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EPIGRAPH

All science is either physics, or stamp collecting.
Ernst Rutherford
Nobel Laureate. In chemistry.
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PREFACE

This dissertation attempts to provide answers to three questions:

1. Given the abundance of molecular sequence data, how might we infer func-

tional sequence motifs?

2. Given a genomic sequence, how might we determine which parts of it are

repetitive, and which parts are unique?

3. Given programs that answer the above, how might we actually run them,

on real computers, in a way that is both repeatable and feasible for average

users?

Each of these questions could reasonably be considered an interesting

topic (though, maybe not all to a single person other than myself), but it may

be elusive as to why all three—specifically, these particular three—are addressed

in this single document. What is the common thread here? Though the first

two questions are similar enough to be considered at one time (they both are, after

all, about computational biology), the third seems merely a practical consideration

that does not need to be discussed in detail. Unfortunately, this is not the case. As

a scientist, I prefer to spend my time thinking about a domain-specific problem.1

As a software developer, I think that the quality of tools scientists use is extremely

important, sometimes just as important as the question a researcher is trying to

answer. This may be a sound attitude, or it may be an effect of an internal bias

that I have, namely that scientific results should be repeatable. As Bill Bryson

so eloquently pointed out in A Brief History of Nearly Everything, “nothing looks

like a new phenomenon so much as bad numbers.”
1That is to say, a problem motivated and driven by an underlying scientific question.
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Either way, the fact is that computational scientists need tools, and this

is the common thread here: all three of the above questions are about the com-

putational tools one uses, either to run other tools or to answer specific questions

about biological objects. I have had the opportunity to observe computer scientists

trying to produce these tools, but oftentimes the resulting product simply does not

meet the needs of the target audience of computational scientists: is a web gateway

really all that useful for launching MEME? Very rarely, computational scientists

attempt to produce these tools, but quickly discover that building good software

is a surprisingly hard activity, for no apparently good reason [94, 61]: even a sim-

ple website based on previous work in this lab [78] would fail a rudimentary code

stability test.2 Half of this dissertation is devoted to identifying what I feel is a

critically unmet need in the branch of computer science known as “Grid research,”

an often over-used term to describe some sort of “paradigm shift” in computational

research. While I do not speak for any group of scientists or engineers besides my-

self, I hope to motivate (at a semi-formal level) exactly how the average use case

of an academic research lab is incompatible (at a practical level) with the current

state and proposed future direction of Grid research. This is not to say that Grid

research is somehow incorrect, or that it is intellectually bankrupt: far from it.

Instead, I claim that attempting to satisfy software use cases as disparate [55] as

data center management, enterprise resource provisioning, real-time scientific in-

strumentation control, and computational hypothesis testing falls into the category

of trying to please everyone, while not fully serving anyone (or at the very least,

not fully serving me). Certainly it is not my position that work in distributed sen-

2The fault there was partly my own, but partly because of the design of the code which I wrapped in
a website.
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sor grids—just as an example—is less important than finding sequence patterns

in DNA. My point is only that the lessons learned and the software developed

for these distributed sensor networks do not apply particularly to computational

biology. The former requires some thought toward, say, Discoverability and Mon-

itoring and Fault Detection, while these concerns are merely annoyances in the

latter.

But at the end of the day, what is a computational scientist to do, when

he or she really does need to perform large amounts of computation, when much

of the work on large computation is geared toward some other set of users? Should

he wait until The Grid Vision materializes, that mythical point in time where we

can simply pay a small fee and quadruple the speed of our applications? I see this

as admirably optimistic, but not particularly conducive to getting (my) real work

done.

Such justifications and rationalizations aside, I have taken the following

approach in organizing the remainder of this work. In Chapter 1 we introduce, very

briefly, the topic of Grid computing as it applies to scientific research. Chapter 2

describes the GridWizard application scheduler, a tool that enables the parallel

execution of a program on whatever (reasonable) resources are available. We then

introduce the topic of computational motif finding in Chapter 3. Using the afore-

mentioned technology as a foundation, Chapter 4 describes a very simple algorithm

for detecting sequence motifs from multiple species, provided that the sequence mo-

tif has certain properties. Chapter 5 describes an approach that we have taken

to scale an algorithm that, naively approached, does not allow for a parallelized

approach to data processing, but when conceptualized as a series of independent

tasks can scale to entire genomic analyses. In Chapter 6 we consider additional
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questions that these lines of investigation have raised.
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ABSTRACT OF THE DISSERTATION

Computational tools for high-throughput discovery in biology

by

Neil Christopher Jones

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Pavel A. Pevzner, Chair

High throughput data acquisition technology has inarguably transformed

the landscape of the life sciences, in part by making possible—and necessary—

the computational disciplines of bioinformatics and biomedical informatics. These

fields focus primarily on developing tools for analyzing data and generating hy-

potheses about objects in nature, and it is in this context that we address three

pressing problems in the fields of the computational life sciences which each require

computing capacity beyond that obtainable in a single computer.
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We develop an alignment-free method for identifying conserved motif in-

stances from orthologous promoters in mammalian genomes. In the process, we

rediscover an important functional DNA element that governs the development of

neural tissue in early fetal development. We further identify a number of additional

interesting motifs and characterize them with available functional indicators, such

as Gene Ontology and tissue-specific expression databases.

We show that the application of an algorithm that discovers repetitive

sequence structures applied to a whole genome reveals significantly more repeti-

tive structure in the human genome than the same algorithm applied on a single

chromosome. Though this would seem obvious, no current tools are capable of

answering this question because of technical limitations.

Finally, we present a framework for application scheduling that is specifi-

cally targeted at computational scientists. This framework allows for the selection

of scheduling objective function, but generally aims at dependability over speed

because of the inherent need for reproducibility of results.

xviii



1

Grid Computing in the Sciences

Data processing software has an uncanny habit of being called upon to

handle vastly larger amounts of data than the software’s developer ever intended.

In a hypothetically ideal world, a computational biologist could write and test a

program on a bacterial genome and simply run it on a mammalian genome without

having to worry about whether or not the computer he uses has sufficient RAM, is

fast enough, or will be alive long enough. One would like to simply plug in more

machines to analyze more data. Scaling, in that case, would simply be a mere

matter of money, rather than a problem that requires actual thinking to solve.

Of course, at its most basic level, this is a problem in algorithm design; no

amount of clever engineering can make an exponential algorithm scale well. How-

ever, even when the algorithm is itself scalable, the problems inherent in building

and deploying scalable data processing systems frustrate many a software engi-

neer. This is not to say that scalable software systems are impossible to build, but

that the requirements of scalability need to be understood at the outset and the

software engineer needs to incorporate these requirements along with other more

1
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functional requirements when he or she is designing the software.

To be clear, we are drawing a distinction between data processing soft-

ware and other types of software that have other scalability problems. For instance,

online websites generally have different scaling problems than those experienced

by data processing systems, usually related to network bandwidth and instanta-

neous response times. It is our observation that the bulk of published results in

computational biology journals are based on output from offline analyses.

It is not surprising that these software systems quickly become “dis-

tributed,” in the sense that they need to run on more than one physical computer

simultaneously. Bioinformatics data sets have outstripped Moore’s Law1, and the

complexity of analyses done on these data-sets is often super-linear; a single pro-

cessor will probably never be a workable solution for this problem of scalability.

There are certain common problems that occur when designing distributed scalable

data processing systems:

1. How do we locate a component within the distributed system that is capable

of performing function X?

2. How do we know what portions of the system are working properly, and

whether or not system faults will affect the end result?

3. How do we tell a remote computer to perform some meaningful unit of work?

4. How do we get at large amounts of data without causing bandwidth bottle-

necks (either on the network or on disk)?

5. Computers still have a small and finite amount of memory—how can we break

1An observation that processing capacity doubles roughly every eighteen months.
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down a big application into many smaller pieces and exploit (or introduce)

parallelism?

Each of these problems has many potential solutions, some of which are language-

specific (e.g., EJB [46]), some of which can only be executed within a particular

company (e.g., MapReduce [45]), and some of which have either failed at a practical

level or otherwise have not achieved the market buy-in that they once claimed

(e.g., DCE [50, 68]). From the standpoint of an engineer, this is an unfortunate

state of affairs—reinventing the wheel is one of the main anti-patterns in software

development [61]. We computational scientists are faced with an uncertainty: how

do we solve the above problems in a research environment where requirements

constantly change and the very code we seek to run may be riddled with errors?

In 2000, much of this uncertainty changed with the publication of “The

Grid: Blueprint For a New Computing Infrastructure” [57]. In this weighty tome,

Carl Kesselman and Ian Foster point at the one system that has scaled beyond

all expectations as a promising model for all data processing: the power grid.

With a well-framed metaphorical solution to a nasty practical problem, the notion

of modeling a distributed software system after the electric grid caught on like

wildfire in the tinderbox of academic software developers. Since this Power Grid

analogy has more or less triumphed as the intellectual abstraction for large-scale

scientific programming, it is worth reviewing how the power grid actually works in

order to see where the analogy holds, and where the analogy breaks.

The electric power grid developed in a nearly organic fashion over the

course of a century as a result of market forces placed on power generation stations.

The grid can be divided into four main components: the power generators; the

transmission network; the distribution network; and the consumer load. Power
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generation stations provide power (usually in the range of hundreds of megawatts or

gigawatts) and feed voltage into the system at a frequency of 60 Hz; the AC voltage

out of a power generation station is typically in the tens of thousands of volts and

is stepped up for long distance transmission to hundreds of thousands of volts.

These voltages are carried over-ground via thick aluminum and steel wires to power

substations, which are located in geographical regions with either large industrial

consumers—auto plants, or cement refineries, for example—or large residential

communities. The power substation contains many step-down transformers, circuit

breakers, and hubs for the primary distribution network which connects customers

with very high loads (office high rises, for example, and street lighting). Splitting

off from the primary distribution networks are much smaller transformers that

make up the secondary distribution networks that serve residences and smaller

businesses [41].

The power grid within the United States is divided into three main re-

gions: Eastern, Western, and Texas. The regions are interconnected through DC

power lines, which hints at a curious effect. Because voltage is subject to the

law of superposition, all of the power plants, distribution channels, and consumers

must operate synchronously. If one power-plant is off by an even multiple 60 de-

grees, that power plant will be reducing the overall amount of available power in

that power grid.2 The entire power grid can be considered one enormous circuit,

with a large electromotive force provided by the sum of all the power generation

stations, and with load provided by the sum of the power losses from consumers

2The reason that it is an even multiple of 60 degrees is because AC power is triphasic; rotating gener-
ators create sinusoidal power curves, so to provide nearly constant voltage-above-ground, superimposing
three sinusoidal curves yields acceptable results. This is also why you see four power lines attached to
power poles: one for each phase, and one for ground.
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and from the infrastructure itself. Because viable technologies for storing massive

amounts of electrical power do not exist, all power produced in the system must be

consumed by the system simultaneously—the power grid is balanced in real time.

The aspects that make the power grid into an attractive model for scien-

tific software include the following:

1. The consumable resource can be provided by one or more independently-

operated stations that can achieve economy of scale for a large capital cost

2. The distribution of the resource is largely anonymous and decentralized: once

the power lines are in place, altering the usage of the power requires only

local decision making

3. The entire system is resilient to single failures, as alternate generating sta-

tions within a region can take up any shortfall

4. The system scales independently in two of its dimensions: production can

be increased by bringing more facilities online, and consumers can be added

simply by hooking them into the nearest facility, provided that the overall

energy balance is maintained

It is not hard to see how this analogy maps to the world of computation. How-

ever, there are several attributes of the power grid that make the metaphor less

applicable than one might naively think, or hope:

1. The consumable resource can be transported instantly over long distances

and consumed locally; compute cycles cannot be literally delivered to an end

user
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2. There is essentially only one use of electrical energy: to convert it into other

forms of energy. This creates a natural isolation between the consumer and

the producer that does not exist in computational grids—the producer in a

computational grid must run software that the consumer needs run—which

implies that very tight coupling needs to exist between consumers and pro-

ducers

3. A single gigawatt generator is no different than 500 two megawatt generators,

as far as the consumer is concerned; the mapping of computational resources

to problems in computational grids is much more complex

4. The power grid scales well and distributes load not because of a good design

but because of Kirchoff’s laws—connect four batteries in parallel to a circuit

and each battery will contribute some of the load. Since compute cycles are

atomic and discrete, this is not so easy in a computational grid

5. The laws of physics demand that the electric grid operate in balance be-

tween producers and consumers; a computational grid does not have this

requirement because computing demands are often quite flexible in time

Obviously, the power grid is used in this context as an analogy, and

“analogies are dangerous things” [57]. At this point we have only succeeded in

demonstrating that computational grids are not actually power grids, which was

never really in question. But as the word “grid” is applied to increasingly varied

computer systems, it is worth at least acknowledging the boundaries of the under-

lying model itself. The rather substantial differences between a power grid and a

scalable computational cyberinfrastructure modeled after it need to be addressed
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when building software that provides a grid-like environment. In particular, what-

ever features from the former are naturally missing in the latter need to be explicitly

designed, coded, and maintained.

1.A An Example Application

In order to clarify the practical difficulties associated with designing a

grid-like computational system, we consider here a particular bioinformatics appli-

cation that is simply too large to run on commonly available hardware at the time

of this dissertation’s writing. This application is chosen primarily to provide an

example of how one might actually design software for a grid environment, rather

than as a part of some larger research question, though the application here is

not dissimilar to FlyEnhancer (www.flyenhancer.org). One problem with grid

technology currently is that though there are many software systems that purport

to enable grid software development, it is not clear how one might take a problem

motivated in an actual research setting and design it for a grid environment.

Several studies [93, 109] suggest that the overrepresentation of a partic-

ular nucleotide string within a short span in the genome may indicate biological

function. Suppose we are given a long string S over alphabet Σ. Define the

(w, k, d)-cluster index for a string s (or CIw,k,d(s)) as the number of windows of

width w in S for which at least k strings s′1, s
′
2, . . . , s

′
k exist with d(s′i, s) ≤ d for all

1 ≤ i ≤ k, where d(a, b) denotes the Hamming distance between strings a and b of

equal length (the number of mismatching characters in a and b); we will use Nd(s)

to denote the set of all strings that are at most Hamming distance d away from

string s. One approach to modeling site clustering is to simply identify all strings
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s with a large cluster index, such that the strings s are subject to a minimum

complexity measure to rule out obvious pathological cases like poly-A strings, a

problem we will term the Cluster Index Motif Finding Problem.3 The input to

an algorithm that solves this problem will be a genome, S, parameters w, k, d, a

length l, and a threshold τ . The output will be all s ∈ S such that CIw,k,d(s) ≥ τ

and |s| = l.

An algorithm that solves this Cluster Index Motif Finding Problem is

simple to implement in pseudocode, essentially by maintaining a hash table with

frequencies and a stack of “last observed” indices, with the details shown in Fig. 1.1.

A simple software implementation design is shown in Fig. 1.2. One obvious flaw in

the algorithm is the combinatorial scan of all
(

|s|
d

)

|Σ|d values for each position in

the genome. For even small values of d and |s|, this becomes prohibitively slow on

any hardware. However, it is clear that CIS
w,k,d(s) on the entire genomic sequence

can be decomposed as CIS1..i

w,k,d(s) + CI
Si+1−w..n

w,k,d (s), which allows us to break the

entire genome into small segments, run the algorithm in parallel, and combine

the resulting frequency tables at the end. Other approaches to parallelizing the

problem are of course possible, but simply running on small pieces of the long

genomic string has two advantages: first, it is very simple to implement and test

for errors; second, it requires no communication with any other process (i.e., it is an

embarrassingly parallel application) so it can be run independently in both time

and space, making it somewhat easier to distribute on geographically separated

computational resources.

A hypothetical “grid design” of the software is shown in in Fig. 1.3.

3The easiest to implement is a minimum entropy threshold, an approach also employed by Re-
peatScout, covered in the penultimate chapter of this dissertation.
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ClusterIndex(S, w, k, d, l, τ)
1 H ← empty hash table
2 for i from 1 to |S| − l + 1
3 for s ∈ Nd(Si..i+l−1)
4 H [s].stack.push(i)
5 for s ∈ Nd(Si−w..i−w+l−1)
6 if |H [s].stack| ≥ k
7 H [s].clusterindex← H [s].clusterindex + 1
8 H [s].stack.removebottom()
9 for s ∈ H

10 if H [s].clusterindex ≥ τ
11 output(s, H [s].clusterindex)

Figure 1.1: Pseudocode that solves the Cluster Index Motif Finding Problem.
This particular algorithm will report the Cluster Index as described in the text,
including overlapping windows. Pseudocode that reports only non-overlapping
windows is trivially obtained by storing an additional datum in each entry of the
hash table.

Though this is one of many possible, we have chosen to adhere to the standard

approach of a Service Oriented Architecture, where software components are bun-

dled into persistent services (typically, web services) that can handle more than

one client. In this sense, the Cluster Indexer—as it is called here—can be used as

part of some other application, say, a customized annotation track on a genome

browser. In a similar vein, we presume the existence of a Genomic Data Service

which can respond to such queries as “what chromosomes does Homo sapiens,

release 39 have?” and “what is the sequence between nucleotides 39 and 1039

on chromosome 8?”; these are the “Browse” and “Query” interfaces in that fig-

ure.4 The Grid Resource Service maintains information about the state of the grid

itself by maintaining a list of available computational resources that have regis-

4An example of a genomic data service would be the EnsMart API provided by Ensembl [80].
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Figure 1.2: An object oriented software design that encapsulates the Cluster Index
algorithm. We have chosen to break apart the two operations provided by the
frequency table so that it can be more easily factored into a grid service.
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tered themselves in the Resource Registry, and by monitoring the status of the

network between different resources (Grid Monitoring). The Resource Optimizer

component of the Grid Resource Service is a functional component that allows

one resource (say, a compute node) to locate the “closest” instance of another

resource (say, an instance of the Genomic Data Service). In this way, locality of

reference can be exploited to improve the speed of data transfers or to opportunis-

tically couple parallel computations that require high network bandwidth. The

compute clusters that advertise themselves in the Grid Resource Registry adhere

to a Job Management API (e.g, DRMAA [108]), which enables compute resources

of varying types and flavors to be used for the computation.

The application itself (the Cluster Indexer node in Fig. 1.3) contains sev-

eral components. A Database Persistence layer provides an alternative to storing

the entire cluster index frequency table in memory, which is necessary since an

arbitrarily large number of genomes could be requested. The Workflow Manager

provides the logic necessary to decompose a user’s request over an entire genome

into manageable segments; the Workflow Manager contacts the Job Scheduler to

actually perform the work.

The computational center of the entire system is the Job Scheduler node,

which contains several subcomponents of interest. The Scheduler Core contains

application scheduling logic5 that may attempt to optimize the execution time of

the application. It may also include facilities to prioritize the jobs of some users

over others, though this would typically be left to the compute resources’ Job

Queue implementations. The Environment Management component of the Job

Scheduler provides a mechanism for the application to run an application on a

5Application Scheduling is a problem discussed in depth in the next chapter.
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Figure 1.3: A deployment diagram detailing one possible design of a grid-like
service for the Cluster Index Motif Finding Problem. In this diagram, components
are collected into deployment nodes, but this is mainly for clarity. We claim that a
reasonably grid-like system should include some functional components that fulfill
each of the roles listed here, but we are not advocating any particular deployment
pattern over any other; the only requirement is that some portion of the Grid
Resource Registry be known canonically to all participants in the Grid, so that
information can be exchanged easily.
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Figure 1.4: A hypothetical model of how the different software components inter-
act. The logistics of the overall computation are handled by the Job Scheduler.
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remote resource in a predictable fashion. This can be implemented in many ways:

applications can be specified in a high level scripting language like Python that

involves a minimum set of library modules, or the applications can be required to

be statically compiled executables for a reference binary architecture to eliminate

dependencies, or they can be entire virtualized operating system images. The

primary role of this component is to abstract away the details of each of the

compute clusters, which is necessary when one considers that each of the compute

clusters may be owned by different organizations that have no compelling reason

to coordinate system administration of the resources. The Permission Manager

component of the Job Scheduler needs to deal with several issues related to the

identity of the underlying user: what tokens can be used to identify the user (e.g.,

Kerberos Tickets [99] or GSI proxies [128]); which resources can a user legally use;

what data can a user be granted access to?

The time-oriented workings of the system are described in Fig. 1.4. We

have modeled the system as a “polling” system, where the Job Scheduler service

contacts remote compute hosts to gather execution status information, though it

is easy to see that an asynchronous event-based service would also be possible.

In either case, a user would access the cluster indexer service through a client

program, for example through an application portal or a command line client.

The service itself could be expanded to include a number of common query types,

such as finding those strings whose cluster indices are below some threshold τ , but

such details will not affect the design of the system. Because the client defers the

computation of the cluster index table H to the grid service, a very long running

process may be started to populate the cluster index frequency table as the result

of a seemingly short query. In this case, the user will need to receive a status
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message from the cluster indexer service indicating that results will be ready at

some point in the future, once the overall execution is complete. In this case, an

asynchronous notification scheme (even one over email) is also possible, but again,

such considerations will not affect the overall application’s design.

We believe that this design realizes the abstract vision of a Computational

Grid, as described in [57], though we note that there are many single points of

failure within this system—fault tolerance was not designed into it.6 It also appears

that while the system would continue to work with fewer components, it would not

realize the Grid paradigm in any meaningful way. For instance, removing the Grid

Resource Registry implies that the Job Scheduler—or the Cluster Indexer itself—

would need to know exactly which compute clusters were available, causing an

obvious scaling and maintenance problem. Further, adding compute resources to

an already running application would not have the result of improving performance,

unless the Job Scheduler incorporated some logic that provided a resource registry.7

The complexity of this high level design should communicate two at-

tributes of grid systems: first, even a simple application may require many more

components than a naive engineer might imagine, so building a grid-style system

will be a much larger undertaking than a non-grid system; and second, the overall

operation of the system requires the interaction of long-running services that may

or may not be under a user’s administrative control. The basic engineering mantra

of “bigger systems tend to fail more often” is particularly relevant here.

An alternative approach is to forego the grid paradigm entirely and simply

6Fault tolerance would generally be implemented by duplicating the functional components and pro-
viding some suitably robust fail-over mechanism, like dynamic DNS.

7Merely moving components into other components is different than eliminating components
altogether.
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use an application scheduler that is configured to know about available computa-

tional resources. Though this does not have the admirable attributes of the power

grid model, it can often suffice for individual scientists attempting to produce re-

sults with a minimum of effort, or in cases where sufficient human resources cannot

be dedicated to building and maintaining software services of that magnitude. The

next chapter takes up this topic in considerably more detail.

1.A.1 The Role of Middleware

Several research projects over the last decade have aimed to produce

middleware which eases the burden on developers interested in producing a grid

application. Such software provides many of the components shown in Fig. 1.3,

often in the form of independent web services modules. Indeed, the above sys-

tem design was not chosen completely arbitrarily—many portions are reminiscent

of system components in the Open Grid Services Architecture (OGSA) recom-

mendation [58]. For example, within the Globus [56] software, the Grid Resource

Service is essentially the MDS [44]; the Job Scheduler Service’s Environment Man-

agement component is similar to the Workspace Management service of Globus.

Though the Globus project itself does not have any Job Scheduler component,

the GridWay [74] project provides an open source effort toward one, and other-

wise provides the Globus Resource and Allocation Manager (GRAM) and Com-

munity Scheduler Framework, which together specify a mechanism for running

command-line-oriented jobs. Underlying all resource usage in the Globus toolkit

is the Globus Security Infrastructure (GSI). A number of portal frameworks (e.g.,

GridSphere [100]) and toolkits [86] offer simplified application programming inter-

faces (APIs) to the Globus service “ecosystem.”
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While middleware makes providing grid services feasible for a smaller re-

search lab, the services themselves involve a substantial investment in systems

administration and hardware costs. We observe that these higher level non-

technical issues frequently discourage computational scientists from adopting the

grid paradigm.

1.A.2 Existing Grid Projects

Though individual researchers have not typically used computational grid

technology to further their research agendas, a number of larger research projects

have.

The Geosciences Network (GEON) grid is a collection of data and tools

aimed at understanding the spatial and temporal development of planetary pro-

cesses (specifically, the planetary crust under North America) [107]. It is a col-

laboration among sixteen participating institutions, and links researchers with

specially-designed grid-enabled tools and workflows. Though there is little exter-

nal documentation about specific middleware adoption, that system is described

as a “service oriented architecture.” Several of the tools provided as grid services

revolve around computational modeling and simulation, and enable a scientist to

perform computational tasks from a portal environment. For this work, we will

consider a portal environment to be synonymous with a “website,” though typi-

cally portals are intended to be more comprehensive views of an application and

wrap server-side functionality, whereas a website could simply be a static page

from which you download an application.

A project similar to GEON is the Network for Earthquake Engineering

Cyberinfrastructure Center (NEESit) [8]. One of the key features of the NEES
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project is the online control of experimental apparatus, an approach that is often

referred to as “telescience” [103] and has been applied also to remote microscopy.

The Grid Physics Network (GriPhyN) project [20] brings to light a differ-

ent sort of problem than the projects described above. The particular engineering

problem solved there is one of massive data scale, and the generation of “virtual

data.” In the GriPhyN world-view, the main focus area is on how one can gen-

erate new data from old data—this is what is meant by virtual data—and what

sort of caching and replication strategies are best suited to managing this derived

data across a worldwide network. An obvious technical problem arises when some

base data is discovered to be incomplete or in error, and derived data is stored

in a cache—a problem similar to that of distributed database management. The

GriPhyN project revolves around four driving scientific problems, all of which

in theory consume or produce terabytes of data per day. In this paradigm, the

data is the computer, so the challenge is to develop services to produce all but

the fundamental measured data in an efficient, flexible, and fault-tolerant man-

ner. Correspondingly, they have developed the Virtual Data Toolkit (VDT [59]),

which is essentially a repackaging of Globus middleware and Condor distributed

job management system [51] in a more convenient software stack.

The Biomedical Informatics Research Network (BIRN) [5] is a collabo-

ration of approximately thirty distributed sites across the United States and the

United Kingdom, with the primary goal of providing clinical research tools in the

field of biomedical informatics, mostly related to neuroscience. This project relies

heavily on a distributed storage system (SRB [23]), but has limited computational

resources. As such, much of the development of middleware standards during the
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last several years has not been adopted by BIRN8. Among the key goals of the

BIRN project are the development of an ontologically-governed data integration

tool [19], as well as a public repository for medical images that additionally holds

metadata tied to patient diagnoses and clinical outcomes of treatments taken.

The Cancer Biomedical Informatics Grid (caBIG) [6] maintains a focus

that is similar to that of the BIRN project, with an organizational structure akin

to the Open Science Grid (below), and a technical direction reminiscent of Gri-

PhyN. The project is essentially a volunteer organization of collaborations within

the National Cancer Institute. caBIG itself provides caGrid (cancer Grid), which

is a sort of metaservice collection that handles indexing, discovery, security, and

metadata querying of participant-provided services. Unique to caBIG is the no-

tion of a model-driven architecture. In this scheme, a service provider—perhaps

an individual research unit at a University that is studying EST data within a par-

ticular cell line—generates a mapping between an ontological representation of a

particular biological object (the cell line, the notion of ESTs, genomic coordinates

of the EST mappings, etc) and his local data set, registers the mapping with the

caGrid directory service, and installs the necessary wrapping web service on a (his

own) physical server. At this point, other services in the grid which handle data

associated with that flavor of biological object (a motif finding algorithm, for ex-

ample) can discover this new service and make use of it directly. It is important to

point out that this particular architecture relieves any central authority from coor-

dinating the collaboration between the consumer and the producer. In this sense,

it achieves at least one goal of a grid-type system, namely enabling autonomous

local decision making. However, the caGrid lacks computational resource sharing

8The next chapter in this work describes one of the work management systems used in this project.
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facilities, making it impractical to use for algorithmically intensive queries. Like

GriPhyN, the stated focus of caBIG is on derived data, rather than of specific

resource sharing problems (e.g., allowing compute cluster sharing).

The Open Science Grid [10], on the other hand, provides base grid mid-

dleware services, but isolates itself from the specific Virtual Organizations that use

it. This particular approach is much closer to the overall grid metaphor: the grid

services are provided by one organization, resources by another, and load by yet

another. The underlying software distributed by the Open Science Grid is based

on Condor [51] and Globus [56]. One of the key features that the Open Science

Grid provides is a human-centric response model for failures within the grid [66];

misconfigurations of middleware on individual resources can be frustrating, and

a well-defined policy of which party a user should contact to resolve the issue is

a welcome improvement. Software that runs on the Open Science Grid, like all

other grid software, needs to adhere to grid middleware standards. Currently, a

number of Virtual Organizations exist within the Open Science Grid that work on

problems as varied as high energy physics and structural biology. Unfortunately,

there has not been (yet) a significant contribution from these projects of published

papers in the bioinformatics literature.

1.A.3 Commercial Approaches

One of the key features of a power grid is that it allows commercial entities

the ability to realize an economy of scale in producing one particular resource—

electricity. Similarly, it has been widely conjectured that a mature computational

grid infrastructure would allow companies with many idle compute resources to

sell their computational power for profit. A number of companies, such as United
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Devices [14] and Aspeed [4] have produced marketable software products aimed

at lowering the overall burden of developing and maintaining a grid environment,

but actual hardware rentals are less common. One notable exception is the Ama-

zon.com Elastic Compute Cloud (EC2 [2]) which is based on the hourly rental

of a virtualized operating system located physically within the Amazon.com data

centers.

An extreme case of corporate non-standards-based approaches to scalable

data processing systems is the Google Sawzall data processing language [104], the

Google Filesystem [65], and MapReduce [45]. This system is rumored to run

across many thousands of processors, and handle a subclass of data processing

tasks (specifically, only those that are commutative and associative) that can sort

terabytes per second. It is interesting to note that this less generalizable data

processing system fulfills that organization’s needs better than a completely generic

Grid System would.

1.B Conclusion

Many advances have been made on the overall problem of developing

scalable data processing systems, especially with respect to scientific applications.

In this chapter, we have attempted to provide a more restrained view of the large

field of Grid computing, in particular by observing that there are some contexts

in which developing and maintaining a grid-like system is simply not practical.

Obviously, if a grid infrastructure was available that was: easy to configure; easy

to use; fault-tolerant; highly scalable; accepting of legacy applications and legacy

programming modes, most of the scientific applications with which we are familiar
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would immediately benefit. Our intent here was not to frame the overall field of

Grid research as an invalid one, but as a valid solution to very large problems. Not

all scientists work on very large problems, and the next chapters describe strategies

to scale scientific analyses with less overall effort.
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GridWizard: a Framework For

Application Scheduling

2.A Introduction

Research in the computational sciences seems to proceed, roughly speak-

ing, in distinct phases. As an initial idea for a computational protocol is refined,

a researcher will iteratively debug and improve applications on a small amount

of hand-picked data, tweaking parameters and inspecting output for correctness.

Once the idea returns plausible results and can be considered publication-worthy,

the program gets run on more and more data, often involving a new round of de-

bugging as new classes of pathological inputs are discovered. During this phase,

the computational protocol undergoes systematic characterization: for what pa-

rameter ranges does it return valid results? Can any immediate conclusions or

further hypotheses be derived from running on publicly available data? Finally,

once the computational protocol is ready to be released to the scientific commu-

23
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nity, a researcher must decide how to distribute the code. Increasingly, providing

a publicly accessible website is an attractive alternative to making code available

for download: releasing new improvements or bug-fixes to the code is substantially

easier, and only the user interface requires documentation. However, many simul-

taneous requests for a (potentially) long-running application on large amounts of

data need to be handled especially carefully in a web environment.

It is a lucky coincidence that the research process—including the hosting

of an algorithm in a web environment—itself falls into the already useful class of

embarrassingly parallel problems, that is to say, resource-intensive computational

problems that can be broken into independent subunits that can run in parallel.

A researcher who faces such a problem must deal with a number of tedious is-

sues: how to determine what work needs to be done and how it should be broken

into meaningful units (workload definition); how to assign individual work units to

resources (application scheduling); how to run and monitor executables (grid exe-

cution); and how to deal with system-related and program-related failures (failure

detection). Though each of these problems can be solved in a straightforward way,

the combined solutions to all of them leads to a maintanence problem, interferes

with distribution, and presents an additional barrier to a scientist trying to investi-

gate a particular problem. It is our view that a researcher expert in one particular

scientific discipline should not need to also become an expert in grid computing in

order to produce an application that uses grid technology. It is also our observation

that the bulk of computational scientists do not have at their disposal dedicated

programmers and system administrators to plan, install, configure, and maintain

a complex heterogeneous network of computers.

To reflect these needs we have designed a system, GridWizard, that facil-
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itates the above considerations, which we derived based partly on our own experi-

ences performing computational science in bioinformatics and partly on observing

others doing the same. The remainder of this paper is organized as follows. In

section 2.B we define in formal terms the problem of application scheduling as it

relates to the average scientific researcher. In section 2.C we present the overall

system architecture of GridWizard, and then in section 2.D we demonstrate how

it can be used for real-world programs that were developed (by other researchers)

with no thought towards their parallelization. We consider future research direc-

tions, and the extent to which good heuristics for application scheduling exist, in

the final section.

2.B The Application Scheduling Problem

For the duration of this work, we consider only the problem of scheduling

embarrassingly parallel applications. A rich literature surrounds the problem of

scheduling jobs that have dependencies either on execution order [91, 38] or on

communication [118]. Though these represent an important class of problems, the

former can often be impersonated by an embarrassingly parallel application: for

example, in “diamond jobs” (Fig 2.1) a nontrivial preprocessing step is followed

by an embarrassingly parallel run of a program across data, followed by a final

integration step. Such a scheme can be further generalized to workflow applica-

tions, in which a user needs to provide input or curation at some stage; or pipeline

applications, in which a long string of diamond jobs is run in order to achieve some

output. In the case of tasks that have communication-level dependencies, one fre-

quently needs to take into consideration the specific details of high performance
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Figure 2.1: A diamond job is so termed because of the structure imposed on it by
its dependencies.

local-area network hardware on which the application is running, which is beyond

the scope of this work.

Let T = {T1, T2, . . . , Tn} be a set of n independent tasks. In practice

these are individual command line invocations of a single program to be run, each

with a different input or multiple parameter set. Let C = {C1, C2, . . . , Cm} be a set

of m computational resources, each one generally being a compute node in some

cluster managed by resource management software like SGE [63] or Condor [51]1.

1Of course, each Ci is not necessarily identical to every other: the researcher may have access to
multiple clusters.
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Following [75] we suppose that each task Ti may take a different amount of time on

each of the resources Cj with that time denoted as µj(Ti). To map tasks to com-

putational resources, one—either explicitly or implicitly—finds a left-total binary

relation R such that Ti RCj means that task i is mapped to resource j.2 For any

such relation R , let LR
j = {Ti : Ti RCj} be the set of tasks assigned to resource

j. The application scheduling problem is usually defined as: given T , C, and some

estimate for {µj(Ti) : 1 ≤ i ≤ n; 1 ≤ j ≤ m}, find R that minimizes some function

f : R ×T → R. Often, the function f is considered to be the end time of the last

job (makespan, or min time to completion: minRmaxj

∑

j∈LR
j

µj(Ti)). Other ob-

jective functions have been proposed, including min mean time to completion [27],

minimum “cost” [37], and others.

Because of the latency experienced with many resource schedulers, one of-

ten considers the expected average duration of the tasks and batches the tasks into

jobs. For example, there are 3, 000 megabase-sized chunks in the human genome;

an embarrassingly parallel run with 3, 000 explicit jobs cannot be scheduled on

many compute clusters both because it violates local policy and because it can

overwhelm any back-end accounting systems. In this case, the relation R can

be considered as comprising two relations B (the batching relation) and M (the

matching), where Ti B Jk means that task i is run in job k, and Jk MCj means

that job k runs on compute resource j. One can think of each job Jk as a script

that calls each of its consituent tasks in some order. Clearly, as T is composed of

independent jobs, so is J . The utility in controlling both the batching relationship

and the matching relationship becomes evident in the face of potentially defective

tasks T . As we will justify below, the policy of conflating all of the batching and

2Left-total here means that ∀t ∈ T,∃c ∈ C s.t. tRc.
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matching scheduling logic poses problems when enforced on certain types of prob-

lems that frequently occur in bioinformatics (eg, clustering of mass spectra prior

to blind database search).

We remark that, for nearly any choice of objective function, the appli-

cation scheduling problem is NP -complete [125]. Thus, one normally optimizes a

heuristic that, under some set of assumptions about grid performance and stabil-

ity, aims to approximate in a sense the overall objective of “fastest” or “cheapest”.

We do not attempt to improve here on existing scheduling heuristics, but rather

their use in every-day computational science.

Existing application scheduler software programs fall into one of two cat-

egories: static schedulers or dynamic schedulers. Static schedulers [69] compute

R prior to running any of the actual workload and may or may not provide any

control over the constituent relations B and M . Such a strategy has an obvious

problem, in that any system-level failure (a compute node crashes, a disk share

becomes unavailable) will affect a larger number of tasks than necessary. Further,

optimal load balancing is nearly impossible with an offline static algorithm, for the

simple reason that one cannot adjust the schedule to any misestimates of machine

speed, processing time, or data transfer time. Dynamic schedulers, on the other

hand, maintain a list of tasks (or jobs) that need to be performed and then map

some task from the list to the next available compute resource. In this context, the

relation R is not computed explicitly, but is computed by the end of the appli-

cation’s execution. While such a strategy may seem uniformly better than static

scheduling, the repeatability of an entire run is less certain, especially in the face

of defective code3: did a particular task fail because the input it ran on contained

3A frequent occurrence in a research environment.
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unexpected characters (eg, a DNA sequence that has IUPAC characters to denote

an uncertain assembly), because the machine it ran on was misconfigured (eg, the

node went down prior to a change in NFS, and came back up after), because data

transfer took too long, or for some other seemingly unknowable reason? Recreating

the conditions under which the task ran and failed is critical to quickly isolating

the root cause of the problem; with a dynamic scheduler, one must always run

a program in the scheduler, but debug the program out of it, which causes one

additional layer of uncertainty—perhaps it is the scheduler that is broken.

Another criterion with which to classify application scehduling is the de-

ployment architecture. For example, the APST [39] scheduler template is a pull

scheduler: it reserves time on each compute resource and employs a reverse-access

shell on each resource to poll for the next available job. Condor’s Glide-in [51]

feature is a similarly elegant way to run jobs in a Condor pool that was never

configured to use Condor. In push scheduling, as performed in applications like

GridSAM [7] or GridWay [74], the application scheduler program creates a manifest

of jobs to be done by a particular resource and explicitly schedules that manifest

through the mechanism on each resource (e.g., via qsub on a PBS-managed batch

system). In the case of the two systems mentioned, the Globus middleware sys-

tem [56] is used to insulate the scheduling algorithm from the particulars of the

resource manager.

As previously alluded to, different scheduling styles and deployment ar-

chitectures are desirable at different stages of the research process. Because a sig-

nificant amount of software debugging and testing takes place in the early stages

of research, a static push scheduler is often preferrable even though such a strategy

has been shown to result in suboptimal execution times [26]. The increased time in
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program execution can be offset if debugging the application becomes substantially

easier because of a static push scheduler’s predictable nature—here, one frequently

prefers an application scheduler that parallelizes an application in a predictable

and intuitively understandable manner, rather than according to a heuristically op-

timal schedule that may be less predictable. However, in some contexts a dynamic

pull scheduler may be more appropriate. For example, if a researcher provides and

supports an online website for other members of the community to analyze data, it

may become necessary to add new compute resources without disrupting existing

application schedules; this is much easier with a dynamic scheduler than a static

one.

Because an application scheduler is merely another research tool to be

used in the context of some larger scientific inquiry, it stands to reason that an

ideal application scheduler would provide mechanisms that fit the overall research

process by selecting: (a) either static or dynamic scheduling; (b) one of several

scheduling algorithms, depending on the maturity of the scheduled code; (c) ex-

ecution logging and restarting; (d) integration with standard data grid tools and

access protocols (e.g., sftp, GSI); (e) integration with standard resource schedulers

(e.g., SGE, Condor). To our knowledge, no such application has been reported in

the literature, and it is this set of requirements that we try to meet with GridWiz-

ard.

2.C The GridWizard Architecture

The GridWizard (GWiz) application scheduling framework is designed

around the notion of extensibility through configuration, and relies heavily on
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the Inversion of Control (specifically, dependency injection) software design pat-

tern [53]. The primary requirements we aimed to address were as follows.

1. Using the GWiz framework itself should not require the installation of other

components, such as an application server or relational database as this may

impose an unacceptable barrier to adoption by scientists with specialized

knowledge; however, extensions to GWiz may require the use of such services,

especially in the case of portal-based environments.

2. The user should be able to use the GWiz framework throughout the entire

research lifecycle, preferrably without altering the scheduled application’s

code or considering the problem of parallelization at all.4

3. The user will frequently use GWiz to federate computational resources across

administrative domains and will probably have neither access nor inclination

to configure those resources to belong to a formal VO; however, deployment

within a well-defined VO is a subset of functionality. As such, default access

policies implemented in GWiz should cater to the lowest common denomi-

nator of sophistication, namely, access through the ssh protocol.

4. The user should ideally not need to develop a separate system of scripts that

determines the workload as input to GWiz.

5. The computer from which jobs are launched need not be operational during

any part of the overall execution except to queue the jobs on remote resources.

However, when GWiz is deployed in a fashion that requires on-line scheduling

rather than off-line scheduling, the computer will need to remain operational.

4Beyond the obvious, that is — hard-coding path names and the like pose unsolvable difficulties for
any application scheduler.
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Figure 2.2: The main functional categories within the GridWizard framework.
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The main components of GridWizard address the problems of Workload

definition, Scheduling, and Execution, as shown in Fig. 2.2. The GWiz system is

configured through a sequence of extensible XML data files. The GWiz system

is written entirely in the Java programming language, and as such makes use of

code introspection in order to dynamically load user-provided extensions in any

of the main components (Workload, Scheduling, Execution). In this way, the core

components within GWiz can be reused to provide access to an organization’s

internal systems without altering or maintaining any of the GWiz core code.

The GWiz framework comes with several applications that can be used

in order to perform application scheduling, but it was designed so that it can easily

be integrated into other data processing systems, such as a standalone server to

process job requests created from a web front end. The set of interfaces defined by

GridWizard is shown in Fig. 2.3.

2.C.1 Workload definition

As described in section 2.B, the input to an application scheduler is best

described as a list of independent tasks, or command-line invocations of some

program. In the simplest case, a user may have a set of data files that need to

be processed by some program P , perhaps with a range of values for a particular

parameter. GWiz has a module (the TemplatedTaskGenerator) and a command-

line program gwiz-run that together take P , file glob-style URIs describing the

data, parameter lists, and abbreviated file staging directions (in, out, or inout)

and generates a complete list of tasks as described in detail in the Appendix. We

assume that the program itself is pre-distributed to each compute resource that

the user wishes to use; a robust system for distributing applications themselves is
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Figure 2.3: A UML class diagram that demonstrates the main interfaces within
the GridWizard framework.
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the subject of future research.

In some environments, most notably a portal-based front end to computa-

tional grids, a command-line program is utterly unhelpful. In this case, a different

TaskGenerator can be built to, say, read task definitions directly from a database.

The only restriction on the type of TaskGenerator that can be implemented is

that it can configure itself through a (user-definable) XML document, but this is a

minor restriction as the XML document could specify connection information for

some other system, such as database connection parameters. It should be clear

that the problem of integrating an application scheduler into the spectrum of con-

ceivable environments (corporate, production, or development) can be addressed

in this manner without altering the GWiz system.

2.C.2 Resources

Computational resources are described in the GWiz system through a

configuration file that provides information about the connectivity, authentication

realm, and local resource manager necessary for running programs on that cluster.

For instance, a departmental cluster may be ssh-accessible and run PBS, while a

system run by a grid research project may use Condor behind Globus. Additional

connection mechanisms or resource managers can be added at run-time to the

GWiz system by a similar configuration mechanism as used for TaskGenerators.

Data resources are handled implicitly via Uniform Resource Identifiers [28].

Specific handlers for individual protocols can be added at run-time through the

configuration mechanism; a variety of common protocols (sftp, ftp, http, cifs, srb,

and gridftp) are already implemented by virtue of the fact that GWiz relies Apache

Commons VFS [3]. In reality, the set of operations needed in the GWiz system
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is a subset of the overall semantics of a filesystem, which makes possible the in-

tegration of specialized data repositories, vis a vis the Extensible Neuroimaging

Archive Toolkit (XNAT) [92], whose drivers are under development.

Data is staged in and out of the compute resources as necessary, based

on artifacts (see below) that are generated during the execution phase.

2.C.3 Scheduling

Given a source of tasks and a set of computational resources that may

be used for execution, the problem of matching tasks to specific nodes is handled

through an implementation of the Scheduler interface. Implementations of this

interface may behave as either online or offline algorithms, and may in theory

use any grid information system (eg, Network Weather Service [130]), though the

use of such monitoring systems is out of the scope of the GridWizard framework

proper.

As GWiz is a framework that provides mechanisms without enforcing

policies, the core code itself does not have a large selection of scheduling algo-

rithms. A split scheduler provides explicit access to the batching and mapping

relations in the event that fine control is necessary; batcher algorithms exist or can

be implemented to combine tasks into jobs either by number or based on data re-

quirements. Mapping is generally performed by a round-robin assignment, subject

to overall resource limits. It is also easy to enable proportional mapping, in the

sense that a compute cluster with more capacity should receive more jobs than a

compute cluster with less capacity.
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2.C.4 Execution

It is often the case that executing a command on a remote resource is not

as simple as logging in to that resource and running it; specialized applications may

need to take simple data preprocessing steps (eg, applications using BLAST [16]

may need to run formatdb), and different resource managers consume different sets

of files (eg, PBS takes as input a shell script, Condor requires a condor submission

file which may call a shell script). In any event, it is assumed that the user of

GridWizard has more detailed knowledge of how to run any particular application

than the authors of GridWizard, so a mechanism exists to place arbitrary artifacts

in a job spooling directory on the remote computational resource. Clearly, in the

case of a resource that does not support login privileges—say, a cluster to which

WS-GRAM jobs may be submitted to a Globus Gatekeeper—an artifact will be

placed on the submit host’s local storage and transferred to the compute host’s

storage automatically according to the protocol’s convention.

Artifacts can perform a variety of functions other than just calling a

specific program. For example, authentication and configuration information can

be encrypted with a shared secret key and placed on the remote execution host.

Further, if the provided shell script artifacts are not acceptable for a particular

application, a different implementation can simply be plugged in. This can be

particularly useful if one would prefer to change the amount of logging information

output by the GWiz execution, or to provide a message queueing architecture to

exploit task-level parallelism in an algorithm that is not entirely embarrassingly

parallel.
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2.C.5 Security

As in any distributed system, security and convenience are at odds, es-

pecially in light of the requirement stated above that GWiz should accomodate

those users that may not exist in a well-designed security infrastructure. Infor-

mation that can be used to authenticate a user is stored in a configuration file.

To support the widest adoption of the system, we have opted to allow the user to

store a password directly in a configuration file, which creates an obvious security

vulnerability that we handle in two ways. First, on the submission machine a user

should make the file nonreadable by any party other than himself. Second, when

the authentication information is distributed to execution hosts to enable file stag-

ing, a random encryption key is generated and the relevant authentication file is

encrypted using an industry-standard algorithm. The random key is stored in the

environment of the executing process, which in most cases is ephemeral and visi-

ble only to the job manager and the submittable artifacts during the job’s initial

execution. In this sense, it is not unlike a GSI X509 Proxy; if a malicious user has

access to a user’s files during the time that a proxy is valid, then that user can

gain access to the user’s account and steal either a private half of a public/private

keypair, or simply change the user’s password. In either event, we explicitly claim

that the security mechanisms implemented in GWiz are not necessarily safe and

it is potentially easy for a researcher to accidentally reveal their credentials.

One solution for this problem is for the provider of computational re-

sources to configure job resource managers to use an authentication mechanism

such as Kerberos [99] or the Globus Security Infrastructure [56]. However, one

significant stumbling block in making this happen within a virtual organization is

that the trust relationships between root authorities need to be accepted through-



39

out the entire system. For grid-based organizations that cooperate (eg, BIRN and

TeraGrid) this is not a major issue, but individual researchers may not have suf-

ficient authority to encourage each resource to implement GSI (or kerberos). A

hidden problem in implementing “better” Grid security within a VO occurs when

one portion of the VO upgrades their CA management system, for example by

replacing a legacy system with the GAMA [29] software. In this case, every cer-

tificate needs to be resigned, and every resource needs to be reconfigured to ignore

the old certificates and accept the new ones. These logistical problems lie at the

heart of why many computational science researchers that these authors know work

around grid technology rather than use it to solve interesting problems.

2.C.6 Templates

In order to facilitate the easy launching of many jobs in parallel, use

of URI-based file globbing, and the average use case of naming output files as

a function of input files, GWiz includes a lightweight templating language. This

templating language includes the ability to define a string in terms of variables and

lists (-a 1:4 -b $(-a), or -i sftp://host.com/*.dat -o $(-i).out), as well

as a function invocation on either variable or list arguments. At the time of this

writing, the templating language is not capable of calling functions on functions,

nor is there any facility for the user to define new functions, in part because doing

so would introduce complexity for little practical purpose.

Each variable in a template is represented as a vertex in a directed acyclic

graph. Each vertex may have a value or list of values associated with it, and

the value at any vertex v may depend on some other vertex u, a situation that

is indicated by the existance of a directed edge (v, u). The template interface
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supports the semantic operations of an iterator, in that one “starts” a template’s

value processing and steps through some number of iterations before the template

has been completed. At any given iteration, the value of each vertex is computed

to form a namespace from which arbitrary string substitutions can be evaluated,

or the value of individual variables queried. In order to ensure that variables are

evaluated in order, the DAG is topologically sorted and its vertices are stored in

order. Traversal of the DAG at each iteration begins with the last vertex in the

topological order; if a value does not exist for that vertex—perhaps the vertex

under consideration is a file glob that depends on some other variable, and all of

the files in that glob have been visited in prior iterations—the previous vertex in

the sorted graph is visited. When a vertex with a value is found, the sorted vertex

list is traversed from that point forward and each vertex’s value list is recomputed.

This makes possible globs of the form $(a)/$(b)/*.dat with a being a list variable

and b a string (for example).

2.D Case Studies

As any software system is ultimately defined by its primary uses, and

as grid systems are increasingly defined by their deployments, we have chosen to

highlight precisely how GridWizard can be used to solve scientifically interesting

problems. In so doing, we hope to further convince the reader that the design

requirements listed above were not chosen in an arbitrary manner, but because of

a set of technical concerns arising from these projects that rendered paralleliza-

tion needlessly difficult. In particular, the datasets considered by many biological

researchers do not span petabytes (unlike in the domain of physics) and the com-
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putational resources tend to span a few high performance compute clusters, rather

than a widely heterogeneous and fault-susceptible collection of workstations. Most

importantly, most research is carried out autonomously on these resources, so there

are rarely requirements of security and user authentication, beyond the norm of

needing a password to log in to a system.

A skeptical reader might well question whether or not this work represents

any new ideas. After all, if this problem is as valuable and common as we have

stated here, why has it not yet been solved? As we will point out in section 2.E,

the overall problem of application scheduling has been researched in great detail.

To reiterate our main thesis, the focus of much of that research has either been

algorithmic in nature and therefore less concerned with a functional tool that we

can use, as scientists, at a practical level; or the products are tied to specific

grid middleware which is so complicated to configure that it is almost always

inappropriate in an academic research setting5. The reason why so much effort is

devoted to developing grid middleware in light of these problems is an interesting

sociological question [82].

2.D.1 Clustering of Mass Spectra

The field of computational proteomics aims to identify the entire set and

biological context of protein products produced by an organism. One of the key

experimental techniques to identify protein products is tandem mass spectrometry,

in which a protein sample is injected into a spectrometer and broken into fragments

yielding a characteristic mass fingerprint [76]. The algorithms that operate on mass

5We would go so far as to claim that even requiring a working database server will immediately
decrease the potential adoption of a tool significantly.
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spectra typically fall into one of two types: database search, in which a database of

known proteins is searched; and de novo sequencing, in which the mass spectra are

interpreted to yield specific amino acid sequences. In either case, one would prefer

to identify a set of high-quality “exemplar” spectra that represent the strongest

signals in the data set, and remove either noise spectra that occur rarely or spectra

that are largely redundant.

A mass spectral clustering algorithm has been described [60] in which

individual spectra are first binned according to the mass of the parent molecule,

and then clustered heuristically with a nearest-neighbors approach. In this case,

parallelism can be exploited at two levels: in the reorganization of the mass spectra

into particular bins, and to a larger extent, in the clustering of the actual bins.

Two scheduling concerns are worth noting: first, an optimal schedule may prefer to

combine into a single job mass bins that each have a small number of spectra, since

the length of the entire computation will be dictated by the bin with the largest

number of spectra. Second, clustering adjacent mass bins on the same processor

may yield slightly better results (i.e., fewer clusters each having more support). It

is impossible to a priori dictate to the researcher whether or not time or quality of

results is more important, since clustering here is merely a preprocessing step to

database search or de novo reconstruction algorithms and both ends of the value

continuum are perfectly valid.

The GridWizard framework can be extended with specialized static schedul-

ing algorithms to colocalize mass bins, or it can be used to schedule bins completely

independently (the default mode). In this later scheme a dataset of twenty million

spectra was processed with a single GridWizard command-line invocation in just

over one hour on sixty remote compute nodes, whereas it would ordinarily require
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twenty hours on a single machine. This order of magnitude improvement makes

parameter sweep applications possible to test the sensitivity of the clustering al-

gorithm to parameter settings.

2.D.2 A Portal for LDDMM

A central problem in computational anatomy is to identify the specific

localized differences between two images6 of the same type of object (eg, the hip-

pocampus of a patient with Alzheimer’s Disease, and that of a patient without).

This information can provide valuable insight into disease [127, 71], as well as chart

the specific morphological changes that biological organisms undergo during their

natural life cycle [123]. Though there are many ways in which to compare two

images or volumes, determining these differences in a biologically meaningful way

makes the computation significantly more involved. Suppose you are given two

images, I0 and I1 of a particular tissue at two different points in time. Determin-

ing a distance between I0 and I1 cannot be done arbitrarily: the transformation

between I0 and I1 must involve a smooth, invertable, and differentiable mapping

at all points in time, and entire subsections of the image must move consistently—

membranes cannot simply pass through each other. Further, the distance measure-

ment should be metric (i.e., d(I0, I1) = d(I1, I0) and satisfies the triangle inequality,

and d(I0, I1) = 0 ⇐⇒ I0 = I1). Further, whatever mathematical method is used

to compute distance should allow for the creation and destruction of features within

I1, for example to accommodate growth of new structures, such as tumors. Lastly,

intuitive notions about the similarity of volumes should be preserved: an apple is

6Aquired through either two dimensional or three dimensional medical imaging technology such as
contrast magnetic resonance imaging.
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more like an orange than a basketball.

The Large Difference Diffeomorphic Metric Mapping (LDDMM) algo-

rithm has been described previously [24] and provides a mathematical framework

and an implementation with which to compute the metric difference between two

images. An obvious application of this technology is to compute an n × n dis-

tance matrix of volumes measured from n individuals, followed by clustering and

correlation to annotated disease states. This study was performed recently and

consumed 4 Tb of intermediate storage and approximately 3 1

2
cpu-years of com-

putation time [13]. In order to perform the computation, custom shell scripts—

totalling 20,000 lines of code—were written or generated from automated templates

(Timothy Brown, personal communication). Such shell scripts were inconvenient

when individual nodes failed, and represent generally unreproducible research. The

command-line version of GridWizard can perform the same analysis with a single

invocation though we do not claim that the processing will be any more efficient,

simply more convenient. More importantly, the technical overhead involved in

scheduling large numbers of comparisons among data repositories of MR images

has prevented the LDDMM application from achieving wider usage. Accordingly,

the Biomedical Informatics Research Network is building a web-enabled portal ap-

plication to launch large numbers of LDDMM jobs on a high performance compute

cluster; the back end job scheduling and launching was built in about two days

using the GridWizard framework.

2.D.3 De novo Identification of Repeat Families

The identification of repetitive segments of DNA is important for several

reasons that are described in Chapter 5. One key problem that has so far not
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been adequately addressed is how to take an entire (large) assembled genome and

identify repetitive segments within it; most current approaches at “repeat mask-

ing” involve either the construction and maintanence of a human-curated library

specific to the clade or organism [79], or the invocation of a de novo algorithm

on a smaller segment of the genome [106, 48]. In Chapter 5 we will describe an

architectural change to the RepeatScout application that enables it to scale to

very large (mammalian, or larger) genomes. Though not technically an embar-

rassingly parallel application, the RepeatScout application can be factored into a

serial execution of parallel applications, though this implies that all parallel pieces

must be completely processed for the algorithm to continue. The static scheduling

application provided by GridWizard was used in this case to launch individual

worker components and manage data transfers. The use of a static scheduler is

in fact mandatory because all of the application components (jobs) need to be

started simultaneously, rather than in a manner that fulfills some overall perfor-

mance objective. Launching the worker components required a single command to

GridWizard, and no configuration beyond what is normally required to start any

other computational job.

2.E Related Work

A number of pieces of software have been proposed in the last decade

to solve many, but not all, of the problems that we described in section 2.A. It

should be noted that the Globus Toolkit, while providing software functionality

and an SOA that are compatible with the above concerns, does not explicitly solve

the problems that GridWizard addresses. In particular, Globus does not have
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any component that performs application scheduling either explicitly or implicitly,

as this is not the role of middleware. More importantly, configuring a virtual

organization (the semantic unit of a Grid) requires root privileges on each of the

computational resources that a scientist in the VO has access to. In the majority

of cases, this is not realistic, but a scientist may still have login and submission

privileges on many compute resources. Here, it is more important for the researcher

to define an ad hoc grid that uses whatever grid-like services are nascent on the

clusters already, rather than configuring and relying entirely on Globus services.

Other application schedulers perform the function of taking an explicit

task list and performing its execution on remote computing resources. APST [26]

in particular provides a nearly no-configuration solution for remote execution man-

agement, and has seen adoption in service-oriented life sciences research [116, 40].

In this application, an XML configuration file gives the necessary information to

APST regarding compute resources, tasks to be run, and data grid resources.

Though it lacks any facilities for workload definition, because the configuration file

is in XML, a templatized configuration file (say, in the PHP macro language) is a

workable solution for some problems, in particular problems where the input data

is all local. In the APST design, all data is considered to be local to the submis-

sion machine, and appropriate staging commands to archive, compress, and move

data from the submission machine to the remote execution host are automatically

injected into the APST execution artifacts.

The Nimrod/G [15] application scheduler provides a simple language for

expressing parameter sweep jobs, as well as a database for managing such ex-

periments. It relies on the Globus middleware layer to manage security and job

submission, as well as a Postgres database server that must be alive during the
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entire computation. It is a dynamic scheduler, the core of which optimizes a cost

function based on an economic model of computing that may or may not be rele-

vant to any particular environment.

Like GridWizard, GridSAM [7] is a framework approach to scheduling.

The core scheduling component resides typically in a web services container (e.g.,

Tomcat) and relies on the OMII grid middleware [9]. Unlike GridWizard, it is

standards-based, supporting the DRMAA (distributed resource management and

allocation API [108]) and JSDL (job submission definition language [17]) standards.

As with APST, GridSam does not contain facilities for workload determination,

and it is also an online scheduler. In theory, one could extend it to have some form

of workload determination, but it is not clear that the system could behave as a

static scheduler that launches a number of jobs and is taken offline.

GridWay is similar in both architecture and standards support to Grid-

SAM, except that it relies entirely on the Globus middleware—developed primarily

in the United States—rather than the OMII middleware, which was developed pri-

marily in the United Kingdom. GridWay provides several unique features, such

as job migration and opportunistic job migration. Whereas GridSAM handles file

staging commands in a similar manner to GridWizard (by using Apache Commons

VFS and a Java-language implementation of SSH), GridWay relies on the Globus

third-party transfer subsystem globus-url-copy.

The Michigan Grid Research and Infrastructure Development project

(MGRID) has developed MARS [30], an application scheduler that has a number

of scheduling algorithms that go beyond the needs of most computational scientists

in the field of bioinformatics and biomedical computation. For example, the MARS

framework allows for event- and priority-based scheduling, so that near real-time
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computation can be done. Like the other software systems considered here, it is

an extensible framework for application scheduling but, unlike GridWizard, must

be continuously running for the duration of the computation.

Some resource managers, in particular Condor, come very close to provid-

ing a “one-stop shop” for running large embarrassingly parallel jobs. The flocking

and glidein features in later Condor releases provides a mechanism for jobs that

are too large for one cluster to move to other clusters in a variety of deployment

architectures. However, flocking is defined at a per-cluster level, rather than at

a per-user level, requiring that either a researcher have root permissions on all

accessible compute resources in order to leverage them for a particular problem.
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An Introduction to Motif Finding

Every mature multicellular organism comprises a wide variety of cells

and cell types, each performing specific and often distinct functions. The main

physical difference between the various types of cells in the same organism is the

biochemical environment that each cell maintains by altering the complement of

proteins and non-coding RNAs it synthesizes. That is, nearly all cells have the

same genetic information content, but not all cells use this information in the

same way. As a multicellular organism develops, a single cell replicates giving rise

to daughter cells. After some number of cellular generations, one of the many

progeny cells begins to differentiate itself, in such a way that all of its progeny are

similarly differentiated. This differentiation process is not entirely autonomous—

a cell receives signals from nearby cells, or from an outside influence (e.g., the

mother, in the case of mammals) and the culmination of several signals results in

a cell changing the set of proteins that it, and its progeny, produces; some of these

proteins may, in fact, be signals or signalling targets in their own right. A prime

example comes from the development of the mammalian central nervous system

49
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(CNS). A complement of otherwise identical neural stem cells line a region in the

embryo known as the neural tube. Depending on the signals that each of these

stem cells receive, the cell will either (i) remain a neural stem cell; (ii) become an

astrocyte, which acts as a support cell for neurons; (iii) become an oligodendrocyte,

which acts as a layer of insulation for a neuron; or (iv) become a neuron, which is,

roughly, a “wire” in the central nervous system [73]. Exactly which path a neural

stem cell takes is determined by the relative concentrations of several proteins:

platelet derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast

growth factor 2 (FGF2), and others.1

While it might not be immediately obvious how one gene can control

the expression level of another, the basic mechanisms are understood. Figure 3.1

shows a schematic representation of a typical eukaryotic gene. The key features, be-

sides the coding regions (exons) are the core promoter element and the enhancers.

The same basic CPE exists—or is presumed to—in all protein-coding genes. En-

hancers, on the other hand, are more variable: while all genes are supposed to

have enhancers, their composition is completely different according to the gene.

For the gene to be converted into an mRNA—and subsequently into a protein—

three things must happen. First, repressor transcription factors (a transcription

factor is a protein or a complex of proteins that exists only to bind to DNA) must

not be bound at repressor sites in the DNA. Second, enhancer transcription factors

may need to be present at enhancer sites. Finally, the transcriptional machinery

(RNA polymerase II plus certain basal transcription factors) must interact with

the core promoter element. The specifics of the core promoter element and what

composes it are surveyed in [35], which argues the point that eukaryotic gene reg-

1There is substantially more to this story, which will be taken up again in Chapter 4.



51

Exon Exon ExonIntron Intron

Transcription

start site

Core Promoter

Element (CPE)

cis-regulatory

module (CRM)

RNA Polymerase II +

    basal transcription factors

mRNA

Protein

Enhancer RepressorRepressor

Step 1

Step 2
Step 3

Step 4

Figure 3.1: The structure of a typical eukaryotic gene and the prerequisites for its
expression into protein. For RNA polymerase II to attach to the core promoter,
and then transcribe the gene into mRNA, distant enhancers must be bound by
their transcription factors, and distant repressors must not be bound. Enhancers
and repressors are collected into logical units, or cis-regulatory modules; a single
gene may have several regulatory modules associated with it (not shown). While
the cis-regulatory modules are highly variable among genes, the CPE is usually
composed of several standard transcription factors.

ulation is influenced by the composition of the core promoter region in addition

to which enhancers and repressors make up the gene’s regulatory region. How

to precisely identify the core promoter region remains an open problem, though

some progress has been made (a review of this progress can be found in [54]). Less

progress has been made on how to precisely identify enhancer or repressor modules,

and very little is known about how the core promoter structure might be used to

locate remote enhancers.

Several mechanisms have been demonstrated to govern gene regulation

in eukaryotes. Like prokaryotes, transcription factors (enhancers or repressors)

may bind to transcription factor binding sites (TFBS) that are organized in one

or more cis-regulatory modules typically located somewhere near the boundary of

a gene. These regulatory modules, combined with the proteins that bind in them,
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direct the specific expression pattern of the proximal gene. A common biological

technique for studying regulatory systems is to take the regulatory module for

one gene and place it near a completely benign gene that can “report” activity

(e.g., GFP, which flouresces when expressed). In simple organisms, the regulatory

modules might consist of only a single transcription factor binding site, while in

complex organisms there may be many binding sites for many different factors.

A crucial component to the regulation of a gene by transcription factor

binding is the recognition of DNA sequence by a protein domain. The physical

structure of DNA is such that the interaction of proteins with DNA is often limited

to a pair of short regions separated by another short nucleotide sequence in which

the DNA and protein do not interact. For this reason, alignments of binding sites

for the same transcription factor often show two regions that are highly conserved,

separated by a segment of noise. As a result, transcription factor binding sites

tend to be short (8-18 bp) and conserved in perhaps 6 or 8 positions on the ends.

Another mechanism that the cell uses to regulate gene expression is by

modifying the chromatin structure around the regulated gene. The long DNA

molecule in the cell nucleus is wrapped around protein complexes called histones,

which can undergo a chemical modification that causes them to pack more tightly

than usual. When the DNA molecule is in its tightly-packed form, RNA polymerase

II and the necessary basal transcription factors simply cannot access the gene, so

the gene’s protein product is not produced. In some cases, the proteins that

carry out the histone modification have been shown to bind to transcription factor

complexes.

Recently, two distinct mechanisms have been discovered that use small

non-coding RNAs (ncRNA) to alter gene expression in a cell. Small RNAs in
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the cytoplasm (the region outside the cell nucleus) can effectively intercept and

destroy a gene’s mRNA transcript in a gene-specific manner before the mRNA

can be translated into a working protein product, a process that is termed gene

silencing [47]. A recent study [85] has shown that some ncRNAs can act within

the nucleus and trigger the developmental programs of stem cells, and proposes

two hypothetical mechanisms for this phenomenon. The specific system from that

study is described below and involves both an RNA regulatory component and a

transcription factor regulatory component.

3.A Motif Discovery

A key step in understanding the regulatory program for a gene, and there-

fore the developmental program for an organism, is to be able to delineate the cis-

regulatory modules that control the gene. In order to find the regulatory module,

one must determine the transcription factor binding sites in it. While there is an

obvious distinction between finding transcription factor binding sites and finding

cis-regulatory modules, in this study we will treat only the former problem, as the

latter depends on it.

Motif Discovery is the problem of identifying a short sequence model,

typically either a sequence motif or a position weight matrix from “data”. In

most cases, only sequence data is involved—one knows (or suspects) a set of genes

that are controlled by the same transcription factor, etc. However, with the recent

availability of additional information (ChIP/chip data, orthologous gene sequences,

microarray data) new methods have emerged to take advantage of as much infor-

mation as possible.
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3.A.1 Methods Requiring Only Sequence

Following [77], we will describe the Motif Finding Problem as follows:

given a set S = {S1, S2, . . . Sn} of n DNA sequences, find a motif model M , that

maximizes some suitable scoring function. The scoring function generally consid-

ered is entropy. Let M be the matrix of l-mers that form the instances of a motif.

Here, Mij represents the number of times letter j occurs in column i of M , and bj

represents the background distribution of letter j, often sampled directly from S.

Then, as in [98], entropy can be calculated as

I(M) =

l
∑

i=1

|Σ|
∑

j=1

Mij log
Mij/n

bj

.

The entropy of a pattern is a statistical measurement of its “starkness”

against the genomic background—that is, it is equivalent to a specific sequence of

independent hypothesis tests against a multinomial background distribution. As

discussed in [72], the entropy of a transcription factor’s binding sites can also be

used as a rough measurement of the free energy of binding between a given protein

and the binding sites, though this connection is only hypothetical and motivated

at the level of statistical thermodynamics.

A variety of computational methods have been employed to find motifs,

and we describe here a few notable ones that have been used in a large number of

studies. A thorough benchmarking study has been carried out [124] to determine

the competitive advantage of several of these methods, though no clear winner has

emerged. Not surprisingly, it appears that “ease of use” is a critical considera-

tion in a biologist’s choice of tools: the MEME [21] program is very frequently

used as a motif finder, despite having several numerical shortcomings [98] and not

outperforming the other motif finders considered in [124].



55

3.A.2 Integrating High-Throughput Data

DNA oligonucleotide arrays and microarrays are powerful high through-

put platforms to query the expression of genes under specific conditions. These

technologies have found significant use in the drug discovery and medical informat-

ics industries for such tasks as identifying diagnostic gene targets and for quanti-

fying expression changes in response to treatment [36]. However, one of the early

promises of gene expression microarrays was in the area of exploratory regulatory

motif finding. In a typical experiment [126], a set of microarray measurements are

clustered by an unsupervised learning method (eg, K-means clustering) followed by

sequence-based motif finding performed on the regions upstream of genes within

the clusters. One problem with this particular approach is that few microarray

data sets have a sufficient number of changing conditions to properly tease out the

relationships among genes: there are usually thousands of genes on a slide, and

many fewer than a hundred individual slides; this problem is exacerbated by the

fact that the different experimental conditions used in an analysis may not affect

the majority of genes in the sample. Accordingly, a cluster from a gene expression

data set may not contain a sufficient number of motif instances for that motif

to be detected above noise within a given cluster. Even so, several studies claim

that, at least in yeast, significant refinement of known transcription factor binding

sequences is possible [43, 115].

An experimental technique that more directly measures protein-DNA

binding activity is the so-called ChIP/chip experiment. In this method, an in

vivo sample of DNA is gathered, any attached proteins are cross-linked to the

DNA to form a (strong) covalent bond, and the DNA sonicated into fragments of

several hundred base pairs. With an antibody that recognizes a particular protein,
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those short DNA fragments that are occupied somewhere by that protein can be

extracted from solution and probed against a conventional glass microarray [111].

However, because the immunoprecipitation step requires an antibody that targets

a specific protein, say a transcription factor, the primary motif finding activity

on ChIP data would be to refine our understanding of a specific motif’s binding

pattern (through a technique such as MDScan [89]), rather than to discover new

transcription factors. That is, with a suitable model of a TF binding pattern,

one should be able to identify those sites computationally using a motif model

such as a PWM; ChIP data in this case simply refines our existing computational

ability. However, a clever adaptation of this method was shown [84] in which the

protein examined was the TFIID protein (a member of the preinitiation complex

that binds to the CPE); with very careful attention to DNA microarray design,

the authors produced a map of promoters (to within 100 bp) across the human

genome. Though such a data set should, in theory, be available by examining

computational annotations of genes, a directly measured set of promoters has ob-

vious attractions, including an additional set of promoters (368) that does not

correspond to any gene annotations.

More recently, efforts have been toward integrating these different data

sources in a coherent way as a key step in motif and regulatory module elucida-

tion [87].

3.A.3 Multi-class Motif Refinement

An interesting, but often overlooked, problem that complicates the pro-

cess of motif finding is whether or not the motif descriptions extracted from se-

quence data are the result of perhaps more than one biological entity. In the above



57

motif-finding framework, we essentially would like to know if a motif model s can

be partitioned into k sets s1, s2, . . . , sk such that the within-set motif conservation

is substantially higher than in s overall. A convenient mathematical framework

to use to solve this problem is that of a mixture model, in which an expectation

maximization (EM) algorithm discovers which of two (or, in theory, any number

k) classes any motif instance belongs to [70, 64].

It is somewhat surprising that the literature surrounding this particular

computational problem is quite limited, both in terms of describing algorithms and

in terms of reporting results in those algorithms’ application. One might imagine

that detecting sequence motif signals is hard enough, so detecting variants within a

motif model might seem impossibly hard. On the other hand, a negative result as

the application of one or both of the above algorithms leads to an ambiguous result.

In our own work (see Chapter 4) we applied the Hannenhali-Wang algorithm to

sites that we know match the RE1 binding sequence, but found no statistically

significant separation of the motif into multiple classes (data not shown), yet it is

known that there are multiple variants of the RE1 binding factor. Our result can

be explained in two ways: first, the algorithm applied is not sensitive enough to

detect the variations in binding motifs; second, our motif consisted almost entirely

of one binding variant. It is difficult to resolve between the two.

We have so far covered only a small portion of the overall problem of motif

finding applied to deciphering the regulatory structure of organisms. We do not

claim that this problem has been or, reasonably, ever will be solved to completion.

We present next a new method for identifying a certain class of motifs that are

likely to be related to developmental processes.
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Comparative Genomics Reveals

Unusually Long Motifs in

Mammals

Between short regulatory motifs and long ‘ultraconserved’ regions lies

a whole spectrum of functional elements that remains uncharted.

– Manolis Kellis, RECOMB Regulatory Genomics satellite workshop,
December 2005

4.A Introduction

One of the most important decisions the early embryo must make is how

to form a central nervous system. Recent studies of this developmental decision led

to the Default Model of neural induction that postulated that all ectodermal cells

would adopt a neural fate in the absence of intracellular signalling [97]. Shortly

after the proposal of the Default Model, Chong et al. [42], and Schoenherr and

Anderson [113] discovered a repressor of neuronal specific genes in non-neural cells

58
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and characterized the Neuron Restrictive Silencer Element (NRSE) that is the

target DNA binding sequence of this repressor [114]. The NRSE motif is somewhat

unique in that it is unusually long and has the highest information content among

all known vertebrate motifs in TRANSFAC [129] (with a sufficient number of

experimentally confirmed binding sites). Recently, our group [90] and Bruce et

al., [33] independently used bioinformatics approaches to extend the small set of

experimentally confirmed NRSE sites to a large set of putative NRSE sites in

several vertebrate genomes. But without the foreknowledge of NRSE’s consensus

sequence, could NRSE have been discovered computationally? More generally, if

there are other still unknown NRSE-like motifs with unusually high information

content, could they be discovered computationally? The recent discovery of the

first small modulatory RNA [85] and its relationship to NRSE implies that the

solution of this problem may be important not only in the context of motif finding,

but also in the context of finding other smRNAs.

The NRSE motif is very long (20 bp) and conserved (80% identity),

which should make it an ideal target for de novo motif finding algorithms (e.g.,

MEME [21]). However, since one knows nothing about which genes an undiscov-

ered motif may regulate, forming an appropriate input sample a priori is impossi-

ble. Moreover, an instance of NRSE may be millions of nucleotides from the gene

that it regulates [90, 114], rendering standard motif search algorithms useless even

when coupled with perfectly accurate gene expression analyses.

Recent studies have demonstrated that comparative genomics can over-

come the inherent difficulties in searching for transcription factor binding sites [131,

81, 88]. However, most existing comparative genomics approaches rely on phylo-

genetic footprinting, in which one first constructs alignments between orthologous
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regions of different genomes and then identifies motifs in these conserved regions.

Thus, if the motif to be discovered does not participate in the alignment of the

orthologous regions, it will not be discovered. Moreover, even if all of the NRSE

occurrences were captured in the alignments, they would still remain undiscovered

since most phylogenetic footprinting techniques assume that many instances of a

motif within a genome are identical or nearly so (see, e.g., [131]). While this as-

sumption holds true (indeed, this assumption is essential) for 6-10 bp transcription

factor binding sites, there are hardly any identical instances of the NRSE motif.

In fact, out of 22 putative NRSE sites discovered in promoter regions without re-

quiring alignments, only 9 are found in alignments. The remaining 13 either were

aligned with gaps (6) or occur in regions that could not be aligned (7) according

to the MLAGAN [34] multiple mammalian alignments (human, mouse, rat, dog

and chimp).

We believe that a search for motifs of this longer size is important for

two reasons. First, cataloguing long motifs in the promoter regions of mammalian

genomes may help in determining if the recently-discovered instance of a non-

coding RNA transcriptional regulator [85] is but one of a much larger class of such

molecules. The observed effect of adding NRSE dsRNA to an adult neural stem cell

is that the cell begins to take on the neuronal characteristics, in part because the

protein complex that normally binds to NRSE and behaves as a transcriptional in-

hibitor of neuron-specific genes becomes a transcriptional enhancer of those genes.

Since this operates at the transcriptional level and can enhance gene expression, the

mechanism of smRNA must be distinctly different from that of siRNA or miRNA

which are both post-transcriptional. Second, the recently discovered juxtaposition

of multiple master regulator binding sites (e.g., Oct4 and Sox2) is known to influ-
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ence the fate of embryonic stem cells [110, 31] and the combined unusually long

binding sequences may be an important signature of combinatorial gene regula-

tion. Conversely, if we deliberately search for long motifs and find nothing, we

will have more confidence in the current selection of parameters for motif-finding

algorithms.

Below we present a comparative genomics approach that discovers the

NRSE motif—along with others whose functions remain unknown—using neither

prior information about which genes might be coregulated nor a detailed alignment

of orthologous promoter regions. Our results suggest that NRSE is one of several

“long and conserved” motifs that have been systematically missed by existing

comparative genomics approaches (e.g., [131, 52]).1

Recently, Bejerano et al., 2004 [25] discovered long substrings (¿ 200

bp) from vertebrate genomes that were surprisingly well conserved [25]. In this

study we discover ≈ 20 bp long strings that are surprisingly well conserved across

orthologous regions of various mammalian genomes. Like Bejerano et al. [25], we

do not speculate as to the function of the motifs we find, but instead provide

evidence that they are not statistical artifacts. However, the fact that the NRSE

motif appears at the very top of our list is an indication that other motifs in the

list may also be functional. Unfortunately, since NRSE is the only known long

mammalian motif with such a high degree of conservation, we cannot expect to

find other motifs in our list that have known biological roles. A detailed biological

analysis of these motifs and the genes they occur near would be a logical next step.

1This is not a criticism of existing comparative genomics techniques, but simply a reflection of the
fact that they were not designed for the discovery of long motifs.
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4.B The Comparative Motif Finding Problem

An l-mer is a string of length l in the four letter alphabet {A, T, G, C}. An

(l, d)-motif is an l-mer with an associated distance, d, that specifies a maximum

allowable number of mismatches. An (l, d)-motif M occurs in a sequence s if

there exists a substring in s that is within d mismatches to M or to the reverse

complement of M , denoted M . We may also represent a motif in the alphabet

{A, T, G, C, N}, where N represents a “don’t care” position. In this case, an (l, d)-

motif with t N ’s can be thought of as a gapped (l−t, d−t)-motif where the locations

of the t gaps are known.

Suppose we have a family of sequences, S = {Sj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

such that Sj
i represents the “i-th sequence in species j”. We assume that sequences

S1
i , . . . , S

m
i in all m species are somehow related, e.g., represent upstream regions

of orthologous genes in m species. For a given (l, d)-motif M , let M j
i be 1 if M

occurs in Sj
i and 0 otherwise. One way of framing the traditional motif finding

problem [21, 32] is to search for all M such that
∑

i

∑

j M j
i is large (e.g., larger

than a predefined threshold), though in practice one also imposes a constraint

on the information content of the resulting profile. However, the Motif Finding

problem loses sight of the relationships between S∗
i , which contains important

comparative genomics information about motifs. Instead of
∑

i

∑

j M j
i , we rely on

Score(M,S) =
∑

i

∏

j M j
i , in effect forcing the motif to occur in related sequences

across all species. When a motif M has a non-zero score, we call it a Π-motif

in sample S. The Comparative Motif Finding problem is to find all Π-motifs M

whose score exceeds a predefined threshold τ .

No efficient algorithms are yet known for the Comparative Motif Finding
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problem. The exhaustive search approach (see, e.g., [49]) is likely to be too time-

consuming for long motifs. Indeed, solutions to the Comparative Motif Finding

problem do not necessarily represent sample strings, i.e. strings that appear in

some sets Sj
i from S. Nonetheless, finding all sample strings with Score(M,S) > τ

is a simpler problem, and we use an efficient heuristic to solve it.

Our approach to solving the Comparative Motif Finding problem is to

list all sample strings from one species that represent Π-motifs and cluster the

Π-motifs to reveal frequently occuring ones. The algorithm we propose has three

basic steps: (i) enumeration, which identifies all Π-motifs corresponding to sample

strings; (ii) aggregation, which clusters frequent Π-motifs into a single consensus

representation; and (iii) concatenation, which assembles overlapping frequent Π-

motifs into a single motif representation. An example of steps (i) and (ii) in the

case of the discovered NRSE motif is shown in Fig. 4.1.

Enumeration proceeds by checking whether each sample string w from Sj
i

occurs, with d or fewer mismatches, in each of the strings S∗
i (or S∗

i ).
2 Limiting Π-

motifs to sample strings at this stage biases the algorithm towards underreporting

motifs; that is, this algorithm will be unable to discover a motif that is overrep-

resented in the sample but does not explicitly appear in it. However, if this does

occur, one would expect some sample string to be an adequate substitute for the

“true” motif. The algorithm is summarized in Methods.

Aggregation takes into account the fact that the enumeration step will

rarely discover identical l-mers that represent the same motif due to mutations.

Therefore, to discover over-represented motifs we aggregate Π-motifs by performing

2As one would expect transcription factor binding sites to exhibit few insertions or deletions, the
Hamming distance model used here does not account for indels.
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a clustering procedure on the similarity graph whose vertices represent Π-motifs

found at the enumeration step. Vertices in this graph are connected by an edge if

the Hamming distance between them is no more than d/2. Connected components

(connected subgraphs) in this graph represent instances of similar Π-motifs. We

remark that after aggregations, Π-motifs are no longer constrained to be sample

strings.

It turned out that many (l, d)-motifs we discover actually represent parts

of slightly longer motifs (this could happen if a binding site is slightly longer than

l). In the concatenation step, we connect any two motifs that share significant

sequence overlap, thus forming a (possibly) longer motif. Motifs that have a small

number (in our application, fewer than 10) of supporting sequences are discarded

as not highly overrepresented, and any 5’ or 3’ terminal columns in a motif that

have fewer than some threshold number of sequences are dropped from that motif,

resulting in a motif of some length l′ that may be different than l. Afterwards,

columns that do not have a clear consensus nucleotide (i.e., at least 50%) are

labelled as N . Thus, the resulting motif descriptions are not necessarily contiguous

(l, d)-motifs in the four letter nucleotide alphabet, but (l′, d)-motifs with t gaps,

i.e., (l′ − t, d− t) gapped motifs.

As an example, consider the de novo discovery of a motif with a consensus

sequence that is nearly identical to the known NRSE (Fig. 4.1). The enumeration

of (20, 4)-Π-motifs from orthologous upstream promoter regions of genes in human,

mouse, and rat results in more than 1 million strings; however, the overwhelming

majority of these Π-motifs formed isolated vertices in the similarity graph and were

therefore immediately discarded as statistical artifacts. Very few of the remaining

connected components had more than 20 vertices. Interestingly, one particular
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connected component with 22 Π-motifs had a consensus sequence that matched

the known NRSE motif. This consensus sequence could then be combined with

the consensus sequences from other connected components that are 5’ and 3’ shifts

of this motif, ultimately leading to a 21 bp motif with 3 “don’t care” symbols,

TNCAGCACCNNGGACAGCGCC. To compare our de novo prediction against

experimentally validated NRSE sites, we compiled a list of known sites reported in

the literature (see Methods); the logo representation of the validated NRSE binding

sites is shown in Fig. 4.1b. Not surprisingly, there was substantial agreement

between instances of the predicted motif and experimentally validated NRSE sites.

Remarkably, our de novo predictions correctly identified two “wobble positions”

in the middle of the NRSE motif, and also extends the canonical NRSE motif by

four somewhat less conserved positions on both the 3’ and 5’ ends.

In this study the motif width, l, is set to 20 and the number of allowable

mutations, d, to 4. In theory, this algorithm could be used for other values of l

and d, though the biologically relevant range of parameters is small. One would

expect that the motif width would be less than 30 characters, and d can be chosen

accordingly given l so that the expected number of occurrences of an (l, d)-motif

would be kept low in the size of the sequence analyzed. Changing the threshold τ

represents the trade-off between sensitivity (fewer false negatives) and specificity

(fewer false positives).

4.C Results

We applied the above motif discovery algorithm on 5 Kb-long orthologous

upstream sequences from human, mouse, and rat. The de novo discovery of motifs
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# Site
1 TTCAGCACCGCGGACAGCGC
2 GTCAGCACCACGGACAGCTT
3 TTCAGCACCGAGGACAGCGC
4 AGCAGCACCGCGGACAGCCC
5 ATCAGCACCACGGACAGCGG
6 GGCAGCACCGTGGACAGCGC
7 TTCAGCACCTGGGACAGTTC
8 GGCAGCACCGCGGACAGCAC
9 CTCAGCACCACGGACAGCGC
10 GTCAGCACCGCGGACAGCTC
11 GGCAGCACCACGGACAGCGC
12 TTCAGCACCGAGGACAGTTC
13 TTCAGCACCGCGAACAGCGG
14 ATGAGCACCGCGGACAGCGG
15 TTCAGTACCGAGGACAGGTC
16 TTCAGCACCGTGGACAGAGC
17 TTCAGCACCGCGGACAGCAT
18 GGCAGCACCAAGGACAGCGC
19 TTCAGCACCACGGACAGCGG
20 TTCAGCACCTCGGAAAGCGC
21 TTCAGCACCACAGACAGTGT
22 TTCAGCACCACGGACAGAGT
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(b)Figure 4.1: An example of the motif discovery algorithm as it recapitulates the

NRSE motif. Sample strings that are Π-motifs are enumerated from orthologous
upstream regions. Similar Π-motifs appear as connected components in the sim-
ilarity graph. Although the diameter of this connected component is large, the
maximum pairwise Hamming distance within the component is small. Consider
vertices 6 and 7: the path length between these vertices in the graph is 6, indicating
a possible Hamming distance of 12 between the vertices, but the Hamming distance
is 6. The consensus sequence of the connected components is shown immediately
beneath the table. For purposes of comparison, the motif logo for experimentally
determined NRSE sites is shown beneath that.
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turned up 606 that were further subjected to statistical tests (see Methods). After

filtering, the resulting list contained the 35 motifs shown in Table 4.1. NRSE

appears among the top motifs in this list, thus indicating that our method is indeed

capable of finding long motifs in mammalian genomes without prior information

about which genes a motif regulates.

Any attempt at de novo motif discovery is likely to find some motifs that

are functional and many more that are not functional. We approach the problem

of distinguishing between these two cases by considering three factors.

First, if the occurrences of a motif are not conserved in the human, mouse,

and rat genomes, then that motif is probably not functional. We show that most

motifs we find exhibit much higher conservation in all three species than one would

expect by random chance, an argument in favor of their functionality.

Second, NRSE is an “ancient” motif that is conserved across frog, chicken,

and mammals. This implies that the orthologous instances of NRSE motifs in

human and rodents (separated by ≈ 80 million years of evolution) should be more

conserved than the paralogous instances in human that presumably had more

time to evolve. Indeed, instances of the NRSE motif exhibit significantly higher

conservation between human/mouse/rat genomes (5% divergence on average) than

between different instances of the NRSE motif within the human genome (13%

divergence on average). Nearly all of the motifs that we discovered exhibited this

property. Such a phenomenon is unlikely for spurious motifs, so this provides

another argument in favor of the hypothesis that at least some of the motifs we

report are functional.

Third, since the existing repeat masking is imperfect, there is a chance

that the motifs we discover are parts of unmasked repeats shared by human, mouse,



68

and rats. While human and rodents share few highly diverged repeats, three of

the motifs that we discover represents an l-mer from the known repeat families.

Thus, one can conclude that the motifs we discover are not parts of unmasked

transposable elements.

A common assumption in comparative genomics is that if a motif is func-

tional, then it will be conserved. That is, if our algorithm outputs a sequence motif

that does not appear in orthologous sequences more often than can be expected at

random (while accounting for the total number of times it occurs in the genome

overall) then it can immediately be rejected as noise. However, restricting the

definition of conservation to include only bases that are in aligned regions causes

unacceptable loss of potentially functional sites for the long motifs that are the

focus of this study. Therefore, we define blocks (e.g., gene regions) of sequence

that are presumably related through evolution without specifying the exact map-

ping between basepairs. If a motif occurs in the orthologous block in each species,

it is considered a conserved instance.3 Specifically, we extend the region around

each gene g (from the list of genes representing orthologous triples) to the interval
[

gleft, gright

]

where gleft is the position “halfway” between the start of g and the

end of previous gene and where gright is the position “halfway” between the end

of g and the start of the next gene. For roughly 8% of genes, the resulting intervals
[

gleft, gright

]

turned out to be very long, so we have chosen to trim such intervals

to 500 kb from each side, leaving some regions of the genome uncovered by the

intervals. The resulting collection of intervals is denoted G (analagous to S) such

that Score(M,G) is well defined.

3This approach only works when the expected number of instances of a motif in a long sequence block
is smaller than 1; this holds for (20, 4)-motifs, but it does not hold for shorter motifs, hence the need for
alignments in existing studies.
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We define a score for ranking motifs that is similar to the Motif Con-

servation Score (MCS) from [131]. Assume the motif M appears in bj blocks in

species j and that there are a total of n in each genome. If we randomly mark

blocks from each of the m species with probability bj/n, then the probability of

marking any particular block in all m species is p = (
∏

j bj)/n
m. The P -value, or

the probability of observing k or more genes that are marked in all m species, is

then 1−∑k−1

x=0
F (np, x), where F (a, b) is the Poisson distribution with parameter

a evaluated at b. However, while a P -value of the ranking score is conceptually

more useful than a raw score, it turns out that the P -value usually evaluates to 0

for most of the motifs we report, an indication that the motifs we find are statisti-

cally surprising. The expected number of orthologous triples of a motif occurring,

according to this naive background model, is np and its standard deviation is ap-

proximately
√

np. The ranking score of (Score(M,G) − np)/
√

np can be used as

a rough estimate of the importance of a motif M .

From the list of 606 motifs we removed motifs that were deemed (a)

micro-satellites; (b) occurred more than 10,000 times in the genome; (c) had

fewer than 10 conserved hits; or (d) were a variation on A/T-rich patterns like

AAAAAAAAAATTTTTTTTTT . This procedure resulted in 323 motifs that were

further investigated to check whether there were motifs in the list that appeared

multiple times with minor variations. It turned out that 6 distinct types of motifs

appeared multiple times in the list with slightly different or overlapping consensus

sequences. These 6 motif families comprised 63 motifs thus reducing our list to

323-63+6=266 individual motifs. One of the 6 familes corresponded to motifs that

were correlated highly with experimentally-determined NRSE binding sites [122].

These motifs originated from six components in the similarity graph whose consen-
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sus sequences were sufficiently different to elude the aggregation and concatenation

steps of our algorithm. The remaining motifs did not correspond to known tran-

scription factor binding site matrices listed in TRANSFAC [129], to miRNA target

sequences listed in miRBase [67], to known transposable elements, or to homing

endonuclease restriction sites [112].

To validate the test for statistical significance of our findings, random

substrings of length 20 were selected from the same orthologous set of upstream

regions given as input to the motif discovery algorithm. From the set of sampled

substrings, some set of columns (between 0 and 4 in total) is selected at random

and converted into N characters to account for degeneracy in the motif set. Thus,

the randomized “noise” motifs consist of strings from the input data set that

contain approximately the same pattern of degeneracy as the discovered “signal”

motifs. The ranking score of the “noise” motifs was calculated for motifs that met

properties (a)-(c) above. As an aggregate, the scores for the random motifs are

statistically different from the scores of motifs output from the motif discovery

algorithm (Mann-Whitney rank sum test P -value less than 1 × 10−7). However,

a visual inspection of the box-and-whisker plot of the scores of the two samples

(Fig. 4.2) reveals that while the difference between the sample means may be small,

the set of discovered motifs include a large number of outliers (some, but not all,

of which correspond to the NRSE motif) that may represent novel biologically

functional motifs. Those discovered motifs with ranking score larger than 75 are

listed in Table 4.1. The cutoff score of 75 is conservative because most of the

randomly sampled noise motifs with high score were suspiciously similar to poly-A

signals, which are systematically conserved and thus not informative.
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4.D Related Work

To the best of our knowledge, this work represents the first case in which

the NRSE sequence pattern is discovered de novo. It is now, however, not the

only case: one recent report [132], similar to the present study, uses comparative

genomics approaches, though beginning with a more careful and rigorous alignment

of sequences. It is important to note that comparative approaches thus applied

rely heavily on the quality of multiple sequence alignment.

Another study [83] focused on an “enrichment-based” approach to an-

notating known transcription factors’ binding sites. That is, where we have at-

tempted the de novo identification of cis-regulatory patterns, that study began

with a database of known patterns and sought to identify a comprehensive catalog

of high-quality binding sites. Interestingly, NRSE appeared among the most signif-

icant motifs from TRANSFAC for which they were able to apply their method. It

is likely that the strongly-conserved tissue expression profile of NRSE-related genes

across tissues was the main contributor to its highly significant enrichment scores

in that study. Additionally, it would seem that NRSE is probably the transcription

factor that is most highly conserved in terms of expression.

Among studies that focus specifically on the NRSF/NRSE system, a re-

cent publication [96] demonstrates several interesting facts. First, starting with a

single consensus sequence, the researchers were able to identify a higher-specificity

position weight matrix (PWM) that had high discriminatory power to locate func-

tional vs nonfunctional NRSF binding sites. Second, by applying a computational

clustering method on the tissue-specific expression of the cohorts of genes related

to their particular NRSF PWMs, they were able to identify a number (specif-
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ically, 5) of distinct expression patterns. Finally, a Gene Ontology enrichment

analysis demonstrated that certain functional annotations within the cohort were

significantly overrepresented than if the cohort had been drawn randomly. Not

surprisingly, one of the key expression-based clusters was seen to be specific to

brain, with the corresponding gene ontology categories.

We remark that such a protocol is sensible when one starts with a sub-

stantial amount of background knowledge about a particular pattern. In their case,

they began with a known transcription factor binding site with the goal of refining

it into a more specific set of biologically functional components. Accordingly, they

had reason to believe that the refined PWMs were related to transcriptional ac-

tivity, but no good reason to believe that the gene cohorts for a particular PWM

represented only a single biological function—in fact, such an observation would be

an astounding example of function following sequence. Thus, testing for additional

biological functions of the overal cohort is an obviously logical choice. However, in

the case of the de novo algorithm described in this chapter, we do not start with

any such foreknowledge.

While it would be ideal to describe a computational protocol by which we

could mine publicly available high throughput data to arrive at a specific (testable)

biological hypothesis for any given motif, we do not claim that such a protocol is

even conceivably possible given the set of available data. Instead, we aim at a

more modest goal of providing a method by which an investigator can filter out

motifs that are almost certainly not functional. We have therefore applied stan-

dard techniques of Gene Ontology analysis [18] with the GOMiner software [134]

as well as a tissue-specific expression analysis [120] using the Gene Set Enrichment

Algorithm [121]. In each case, the set of all genes in which a particular motif m
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occurs in all three species are identified; this set will be henceforth referred to as

a motif gene set. For each gene set, we identified those GO terms with a statis-

tically significant overrepresentation in that set. We also identified those tissues

for which the set exhibited significant differential expression. The differential tis-

sue expression values for a particular gene across the 79 tissue types sampled by

the Novartis SymAtlas were computed by normalizing each gene’s expression to a

standard normal distribution; that is, for gene gi with expression Ej(gi) in tissue

type j, we compute a normalized value E∗
j (gi) = (Ej(gi)−E(gi))/σi. If we consider

the distribution of mean gene expression across the entire data set (that is, E(gi)),

we see that it appears to decay roughly exponentially in Fig. 4.3. In particular,

the overall chip data is normalized such that two genes g1 and g2 can be compared

directly (e.g., Ej(g1) < Ej(g2) implies that g1 is expressed less in tissue j than g2).

Our goal is to identify those tissues in which a particular gene (really, a motif gene

set) is expressed significantly more—or significantly less—than in other tissues. In

this sense, the normalized score E∗ can be used, and for each tissue type the entire

list of motif gene sets can be subjected to the GSEA algorithm.

Finally, as an added indicator, we compute the strand conservation con-

sistency measure, which is simply the number of conserved matched sites in which

the motif appeared in the same phase relative to the gene in all three genomes;

while we cannot claim that the reversal of long patterns is a priori impossible, we

suppose that the selective pressure of such a functional site would make such a

transformation difficult. The results of these analyses can be found in the supple-

mental online materials at nrse.bioprojects.org.
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4.E Conclusions

In one of the first comparative genomics studies, Gelfand et al. [62] dis-

covered a number of conserved strings in bacterial genomes that only later were

determined to be riboswitches. Similarly, we have no experimental proof that the

strings in Table 4.1 represent new regulatory elements. However, we have demon-

strated that these strings are not statistical artifacts and warrant further experi-

mental analysis. While these computational experiments cannot yet prove whether

regulation through smRNAs is a common mechanism in mammalian genomes, they

imply that the smRNAs are probably not as ubiquitous as other ncRNAs.

A recent study [105] makes the important point that the assignment of

orthology is crucial for comparative genomics approaches. In this study we rely

on the publicly available mapping of orthologous genes, but acknowledge that we

would likely find improved motif predictions if better methods for determining

orthology are developed. Our work also extends the recent FastCompare [49]

algorithm by considering motifs in multiple (rather than pairwise) species and by

not limiting the analysis to short motifs as in that study.

4.F Methods

All sequences were repeat masked using the RepeatMasker annotations

in the Ensembl sequence database; all annotations and orthology relationships de-

rive from the Ensembl Core and Compara databases, release 32 on the assemblies

of Homo sapiens, Mus musculus, and Rattus norvegicus (35e, 34, and 34f respec-

tively). Upstream (5000 bp 5’ of transcription start) genomic sequences from all

orthologous gene triplets in the human, mouse, and rat genomes resulting in 14,355
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usable sequence regions.

The pairwise Hamming distance among found motifs was computed across

(inter) species, and within a (intra) species. Assuming an approximately normal

distribution of Hamming distance, the two lists were compared using Student’s

T-test to determine if the inter species distance was larger than the intra species

distance at the 99.9% confidence level. All motifs listed in Table 4.1 have a sig-

nificant difference between inter- and intra-species Hamming distance. The higher

conservation of the motif within putatively orthologous promoter regions compared

to the conservation within nonorthologous positions within a single species may

indicate that purifying selection is operating on a portion of that motif’s instances.

In the enumeration phase of the algorithm, our method takes a shortcut

and arbitrarily chooses one member in each set as a reference sequence (human)

and enumerates all l-mers in that sequence such that each of the remaining m− 1

sequences in the set contains an l-mer with no more than d mismatches to w or w.

Choosing a reference sequence introduces a small bias into the algorithm.

As mentioned above, the length of strings recorded in the Enumeration

step is l = 20, with a distance of d = 4. For efficiency, connected components

in the similarity graph with fewer than three l-mers were discarded prior to the

construction of the overlap graph used in the Concatenation step. Two l-mers

v1v2 · · · vl and w1w2 · · ·wl overlap if there exists an i-suffix of v and an i-prefix of w

such that dH(vl−i · · · vl, w1 · · ·wi) ≤ d where i ≥ 0.8l. In the application considered

here, at least 12 nucleotides were required to match over 16 consecutive positions.

Each vertex in the overlap graph corresponds to a connected component in the

similarity graph, and therefore represents a potentially large number of enumerated

l-mers. The Position Weight Matrix representation was constructed from each
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connected component in the overlap graph by positioning all related enumerated

l-mers in the appropriate columns. This leads to the case where different columns

in the PWM have different numbers of contributing sequences, and we refer to

that number of l-mers as the support of that column. Any column that has less

than 40% of the maximum support within the motif is discarded; as expected,

this does not discard any internal columns (which would lead to a motif becoming

fragmented). Motifs that had maximum support of less than τ = 10 were discarded

as unimportant. Columns that did not have a 51% majority consensus nucleotide

were listed as N .

The enumeration phase requires negligible memory and time O(nmL2),

where m is the number of species, L is each sequence’s length, and n is the total

number of sequence regions scanned. The aggregation phase requires, in worst case,

time and memory proportional to the square of the number of enumerated strings

(which will be much less than nL), and the concatenation phase requires time

and memory proportional to the square of the number of connected components

from the aggregation phase. In practice, the enumeration phase is run in parallel

on a grid and the bottleneck is the aggregation phase which is done on a single

computer.

We compare our predicted motifs against experimentally validated NRSE

sites that have been reported previously [114, 122]. A total of 48 genes are un-

ambiguously identified in the combined studies, but neither study attempts to

identify orthologous sites in multiple species. Of the 31 genes from the mouse

genome identified in [122], there are 16 orthologous genes in each of human and

rat that also have a substring that matches the consensus string used in that study

(TY AGMRCCNNRGMCAG with no mismatches). Of the 18 genes in the hu-
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man, mouse and rat genomes reported in [114], there are 14 orthologous genes in

each of the other two species that also have a substring that matches the consen-

sus used in that study (TTCAGCACCNCGGACAGNGCC with 4 mismatches).

We combine the set of sites that were confirmed in a lab with the set of sites that

are orthologous to sites confirmed in a lab into a database of 167 distinct binding

sites across the three genomes. While it is not necessarily true that an orthologous

instance of a verified binding site is also a binding site, it seems a safe bet that a

large portion of them are. We remark that this database necessarily represents a

(presumably small) subset of the biologically active NRSE sites in the genome.



78

Discovered motifs Random motifs

0
50

10
0

15
0

20
0

25
0

30
0

R
an

ki
ng

 s
co

re

Figure 4.2: The distribution of ranking scores for the motifs shows that, while
the median score of noise motifs and discovered motifs are different, the overall
distributional properties of the two groups are not that different. However, the
presence of a number of outliers among the discovered motifs is important: these
motifs could be biologically important.
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Table 4.1: The significant long motifs found by the algorithm. Motifs that over-
lap significantly with experimentally confirmed NRSE sites are labelled as such.
Columns: Score, the ranking score (Score(M,G)− np)/

√
np; # H, the number of

hits in human blocks; # HMR, the number of hits in orthologous human, mouse,
and rat blocks; inter/intra dH the inter-species (/intra-species) hamming distance
averaged over instances of the motif that occurred in conserved blocks in all three
species. The marked instances of the NRSE motif may overlap (e.g., motiffs 17
and 20 overlap by 17 nucleotides).

# NRSE? Consensus Score # H # HMR inter/intra dH

1 x GNGNTCAGCACCNCGGACAG 308.2 101 20 1.6/0.7
2 GNGCATNCTGGGANTTGTAG 212.7 154 26 1.6/0.6
3 GCNGCGCGGTCCCTTTAAGA 211.5 92 12 4.7/0.8
4 ANAGGGNTTCTCNCCTGTGTG 211.5 360 97 2.6/1.7
5 GGAGCTGGAGAAGGAGTTNCACTT 201.4 155 23 6.2/1.3
6 x TNCAGCACCNNGGACAGCGCC 198.6 498 131 2.9/1.2
7 GCNGCCGTTGCCATGGANAC 193.8 157 25 3.1/0.7
8 CCNCGGCGCCGCCATCTTGA 189.2 168 24 4.7/0.9
9 GCGNGGCANTCTGGGANTTGT 182.1 146 20 3.2/1.5

10 CGCCGCCGCCATGTCCGNGG 181.8 229 22 5.0/1.1
11 GCTGGCANCCGCCGCCGCNG 178.2 133 10 3.4/0.7
12 GCNGNGGACTACAACTCCCA 168.0 125 12 3.1/1.3
13 CCNNGGGCGCCGCCATCTTGC 163.5 339 51 4.8/1.0
14 CAGCCAATCAGCGCNCGGCG 162.2 194 20 4.9/1.8
15 CGCGGNGCACGCCGGGAAGC 153.3 208 14 4.7/1.6
16 CTACAANTCCCANAAGGCAC 147.5 222 31 3.4/1.3
17 x TTCAGCACCANGGACAGCTC 125.4 1078 299 4.7/2.0
18 GCGCTGCAGCCGCTGCNGNG 125.1 203 14 3.4/0.8
19 CCCGCGTCTCCATGGCNACG 123.9 207 17 4.8/1.3
20 x TNCTTCAGCACCACGGACAG 116.9 688 145 4.5/2.0
21 GCNCAGCCAATCAGCGGGCG 96.6 187 11 4.9/1.8
22 CNTGCTGCNGCGGCCGCCGC 96.3 274 18 2.8/0.8
23 TGCNTTCTGGGAGTTGTAGT 93.4 881 178 4.6/2.1
24 GGCCNCCAGAGGGCGNAGNGG 91.5 214 10 3.4/0.5
25 GACTNCATTTCCCGGCAGGC 91.2 444 44 4.5/1.7
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Figure 4.3: The distribution of E(gi) within the entire Novartis SymAtlas.
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Input:

Number of species m,
Number of sequences for each species n,
Sets of sequences S =

˘˘

S1
1 , . . . , Sm

1

¯

,
˘

S1
2 , . . . , Sm

2

¯

, . . . ,
˘

S1
n, . . . , Sm

n

¯¯

,
Distance d,
Motif width l, and
Threshold τ .

Output: (l, d)-motifs M in S with Score(M,S) ≥ τ .
# Enumeration
for each sequence S1

i :
for each l-mer s in S1

i :
if s occurs in S2

i . . . Sm
i with d or fewer mutations:

append s to a list V

# Aggregation
Create graph G whose vertices are the strings in V
for each pair s and t of vertices in G:

if dH(s, t) ≤ d/2 or dH(s, t) ≤ d/2:
add edge (s, t) to G

for each connected component C in G:
append consensus sequence of C to list V ′

# Concatenation
Create graph G′ whose vertices are the strings in V ′

for each pair s′ and t′ of vertices in G′:
if s′ and t′, or s′ and t′ overlap: # (See methods)

add edge (s′, t′) to G′

for each connected component C′ in G′:
form PWM p from C′ (see Methods)
discard p if its maximal support is less than τ (see Methods)
discard terminal columns of p that have fewer than 40% of p’s maximal support
compute consensus string of p

columns with less than 55% majority nucleotide become N
terminal N columns are discarded

output consensus

Figure 4.4: A pseudocode description of the algorithm. See Methods for a clarifi-
cation of terms.
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Repeat Library Construction on a

Complete Mammalian Genome

5.A Introduction

Identifying repeats in genomes is a crucial first step in enabling further

genome analyses. In species that have been studied well, precompiled repeat

libraries—typically curated by human researchers—are available from several ven-

dors [79, 102]. However, there are three conditions in which one cannot rely on

curated databases: certain DNA samples may be contaminated by non-standard

repeats [119]; species for whom precompiled libraries are not available; and for re-

peats in the genome that have mutated beyond their canonical library sequences.

In such cases, it is desirable to have a tool that can analyze a genomic sequence and

determine the repetitive structures that exist therein. We consider the problem

of analyzing repetitive structures in a genome as comprising two parts: the iden-

tification of repeat elements aims to determine the specific spans of the genome

82



83

that are repetitive, and the classification of repeat elements aims to group those

spans into larger families. This latter step is an important one in specifying the

lineage of any particular sequence. It is important to note that here we do not con-

sider the problem of determining the biological origins (i.e., transposable element,

polymerase slippage, segmental duplication, etc) of any particular repeat family;

instead, the problem is simply to delineate the families themselves.

There are several algorithms that solve the repeat identification problem

([22, 95]). The output of such algorithms is essentially a bitmask for the entire

genome—where the bitmask is on, that nucleotide belongs to a repetitive struc-

ture, and where the bitmask is off, the nucleotide is presumed to have evolved

through some other mechanism. The repeat classification problem is somewhat

less studied, though we [106] and others [48] have previously reported algorithms

that attempt to solve it. Typically, repeat classification programs also solve the

repeat identification problem, but the output of such algorithms is a list of repeat

consensus sequences, rather than an explicit masking list.

One persistent difficulty in existing repeat classification algorithms is that

they cannot be run on an entire mammalian genome because of technical prob-

lems encountered when scaling up the analysis. RECON [22] is reported to not

scale beyond a few megabases. PILER-DF [48] requires manual curation and is

not fully automatable (Robert Edgar, personal communication). RepeatScout has

similar scaling problems—as previously reported, it cannot feasibly run on more

than 200 megabases (about one large human chromosome) on readily available

hardware. This points to an important question: would we find more repeat fam-

ilies if we studied the entire genome at once, rather than examining only a single

chromosome? For highly prevalent repeat families (eg, Alu in human), one would
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expect no difference because there should be sufficient representation of those fam-

ilies within the smaller genomic segment used for this type of library construction.

However, if there are many highly divergent repeats, or repeats that have low copy

number across chromosomes, some advantage in theory could be gained by han-

dling the whole genome. Currently, this question cannot be answered because of

technical limitations.

This work addresses the scalability problems of RepeatScout in its origi-

nal implementation and describes an architecture and implementation that allows

the algorithm to run on an entire genome. The remainder of this chapter is or-

ganized as follows. In section 5.B we review the basic RepeatScout algorithm to

highlight the bottlenecks that prevent its application to genome-sized data sets.

In section 5.C we describe how the serial algorithm can be decomposed into sev-

eral parallel stages that, even when run in serial, can yield an order of magnitude

improvement. Finally, in section 5.D we consider the question of whether or not

one actually gains anything by examining a whole genome for repetitive elements

rather than just a chromosome.

5.B The RepeatScout Algorithm

Suppose that we have a large sequence, S of length |S| over an alphabet

Σ = {A, T, C, G}. We denote with Sl
i the substring of length l in S that starts at

position i—we will also refer to this as the l-mer in S at i. We will make use of

a frequency table, H, such that H(s) is the frequency of s in S, where s is some

substring of S.

The RepeatScout algorithm is essentially a sequence of banded local align-
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ments, guided by the genomic frequencies of l-mers. Roughly speaking, the algo-

rithm performed on a sequence S is composed of the following steps (described in

detail in Fig. 5.1):

1. A length l is calculated as: l = dlog4 |S| + 1e, such that the probability of

any particular l-mer occuring multiple times in the genome purely by chance

is low

2. The overall frequency of each unique l-mer, s, in S is calculated as a table,

H(s)

3. Align: Find the most frequent l-mer: argmaxsH(s)

4. Gather the set of all sequences (up to 10, 000) centered on s in S

5. Align, according to a fit-preferred alignment. Resulting consensus is the

repeat family representative, R.

6. Mask: For any position in S, if Sl
i is in R, align R to that portion of S. Any

region that successfully aligns is considered masked.

7. Let Adj be the frequency table of all l-mers masked in the previous step.

Adjust H by Adj.

8. Return to Align until the frequency of the most frequent l-mer drops below

some predefined threshold (10)

5.B.1 Fit-preferred Alignment

As described in Price, et al [106], the fit-preferred alignment algorithm

determines a multiple sequence alignment that we claim has intuitive validity in
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HashGenome(S)
1 for i from 0 to |S| − l + 1
2 if lastpos[Sl

i ] < i− tandemdist
3 H [Sl

i] = H [Sl
i] + 1

4 lastpos[Sl
i ]← i

RepeatScout(S, H,M, l)
1 lmer← argmaxsH [s]
2 while H [lmer] > minthresh
3 P ←

˘

S20000+l
i−10000 : Sl

i = lmer and Mi 6= 1
¯

4 Q← FitPreferred(P )
5 Adj ←Mask(S, M, Q)
6 Adjust(H,Adj)
7 lmer ← argmaxsH [s]
8 Output(Q)

Mask(S, M, Q)
1 for i from 0 to ‖Q‖
2 P ′ ←

˘

Si : Sl
i = Ql

i and Mi 6= 1
¯

3 for p ∈ P ′

4 Q′ ← FitPreferred({Q,P ′})
5 for j from 0 to ‖Q′‖
6 if Mi+j 6= 1
7 Mi+j ← 1
8 Adj[Sl

i+j ] = Adj[Sl
i+j ] + 1

9 return Adj

Adjust(H, Adj)
1 for s ∈ Adj
2 H [s] = H [s]−Adj[s]

Figure 5.1: RepeatScout pseudocode. The variable tandemdist in HashGenome

ensures that we do not overcount l-mers that occur in close proximity; this is
especially important in light of certain systematically biased sequences like poly-A
or CpG runs. The variable minthresh determines the lower bound on the overall
iteration. Finally, the range of 10, 000 base pairs taken on either side of an l-mer
is a heuristic chosen to balance execution time and completeness of results. In
most cases, the fit-preferred alignment terminates long before 10, 000 bases are
considered.
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determining repeat libraries. Following the treatment in that paper, suppose we

have a set of substrings S1, S2, . . . , Sn from S such that some large portion of the

substrings arise from a repetitive element while a small portion do not. This can

happen if, for instance, we examine S for all instances of a long l-mer that is part

of a repeat family but also occurs spuriously in lower numbers throughout the

genome. We would like to find the string Q maximizing

A(Q; S1, . . . , Sn) =

[

∑

k

max [a(Q, Sk)]

]

− c |Q|

Here, a(Q, Sk) reflects an alignment score of string Q against one particular se-

quence Sk, as described below. The parameter c inflicts an overall penalty on

the length of the consensus string Q such that a minimum of c sequences must

participate in the alignment, a safeguard to prevent Q from aligning over a long

segment because of a few sequences that happen to agree by chance. The function

a(Q, ·) is chosen to reward alignments where the majority of sequences Sk align to

the left- and right-hand boundaries of Q. This can be done with a fixed penalty, p

according to the following recursive definitions (let γ be some pre-determined cost

for gaps):
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f(i, 0) = max(−γi,−p),

f(0, j) = 0,

f(i, j) = max































f(i− 1, j − 1) + µij

f(i, j − 1)− γ

f(i− 1, j)− γ

−p

,

a(Q, S) = maxi,j







f(i, j) if i = |Q|
f(i, j)− p if i < |Q|

.

This procedure can be implemented using dynamic programming. In the actual

RepeatScout software, the implementation chosen is a banded alignment, in which

only a set number of gaps are allowed in each alignment—by default, this number

is 5. It should be clear that the alignment procedure is thus linear in the length

of the overall sequence segments Sk, but also depends on the total number n of

segments considered. Interestingly, we initially assumed that the alignment step

would consume the bulk of the algorithm’s running time based on the distribution

of running time within the first few iterations of the algorithm. In fact, the number

n drops quickly after a few iterations, such that the bulk of the time is spent either

searching for specific l-mers in the genome or in identifying the l-mer with the

highest frequency. Because the entries ofH are monotonically decreasing over time,

it is possible to amortize the traversal of that table so that it takes a reasonable

amount of time to identify the maximum l-mer when taken over the life of the

entire computation—that is, it may take 5 seconds to find the top l-mer when a

complete scan of H is performed, but by saving lists of l-mers with a particular

frequency the algorithm will not always need to scan H.
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5.C Implementing Scalability

From a practical point of view, searching the entire input sequence in

Step 4 above for each l-mer repetitively takes a prohibitively long time, even with

a fast implementation of the Boyer-Moore string searching algorithm. Thus, it is

necessary to store an index of each l-mer’s complete position set within the input

sequence. This alone will consume (minimally) (4 + x) · n bytes, where n is the

length of the genome and we assume a 4 byte pointer to record positions and x

denotes the overhead of storing such a list entry of data; it is necessarily true

that x > 0, but with some cleverness in the implementation of the list-based data

structure it is possible to make x negligibly small to 4. Still, for the human genome,

this leads to well over 10 gigabytes of RAM. Additionally, the genome, its reverse

complement, and the entire frequency table need to be stored, leading to minimally

18 Gigabytes of RAM in an ideal implementation. In the current (RepeatScout

version 1) release, it will take well over 30 gigabytes of memory. If external storage

(disk-based data structures) is used to alleviate the memory burden, the random

access nature of data access in RepeatScout causes an I/O bottleneck even with

aggressive caching strategies—the decreased time efficiency leads to (extrapolated)

execution times of several months, which is longer than the expected uptime of any

given machine (data not shown). It is theoretically possible to run the algorithm

unchanged and on a whole genome by using specialized hardware (for example,

FPGA-based string scanners [133]), but this is undesirable for a number of reasons,

including the difficulty of finding programmers capable of implmenting algorithms

on this type of hardware.1 Clearly, to scale the algorithm we will need to rely

1Programming such devices involves relying on a different model of computation and different pro-
gramming idioms (eg, VHDL) than enjoyed by standard commodity general purpose computers (eg,
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on parallelism over trickery. However, the algorithm as described cannot be run

simultaneously on smaller input sequences in a way that is equivalent to running

it on one large input sequence, which makes it much more difficult to design some

strategy that will return valid results when run on a large sequence.

One reason that the RepeatScout algorithm cannot be considered em-

barrassingly parallel is that the centralized frequency table H is computed over

the entire input sequence, and adjustments to it need to be performed, similarly,

over the entire input sequence. The frequency table is consulted at two points:

to determine the correct l-mer to scan in each phase, and for adjustment after

masking has taken place. Its state at any time will affect future iterations of the

RepeatScout algorithm. Another data structure that serves as a synchronization

point is M , the genome bit-mask whose value at any time depends entirely on the

sequence of repeats that have been sent through the masking phase. Because of

these considerations, it is not possible to parallelize the algorithm solely by break-

ing the input sequence into pieces and running the algorithm separately on the

constituent genomic fragments. Similarly, running the Align and Mask phases

in parallel for a large number of high-frequency l-mers simultaneously will lead to

repetitive or inaccurate output, since the specific l-mers that are visited depend

on the mask results of repeats visited in prior stages.2

C).
2The intuition here would be to accept as intractable the overall time and memory requirements for

a single iteration but make up for the time by running many iterations in parallel, which is a common
parallelization technique.



91

5.C.1 Decoupling RepeatScout

An important observation is that while the RepeatScout algorithm itself is

not embarrassingly parallel, it is composed of stages that are. In particular, rather

than relying on the notion of a single RepeatScout program executing on hundreds

of nodes to perform the algorithm, we can decouple the program in a manner

similar to building a loosely coupled enterprise application. We present here a

workable refactoring of the RepeatScout algorithm into what we term algorithmic

services, the core functionality of the overall algorithm broken into as granular

pieces as the inherent synchronization problem will allow. We present the results of

several implementations of that refactoring to evaluate different parallel computing

technologies, with the surprising result that the simplest approach (a hand-coded

SQL database) turned out to be the most scalable solution that was also the

easiest to deploy within an existing campus computing infrastructure, more than

standards and software systems designed specifically for the purpose of distributed

enterprise computing.

The RepeatScout algorithm is described pictorially in Fig 5.2. Data par-

allelism exists in the phase to extract all matching regions for a particular l-mer, as

well as during the masking phase. Though the alignment phase takes a significant

portion of the execution time during initial iterations of the algorithm, the number

of regions being aligned during later iterations of the algorithm is substantially less

(Fig 5.5a) which leads to acceptably short alignment iterations. Thus, exploiting

the data parallelism inherent in the algorithm’s phases can theoretically lead to

orders of magnitude improvement in performance, providing that the implemen-

tation has low communication latency and high communication bandwidth. We

define the Seeker-Masker service as that portion of the RepeatScout algorithm
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Figure 5.2: A visual description of the stages in the RepeatScout algorithm. The
upper image presents a flow-chart of the steps, while the lower image presents the
directed graph describing both the synchronization points (3 and 5).
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that maintains a small fragment of S and the corresponding fragment of M . We

choose a moderate fragment size (50 Mb) to keep the level of parallelism manage-

able: because of the synchronization problem described above, all parallel processes

must be running simultaneously for the algorithm to proceed, and in many par-

allel environments it is difficult to ensure that hundreds of processes will all start

simultaneously. The Aligner algorithm service is a singleton that accepts sets of

genomic positions (in either orientation) and performs the fit-preferred alignment.

The Master algorithm service is also a singleton that maintains the frequency table

H.

Seekers can receive a message, “FIND s”, where s is an l-mer. Seekers

respond with a “POSITION” message that contains the location of all (unmasked)

instances of that l-mer within the genomic segment managed by that Seeker. Seek-

ers can also receive a message “MASK r”, which will cause the Seeker to perform

the masking phase of RepeatScout and post a frequency “ADJUSTMENT” mes-

sage which contains a table of l-mers and frequency adjustments. The Aligner

responds to an “ALIGN” message, which contains all of the “POSITION” mes-

sages returned by Seekers for a given l-mer, with a “REPEAT” message that con-

tains the repeat family consensus sequence. The communication is summarized in

Fig 5.3. The RepeatScout code was trivially modified to enable messages of these

types to be processed and scripting language (Perl) “glue” code was developed to

allow RepeatScout to be distributed across one or multiple clusters. This forms

the components of the algorithm itself, but the intercommunication between the

components can be implemented in several ways. We chose the following three in-

tercommunication strategies in the hopes that at least one would result in a usable

program. In each case, the GridWizard (Chapter 2) software was used to launch
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Figure 5.3: An example interaction between the different algorithmic services in
the decoupled RepeatScout algorithm.
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the distributed components of RepeatScout. It is somewhat surprising that the

first technique (using a message broker) did not scale particularly well, since this

particular approach to application architecture is specifically designed for decou-

pling large applications. Thus, we present all three architectures here in order to

aid other researchers who are faced with similar scaling problems.

5.C.2 Message-Brokered Asynchronous Communication

Message Brokers (eg, SwiftMQ [12]) provide a convenient abstraction

for developing decoupled applications. Using some pre-defined wire-level protocol,

one application component can subscribe to a topic-based or queue-based mes-

sage channel; in a topic-based channel, all listeners who have indicated interest in

the channel are notified when a message is published to that channel, while in a

queue-based channel, only a single listener is notified. Generally, any component

can publish a message to any channel—the channel type defines only the output

semantics of who among the listeners gets notification of a message. The STOMP

(Simple Text-Orientated Messaging Protocol [11]) wire-level protocol is a language-

and platform-independent protocol that enables application components to com-

municate easy-to-parse and space-efficient messages. The ActiveMQ [1] software

provides a message broker architecture for the STOMP protocol.

One difficulty with the message layouts as described above is that some

messages may contain a very large quantity of data. If the literal set of sequences

output from a Seeker is used for the body of a POSITION message, a single

message may be hundreds of megabytes, and even with only positional information

the message can be tens of megabytes. With a standard SQL database as a data

storage back end for ActiveMQ, we were not able to perform the RepeatScout
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calculation on the entire human genome: a small percentage of messages would

be lost by the broker (leading to a deadlocked application) because of memory

overflow, even with over one Gigabyte of heap and stack allocated to the process.

Though the message brokering architecture is a conceptually cleaner abstraction

than the other two techniques described below, the undependable behavior of the

message broker led to frequent application restarts and wasted computation.

5.C.3 Filesystem-based messaging

In the case where all of the distributed components can be run on a

single high performance compute cluster with shared storage, a file-based method

of message exchange can be employed. It is important that none of the algorithm

services rely on queue-based message semantics: both the Aligner and the Master

are singleton services. Each message channel can be considered to be a separate

directory in the file system; a message consists of a file’s contents, where a file

name is used to denote which iteration within RepeatScout the message came

from. Such an approach generally requires a “polling” system, as opposed to

the asynchronous notification inherent in a message queue. There are tradeoffs

involved in such a polling scheme: poll too frequently and the entire system can

become overwhelmed by unproductive empty status checks; poll too infrequently

and the system will perform poorly when the speed of each computation is less

than the polling interval. We chose an exponential backoff approach similar to

that used by ethernet for network traffic collision avoidance. A certain number

of “quick polls” (5 checks, each 1 second apart) are performed, after which the

poll timeout is multiplied by a factor of two. When a successful check occurs, the

polling algorithm is reset to the “quick” mode. A maximum length (5 minutes) is
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enforced on the polling backoff timeout.

One problem with the particular environment used in this study was

that the shared filesystem was implemented over NFS (a popular networked file

system). NFS would occasionally cache directory contents on the client side, in

which case some algorithm components would miss a message that some other

algorithm component placed into its topic directory. This situation proved difficult

to avoid but easy to fix: simply moving the message into some other directory and

moving it back would clear the NFS client cache. It would be possible, though

disappointing, to automate this process.

5.C.4 Database-backed Message Passing

To avoid the NFS stale cache problem, we developed a simple database

schema (Fig. 5.4) to store message data. In a sense, this combined the Message

Broker semantics into a polling-based system similar to the filesystem approach

above. Surprisingly, a modest server running the MySQL database engine was

able to handle all of the query load, data insertion, and data indexing operations

for all 60 concurrent clients. It is clear that, until the scalability limits of MySQL

are reached (for reasons of either bandwidth or concurrent table queries), the

database-backed message passing approach is the easiest to implement and scale

across multiple clusters, possibly located in geographically distant regions. Since

each RepeatScout client could easily handle 50 Mb of genomic sequence, we claim

that any genome sequence can be run through RepeatScout using this technology.
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Figure 5.4: The database schema used for RepeatScout version 2. It is clear how
the message schema maps to the database schema—the message schema is the
database schema.
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5.D Results

The human genome (l = 17) was processed in under 3 days using the

database-backed message passing approach, with over 50, 000 l-mers visited. The

genome was initially broken into 60 approximately 50 Mb segments, and the l-mer

frequency table for each segment computed to a minimum threshold of 3 within

each segment. The l-mer tables were then combined to form the overall frequency

table H. Filtering steps as described in the RepeatScout version 1.0.1 software

distribution were performed to remove repeats that were shorter than an arbitrary

length (50 bp) or were composed of more than 50% low-complexity repeats. After

filtration, 4, 583 repeats remained. Figures 5.5, 5.6, and 5.7 show the properties of

l-mers visited over the course of the algorithm’s execution, along with the number

of repeat instances in the human genome.

5.D.1 Comparing Repeat Libraries

It is a challenging task to assign biological meaning to computationally-

inferred repeat families. Ideally, one could simply perform a global alignment be-

tween an annotated library and a constructed library and the best matches would

suffice. That is, given two libraries, construct a bipartite graph whose edges repre-

sent the pairwise similarities between a repeat a from the first library and a repeat

b from the second library. Finding the maximum matching (an easy polynomial

algorithm) in this bipartite graph should, in theory, allow one to label a de novo

constructed repeat library with a human curated repeat library. Unfortunately,

because RepeatScout rigorously defines the boundaries of repeat families—and bi-

ological systems tend to be much less rigorous—many biological repeat units (eg,



100

0 10000 30000 50000

1e
+

01
1e

+
03

1e
+

05

Log plot of lmer frequency

Iteration #

lo
g(

lm
er

 fr
eq

ue
nc

y)

(a)

0 10000 30000 50000

0
50

00
15

00
0

Sizes of repeat family

Iteration #

Le
ng

th
 o

f r
ep

ea
t f

am
ily

(b)

Figure 5.5: The progression of the RepeatScout algorithm as a function of iteration
number. (a) The frequency of l-mer visited as a function of iteration demonstrates
that, though there are some very high-frequency l-mers checked at the beginning
of the program, the vast majority of iterations are spent in low-frequency l-mers.
This affects the overall strategy necessary for scaling. (b) The length of the repeat
family discovered is not a monotonic function, meaning that simply stopping the
algorithm early—under the mistaken impression that all of the biologically useful
repeat families had been found—would lead to lost information.
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Figure 5.6: The distribution of repeat family size in (a) the Whole Genome Re-
peatScout library and (b) the RepBase Update library. The RepeatScout WG
library tends to have longer repeat families in it than the RepBase Update library.
It is not immediately clear why this should be so.



102

Histogram of # WG instances

Number instances

F
re

qu
en

cy

0e+00 4e+04 8e+04

0
10

0
30

0
50

0

(a)

Histogram of # WG instances

Number instances

F
re

qu
en

cy

0e+00 4e+04 8e+04

0
10

0
30

0
50

0

(b)

Figure 5.7: The distribution of the number of instances of families in (a) the Whole
Genome RepeatScout library and (b) the RepBase Update library. The human
genome was masked with RepeatMasker as described below and the identity of
each masked genomic locus was gathered from the output. Each RepBase library
element tends to match a larger number of genomic loci than the WG library,
perhaps indicating that many divergent repeats are collapsed into a single RepBase
library entry.
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an Alu sequence) may be fragmented into smaller pieces, or recombined with other

pieces that co-occur frequently enough to surpass the RepeatScout thresholds. Fur-

ther, there is no guarantee that the same repeat family cannot be rediscovered,

provided that it contains instances that are moderately diverged and therefore

cannot be fully masked in a single iteration. These problems complicate the task

of comparing repeat libraries through a simple bipartite graph

In order to compare different libraries, we define two metrics, coverage

and duplication. Let X and Y be sets of repeat families (i.e., libraries), and define

∼ to be a relationship on sets of sequences such that x ∼ y with x ∈ X and y ∈ Y

mean that x is roughly equivalent to y. We can use any intuitive notion of distance

to implement ∼, so we choose to rely on the percentage of bases of the longer of

x and y covered by a significant blast hit: if hitlen(x, y)/ max(|x| , |y|) ≥ 66%, we

say that x ∼ y. The value hitlen(x, y) is computed as the length of a BLAST

alignment between x and y that is similar with no more than 10% divergence.

With this relationship defined, it is reasonable to ask for those elements of X that

match to Y . Since there may be multiple hits in X that match some element y ∈ Y ,

we denote with Cy
∼(X, Y ) the set {x ∈ X : x ∼ y}. Finally, let C∼(X, Y ) be the

set {Cy
∼ : y ∈ Y and |Cy

∼| ≥ 1}, the collection of all equivalence classes between X

and Y . Define Coverage(X, Y ) to be |Cy
∼(X, Y )| / |X|. Define Duplication(X) to

be |X| / |C∼(X, X)|. Coverage is an intuitive notion of the percentage of X that

has a representative in Y . Duplication is an intuitive notion of the average number

of times that any particular repeat x ∈ X is present in X. A duplication level of

2 means that each unique repeat in X is represented twice. A coverage of 25% of

X in Y means that a quarter of the repeats in X also exist in Y , according to the

above filtering thresholds.
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Table 5.1: The coverage between the three repeat libraries: RepBase, RepeatScout
run on the X chromosome (Chr X), and RepeatScout run on the whole genome
(WG). For instance, 27% of the RepBase Update library was present in the Re-
peatScout (ChrX) library. Diagonal elements are the duplication level of the li-
brary.

RepBase Chr X WG
RepBase 131% 27% 40%
Chr X 61% 120% 73%
WG 45% 45% 150%

Table 5.1 demonstrates a number of interesting results. As expected, the

RepBase library contains a significant percentage of the ChrX library. Surprisingly,

the WG library did not contain the entirety of the ChrX library; this seems to

happen for two reasons. First, the specific sequences used to construct the repeat

libraries with the fit-preferred alignment were different in each case which implies

that the libraries should not be equivalent (but they should certainly be similar).

Second, the distributed version of RepeatScout uses a different hash function to

store the frequency table; because ties in the frequency are broken essentially on

a first-come, first-served basis, different hash functions lead to different orders of

iteration and therefore different results. A more direct measure of overlap can

be seen by comparing specific repeat instances, and in this case it is clear that

the Whole Genome version of RepeatScout recapitulates almost all of the ChrX

library.
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5.D.2 Comparing Repeat Instances

The three libraries (RepeatScout run over the X chromosome (chrX),

RepeatScout run over the whole genome (wg), and RepBase update filtered for

primate signals) were used with RepeatMasker to mask the entire human genome,

using the “quickscan” setting (-qq). We undertook the removal of one signifant

source of repeats that we would ideally like to not include in the output library:

coding sequences that we expect to be represented in the de novo repeat libraries

because of gene familes, pseudogenes, and functional protein domains. While we

are deliberately avoiding the problem of classifying repeat structures into higher-

level biological objects (eg, segmental duplications, transposons, etc), this partic-

ular class of repeat structures poses significant problems if they are masked out

prior to further genomic analyses, since these structures are often precisely the

items of interest, so it is sensible to at least quantify how much coding DNA may

be removed during this step. We extracted the exon annotations from the En-

sembl version 39 annotations for human and removed any repeat instance that

overlapped the exon for any number of nucleotides. Figure 5.8 categorizes masked

bases according to which libraries covered that base. We conclude that the de novo

algorithm masks an additional 5% of the genome over a human curated library.

An ideal result would be that the whole-genome version of RepeatScout

returns an insignificantly larger library than the original RepeatScout, or PILER-

DF, or any of the other de novo programs. This would be ideal for two reasons:

first, the necessary computational infrastructure to run these smaller programs is

simpler than the whole-genome-scaled RepeatScout; and second, we could then

consider the problem essentially solved. Unfortunately, this does not appear to be

the case. It is of course notable that the RepBase library still matches portions
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Figure 5.8: The distribution of masked repeat instances across the human genome
shows several important features. (a) a Venn diagram of all repeat instances,
including those that overlap known exons shows that additional repeat families
clearly can be found by de novo algorithms run over an entire genome, as opposed
to a single chromosome. (b) When exons are removed, it is clear that the additional
bases masked are not due in any significant portion to coding sequences.
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of the genome that RepeatScout’s libraries do not3, but this is to be expected—

de novo tools are helpful but will never replace human-curated lists of repetitive

structures. Indeed, we expect that the results of RepeatScout could serve as input

to a more standardized curation strategy that relies less on uncodified expertise

concentrated in a few research groups across the world. We also point out that Re-

peatScout is one algorithm that can be used for de novo repeat library constructure,

but that additional techniques need to be investigated to form a more comprehen-

sive view of all of the repetitive sequence structures in mammalian genomes. We

hope that this work can serve as a guide toward solving those (presumably harder)

scaling problems.

3But notice that the whole genome RepeatScout library masks significantly more than the RepBase
library.
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Open Problems

This work is a look at the tools used in the branch of computational life

sciences. It would be an overstatement, obviously, to claim that it has covered

any significant portion of “tools” that researchers in “the life sciences” use for any

sort of study, much less high-throughput studies (a term so vague these days that

it is nearly useless). However, what I lack in breadth hopefully I make up for

in depth: I have examined two specific problems in bioinformatics and improved

the state of the available tools. Additionally, I have described here a contribution

to grid computing that I feel will make a large practical difference in the lives

of bioinformatics researchers. In this chapter, I will briefly cover several open

problems raised by the previous chapters.

6.A Commodity grids

The GridWizard software as described is a step in the right direction

toward making large compute problems easy for personnel without highly techni-

108



109

cal backgrounds. Like any piece of software, it is never really “complete”, only

in stages of monotonically decreasing brokenness. One of the Achilles’ heals of

framework-type applications that make heavy use of Dependency Injection is that

configuration of the framework becomes a significant burden on the end user.

Though we are currently converting GridWizard from a custom-coded container

framework to an industry standard one (Java Spring) we are simply trading one set

of obtuse XML files for another set of slightly-less-obtuse XML files. Utlimately,

success or failure of this software product will be based on ease of use more than

architectural design considerations. For the software to meet this goal, it is clear

that three things need to be provided to the user:

1. A friendly user interface to configure the GridWizard framework for the

execution environment(s) available to the user. This ideally includes a web-

based repository of clusters available across scientific institutions.

2. A friendly user interface for both the installation of executables on remote

clusters as well as the launching and monitoring of simple compute jobs.

3. An opportunistic data movement strategy, embedded within the framework.

Currently, if 100 jobs are started that each need access to data files stored on

a remote resource, 100 simultaneous requests are made to a file server which

leads to intolerably high load on the file server.

While there have been attempts (a la GridFTP, SRB, or BitTorrent) to abstract

data transfers into higher-level services, this violates the overall goal of providing a

simple solution to end users. It is our position that users will never be particularly

interested in setting up a root certificate authority that will sign Globus X509

proxies. In fact, we expect that the vast majority of users will not even care what
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an X509 proxy is. All of the above improvements can be made with the current

code base and are scheduled for the next major release.

It has become clear over the last decade that the distribution of bioin-

formatics algorithms (in particular) represents a significant fraction of the effort

involved in publication. We are not satisfied with the current state of affairs with

how academic researchers distribute code. On the one hand, fairly well-polished

applications (e.g., GOMiner, GSEA-P, GenePalette) can be downloaded and run as

a GUI application. On the other hand, software that has less attention to usability

(e.g., ABA, FastR, RepeatScout) is either bundled as a web server or distributed

as a set of command-line programs with a README file.1 Based on some sort

of market demand function, highly-used software (e.g., MEME) will improve in

terms of stability and feature set, but usability is still rarely a concern. The main

difficulty to other researchers is that the tools themselves are not interoperable in

any form. A GUI may work well for a typical dataset produced by a biological lab,

but in a computationally-driven survey may be inadequate.

While a Service Oriented Architecture (usually implemented using Web-

based Services) addresses the problem of interoperability, it imposes a heavy bur-

den on individual labs to provide hardware resources for other researchers to use.

We propose instead the Service Oriented Scheduling Problem. In a “Scheduled

Service”, a remote host (eg, at EMBL) would provide a package implementing an

algorithm along with an ontological description of the algorithm itself—what inputs

and outputs it is expecting, in which formats—along with the specific scheduling

algorithm necessary to run it successfully on data. The scheduling itself, however,

would be performed by some other user’s system on an execution environment that

1This is a generalization, but I feel it is not too far off the mark.
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only he has access to (eg, at SDSC). This is superficially similar to workflow-style

systems such as Taverna [101] but since all computation is done locally to the

data on resources that are devoted to that particular user, the overall burden on

the algorithm provider is eliminated. It is this step that we feel poses an impasse

to the widespread adoption of anything resembling a grid-like computing system.

Such a system would also eliminate the need for a public-key infrastructure that

identifies users, which is often one of the more brittle portions of a grid system.

One potential benefit of a Scheduled Service would be the construction of

a uniform and publicly accessible namespace of algorithms. In a sense, this simply

recapitulates the design goals of the caBIG project (indeed, much of that software

could probably be reused here). A user in this context could simply request some

algorithm that solves a particular problem (e.g., the Motif Finding problem) that is

compatible with the inputs and outputs he or she has available. The computation

would—as above—take place on local resources.

6.B Comparative Genomics

The bioinformatics literature, for many years, abounded with papers that

presented motif finding algorithms (using comparative genomics, or high through-

put data, or any of a number of other features). The output from such papers,

aside from the algorithm, is a list of motifs sorted by score. I have often observed

that this particular output is often not terribly useful to a biologist. In fact, I

claim that the use of an algorithm in this context is simply to produce hypotheses;

these hypotheses then need to be tested using specific biological protocols and data
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analysis procedures2. However, a motif in the absence of any other information is

nearly impossible to “test”, since it is not a well-formed biological hypothesis. In

an ideal world, one could build an algorithm that would produce a sequence motif

that was biologically significant, along with an estimate of what that significance

is: “ATTCGACGT modulates gene expression in blood cells, with probability

99.6%.” Not living in an ideal world, however, one instead needs to settle for

vague guesses at the function (or non-function) of a motif. These guesses are fre-

quently generated by analyzing the set of sequences (e.g., genes) that have a strong

match to the motif, and leveraging the large quantity of publicly available data.

Until recently, there has been a lack of both usable tools and well-tested data for

this task. Though the situation is changing, there is still little agreement among

researchers exactly what constitutes “sufficient evidence” for a sequence motif to

be considered putatively functional. As a community of researchers, we would ben-

efit substantially from access to improved tools and more rigorous computational

protocols in this area.

Similarly, I am not entirely satisfied with the generation of background

sequences for statistical checks presented in Chapter 4. The “standard” approach

to test the statistical overrepresentation of a motif (or its over-conservation) is

to take the motif and shuffle its columns—for example, “ATGGCATG” becomes

“TCTGGAGA”—optionally preserving biased dinucleotides such as CpG pairs.

This procedure is also valid with a position weight matrix representation of a

sequence motif. Unfortunately, for long motifs this process introduces a potential

problem. Most short strings are present in the genome, at least in small numbers,

merely by chance. However, with long motifs (say, 20 base pairs), not all instances

2To be sure I am neither the first nor the last to notice this.
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can exist even in theory—420 = 1×1012, roughly a thousand times larger than the

genome. Thus, shuffling an arbitrary string will likely lead to a new string that

does not exist; asking if a string that does not exist in the genome is conserved is an

obviously stupid question that does not shed any light on the statistical properties

of the motifs under investigation.

One approach to better understanding the conservation of strings in the

genome is to identify large blocks of several genomes that we have good evidence

are evolutionarily related. Even in the absence of strict alignments which can be

very noisy and prone to inaccurate identification of mutations and polymorphisms,

we can study the overall conservation with a method similar to that presented in

Chapter 4, for every string in the genome. This would yield two benefits: first, we

would have the complete and empirical distribution of everything in the genome

which can lead to exact measures of signifcance3; second, clever algorithms to

identify highly conserved strings will essentially be unecessary. Several year ago,

this suggestion would have been laughable because of the amount of computation

required, but at the time of this work’s writing, it is feasible—a big job, to be sure,

but doable.

6.C Repeat library analysis and annotation

Finally, we turn to problems raised in the previous chapter regarding re-

peat identification. With the ability to run a repeat library construction algorithm

over an entire genome, the natural next step is to run the algorithm on every pub-

licly available genome assembly. An additional insight could be gained into the set

3As opposed to estimates derived from statistical assumptions that may or may not be valid.
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of libraries if one could then compare the resulting libraries in a phylogentically

meaningful way. One of the challenges with this is that—at least in the case of

RepeatScout—the libraries themselves are a tangled hodge-podge of repeat units.

Defragmenting the library4 is a necessary first step in identifying the lineage of

specific elements. Unfortunately, this will necessarily be algorithm-specific, in that

the methods of library cleaning will depend on the algorithm used to construct the

library in the first place.

Like the problem of identifying the proper family structure of a repeat

library is the problem of removing from the library repeat sequences that repre-

sent non-transposable elements (for instance, segmental duplications and exons).

Though some research has attempted to identify segmental duplications from whole

genome shotgun assembly data [117], the problem is currently ill-defined and con-

troversial. It is not clear how segments of the genome duplicate themselves or what

the dynamics of the duplication process are; a significant risk in building a repeat

classification algorithm would be that of confirmational bias: a pet hypothesis on

segmental duplication mechanics could probably be easily supported by sequence

data alone, which could lead to a speciously simple algorithm for classification that

only confirms the pet hypothesis.

In short, I must come to a disappointing conclusion: in answering three

questions, I have raised at least six more interesting but nearly intractable ones.

4Identifying all subfragments of a large sequence s.
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