
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Within Reach? Habitat Availability as a Function of Individual Mobility and Spatial 
Structuring.

Permalink
https://escholarship.org/uc/item/3fc4f1f2

Journal
The American Naturalist, 195(6)

ISSN
0003-0147

Authors
Matthiopoulos, Jason
Fieberg, John
Aarts, Geert
et al.

Publication Date
2020-06-01

DOI
10.1086/708519
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fc4f1f2
https://escholarship.org/uc/item/3fc4f1f2#author
https://escholarship.org
http://www.cdlib.org/


1 

 

Within reach? Habitat availability as a function of 1 

individual mobility and spatial structuring 2 

Abstract 3 

Organisms need access to particular habitats for their survival and reproduction. However, even 4 

if all necessary habitats are available within the broader environment, they may not all be easily 5 

reachable from the position of a single individual. Many Species Distribution Models (SDMs) 6 

consider populations in environmental (or niche) space, hence overlooking this fundamental 7 

aspect of geographical accessibility. Here, we develop a formal way of thinking about habitat 8 

availability in environmental spaces by describing how limitations in accessibility can cause 9 

animals to experience a more limited or, simply, different mixture of habitats than those more 10 

broadly available. We develop an analytical framework for characterizing constrained habitat 11 

availability based on the statistical properties of movement and environmental autocorrelation. 12 

Using simulation experiments, we show that our general statistical representation of constrained 13 

availability is a good approximation of habitat availability for particular realizations of 14 

landscape-organism interactions. We present two applications of our approach, one to the 15 

statistical analysis of habitat preference (using step-selection functions to analyze harbor seal 16 

telemetry data) and a second that derives theoretical insights about population viability from 17 

knowledge of the underlying environment. Analytical expressions for habitat availability, such 18 

as those we develop here, can yield gains in analytical speed, biological realism and conceptual 19 

generality by allowing us to formulate models that are habitat-sensitive, without needing to be 20 

spatially explicit. 21 

 22 
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 26 

1. Introduction 27 

Habitats within an environment can be thought of as a combination of different values of 28 

environmental variables (e.g. abiotic conditions or biotic resources). Individual organisms may 29 

require multiple habitats to meet their biological needs, but these habitats may not all be equally 30 

accessible. Across species and life stages, individuals vary in their mobility, from complete 31 

sessility (e.g. individual plants), through central-place foraging (e.g. colonial breeders), to 32 

expansive nomadism (e.g. free-ranging grazers). Additionally, spatial structuring of the 33 

landscape may create separation between different types of vital habitats. Therefore, spatial 34 

heterogeneity and an organism’s mobility determine the availability of habitats experienced from 35 

any given position in geographical space. Approaches used to quantify and understand space use 36 

(e.g. resource selection functions, Manly et al. 2004) and spatial population dynamics (e.g. 37 

Matthiopoulos et al. 2015, 2019) are often formulated in environmental (or niche) spaces. 38 

Because such approaches are not explicitly geographic, they are prefaced by an “equal 39 

accessibility” assumption, hence ignoring this issue. However, it is becoming increasingly clear 40 

that the precise calculation of habitat availability can dramatically affect the inferences and 41 

predictions drawn from such models. For example, when analyzing animal usage data, we can be 42 

led to infer preference, avoidance or indifference for the same habitats depending on our 43 

definition of habitat availability (Beyer et al. 2010). This makes inferences from species 44 

distribution models sensitive to habitat availability (Randin et al. 2006, Zurell et al 2009, 45 

McLaughlin et al. 2010, Sinclair et al. 2010, Matthiopoulos et al. 2011, Wenger & Olden 2012, 46 

Aarts et al. 2013, Northrup et al. 2013). 47 

To account for accessibility, some approaches use expert opinion (e.g. ad-hoc buffers in step 48 

selection functions – Thurfjell et al. 2014), simultaneous estimation (e.g. Horne et al. 2008, 49 
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Avgar et al. 2016), or empirical heuristics (e.g. post-hoc model selection criteria in Paton & 50 

Matthiopoulos 2016). Most of these papers describe habitat availability in terms of summaries of 51 

samples taken from some spatial domain of relevance. For example, the average temperature 52 

prevailing in the neighborhood of a foraging animal can be calculated from a sample of 53 

temperatures measured (or remotely sensed) at points selected randomly or systematically from 54 

within a circular buffer centered at the position of the forager. Such summaries allow us to 55 

incorporate availability into analyses of space use in a particular landscape, but at the expense of 56 

analytical tractability and generality across new landscapes with similar properties but limited 57 

data. Performing mathematical, rather than sampling-based or numerical, analyses with 58 

geographical layers is particularly difficult, because parametric descriptions of heterogeneous 59 

landscapes are challenging to construct. Furthermore, not all the details and geographical 60 

features of landscapes are necessarily relevant for summaries of habitat availability. 61 

 An alternative approach is to statistically describe the salient attributes of species mobility 62 

and landscape structure and use such statistical summaries to define habitat availability in a 63 

compact mathematical form that is an adequate approximation of the neighboring environment 64 

from the position of any given individual. This approach is both numerically efficient in 65 

describing population processes within a given landscape and generalizable across spatially 66 

similar landscapes.  67 

 The objective of this paper is to formally develop the concept of habitat availability, starting 68 

from first principles, and to derive expectations about the environment based on its global 69 

statistical properties rather than any particular local configuration of habitats, an approach 70 

similar to statistical mechanics in the physics literature (e.g. Sklar 2015). Principally, the ability 71 

of an individual to move between two or more habitats will depend on how far apart they are (a 72 

distance determined by the spatial autocorrelations of the environmental variables making up 73 

these habitats) and how easily the individual can move between them (as determined by various 74 
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mobility constraints) (Matthiopoulos 2003). Formalizing these effects of spatial autocorrelation 75 

and mobility requires clear conceptual definitions of habitat, and of unconstrained 76 

(unconditional) habitat availability. We therefore begin with a brief review of useful notation and 77 

terminology (section 2), followed by a mathematical model for conditional habitat availability 78 

(section 3), which quantitatively maps accessibility in geographical space (the spatial locations 79 

that an organism can access from any given position) to accessibility in environmental space (the 80 

habitats that an organism can be expected to access from the habitat corresponding to its given 81 

spatial position). Given the rather abstract nature of this framework, we provide three types of 82 

intuition-building illustrations. In section 4, we compare measures of habitat availability 83 

calculated using our new framework and using a direct sampling approach applied to a buffer 84 

zone around a particular location. In section 5, we use our framework to derive an analytical 85 

form of the likelihood for step-selection functions (an approach commonly used to quantify 86 

habitat selection from fine-scale telemetry data – Thurfjell, Ciuti & Boyce 2014, Hooten et al. 87 

2017). In section 6 we use our framework to investigate population fitness for territorial species. 88 

This application introduces additional mathematical tools that can allow the formulation of 89 

general results connecting habitat accessibility, habitat use and population viability.  We 90 

conclude by placing this work in its broader context.  91 

2. G-spaces, E-spaces, habitats and unconditional habitat availability 92 

Models that deal with species-environment interactions frequently differentiate between 93 

geographical space (G-space) and environmental space (E-space), a distinction historically 94 

known as Hutchinson’s duality (Hirzel & LeLay 2008, Colwell & Rangel 2009, Elith & 95 

Leathwick 2009). G-space comprises the three dimensions of latitude, longitude and 96 

altitude/depth, often projected onto a Cartesian system of coordinates. In contrast, E-space can 97 

be high-dimensional, each dimension representing a biotic or abiotic environmental variable, i.e. 98 



6 

 

a continuous, discrete or qualitative random variable representing a condition (e.g. pH, 99 

temperature, sea depth), resource (e.g. soil nutrients, prey, breeding sites) or risk (e.g. predators, 100 

pollution). E-space can be considered identical to niche-space, as originally conceived by 101 

Hutchinson (1957) and MacArthur (1968) although, as extensively argued in the modern 102 

literature (Soberón & Nakamura 2009, Peterson et al. 2011, McInerny & Etienne 2013, 103 

Matthiopoulos et al. 2015), statistical habitat preference models currently fitted in E-space 104 

should not be confused with the niche objects as envisaged by these pioneering thinkers. 105 

 Several papers (Aarts et al 2008, Matthiopoulos et al. 2011, Matthiopoulos et al. 2015 and 106 

references therein), conceptualize habitat as a point x in E-space, the combination 107 

 of specific values for  environmental variables (e.g. geomorphology and 108 

climate variables combining into the characteristic makeup of, say, “polar habitat”). Elsewhere, 109 

and in colloquial use, “habitat” has been described in a species-dependent way, as the region in 110 

geographical space in which an organism lives (e.g. “polar-bear habitat”). The two definitions 111 

are not interchangeable (see Hall et al. 1997). We opt for the former definition because it allows 112 

objective comparisons between species and quantitative gradations of suitability. Subject to this 113 

definition of habitat, we can introduce the unconditional availability ( ) of a particular habitat 114 

 as the relative frequency (i.e. the probability density) with which that habitat occurs across 115 

the whole landscape.  116 

 Data-derived objects recorded in G-space are typically complicated and difficult to describe 117 

parametrically. For example, describing even a single altitude contour on a map by means of a 118 

mathematical formula is a non-trivial task. In contrast, objects in E-spaces are generally simpler, 119 

as we illustrate in Fig. 1 by visualizing the simple case of a single environmental variable (i.e., 120 

one dimensional E-space) measured in a linear region (i.e., one-dimensional G-space). The way 121 

in which a multimodal variable in G-space (Fig. 1b) gives rise to a much simpler (in this case, 122 

unimodal) frequency histogram in E-space (Fig. 1a) is typical of all landscapes, because multiple 123 

    x ={x1,…,xK }  K

  fx

 x
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occurrences in G-space of the same habitat are condensed into a single habitat frequency in E-124 

space. Therefore, most species distribution models (SDMs) are developed and fitted in E-space 125 

rather than G-space (Hooten et al. 2017). That is not to say that a description of habitat 126 

availability in E-space based on a simple unimodal distribution is always sufficient. Since habitat 127 

availability can be a complicated object (Matthiopoulos et al. 2015), a parametric description of 128 

the unconditional availability of habitats may be suitably obtained as a mixture of multiple (e.g. 129 

Gaussian) components in K-dimensional space. For example, Matthiopoulos et al. (2015) used 130 

the well-established numerical library mclust (Fraley et al. 2005, Fraley et al. 2012) in the R 131 

environment (R Core Team, 2016) to approximate unconditional habitat availability in K 132 

environmental dimensions as a Gaussian mixture of L components 133 

  , (1) 134 

where  is the lth component (a K-dimensional Gaussian probability density function) of the 135 

mixture,  is the weight associated with the lth component (such that ),  is the 136 

mean (i.e. the location in E-space) of the lth mixture component along the kth environmental 137 

dimension and  is the characteristic standard deviation along the kth environmental dimension.  138 

Such Gaussian mixtures are universal approximators. Economy in the number L of mixture 139 

components could be achieved by extending eq. (1) to allow a different standard deviation for 140 

each component. However, as in Matthiopoulos et al. (2015), we prioritize mathematical 141 

uniformity of the mixture components over parsimony. We therefore allow for a large number of 142 

components, but constrain them to have the same standard deviation .  143 
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3. Conditional habitat availability  144 

The relative simplicity of E-spaces (compared to G-spaces) comes at a price, because by 145 

condensing the environment into the relative frequencies of different habitats, we lose 146 

information on the geographical nearness between habitats. Correcting this problem requires an 147 

appropriate augmentation of E-space to account for spatial proximity, leading to the notion of 148 

conditional availability, i.e. the expected availability of habitat x to an organism that is currently 149 

located in coordinates s, characterized by habitat z. Importantly, we seek an expression for 150 

conditional availability that is not reliant on a neighborhood in G-space defined around a 151 

particular location s, but rather, on the mixture of habitats typically encountered around a 152 

particular habitat z. Such an expression would enable us to describe the key patterns in spatially 153 

local availability, without the need for models to become spatially explicit.  154 

 Fig. 1 shows this concept in one spatial dimension and for one environmental variable. In this 155 

low-dimensional illustration, the general notion of a habitat x is simply a particular value  of 156 

the single environmental variable  and the general location s in G-space is the position s on a 157 

single spatial axis . The unconditional availability (i.e., the frequency in E-space) of a 158 

particular value  of the environmental variable  is . Collecting such frequencies for all 159 

values of the environmental variable forms a probability density function in E-space (Fig. 1a).  160 

 Subsequently, we focus on all the spatial locations  (the dots in Fig. 1b) that are 161 

characterized by a particular habitat = 30. An organism with constrained mobility that finds 162 

itself in one of these locations will only be able to experience neighboring locations in space. 163 

Such localized access to G-space in the neighborhoods of the points  is illustrated in Fig. 164 

1d using Gaussian kernels, which describe the accessibility of a point at distance r from the 165 

current location . These kernels represent the constraints on organism mobility. For example, 166 

if we were considering habitat selection by a free-ranging animal over a particular time scale 167 

 x

 X

 S

 x  X  fx

   s1,…,sn

 z

   s1,…,sn

 si
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(say, a year), the kernel could represent Brownian motion over that time scale. Alternatively, if 168 

the study organisms are not free-ranging (e.g., because they must provision offspring located at a 169 

central place or because they must actively defend a territory), the kernel can be thought of as the 170 

result of an Ornstein–Uhlenbeck process (a random walk with a central tendency – Blackwell 171 

1997).  An isotropic mobility kernel in any number of spatial dimensions can be recast as a 172 

function  that describes the probability of an organism reaching a location at distance r 173 

away from its current position, over the time period of interest. For data collected infrequently 174 

enough that locations can be assumed independent, the kernel can be viewed as determining 175 

availability at the home range scale, similar to Horne et al.’s (2008) synoptic model of animal 176 

space use. Alternatively, our kernel can be used to model perception range. In particular, Fagan 177 

et al. (2017) make the case for mathematical formulations of semi-local perception (an 178 

intermediate between the extremes of omniscience and purely local information about habitat) 179 

and use Gaussian kernels to describe the diminishing ability of an animal to perceive habitats at 180 

greater distances.  181 

 Since the values of environmental variables in G-space are spatially autocorrelated, 182 

neighboring points in E-space (i.e. similar habitats) will tend to be found close to each other in 183 

G-space as well. Hence, proximity between locations in G-space must translate to proximity 184 

between their corresponding habitats in E-space. This is schematically represented by the single 185 

dashed curve in Fig. 1c peaking in the neighborhood of habitat z in environmental space.  186 

 For those animals viewing the world from the vantage points of habitat z, this localized 187 

sampling in G-space (the dots in Fig. 1f) yields a subjective sample of the values of X in E-space 188 

(solid black line in Fig. 1e). The comparison between the two curves shown in Fig. 1e represents 189 

the main concern of this paper: although, globally, the landscape contains habitats whose 190 

frequency is described by the light grey curve (the unconditional availability ), an organism 191 

  h(r)

 fz
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located in a particular habitat  may be surrounded by a considerably different habitat 192 

composition as shown by the dark curve (the conditional availability ). 193 

 To write an expression for conditional availability  of habitat  from a position 194 

characterized by habitat z, we first consider all pairs of points in G-space separated by a distance 195 

r. If the first point is characterized by habitat z, then the probability that the second point is of 196 

habitat x is denoted by . If the organism is at the first point, then the probability that it can 197 

reach across a distance r is denoted by . Therefore, the product 
 
represents the 198 

probability that habitat x is found at distance r from habitat z, and that it is accessible by the 199 

organism located at habitat z. To convert this into a probability density function for conditional 200 

availability, irrespective of the distance between two points, we can integrate the product across 201 

distances r: 202 

 .  (2) 203 

The probability density  encompasses the spatial autocorrelation of habitats, as well as the 204 

overall availability of habitat , and the probability density represents limitations in 205 

accessibility. Since we require  to be a PDF of habitat availability, eq. (2) contains a 206 

normalizing constant that integrates over all target habitats x: 207 

 .  (3) 208 

In one spatial dimension the accessibility kernel can be defined as one-dimensional Gaussian and 209 

its associated distance function will then be half-normal: 210 

 ,  (4) 211 

 z
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where the parameter  determines the rate at which accessibility decays with distance from the 212 

current position. This can be extended to two spatial dimensions by assuming a two-dimensional 213 

Gaussian density for the position of the organism. This diffusion-type model implies a Rayleigh 214 

distribution (Hughes 1995) for the distance function, 215 

 .  (5) 216 

Non-Gaussian formulations of the mobility constraint are possible, as long as they are well 217 

behaved under integration (for an explanation of this constraint, see eq. (11) below). For 218 

example, if we wished to capture the behavior of animals that interspersed localized movement 219 

by occasional long-distance forays, we may choose to implement the kernel as a fat-tailed 220 

distribution. In that case, a probabilistic model such as the t-distribution would be preferable to 221 

one whose expectations are pathological, like the Cauchy distribution (Feller 1966). 222 

 The conditional habitat availability at distance r can be derived from the relationship linking 223 

conditional and joint probabilities 224 

  , (6) 225 

where  is the joint probability density of habitats x and z, quantifying the probability that 226 

they can be encountered at distance r from each other. In this expression,  is the marginal 227 

distribution . Since the destination habitat is integrated out of this expression, 228 

the marginal is independent of the distance between x and z, hence . Therefore, 229 

irrespective of the particular form of the joint probability distribution of habitats under the 230 

requisite distance r, the unconditional availability of habitats is preserved.  231 

 The joint distribution  must be constructed from the two marginals  (i.e. the 232 

unconditional habitat availabilities of habitat x and z, respectively) by introducing a dependence 233 

ω

  
h(r) = r

ω 2 exp − r 2

2ω 2

⎛
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⎞
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 fz
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  fz (r) = fz

  
gx ,z (r)   fx , fz
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structure. Dependence structures between any two marginal distributions can be constructed by 234 

the method of copulas (Joe 2014), but this is a computationally prohibitive approach because it 235 

relies on two inversions of the probability density function (PDF-to-quantile function and back 236 

again). Furthermore, in our application, the problem is particularly challenging because the 237 

marginal distributions are high-dimensional mixtures (eq. (1)) describing the availability of 238 

multiple dimensions in E-space.  239 

 An alternative proposed by Sawo et al. (2006) for constructing joint PDFs from mixture 240 

marginals is to first decompose each marginal  into its L mixture components, and 241 

subsequently combine each component from one marginal distribution (following eq. (1),  for 242 

) with every mixture component from the other marginal (which is identical to the first, 243 

but specified for another habitat z so, again, following eq. (1),  for ). The 244 

weighted sum of these pairwise combinations then yields the joint mixture. 245 

   , (7) 246 

where  are a new set of weights for the pairwise combinations between  and  247 

that, for any given pairwise distance r, must satisfy the following conditions 248 

   (8) 249 

Constructing the joint availability function by means of this weighted superposition of products  250 

( ) implies independence within the pairwise combinations. For a given number of 251 

mixture components, the quality of the approximation of G-space correlations within the joint 252 

distribution  could be improved by allowing the covariances of each mixture component 253 

to be non-zero. Indeed, it would be possible to allow the variance-covariance structure of each 254 
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Gaussian component to be unique. These kinds of approaches would lead to efficiencies in the 255 

number of Gaussian components needed. At the other extreme, the approach we have used 256 

employs large numbers of Gaussian components, all identical and with zero covariances. As the 257 

number of components increases, their variances decrease and so does the influence of the 258 

assumption of within-component independence. The decision to employ many, identical and 259 

simple mixture components was made for analytical tractability. Given that no covariance is 260 

assumed within the individual mixture components, the new weights  are the only 261 

remaining route of generating a covariance in the joint distribution . In other words, we 262 

are seeking to construct a covariance structure in 
 
by reweighting radially symmetric 263 

Gaussian components. This will introduce some smoothing in the final result (see numerical 264 

examples in section 4).  265 

 To derive the new weights , Sawo et al. (2006) propose an algebraic approach, which 266 

unfortunately is quite time-consuming for mixtures of multiple components and often fails to 267 

satisfy the positivity requirement (the first condition in eq.(8)). We therefore take a more 268 

heuristic approach. In Appendix I, we provide an iterative normalization algorithm that 269 

constructs a matrix  satisfying the conditions in eq. (8) for a given value of r. The distance r 270 

determines the strength of correlation between the two dimensions is. If the distance is small, 271 

then the organism will expect to find itself in very similar conditions, which implies that the joint 272 

distribution must have high correlation. In contrast, if the organism takes a very large step, then 273 

it may find itself in any habitat, with probability proportional to that habitat’s global availability. 274 

The correlation strength as a function of distance r is extracted directly from the environmental 275 

data, using an empirical autocorrelation function (ACF – see Appendix I).  276 

 Placing eqs (7) and (1) into eq. (6) gives	277 

  
ψ l ,m(r)

  
gx ,z (r)

  
gx ,z (r)

  
ψ l ,m(r)
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 .  (9) 278 

Replacing into eq. (2) and rearranging the integral produces  279 

 .  (10) 280 

In Appendix I, we discuss how the integral in the above expression can be evaluated numerically 281 

for a single environmental variable. Henceforth, we replace these integrals by the shorthand 282 

notation , defined as 283 

 .  (11) 284 

Note that these quantities satisfy the unit-sum requirement (from the second part of eq. (8)),  285 

 ,  (12) 286 

so they can be thought of as a set of new weights to replace the original quantities . This 287 

simplifies the overall expression in eq. (10), even after expanding the normalization constant: 288 

 .  (13) 289 

In Appendix II, we show that the denominator in this expression is the marginal distribution of 290 

availability, yielding 291 

 .  (14) 292 
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This prompts the identification of the numerator as the joint probability density :  293 

 . (15) 294 

Plotting the numerator of eq. (14) for different mobility constraints (Fig. 2) illustrates the 295 

operation of the calculations of Appendix I. At low mobility (Fig. 2a) the correlation between 296 

different types of habitat is strong, but increasing the mobility of the organism (as shown in Figs 297 

2b and 2c, by using higher values of ), moves the joint distribution closer to the independence 298 

scenario .  299 

 The result in eq. (15) is already applicable to one, two or more spatial dimensions (via an 300 

appropriate specification of , see examples in eqs (4) and (5)). In principle, eq. (15) is also 301 

applicable to multiple environmental dimensions, but this would also require additional 302 

methodological work to generalize the algorithm in Appendix I, so as to include any cross-303 

correlations between environmental variables in addition to their auto-correlations. However, 304 

using the algorithm of Appendix I in its current form for many environmental variables is also 305 

possible if they can plausibly be assumed to be independent of each other. The extensive 306 

literature on collinear environmental variables can be used, either to test for non-independence 307 

between environmental dimensions, or (e.g. via principal components analysis) to construct a 308 

new set of independent environmental variables (Dormann et al. 2013). Given such a set of 309 

orthogonal variables, habitat availability in K-dimensional E-spaces can be written as 310 

   (16) 311 

4. Illustration using direct sampling of availability from G-space 312 

In the preceding sections, we dealt with the problem of restricted accessibility by extending the 313 

mathematical definition of habitat availability. A more direct approach to quantifying availability 314 
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in a particular landscape is to sample around different locations in G-space (as we did in Fig. 1). 315 

It is therefore useful to visualize the outputs of the sampling and analytical approaches on a 316 

simple example for a particular simulated landscape, to help with the interpretation of our 317 

method and to motivate a discussion of Monte Carlo error. 318 

 To generate a joint distribution of habitat availability via sampling, the following steps could 319 

be adopted: 320 

1. Systematically or randomly select a set  of points in G-space. 321 

2. Randomly sample points (in our case, 50) from the vicinity (in G-space) of each  322 

according to an accessibility kernel with mobility parameter . This will generate a set 323 

of satellite points  reflecting the spatial extent of conditional 324 

availability (accounting for both mobility constraint and amount of spatial autocorrelation 325 

in the environmental variables). 326 

3. For every combination of points  extract their location ( ) in joint E-space 327 

and increment their absolute frequency by one.  328 

Using the same simulated landscape throughout this section (see example in Appendix I), we 329 

specified two different mobility kernels across the rows of Fig. 3 corresponding to slow-moving 330 

animals or short time intervals (Figs 3a, 3b) and fast-moving animals or long time intervals (Figs 331 

3c, 3d). The analytical approach in E-space derived in section 3 gave the outputs of Figs 3a and 332 

3c. We compared these with the corresponding plots (Figs 3b and 3d) obtained via the sampling 333 

approach described above. The two approaches give broadly comparable descriptions of the two 334 

mobility scenarios, but the model-based approach yielded a smoother description than the 335 

sampling algorithm. These differences between the analytical and sampling plots are due to two 336 

types of stochasticity. The first relates to Monte Carlo error due to the finite sample sizes taken 337 

from each buffer zone. Small sample sizes will tend to introduce stochasticity in the 338 

    S ={s1,…,sn}

  si

ω

    
U i ={ui,1,…,ui,50}

   
(si ,ui, j )    

x i ,zi, j
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representation. The second relates to the dependence of the sampling approach on the particular 339 

realization of the landscape. Many of its features are essentially a result of chance because they 340 

are likely to change if a different landscape with the same statistical properties is sampled. By 341 

relying on summaries of spatial autocorrelation, the analytical approach is likely to be more 342 

generally applicable to landscapes whose habitat geographies are shaped by similar mechanisms. 343 

 In general, sampling is more direct, but has three disadvantages: 1) it is computationally 344 

expensive (because a large number of focal and satellite points is needed to overcome Monte 345 

Carlo error; this increases rapidly with the dimension of E-space); 2) it is specific to the 346 

particular realization of the environment presented in the study landscape, inhibiting both 347 

understanding about how spatial patterns affect availability and extrapolation to similar 348 

landscapes; and 3) it does not yield a compact mathematical expression such as eq. (15) that can 349 

allow further applications to make algebraic shortcuts.  350 

5. Applied example: Step selection functions for the analysis of telemetry data  351 

Step selection functions are a method of fitting habitat models to animal telemetry data (Fortin et 352 

al. 2005, Thurfjell et al. 2014, Singer et al. 2018). The general step selection model operates in 353 

G-space and describes the likelihood that an animal performs a particular relocation from 354 

position  to position  with environmental attributes . The likelihood  is 355 

described as (see Forester et al. 2009), 356 

  .  (17) 357 

where  describes habitat preferences and  expresses mobility (the “resource-358 

independent movement kernel” described in Forester et al. 2009). The selection function  is 359 

modeled as a log-linear function of predictor variables. Here, as in Matthiopoulos et al. (2015), 360 

   
s j−1   

s j    
x(s j )    

fu (s j | s j−1)

   

fu (s j | s j−1) =
w(x(s j )) fa (s j | s j−1)

w(x(u)) fa (u | s j−1)du
z∈G∫

   
w(x(s j ))    

fa (s j | s j−1)

   w(x)
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we employ a curvilinear polynomial form comprising terms up to 2nd order, to allow for the 361 

detection of optima in the animal’s response to some environmental variables: 362 

 .  (18) 363 

The objective of statistical inference focuses on the selection coefficients . The log-likelihood 364 

function corresponding to eq. (17) is 365 

 .  (19) 366 

The log-likelihood of the entire data set of telemetry data is constructed by combining the 367 

individual likelihoods of all the observed relocations in the data,  368 

 .  (20) 369 

Employing this log-likelihood within standard estimation approaches, specifically, conditional 370 

logistic regression (Fortin et al. 2005), usually involves two simplifying steps (Forester et al. 371 

2009). First, the mobility function  is assumed known, and, second, the non-trivial 372 

integral of eq. (19) is approximated by point-sampling methods. The first simplifying step allows 373 

the term 
 
to be dropped from the log-likelihood, since it contains no parameters 374 

that need to be estimated from the data. The second step deals with the integral by organizing the 375 

telemetry data into strata, each comprising a single focal telemetry location  and a sample (of 376 

size V) of control locations . Controls are selected randomly from the geographical vicinity of 377 

the telemetry observation  immediately preceding  so as to represent the habitat options 378 

that were available to the animal from that previous position. 
 

379 

 These two simplifying steps bring the log-likelihood of eq. (19) within the remit of 380 

conditional logistic regression, which, for the jth point in a telemetry dataset, is written as 381 

   
w(x) = exp γ η ,k xk

η

η=1

2

∑
k=1

K

∑
⎛

⎝⎜
⎞

⎠⎟

γ

   
l(s j | s j−1;γ ) = log w(x(s j );γ )+ log fa (s j | s j−1)− log w(x(u);γ ) fa (u | s j−1)du

u∈G∫

   
l = l(s j | s j−1;γ )

j=1

J

∑

   
fa (s j | s j−1)

   
log fa (s j | s j−1)

  
s j

  sv

   
s j−1   

s j



19 

 

 ,  (21) 382 

where  is the habitat at the jth telemetry location and  is the habitat at the vth 383 

control location. The likelihood is conditional on the location  in the sense that the control 384 

points are selected from within a neighborhood of that location. The above form of the likelihood 385 

is implemented in R, in the form of the clogit() model in the survival library (Therneau & 386 

Lumley 2019), and is therefore frequently used for applied analyses (see review in Thurfjell et 387 

al. 2014). The estimates of the parameters stabilize as the number V of controls selected 388 

becomes large, subject to data storage and computational speed capacity. Indeed, if V tends to 389 

infinity (e.g. ), the likelihood can be replaced by the simpler form 390 

 .  (22) 391 

An alternative approach to obtaining a step selection likelihood, without the need to 392 

sample control points, is to notice that the sum in eq.(22) is proportional to the expected value of 393 

the step selection function in the vicinity of the point . Therefore, given an exact probability 394 

density function of the availability of habitats around the preceding point (i.e. ) we could 395 

rewrite eq. (21) as 396 

 .  (23) 397 

However, in general, an exact form of  will not be available for any given point . We 398 

can, instead, approximate this function by using the habitat characteristics  at the point , 399 

so that . 400 

 401 

   
lCLL(s j | s j−1;γ ) = log(w(x j ;γ ))− log w(x j ;γ )+ w(zv ;γ )
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V
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  402 

This approximation requires knowledge of the unconditional availability of habitats and the 403 

spatial autocorrelation in each environmental variable. If these assumptions hold (see below), 404 

then the log-likelihood in eq. (23) can be rewritten as  405 

 .  (24) 406 

Using the results on conditional availability developed in earlier sections, we show in Appendix 407 

III that the integral involved in this log-likelihood has a closed form solution. Hence, eq. (20) 408 

can be obtained analytically, as 409 

 ,  (25) 410 

where  is an algebraic function of parameters pertaining to habitat 411 

preference and availability. This analytical expression can prove useful in studies with imperfect 412 

or irregular environmental data sets. For example, a number of modern telemetry tags, 413 

particularly in the marine environment, collect in-situ environmental data in addition to location 414 

information (Beringer et al. 2004, Biuw et al. 2007, Hooker et al. 2008, Ericsson et al. 2015). For 415 

environmental variables that are only measured at the location of the animal, our model could 416 

provide a useful description of habitat availability for locations that were potentially accessible 417 

but not visited by the animal. If some representative segments of space have been independently 418 

surveyed to allow us to characterize the statistical properties of the distribution of these variables 419 

(even if high-resolution covariate layers are not available exactly in the vicinity of the telemetry 420 

data) then these can supplement the analysis. In addition, for temporally irregular data, our 421 

model’s mobility kernel can be used to give a varying degree of accessibility, depending on the 422 

time interval between locational fixes (a problem also considered in Johnson et al. 2008, 423 
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Johnson, Hooten & Kuhn 2013). This flexibility can be extended to account for different modes 424 

of mobility (e.g. as a result of diurnal activity patterns).  425 

 Two key assumptions are required to ensure the modelling approximation in E-space provides 426 

an adequate approximation to conditional habitat availability: 427 

1. Representativeness assumption. The data from which the unconditional habitat 428 

distribution is derived must be representative of the landscape on which the method is to 429 

be applied. Therefore, we require the marginal distributions to be accurate, even if the 430 

environmental layers are not known exactly. In a sufficiently large spatial arena, this 431 

assumption can be satisfied without the need for high-resolution data. Any large point-432 

sample will suffice as long as it is collected systematically or randomly from the region 433 

of interest or a region with similar properties.  434 

2. Stationary autocorrelation function assumption. The shape of the autocorrelation 435 

function must be the same between the regions used for training the approximation and 436 

the geographical region of application. This assumption can be satisfied without the need 437 

for spatially expansive data. A single high resolution transect that manages to capture the 438 

form of autocorrelation will suffice. 439 

 As a first practical illustration of the above approach, we conducted a comparison between the 440 

sampling and modelling approximations (i.e. eqs (21) and (25), respectively) on a real telemetry 441 

data set (Fig. 4), collected from individual harbor seals (Phoca vitulina), off the north coast of 442 

the Netherlands. We used a simple data set of two environmental covariates corresponding to 443 

bathymetry (Fig. 4a) and the percentage of silt in the sediment (Fig. 4b). We selected time 444 

intervals between the pairs of successive observations in the data set to be less than 24hrs and 445 

sub-sampled from the data set (taking 1 out of every 20 consecutive pairs of locations) to ensure 446 

that the successive pairs in the data set were serially independent. The value of the parameter of 447 

the mobility kernel  (in units of grid cell lengths) was derived directly from the data, as 448  ω = 2.58
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the standard deviation of the Rayleigh distribution (calculated as , where 449 

 were the observed step lengths in the data). The sampling approximation used 200 control 450 

points for each stratum (i.e. combined with each pair of successive locations). The controls for 451 

the sampling approach were selected using Rayleigh step lengths with a uniformly random 452 

direction on the circle. The modelling approximation used the same Rayleigh distribution and 453 

covariate information originating either from a box enclosing the telemetry data (the yellow box 454 

in Fig. 4c) or from a strip of the sea that was outside the telemetry set (the blue rectangle in Fig. 455 

4c). This comparison allowed us to explore the sensitivity of parameter estimates and spatial 456 

predictions to changes in habitat structuring (i.e. violations of the two assumptions of 457 

representativeness and stationary autocorrelation). The two regions differed in their area, shape 458 

and location. The elongated shape of the blue region precluded averaging over the strong 459 

anisotropy in the environment. These differences potentially reduced the representativeness of 460 

the blue region.  461 

 To visualize the differences in habitat composition between the two boxes, we plotted the 462 

actual frequency of sea depths and sediment values (the black curves in Figs 4d and 4e 463 

respectively) against the modeled availability of those two variables within the yellow box (solid 464 

brown line for depth in Fig. 4d and solid blue line for sediment in Fig. 4e) and within the blue 465 

rectangle (dotted brown line for depth in Fig. 4d and dotted blue line for sediment in Fig. 4e). In 466 

addition, we explored differences in spatial autocorrelation between the yellow and blue 467 

rectangles (Fig. 4f). We visualized the results of the analysis in geographic as well as parameter 468 

space. The geographic visualization for each of the three analyses looked at the value of the step 469 

selection function in each of the map’s pixels (Figs 4g,h,i). These values can be interpreted as a 470 

relative measure of preference in comparison to nearby cells. The parameter space visualization 471 

  
2var( Δs ) (4−π )

 Δs
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examined the estimates and 95% confidence ellipses generated by each of the three methods for 472 

the coefficients of the two environmental variables (Figs 4j,k,l).  473 

 The above comparison leads to the following conclusions. When the training data are 474 

obtained from the region of interest, the modelling approximation gives similar spatial results to 475 

geographic sampling (compare Fig. 4g with Fig. 4h) and the 95% confidence ellipses overlap 476 

(Figs 4j and 4k). Using training data outside the region of interest, so that the assumptions of 477 

representativeness and stationary autocorrelation are less faithfully preserved (see diagnostics in 478 

Figs 4d,e,f), may result in differences between the two approaches, (compare Fig. 4g with 4h and 479 

4i). Yet, the parameter estimates remain within plausible ranges for this particular problem 480 

(compare Fig. 4j with 4l). So, while the method gives plausible parameter estimates outside the 481 

range of the data we can conclude that there are increasing differences as the training data 482 

deviate from the region of interest. Therefore, although the proposed approach of modelling 483 

spatial accessibility in E-space is not a substitute for direct sampling of controls in G-space, it is 484 

a method that can provide informative results when environmental data are sparse or of limited 485 

geographic coverage.  486 

 We note that the above application only uses the most rudimentary form of step selection 487 

estimation. As part of future work, it would be interesting to explore how the above likelihood 488 

could be extended to perform simultaneous estimation of movement characteristics and habitat 489 

preferences (e.g. Forester et al. 2009, Avgar et al. 2016). Additionally, the approach taken here 490 

assumes independence of the conditional availability of the different environmental variables. It 491 

is reassuring that the approximation above works reasonably well despite this simplification, 492 

given that depth and sediment were moderately cross-correlated (r2=0.64). 493 

 494 
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6.  Theoretical example: The effects of spatial autocorrelation on the fitness of 495 

territorial animals 496 

To illustrate how our approach can be used to derive theoretical results, we consider the effects 497 

of spatial autocorrelation on the average fitness of populations of animals holding territories of 498 

identical size. To derive some useful baseline results, we begin by assuming that space is 499 

saturated by territories (i.e. no apparent habitat preference), but relax this assumption later. We 500 

consider a habitat described by a single covariate (e.g. a single resource) where z refers to the 501 

value of the resource at the territory’s centroid and x refers to values of the resource found 502 

elsewhere within the territory. The fitness contribution of a habitat (i.e. a particular value of the 503 

resource x) is denoted by such that  for some coefficients . We require 504 

fitness to be negative when the resource x is low, (i.e. ) and to have a positive relationship 505 

with increasing resource values (i.e. ). This example can be extended (with more elaborate 506 

algebra, but no loss of analytical tractability) by introducing several covariates, possibly having 507 

non-monotonic contributions to fitness (see Matthiopoulos et al. (2015) for more complex 508 

extensions). 509 

Fitness in the absence of habitat preference 510 

When a population lives in a landscape of very low spatial autocorrelation (LO), all habitats (i.e. 511 

all values of the resource) should, on average, be present within each territory in proportion to 512 

their broader availability ( ). In other words, the composition of each territory, and therefore 513 

also the fitness afforded by each territory, will be representative of the broader landscape:  514 

 .  (26) 515 

In Appendix IV we show that this simplifies to 516 

 Fx   Fx = a0 + a1x   a0 ,a1

  a0 < 0

  a1 > 0

 fx

 
FLO = Fx fx dx

E
∫
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 .  (27) 517 

Thus, the fitness of the organism is derived from a weighted sum of the means of the Gaussian 518 

mixture describing habitat availability; this sum is equal to the mean of x. In other words, if is 519 

the average value of the resource in the environment, under low spatial autocorrelation, we get 520 

the intuitive result, corresponding to perfect mixing, 521 

 .  (28) 522 

 More generally, for animals living in more realistic landscapes with some spatial 523 

autocorrelation, the expected fitness for a territory centered at habitat z will be 524 

 .  (29) 525 

In Appendix IV we show that this simplifies to 526 

 .  (30) 527 

Incidentally, a comparison between eqs (30) and (27) implies that, in the case of perfect mixing, 528 

the joint weights of the habitat availability formula take the form 529 

 .  (31) 530 

We explore the difference between the average fitness, across the landscape, in the absence and 531 

presence of spatial autocorrelation, 532 

 ,  (32) 533 

which rearranges to  534 

 .  (33) 535 
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We note that  which gives .  This makes intuitive sense and has been 536 

anticipated by previous work (Barraquand & Murrell, 2013, Fig. 1). In an autocorrelated 537 

landscape, tessellated by territories, some individuals will benefit from aggregations of high 538 

resource while others will lose out by having their territories at resource troughs. 539 

Fitness in the presence of habitat preference 540 

We now relax the assumption of uniform placement of territories by introducing a model of 541 

heterogeneity that is affected by an underlying habitat preference function  to 542 

the single resource z. We assume for this exploration that habitat preference operates on the 543 

selection of the territory centroid, but that the organism uses parts of the territory uniformly. The 544 

average fitness afforded by the environment to a population of such animals would therefore be 545 

 ,  (34) 546 

where  is the fitness associated with a territory centred at habitat z (as defined in eq. (30)) 547 

and  is a normalizing constant for the preference function. In Appendix V, we 548 

show that this expression can be simplified to 549 

 .  (35) 550 

This expression describes the average population fitness as a function of unitary fitness 551 

parameters ( ), marginal resource availability (expressed by the parameters ), spatial 552 

autocorrelation (contained in the joint weights ) and the selectivity ( ) in choosing the 553 

centroid of a territory. For any particular landscape, the joint weights will generally need to be 554 

derived using methods such as the ones presented in Appendix I, but we can simplify our 555 
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investigation by comparing the two extremes of very low and very high spatial autocorrelation. 556 

The case of very low spatial autocorrelation is represented by eq. (28). The case of very high 557 

spatial autocorrelation can be emulated by setting 558 

  . (36) 559 

Within the expression for joint habitat availability (eq. (15)), this works by accumulating a high 560 

probability density close to the line of slope 1 (creating joint PDFs similar to those in Figs. 2a or 561 

3a), hence enforcing the probability of encountering similar values of z from an animal’s current 562 

position. Via this simplification, the fitness equation becomes 563 

 .  (37) 564 

Subject to the assumption of high spatial autocorrelation, we proceed to explore the behavior of 565 

this function by varying the overall resource richness (related to the mean value of the 566 

distribution of the available resource) and heterogeneity (the variability of the distribution of the 567 

available resource) of the landscape. To do this in a tractable way, we envisage an environmental 568 

space that is constructed of L equally spaced and equally weighted Gaussian components (Fig. 569 

4a). The mean value ( ) of the mixture determines overall resource richness and the number (L) 570 

of individual components, equally split on either side of the mean, represents heterogeneity. We 571 

take the spacing between adjacent Gaussian means  to be equal to , the standard 572 

deviation of each of the Gaussian components. This assumption tends to give approximately 573 

uniform distributions of the resource in E-space (thick grey curve in Fig. 5a). Note however that 574 

the distribution of the resource in G-space will be heterogeneous. This simplified representation 575 

of the environment yields  576 
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 .  (38) 577 

For fitness (eq. (37)), these simplifications imply that 578 

 ,  (39) 579 

where  are weights driven by the habitat selectivity parameter ( ): 580 

 .  (40) 581 

The parameter  represents the ability of an organism to express preference for placing its 582 

territory centroid at high-resource locations. In a very small population it is expected that  will 583 

be very large, because, when unobstructed by conspecifics, an organism will be able to place its 584 

territory at the peak of resource concentration. If the landscape is completely saturated, so that 585 

space is covered by territories, apparent selectivity will move towards zero. If the centroid of a 586 

territory serves a life-history function that is mutually exclusive to resource acquisition (e.g. a 587 

ground nest that needs to be placed within high, but inedible grass), the apparent selectivity for 588 

the resource may give negative values of . We therefore consider three scenarios that give rise 589 

to important boundaries in the richness/heterogeneity plane (see collected results in Fig. 5b). 590 

  591 

Scenario 1: Fitness is negative, even when the population displays high selectivity (i.e. very high 592 

values of ). This corresponds to environments where even small populations, with the ability 593 

to concentrate around the best available habitat, become extinct. The scenario of very high 594 

selectivity is written  595 

 .  (41) 596 

  
ψ k =

1
L

and µk = x +σ k − L+1
2

⎛
⎝⎜

⎞
⎠⎟

  
F = a0 + a1 x −σ L+1

2
+σ kθk

k=1

L

∑⎛
⎝⎜

⎞
⎠⎟

 θk   b1

  

θk =
exp(b1kσ )

exp(b1kσ )
k=1

L

∑

  b1

  b1

  b1

  b1

  
lim
b1→∞

kθk
k=1

L

∑ = L



29 

 

Using eq. (39), the mathematical condition for negative fitness is 597 

 .  (42) 598 

Scenario 2: Fitness is zero in a saturated population, that has completely filled up space with 599 

territories, giving the impression of no selectivity ( ). In this scenario,  600 

   (43) 601 

Using eq. (39), the mathematical condition for zero fitness is 602 

   (44) 603 

Scenario 3: Fitness is positive even when the organism avoids high concentrations of the 604 

resource (i.e. for very large negative values of ). This scenario implies  605 

   (45) 606 

The mathematical condition for positive fitness is 607 

   (46) 608 

For graphical convenience, we define resource richness in relation to fitness parameters. Further, 609 

we define environmental heterogeneity in terms of the number and dispersion of Gaussian 610 

components used to describe the range of resource values in environmental space.  611 

   (47) 612 

These definitions are biologically intuitive. In particular, this index of resource richness takes the 613 

value zero, when experiencing the average availability of the resource barely allows an organism 614 

to survive. The index of heterogeneity, becomes zero when the minimum number of Gaussian 615 
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components ( ) is used to describe the environment. Recasting the conditions in eqs (42), 616 

(44) and (46) with the aid of these new definitions gives us the combined results in Fig. 5b that 617 

enable us to summarize population viability in terms of resource richness and heterogeneity in 618 

the case of a highly spatially autocorrelated resource distribution. The figure illustrates that 619 

spatial heterogeneity expands the ability of a population to persist and quantifies the thresholds 620 

of extinction and persistence in scale-independent coordinates (thanks to the scalings of richness 621 

and heterogeneity emerging from this analysis, in the form of eq. (47)). 622 

7. Discussion 623 

Assumptions about habitat accessibility can drastically affect the predictions of population 624 

models in space and time. Models that assume either perfectly mixed or completely sessile 625 

populations are liable to err for different reasons. We therefore need a theoretical and 626 

quantitative framework for describing habitat accessibility. The two basic determinants of habitat 627 

accessibility from any given geographical position are the speed with which organisms move and 628 

the spatial scales over which the environment varies. Starting from this fact, we have derived a 629 

compact expression for conditional habitat availability (eq. (14)) in environmental (or niche) 630 

space. This was achieved by describing the availability of all habitats from the vantage point of 631 

any given habitat, using functions of distance (reflecting both mobility and spatial 632 

autocorrelation). The benefits of this framework are both conceptual and applied. From a 633 

conceptual viewpoint, this work can be seen as a contribution to the historical and ongoing 634 

discussions about scale in ecology (Wiens 1989, Levin 1992, Schneider 2001, Gurarie & 635 

Ovaskainen 2011). Our work offers a quantitative formalization of the interplay between the 636 

scale of spatial autocorrelation and the scale of organism mobility over particular time frames. A 637 

correctly scaled view of accessibility can quantify relationships that would not have been evident 638 

via qualitative arguments alone. The collected findings in Fig. 5b illustrate how the relative 639 

  L = 1
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scales of mobility and environmental heterogeneity can fundamentally alter the fitness that a 640 

landscape can afford a population. Regions 2 and 3 in Fig. 5 have a novel biological 641 

interpretation, in which habitat selectivity changes the sign of population growth relative to an 642 

assumption of no selectivity. Region 3, in particular, is the direct result of animals in the 643 

population being able to aggregate at hotspots of resource distribution, and hence experience 644 

higher-than-average fitness, compared to a non-spatial model assuming perfect mixing. 645 

 Many of these insights would be achievable on a particular landscape by means of intensive 646 

sampling of space (as we argued in Section 4); however, our framework offers a flexible 647 

abstraction of species-habitat interaction based solely on the statistical properties of the system. 648 

This allows us to work in environmental spaces and produce generalizable results, applicable to 649 

different landscapes with similar landscape compositions. Similar models can be derived through 650 

moment equation modeling incorporating at the same time the spatial autocorrelation in 651 

environmental variation, the movement processes through kernels – as done here - as well as 652 

deriving the environment-organism covariance from the interaction of dispersal, demography 653 

and environmental structure (Murrell & Law 2000, Bolker 2003, North et al. 2011). However, 654 

these methods require more complex analytical formulas, place their emphasis on population 655 

dynamics and do not operate explicitly in E-spaces.  656 

 A recent review of species range models (Singer et al. 2016) discusses how mechanistic 657 

approaches can be used to enhance the predictive ability of correlative models of species’ 658 

distribution. Hence, the present work can be used to increase the mechanistic content of 659 

correlative models, but may also be used for expedient calculation in fully mechanistic 660 

approaches. The mechanistic content of our approach can be increased to account for features of 661 

movement. For example, the variance of our movement kernel can be assumed to depend on the 662 

properties of the local habitat, to account for reductions in mobility due to difficult substrates. 663 

Accessibility may also be thought of in larger spatiotemporal scales from the viewpoint of 664 
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dispersal processes. SDMs based on snapshots of species abundance assume that, over many 665 

generations, dispersal events that are hard but not impossible will have been made, at some 666 

point, allowing the species to occupy all the locations that have suitable habitat. Our framework 667 

can accommodate both timescales of dispersal by varying how far out in the tails of the 668 

availability kernel we sample. Indeed, that can become an index of how fast a species can fill up 669 

the landscape, which becomes relevant as we try to figure out whether species will be able to 670 

shift their geographic ranges fast enough to keep up with climate change (Parmesan & Yohe, 671 

2003).  672 

 673 

Supplements 674 

Supplementary information is provided for the Appendix derivations as well as an explanation of 675 

the algorithms derived in the paper. Archival files for the R-code and data used in the paper can 676 

be downloaded from https://zenodo.org/record/3479825#.XZ-MDSV7knc. 677 
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 823 

Figure legends 824 

Figure 1: The panels in the left column represent E-space (comprising a single environmental 825 

variable) corresponding to the G-space (comprising a single spatial dimension) in the right 826 

column. The values plotted in G-space are the local values of the environmental variable X, and 827 

E-space summarizes the frequency with which each value of the environmental variable occurs. 828 

G-spaces are usually more complicated objects to describe because the same habitat can occur 829 

several times. In this example, 7 values in G-space (the dots in b) are condensed to one value in 830 

the plot of E-space (a). The accessibility of space around a particular habitat can be represented 831 

by symmetric kernels (the dark curves in d). The existence of spatial autocorrelation in the 832 

proximity of each of these spatial locations guarantees that similar environmental values will be 833 

found within these kernels of accessibility. We represent this by the dashed curve in plate c – an 834 

imagined kernel in E-space that represents the correspondence between spatial and 835 

environmental proximity. A realization of the sampling process from the kernels (using Gaussian 836 

forms) provides a scattering of observations in G-space (shown as dots in f). The resulting plot 837 

of frequencies for these localized measurements is shown as the dark curve in (e).  838 

Figure 2: The joint distribution of habitat availability ( ), for a given marginal habitat 839 

availability ( , ) under three examples of the mobility constraint ( ). Lighter 840 

colors represent higher probability density. The figure explores the case of a single 841 

environmental variable X, therefore the axes have identical units and scales, representing the 842 

support of that environmental variable in E-space. The marginal distributions shown on the sides 843 

of the main plots are identical, representing the fact that the overall habitat availability across the 844 

landscape is not affected by mobility.  845 
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Figure 3: Comparison between the analytical and numerical forms of the joint distribution (left 846 

and right columns respectively) under scenarios of low and high mobility (top and bottom rows, 847 

respectively). The axes represent the variables z (focal habitat) and x (target habitat) for a one-848 

dimensional environmental space. Shading of contours (lighter shades for higher probability) is 849 

on the same scale for plots on the same row, for comparison.  850 

Figure 4: Step selection analysis of harbor seal telemetry data by G-space sampling and E-space 851 

approximation. Two environmental variables (a and b) were used to characterize the substrate to 852 

movement, observed via satellite telemetry data (c). Step selection by E-space approximation 853 

used two different rectangular areas for learning about the environment (shown as yellow and 854 

blue in plate c, and giving rise to E-space approximation 1 and 2, respectively). Each variable 855 

was summarized in terms of its marginal availability (d and e) and spatial autocorrelation (f). In 856 

plots (d,e and f) brown colour is used for depth and blue for sediment. Solid lines correspond to 857 

the yellow box in part c and dotted lines correspond to the extrapolation in the blue rectangle in 858 

part c. The solid black curves in d and e represent the actual frequency of depth and sediment 859 

values in the yellow rectangle. The third row of plots shows the maps of relative preference 860 

derived from each step-selection analysis, specifically the G-sampling approach (g), E-space 861 

approximation 1, using the yellow rectangle (h) and E-space approximation 2, using the blue 862 

rectangle (i). The final row of plots shows the likelihood profiles in 2D parameter space derived 863 

from each of the three analyses, G-space sampling (j), E-space approximation 1 (k) and E-space 864 

approximation 2 (l). The white cross-hairs indicate maximum likelihood parameter estimates, 865 

accompanied by asymptotic 95% confidence ellipses (also drawn in white). The coloration from 866 

purple to brown reflects increasing likelihood for different parameter combinations.  867 

Figure 5: a. Example of a uniform marginal distribution in environmental space in one resource 868 

variable constructed from the superposition of equally weighted Gaussian components (each 869 

having a standard deviation of , which is also used as the placement distance between 870 σ
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successive components). This arrangement allows us to reduce the description of E-space to the 871 

two traits of resource richness (the position of the mixture along the resource axis) and 872 

heterogeneity (the dispersion of the mixture, driven here by the number of participating Gaussian 873 

components. b. Summary of findings in the graphical plane of resource richness and 874 

heterogeneity in the case of a highly autocorrelated resource distribution in G-space. Four 875 

regions arise indicating population viability depending on the habitat selectivity displayed by the 876 

individuals making up the population.  877 
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