 45-degree experiment, the plot contains the following: all
N = 16 samples of local correlations (left) and global correlations (right), the corresponding
mean of all the samples with the standard deviations, and the best-fit curve for the mean.

Figure B.6: For the square CLASP 60-degree experiment, the plot contains the following: all
N = 16 samples of local correlations (left) and global correlations (right), the corresponding
mean of all the samples with the standard deviations, and the best-fit curve for the mean.
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Figure B.7: For the rectangular experiment with CIC Boundary, the plot contains the fol-
lowing: all N = 16 samples of local correlations (left) and global correlations (right), the
corresponding mean of all the samples with the standard deviations, and the best-fit curve
for the mean.

Figure B.8: For the rectangular experiment with CLASP+Crossover where the crossover
rate is 8,000, the plot contains the following: all N = 16 samples of local correlations (left)
and global correlations (right), the corresponding mean of all the samples with the standard
deviations, and the best-fit curve for the mean.
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Figure B.9: For the rectangular influx of MTs experiment where the entry rate is 0.008,
the plot contains the following: all N = 16 samples of local correlations (left) and global
correlations (right), the corresponding mean of all the samples with the standard deviations,
and the best-fit curve for the mean.

Figure B.10: For the rectangular CLASP 30-degree experiment, the plot contains the fol-
lowing: all N = 16 samples of local correlations (left) and global correlations (right), the
corresponding mean of all the samples with the standard deviations, and the best-fit curve
for the mean.
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Figure B.11: For the rectangular CLASP 45-degree experiment, the plot contains the fol-
lowing: all N = 16 samples of local correlations (left) and global correlations (right), the
corresponding mean of all the samples with the standard deviations, and the best-fit curve
for the mean.

Figure B.12: For the rectangular CLASP 60-degree experiment, the plot contains the fol-
lowing: all N = 16 samples of local correlations (left) and global correlations (right), the
corresponding mean of all the samples with the standard deviations, and the best-fit curve
for the mean.
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B.12.2 Selected Histogram Examples Fits

(a) Histogram of array orientation for sample
0 of the experiment square domain with CIC
boundary.

(b) Histogram of array orientation for sample
1 of the experiment square domain with CIC
boundary.

Figure B.13: Two samples of histograms used to calculate the mean histogram for the
experiment square domain with CIC boundary.

(a) Histogram of array orientation for sam-
ple 0 of the experiment square domain with
CLASP+Crossover

(b) Histogram of array orientation for sam-
ple 1 of the experiment square domain with
CLASP+Crossover

Figure B.14: Two samples of histograms used to calculate the mean histogram for the
experiment square domain with CLASP+Crossover
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(a) Histogram of array orientation for sam-
ple 0 of the experiment square domain with
influx of MTs.

(b) Histogram of array orientation for sam-
ple 1 of the experiment square domain with
influx of MTs.

Figure B.15: Two samples of histograms used to calculate the mean histogram for the
experiment square domain with influx of MTs.

(a) Histogram of array orientation for sam-
ple 0 of the experiment square domain with
CLASP 30 degrees.

(b) Histogram of array orientation for sam-
ple 1 of the experiment square domain with
CLASP 30 degrees.

Figure B.16: Two samples of histograms used to calculate the mean histogram for the
experiment square domain with CLASP 30 degrees.
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(a) Histogram of array orientation for sam-
ple 0 of the experiment square domain with
CLASP 45 degrees.

(b) Histogram of array orientation for sam-
ple 1 of the experiment square domain with
CLASP 45 degrees.

Figure B.17: Two samples of histograms used to calculate the mean histogram for the
experiment square domain with CLASP 45 degrees.

(a) Histogram of array orientation for sam-
ple 0 of the experiment square domain with
CLASP 60 degrees.

(b) Histogram of array orientation for sam-
ple 1 of the experiment square domain with
CLASP 60 degrees.

Figure B.18: Two samples of histograms used to calculate the mean histogram for the
experiment square domain with CLASP 60 degrees.
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(a) Histogram of array orientation for sample
0 of the experiment rectangular domain with
CIC boundary.

(b) Histogram of array orientation for sample
1 of the experiment rectangular domain with
CIC boundary.

Figure B.19: Two samples of histograms used to calculate the mean histogram for the
experiment rectangular domain with CIC boundary.

(a) Histogram of array orientation for sample
0 of the experiment rectangular domain with
CLASP+Crossover.

(b) Histogram of array orientation for sample
1 of the experiment rectangular domain with
CLASP+Crossover.

Figure B.20: Two samples of histograms used to calculate the mean histogram for the
experiment rectangular domain with CLASP+Crossover.
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(a) Histogram of array orientation for sample
0 of the experiment rectangular domain with
influx of MTs.

(b) Histogram of array orientation for sample
1 of the experiment rectangular domain with
influx of MTs.

Figure B.21: Two samples of histograms used to calculate the mean histogram for the
experiment rectangular domain with influx of MTs.

(a) Histogram of array orientation for sample
0 of the experiment rectangular domain with
CLASP 30 degrees.

(b) Histogram of array orientation for sample
1 of the experiment rectangular domain with
CLASP 30 degrees.

Figure B.22: Two samples of histograms used to calculate the mean histogram for the
experiment rectangular domain with CLASP 30 degrees.
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(a) Histogram of array orientation for sample
0 of the experiment rectangular domain with
CLASP 45 degrees.

(b) Histogram of array orientation for sample
1 of the experiment rectangular domain with
CLASP 45 degrees.

Figure B.23: Two samples of histograms used to calculate the mean histogram for the
experiment rectangular domain with CLASP 45 degrees.

(a) Histogram of array orientation for sample
0 of the experiment rectangular domain with
CLASP 60 degrees.

(b) Histogram of array orientation for sample
1 of the experiment rectangular domain with
CLASP 60 degrees.

Figure B.24: Two samples of histograms used to calculate the mean histogram for the
experiment rectangular domain with CLASP 60 degrees.
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Appendix C

Approximate Algorithm Derivation

C.1 Approximate Spatially Embedded Hybrid ODE SSA

C.1.1 Overview

In this section we discuss a foundational framework and introduce some of the theory nec-

essary to derive an approximate algorithm. The work in Section C.1 is taken from an

unpublished manuscript [78] with theory derived by Eric Mjolsness and transcribed and fur-

ther extended by myself, with slight modifications added for clarity. The theoretical portion

of this work is still in progress. A proof in future work would be required to define an exact

error bound of the approximate algorithm. The first subsection includes necessary notation

for what follows. The second subsection introduces assumptions. We conclude this section

with a strategy for how the algorithm can be justified, the algorithm itself, and a brief

discussion of the prospects it has for parallelization.
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C.1.2 Notation

• {̄ ⋅ }̄ ≡ a multi-set, where the center dot is used as an arbitrary placeholder.

• i, j ≡ object instance number (hidden j could be OID (Object ID) or reordering thereof)

• Let n ∈ Z+ such that Rn is a high dimensional real space. For our case, we typically

set n = 2 or n = 3

• We further define D = {n,n − 1, . . . ,0} such that d ≡ cell dimension and d ∈ D is the

dimension of a cell’s level number in an abstract cell complex? For example, in the

practical case of R2 we have D = {2,1,0}

• b ≡ bin number ≡ number of d ≡ dmax i.e. the highest dimensional cell

• c ≡ cell number

• x⃗ ≡ position of the object (centered or other representation)

• α⃗ ≡ all other parameters associated with the object, discrete or continuous. Includes

OIDs for graph grammar implementation(SGGs)

• τ ≡ type of object (typeterm in Γ) a.k.a. species

• r ≡ reaction/rule number

• R ≡ reaction/rule firing/instantiation/channel ←→ (r, [x⃗r p, α⃗r p]p, [y⃗r q, β⃗r q]q) - excludes

i, j information so these are summed over.

• ∂ ≡ boundary relationship (unsigned) ≡ map from a singleton d-cell to a set of (d − 1)

cells

∎ Ô⇒ map from a set of d-cells to a multi-set of (d − 1) cells

∎ ∂−1 ≡ inverse relationship.

∎ signed version has ∂2 = 0

202



• In(r) , Out(r) ≡ range of p, q in rule r syntax ≡ number of terms on the LHS, RHS

• Reactants(R) ≡ {(x⃗r p, α⃗r p)∣p ∈ In(r)} ∪ {(y⃗r q, β⃗r q)∣q ∈ Out(q)}}

∎ ≡ set of complete attributes of object ( defining them up to renumbering of i, j)

of a rule firing.

• ρ(⋅) ≡ a generic propensity function s.t. ρr(⋅) ≡ propensity for a rule r to fire.

• Cr,r′ ≡ commutation structure of the grammar such that:

Cr,r′ ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, [Wr,Wr′] = 0, alternatively if ∫ ∣[Wr,Wr′]∣ < ϵ ⋅O(1)

1, otherwise

• CR,R′ ≡ same as above.

We can then denote a Reaction/Rule r as follows:

{̄τ inr,p(x⃗r p, α⃗r p)}̄p∈In(r) Ð→ {̄τ outr,q (y⃗r q, β⃗r q)}̄q∈Out(r)

with ρr([x⃗r p.α⃗r p]p), [y⃗r q, β⃗r q]q) = ρ̃r([x⃗r p, α⃗r p]p) × ρr([y⃗r q, β⃗r q]∣[x⃗r p, α⃗r p])

C.1.3 Assumptions

A1: Spatially Local

Assumption 1. Our (graph) grammar rules are spatially-local by virtue of their propensity

functions ρ

High level explanation:
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We want to define some neighborhood where we can count the reactions and rule out the ones

that don’t fit. We let ϵ ∈ [0,1] and be a user chosen threshold for the minimum probability

a rule must have to be considered possible to fire - i.e. our “fall off” distance.

Mathematical: ∀ ϵ > 0 ∃ δr(ϵ) = ϵ-diameterr > 0, and p , q ≡ indexes of slots.

( ∀ p, p′ ∣∣xr p − xr p′ ∣∣ < δr ∧ ∀ p, q′ ∣∣xr p − yr q ∣∣ < δr ∧ ∀ q, q′ ∣∣yr q − yr q′ ∣∣ < δr)

∨ ( ρ([x⃗, α⃗], [y⃗, β⃗]) < ϵ )
(C.1)

Alternatively,

∫
V ={ ∣∣ ⋅ ∣∣ ≥ δr }

∏
p

dx⃗ ∏
q

dy⃗ ρ([x⃗, α⃗], [y⃗, β⃗]) < ϵ ⋅ O(1)

may be needed, if volume ∣V ∣ is infinite(usually we can bound it). We let ∣∣ ⋅ ∣∣ be the norm

of x⃗, y⃗. The integral is a less strict case of equation C.1. It ensures that for any volume

larger than δr, all probabilities/propensities in that volume must be much less than the user

chosen ϵ.

Consequently, rule firings R can be ϵ-valid or ϵ-invalid:

ϵ-valid( R = (r, [x⃗r p, α⃗r p]p, [y⃗r q, β⃗r q]q) ) ≡ ρr( [x⃗r p, α⃗r p]p, [y⃗r q, β⃗r q]q ) ≥ ϵ

¬ϵ-valid ≡ ϵ-invalid( R = (r, [x⃗r p, α⃗r p]p, [y⃗r q, β⃗r q]q) ) ≡ ρr( [x⃗r p, α⃗r p]p, [y⃗r q, β⃗r q]q ) < ϵ
(C.2)

We can filter out some invalid R using the predicate:

ϵ-OK(R) ≡ ∀ p, p′, q, q′ ∣∣x⃗r p−x⃗r p′ ∣∣ < δr ∧ ∣∣x⃗r p−y⃗r q ∣∣ < δr ∧ ∣∣y⃗r q−y⃗r q′ ∣∣ < δr (C.3)
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Then we can deduce:

¬ϵ-OK(R) Ô⇒ ¬ϵ-valid(R)

ϵ-valid(R) Ô⇒ ϵ-OK(R)
(C.4)

It is sufficient to apply an even weaker predicate (Here we introduce the idea of an anchor

point):

ϵ-OK′(R,p) ≡ ∀ p′, q ∣∣x⃗r p − x⃗r p′ ∣∣ < δr ∧ ∣∣x⃗r p − y⃗r q ∣∣ < δr (C.5)

Then by using the triangle inequality:

ϵ-OK′(R,p ∈ In(r(R))) Ô⇒ ϵ∗-OK(R)

ϵ-OK(R) Ô⇒ ϵ-OK′(R,p)
(C.6)

Where ϵ∗(ϵ) =max
r

δ−1r (2δr(ϵ)) and:

ϵ-valid(R) Ô⇒ ϵOK′(R,p) ∀ p ∈ In(r) (C.7)

A2: Collars

Assumption 2. Every dimension d < dmax has a dmax dimensional collar

Definition C.1

Collar(c ∣ dim(c) = d) = {x⃗ ∣ inf
z∈c
∣∣x − z∣∣ <∆d} ∖ ⋃

c′ ∣ dim(c′)<d

Collar(c)

where ∆d > 0 and ∆d′<d ≥∆d

(C.8)
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We further assume that collars do not overlap:

c ≠ c′ Ô⇒ Collar(c) ∩ Collar(c′) = ∅ (C.9)

This is trivial for d ≠ d′, but a nontrivial geometric constraint for d = d′.

A3: Well Separated

Assumption 3. Collars of the same dimension such that d < dmax are well-separated.

We can represent assumption 3 as follows:

c ≠ c′ ∧ dim(c) = dim(c′) Ô⇒ inf
x⃗∈c , z⃗∈c′

∣∣x⃗ − z⃗∣∣ ≥∆d (C.10)

From this we can conclude that cells of a lower dimension are subject to the constrain:

∆d=0 ≥ c0,1 ∆d=1 (C.11)

With c0,1 from a geometric calculation.

Note: collars could be even bigger as long as the inequalities are satisfied. E.G. 0-dim collars

could be ∣∣x − z∣∣∞ <∆d Ô⇒ square enclosing a circle.

A4: Bins Are Large Enough

Assumption 4. Bins (= max-dim cells) are large enough.
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We define a bin as the max-dimensional cell. We can represent assumption 4 as:

∀ x⃗ ∈ b ∀ y⃗ [∣∣x⃗ − y⃗∣∣ <∆dmax(b) Ô⇒ b(y⃗) = b ∨ b(y⃗) ∈ nbrsdmax(b)]

for some ∆dmax(b) > 0 ∼ min(diameter(b),diameter(nbrs(b)))
(C.12)

In equation C.12 in the mapping ∆dmax(b) we can vary the output i.e. the size with the bin

number, for future adaptive/multi-scale partitioning.

Here the mapping nbrs(c), which represents a function for determining the neighbors for

some cell c could be:

nbrs(c) = ∂−1 ○ ∂({c}) //main neighbors only

or

nbrs(c) =
⎡⎢⎢⎢⎢⎣

⋃
d<dmax

∂−1 (dmax−d)∂(dmax−d)({c})
⎤⎥⎥⎥⎥⎦

//includes all corner neighbors

(C.13)

A5: Cells Are Large Enough

Assumption 5. Constraints on ∆dmax is large enough.

δr(ϵ) ≤∆dmax(b) ∀ b

i.e. ∀ b(∆dmax(b) ≥ δr(ϵ))
(C.14)

A6: Constraint on dim(c) < dmax

Assumption 6. We have a constraints on lower dimensional cells.

d < dmax Ô⇒ ∆d ≥ γd max
r

δr(ϵ), γd ≥ 1 (C.15)
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A7: Minimum Scaling

Assumption 7. We set a minimum scaling factor.

∀ d ∈ {0, . . . , dmax−1} γd ≥ 4 (C.16)

C.1.4 Strategy

We use this setting and the assumptions to decompose operator W into dimension-d slices

each of which can be parallellized over well-separated cells of dim d:

Wtot = ∑
r

Wr ≡ ∑
r
∫
R∣r

W (R)

= ∑
d

∑
r

W
(d)
r ≡ ∑

d

(W(d) = ∑
r

W
(d)
r )

= ∑
d

∑
c∣d

∑
r

Wr,collar(C) ≡ ∑
d

∑
c∣d

W(c,d)

Wtot = ∑
d

∑
c∣d

∑
r
∫ ( R × ∣φ(R)∣ = c )dV Wr(R∣c, d)

(C.17)

where:

∀ c, c′ ∣ dim(c) = dim(c′) = d

∀ r, r′ [Wr,collar(c),Wr′,collar(c′)] = 0
(C.18)

Here we say that if cells are of the same dimension, then the commutator should be zero.

So, due to well separatedness of collars and bins (implicit for ∂ widths ∆d′ ≥∆dmax−1) on the

scale of reactions R (∼ δ) as established by the ϵ-OK′ filter.
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Then, each ∑c∣d can be parallelized! By which we mean:

etW ≈
⎛
⎝∏d↓

e
t
n
W
(d)
⎞
⎠

n→∞

//1st order operator splitting - go 2nd order instead

et
′Wd = ∏

c (any order)

et
′W
(c,d) where [W(c,d),W(c′,d)] = 0 and t′ ≡ t

n

W(c,d) = ∑
r

Wr,collar(c) ≡ ∑
r
∑

R ∣ φ(R)=c

Wr( R ∣ c, d)

(C.19)

Given the current strategy, we need to find φ(R) → c . So, we must find the function that

maps a rule firing R to a cell c.

The strategy is then as follows:

(a) Show, based on proximity, there is only one candidate of each dimensionality of (0 ≤

d ≤ dmax).

(b) Choose the highest dimension compatible with separation into parallel executable rule

firing sets. This will also be the lowest dimension containing certain R,R′ interactions

to be defined.

(c) Key sepeartion criterion for φ(R):

IF d(φ(R1)) = d(φ(R2)), THEN

(Reactants(R1) ∩Reactants(R2) = ∅) ∨ (φ(R1) = φ(R2))

i.e. (Reactants(R1) ∩Reactants(R2) ≠ 0) Ô⇒ (φ(R1) = φ(R2))

i.e. (φ(R1) ≠ φ(R2)) Ô⇒ (Reactants(R1) ∩Reactants(R2) = ∅)

(C.20)
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(d) So if the previous is established:

(c1 ≠ c2) Ô⇒ [W(c1,d)(R1∣c, d),W(c2,d)(R2∣c2, d)] = 0

where c1 = φ(R1) ∧ c2 = φ(R2)
(C.21)

//Note: why: c1 ≠ c2: see point (c) on line 4? Need to refine this

(e) For ϵ-valid firing R define(Key step in defining φ(R)):

Binset(R) = b(Reactants(R)) ∪ ⋃
R′∈Overlapset(R)

b(Reactants(R)) (C.22)

Overlapset(R) ≡ { R′ ∣ ϵ-valid(R′) ∧Reactants(R) ∩ Reactants(R′) ≠ ∅} (C.23)

Actually, we will replace ϵ-valid with ϵ-OK′(R,p(r)) obtaining B̂inset and ̂Overlapset once

p(r) has been defined. Define the ”home bin” of rule firing R as:

bR ≡ b(X⃗r(R),p(R)) where p(R) ∈ In(r) ∪ Out(r) (C.24)

It’s preferred to use In(r) unless ∅ i.e. we prefer to use the incoming objects to find the

center. It is the geometrically central ”on average”. Thus, p(R) is the “home object slot”

of rule r (also a definition). We can use p(R) ∈ x⃗r(R),p(R) in the triangle inequality to bound

the distances between other objects in R.

Now, define predicate as seen in equation C.5:

ϵ-OK′(R) ≡ ϵ-OK′(R,p)

= ∀ p′, q ∣∣x⃗r(R),p(R) − x⃗r p′ ∣∣ < δr(ϵ) ∧ ∣∣x⃗r(R),p(R) − y⃗r q ∣∣ < δr(ϵ)
(C.25)
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Combining equations C.25, C.12, C.7 as follows:

ϵ-valid(R)
(C.7)
Ô⇒ ϵ-OK′(R)

Using assumption 5: δr(ϵ) ≤∆dmax(bR)

Then,

ϵ-OK′(R) Ô⇒ ∀ p′, q ∣∣x⃗r(R),p(R) − x⃗r p′ ∣∣ < δr(ϵ) ∧ ∣∣x⃗r(R),p(R)

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈bR

− y⃗r q ∣∣ < δr(ϵ)

Ô⇒
(C.12)

∀ p′, q ( b(x⃗r(R)p′) = bR ∨ b(x⃗r(R)p′) ∈ nbrsdmax(b) )

∧ ( b(y⃗r(R)q) = bR ∨ b(y⃗r(R)q) ∈ nbrsdmax(b) )

So,

ϵ-valid(R) Ô⇒ ϵ-OK′(R) Ô⇒ b( Reactants(R) ) ⊆ {bR} ∪ {nbrsdmax(bR)} (C.26)

Now, let R be ϵ-OK′(R) = true, and define B̂inset and ̂Overlapset as promised:

B̂inset = b( Reactants(R) ) ∪ ⋃
R′∈Overlapset(R)

b( Reactants(R′) )

̂Overlapset = { R′ ∣ ϵ-OK′(R′) ∧ Reactants(R) ∩ Reactants(R′)} ≠ ∅
(C.27)

Since ϵ-OK′(R) Ô⇒ ϵ∗-OK(R) ( ϵ∗(ϵ) =max
r

δ−1r (2δr(ϵ)) ), all Reactancts(R) are clustered
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to within 2δr(ϵ) of one another:

∣∣x⃗r(R)p − x⃗r(R)p′ ∣∣ < 2δr(ϵ)

∣∣x⃗r(R)p − y⃗r(R) q′ ∣∣ < 2δr(ϵ)

∣∣y⃗r(R) q − y⃗r(R) q′ ∣∣ < 2δr(ϵ)

(C.28)

Then, there is an object at position x⃗r(R)p̃ = x⃗r(R′)p̃′ or y⃗r(R)q̃ = y⃗r(R′)q̃′ in the nonempty

intersection Reactants(R) ∩ Reactants(R), and:

∀ p, q ∈ In(r(R)) ∪Out(r(R)), ∧ ∀ p′, q′ ∈ In(r(R′)) ∪Out(r(R′))

∣∣ x⃗r(R)p

²
or y or q

−x⃗r(R′)p′ ∣∣ ≤ ∣∣x⃗r(R)p − x⃗r(R)p′ ∣∣ + ∣∣x⃗r(R)p̃ − x⃗r(R′)p̃′ ∣∣ = 0

+∣∣x⃗r(R′)p̃′ − x⃗r(R′)p′ ∣∣ < 2(δr(R)(ϵ) + δr(R′)(ϵ))

(C.29)

Either way:

all reactants of overlapping ϵOK′ rule firings R1 and R2 lie within a bounded distance

2δr(R1)(ϵ) or 2(δr(R1)(ϵ) + δr(R2)(ϵ)) of one another.

(C.30)

We seek to use this “clustering” of all reactants in any two overlapping ϵ-OK′ rule firings (say

R and R′) to ensure that all such reactants fall within at most one collar of each dimension

d < dmax.

To this end assume:

∆d<dmax > γd max
r

δr(ϵ), such that γd ≥ 1 (C.31)
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We can see that γd ≥ 1 because ∆d<dmax ≥ ∆dmax ≥ 1. In view of the previous equations, take

γd<dmax ≥ 4. Then any two reactants in R and R’ must have distance ≥ ∆d=1 and hence by

assumption 3 cannot be contained in tow differnt collars at the same dimension d < dmax.

For d = dmax we could define the “collar” of a bin b = cell c to be an entire dmax-cell =

bin b∖⋃all lower dim collars. Similar to an earlier equation. And, take ∆dmax =∆dmax−1 (in which

case that earlier equation may literally hold). Then, γd ≥ 4 Ô⇒ only two reactants in R

and R′ must have distance <∆dmax . If they were in different d = dmax bin interiors, then they

must be separated by some collar whose minimum traversed distance is 2∆d which is not

<∆d - so, they must be in at most a single bin interior.

Definition C.2

∀ d < dmax, γd ≥ 4 the previous equation Ô⇒ ∀ ϵ-OK′ R,R′ All reactants in R and/or its

overlapping R′ fall within at most one collar (including bin interiors for d = dmax) of each

dimension d, 0 ≤ d ≤ dmax.

Definition C.3

φ(R) ≡ the (unique) cell of lowest dimension d among those whose collar (or bin “interior”,

for d > dmax) contains any of the reactants in Participants(R).

Where:

Participants(R) ≡ Reactants(R) ∪ ⋃
R′∈ ̂Overlapset(R)

Reactants(R′) (C.32)

Assuring A3 will require ∆0 ≥∆1 ≥∆2 . . . by a constant factor in each case:

∆d¯
>γd maxr δr

≥ cd ∆d+1
±

>γd+1 maxr δr

≥ (∏
d

cd) ∆dmax−1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

>γdmax maxr δr(ϵ)

where cd > 1 is chosen by geometry Ô⇒ a pure number(no units). So, it suggests:
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∀ d ∈ {0, . . . , dmax − 2} γd ≥ cdγd+1, with cd > 1, γdmax−1 ≥ 4 suffices (C.33)
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