
UC San Diego
Recent Work

Title
Estimation of Copula Models for Time Series of Possibly Different Length

Permalink
https://escholarship.org/uc/item/3fc1c8hw

Author
Patton, Andrew J

Publication Date
2001-11-12

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fc1c8hw
https://escholarship.org
http://www.cdlib.org/


2001-17 
 
 
 
 
 
 

UNIVERSITY OF CALIFORNIA, SAN DIEGO 
 

DEPARTMENT OF ECONOMICS 
 

ESTIMATION OF COPULA MODELS FOR TIME SERIES OF POSSIBLY 
DIFFERENT LENGTHS 

 
BY 

 
ANDREW J. PATTON 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

DISCUSSION PAPER 2001-17 
NOVEMBER 2001 



Estimation of Copula Models for Time Series

of Possibly Di®erent Lengths

Andrew J. Patton¤

University of California, San Diego

12 November, 2001

Abstract

The theory of conditional copulas provides a means of constructing °exible multivariate density
models, allowing for time-varying conditional densities of each individual variable, and for time-

varying conditional dependence between the variables. Further, the use of copulas in constructing
these models often allows for the partitioning of the parameter vector into elements relating only

to a marginal distribution, and elements relating to the copula. This paper presents a two-stage
(or multi-stage) maximum likelihood estimator for the case that such a partition is possible. We

extend the existing statistics literature on the estimation of copula models to consider data that
exhibit temporal dependence and heterogeneity. The estimator is °exible enough that the case

that unequal amounts of data are available on each variable is easily handled. We investigate the
small sample properties of the estimator in a Monte Carlo study, and ¯nd that it performs well

in comparisons with the standard (one-stage) maximum likelihood estimator. Finally, we present
an application of the estimator to a model of the joint distribution of daily Japanese yen - U.S.

dollar and euro - U.S. dollar exchange rates. We ¯nd some evidence that a copula that captures
asymmetric dependence performs better than those that assume symmetric dependence.
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1 Introduction

This paper presents a two-stage (or multi-stage) maximum likelihood estimator for multivariate
density models of time series data, and we allow for cases where the amount of data on each

variable di®ers. We focus on the case that the multivariate density model is constructed using the
theory of copulas, and that the parameter vector is such that it may be partitioned into elements

that relate only to a marginal distribution and elements that relate only to the copula. If such
a partition is not possible, the familiar one-stage maximum likelihood estimator is the natural

estimator to employ. When this partitioning is possible however, great computational savings may
be achieved by employing a two-stage estimator.

Evidence of non-normality of the distribution of many interesting economic variables grows
each year. One of the ¯rst papers to report such evidence was Mandelbrot (1963), who found that

the returns on ¯nancial assets exhibit too much kurtosis to be adequately described as Gaussian,
and numerous studies1 have since reported further evidence. The implication of these papers is

that the multivariate normal distribution is simply not a good model for the joint distribution of
many interesting economic variables. This leads us to the problem of ¯nding more appropriate
multivariate models. Copula theory is perfectly suited to help us in this quest.

The theory of copulas dates back to Sklar (1959), but its application in statistical modelling is
a more recent phenomenon. Sklar (1959) showed that we may decompose a joint distribution into

its k marginal distributions, and a copula, which describes the dependence between the variables.
One of the uses of this theorem to the researcher is in the construction of °exible multivariate

distributions2: we may combine k marginal distributions of any form (normal, Student's t, ex-
ponential, log-normal, etcetera) with any copula to form a valid multivariate distribution. Most

existing multivariate distributions are simple extensions of univariate distributions, and often have
the restrictive property that all of the marginal distributions are of the same type (all marginal

distributions of a multivariate normal are normal, all marginal distributions of a multivariate Stu-
dent's t6 are univariate Student's t6, and so on). If the individual variables of interest were known

to be best ¯tted by di®erent univariate distributions, the choice of a suitable joint distribution was
di±cult. Copula theory resolves this di±culty.

The application of copula theory to the analysis of economic problems is a new and fast-growing
¯eld. Some examples of work in this ¯eld (though this list will surely be out-of-date within a month

1See, inter alia, Fama (1965), Bollerslev (1987), Richardson and Smith (1993), Erb, et al. (1994), Bae, et al.

(2000), Campbell, et al. (2000), and most recently, Ang and Chen (2001) and Longin and Solnik (2001).
2As recently as Farebrother (1992), for example, it was a considerable challenge in econometric theory to construct

an asymmetric bivariate density with common marginal densities. Employing copula theory renders the task almost

trivial: simply select any asymmetric copula and use it to link any two marginal distributions of the same type.

Suitable copulas include the Clayton and the Gumbel copulas, see Joe (1997) or Nelsen (1999) for more on these

copulas.
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of writing) includes Rosenberg (1999) and (2000), Bouy¶e, et al., (2000), Li (2000), Scaillet (2000),
Embrechts, et al., (2001), Patton (2001a,b) and Rockinger and Jondeau (2001). The application

of copula theory to economics, however, adds a new dimension of di±culty for the researcher: time
series dependence.

There is a quite large body of work on the estimation theory underlying the numerous appli-
cations of copula theory that have appeared in the statistics literature3, see Oakes (1982), Genest

and Rivest (1993), Genest, et al., (1995), Shih and Louis (1995), Joe and Xu (1996), Xu (1996),
Cap¶eraµa, et al., (1997) and Glidden (2000). This theory, however, was developed for applications

where the data could be assumed to be independent and identically distributed (i:i:d:), an assump-
tion that is rejected for almost every economic time series. The ¯rst contribution of this paper is

to extend the theory on the estimation of parametric copula models to allow for data that may
exhibit both temporal dependence and heterogeneity, employing the two-stage maximum likelihood

framework of Newey and McFadden (1994) and White (1994). Thus our estimator can be used in
the estimation of time-varying conditional density models, that allow for time-varying conditional

marginal distributions and a time-varying conditional copula. A nonparametric copula estimator
for time series data has recently been proposed by Scaillet (2000), however, as for all nonpara-

metric procedures, the marginal distributions and copula must be assumed to be constant in this
framework.

A further contribution is that we also present results for this estimator in the case that the
amount of data available on each variable di®ers. These results may be interpreted as an extension

of some of the results presented by Anderson (1957), Little and Rubin (1987) and Stambaugh
(1997). The case of unequal amounts of data arises in a number of interesting applications, such

as the analysis of: developed markets and emerging markets, which may have only recently begun
maintaining data sets; market returns and the returns on a recently °oated company; market returns

and the returns on a company that went bankrupt; any pair of assets where one is denominated in
euros and the other is not. The latter example is the one examined in this paper. Stambaugh (1997)
showed the importance of making use of all available data in a simple asset allocation example. It

should be pointed out that the theory presented in this paper is only applicable in the case that
the starting date(s) (or ending date(s), as applicable) of the truncated series do not contain any

information for the parameters of interest that is not contained in the observed data. The `missing-
data mechanism', in the terminology of Little and Rubin (1987), must be ignorable. Examples

in economics where the missing-data mechanism is not ignorable are to be found in Brown, et al.
(1995), Goetzmann and Jorion (1999), and Kofman and Sharpe (2000), inter alia.

.
3In biostatistics and epidemiology, see Clayton (1978), Denuit and Genest (1999) and Fine and Jiang (2000), for

example, and in other ¯elds of applied statistics, see Cook and Johnson (1981) and Oakes (1989), amongst others.
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The small sample properties of the estimator are investigated and compared with existing
techniques in a Monte Carlo study. We simulate processes with characteristics common to many

¯nancial time series at the daily frequency and compare the mean squared error (MSE) of the
estimator with that of the standard maximum likelihood estimator. The two-stage estimator is

found to have lower small sample MSE than the one-stage estimator in a number of situations, and
only moderately greater MSE in the remaining cases.

Finally, we present an application of the estimator to a model of the joint distribution of
daily Japanese yen - U.S. dollar and euro - U.S. dollar exchange rates. These rates are the two

most frequently traded exchange rates, and su®er from the problem that we have much less data
available on the euro than we do on the yen. We consider three di®erent copula models, the

Gaussian, Plackett and Clayton copulas, and ¯nd evidence that a copula that captures asymmetric
dependence performs better than those that assume symmetric dependence.

The remainder of the paper is organised as follows. In Section 2 we provide a brief introduction
to copula theory. In Section 3 we present the two-stage estimator and discuss the consistent

estimation of its asymptotic covariance matrix. We also discuss a modi¯cation of the two-stage
estimator that achieves full e±ciency. In Section 4 we present the results of a Monte Carlo study

of the small sample properties of the estimator and in Section 5 we apply the estimator to a
model of the joint distribution of daily Japanese yen - U.S. dollar and euro - U.S. dollar exchange

rates. Finally, in Section 6 we conclude and present some of the many challenges that remain for
future research. The assumptions required for the maximum likelihood estimator and all proofs
are contained in the appendix.

1.1 Notation

We have two (scalar) random variables of interest, X and Y , and possibly some conditioning
variables W. The variables' conditional distribution is: (Xt; Yt) jFt¡1 s Ht ´ Ct (Ft; Gt), where

Ht is some bivariate distribution function, the marginal distributions of Xt and Yt are Ft and Gt,
and the copula is Ct. (The notation `H ´ C (F; G)' will become clear in the next section.) We will

assume that all distributions are continuous, though this assumption may be relaxed at the expense
of further complication. The information set is de¯ned as Ft ´ ¾ (Xt; Yt;Wt+1;Xt¡1; Yt¡1; Wt; :::) :

As usual, we will denote random variables in upper case, Xt, and realisations of random variables
in lower case, xt. We will often need to refer to the history of the random variables, which will

be denoted Zt ´
¡
Xt; Yt; W0

t+1; Xt¡1;Yt¡1;W0
t; :::

¢0. Throughout this paper we will denote the
distribution (or c:d:f:) of a random variable using an upper case letter, and the corresponding

density (or p:d:f:) using the lower case letter. We will denote the extended real line as ¹R ´
R [ f§1g. Convergence in probability is denoted as p¡!, and convergence in distribution as D¡!.

We denote a k £ k identity matrix as Ik.
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It should be pointed out that although we focus on the bivariate case in this paper, both the
theory of copulas and the estimation methods presented here extend quite naturally to the general

multivariate case.

2 An introduction to copula theory

The introduction to copula theory presented below follows closely that of Patton (2001a). We
will ¯rstly present the probability integral transformation, and will then introduce the copula via

standard theory on the distribution of transformations of random variables. Following that, the
more general theory of conditional copulas is presented. A very readable and thorough introduction

to the theory of copulas may be found in Nelsen (1999).
The ¯rst analysis of the distribution of the probability integral transformation is quite old,

dating back to Fisher (1932). For a more recent reference see, for example, Casella and Berger
(1990). Let Ut ´ Ft (Xt) and Vt ´ Gt (Yt). We then say that Ut and Vt are the `probability integral

transforms of Xt and Yt'. The distribution of the probability integral transform is given in Theorem
1 below.

Theorem 1 (Fisher, 1932) If Ft and Gt are continuous distribution functions, thenUt ´ Ft (Xt) s
Unif (0; 1) and Vt ´ Gt (Yt) s Unif (0;1).

With this result in hand, we may introduce the copula using basic statistical theory.

2.1 The copula and transformations of random variables

In this section we will suppress the dependence of the random variables and their distributions
on t, for the sake of simplicity. Let U ´ F (X) and V ´ G(Y ), as above. We will now attempt

to ¯nd the joint density of U and V according to basic results in mathematical statistics on the
distribution of transformations of random variables. We will denote the joint density of U and V

as c, which turns out to be the `copula density'.
Since F and G are strictly increasing and continuous, we have that X = F¡1 (U) and Y =

G¡1 (V ), and @X@U =
¡@U
@X

¢¡1 =
³
@F (X )
@X

´¡1
= f (X)¡1 and @Y@V =

¡@V
@Y

¢¡1 =
³
@G(Y )
@Y

´¡1
= g (Y )¡1.

Note that @X@V = @Y
@U = 0. Then,

c(u; v) = h (X (u) ; Y (v)) ¢
¯̄
¯̄
¯
@X
@U

@X
@V

@Y
@U

@Y
@V

¯̄
¯̄
¯

= h
¡
F¡1 (u) ; G¡1 (v)

¢ ¢ @X
@U

¢ @Y
@V

c(u; v) =
h

¡
F¡1 (u) ;G¡1 (v)

¢

f (F¡1 (u)) ¢ g (G¡1 (v))
(1)
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Equation (1) shows that the copula density of X and Y is equal to the ratio of the joint density,
h, to the product of the marginal densities, f and g. From this expression we can obtain a ¯rst

result on the properties of copulas: if X and Y are independent, then the copula density takes
the value 1 everywhere, since in that case the joint density is equal to the product of the marginal

densities. Since we know that the marginal densities of U and V are uniform, by Theorem 1 above,
we thus have that if X and Y are independent the joint distribution of U and V is the bivariate

Uniform(0; 1) distribution.
We can also use equation (1) to derive an expression for h as a function of x and y instead:

h
¡
F¡1 (u) ;G¡1 (v)

¢
= f

¡
F¡1 (u)

¢ ¢ g ¡
G¡1 (v)

¢ ¢ c(u; v)

h (x;y) = f (x) ¢ g (y) ¢ c (F (x) ; G (y)) (2)

Equation (2) is the `density version' of Sklar's (1959) theorem: the joint density, h, can be
decomposed into product of the marginal densities, f and g, and the copula density, c. Sklar's

theorem holds under more general conditions than the ones we imposed for this illustration, and
below we discuss the general proof.

2.2 The theory of the conditional copula

For an introduction to the general theory of copulas the reader is referred to Nelsen (1999) or
Chapter 6 of Schweizer and Sklar (1983). We will start with a few very basic, but very important,

de¯nitions based on those in Nelsen (1999). The second condition below refers to the `Ht-volume'
of a rectangle [x1; x2] £ [y1; y2] in ¹R2, denoted by VHt. This is simply the probability of observing

a point in the region [x1;x2] £ [y1; y2]. It is expressed in the following way as it generalises more
easily to the multivariate case.

De¯nition 1 (Conditional bivariate distribution function) A conditional bivariate distribu-
tion function is a right continuous function Ht : ¹R2 ! [0; 1] with the properties:

1. Ht(x; ¡1jFt¡1) = Ht(¡1; yjFt¡1) = 0; and Ht(1; 1jFt¡1) = 1

2. VHt ([x1;x2] £ [y1; y2]) ´ Ht (x2; y2jFt¡1)¡Ht (x1; y2jFt¡1)¡Ht (x2; y1jFt¡1)+Ht (x1; y1jFt¡1) ¸
0 for all x1;x2; y1; y2 2 ¹R, and x1 · x2, y1 · y2:

where Ft¡1 is some conditioning set.

The ¯rst condition simply provides the upper and lower bounds on the distribution function.
The second condition ensures that the probability of observing a point in the region [x1;x2]£[y1; y2]

is non-negative4. We now de¯ne the conditional copula.
4If we set x2 = x1 + " and y2 = y1 + " and let " ! 0+, then it becomes clear that this de¯nition is just the

generalisation of the condition that if the bivariate density exists, it must be non-negative on the domain of Ht.

6



De¯nition 2 (Conditional copula) A two-dimensional conditional copula is a function Ct :
[0; 1] £ [0; 1] ! [0;1] with the following properties:

1. Ct(u; 0jFt¡1) = Ct(0; vjFt¡1) = 0, and Ct(u;1jFt¡1) = u and Ct(1; vjFt¡1) = v, for every
u;v in [0; 1]

2. VCt ([u1;u2] £ [v1; v2] jFt¡1) ´ Ct (u2; v2jFt¡1)¡Ct (u1; v2jFt¡1)¡Ct (u2; v1jFt¡1)+Ct (u1; v1jFt¡1) ¸
0 for all u1;u2; v1; v2 2 [0; 1], such that u1 · u2 and v1 · v2.

where Ft¡1 is some conditioning set.

The ¯rst condition of De¯nition 2 provides the lower bound on the distribution function, and

ensures that the marginal distributions, Ct (u;1jFt¡1) and Ct (1; vjFt¡1), are uniform. The con-
dition that VCt is non-negative has the same interpretation as the second condition of De¯nition

1: it simply ensures that the probability of observing a point in the region [u1; u2] £ [v1; v2] is
non-negative.

By drawing on the above conditions for the conditional copula, and extending its domain to
¹R2, we may alternatively de¯ne a conditional copula as the conditional bivariate distribution of a

pair of random variables (Ut;Vt) having margins that are Unif (0; 1). The extension of the domain
to ¹R2 is accomplished as follows:

Let C¤
t (u; vjFt¡1) =

8
>>>>>>><
>>>>>>>:

0 for u < 0 or v < 0;

Ct (u; vjFt¡1) for (u; v) 2 [0; 1] £ [0; 1] ;
u for u 2 [0;1] ; v > 1;

v for u > 1; v 2 [0; 1] ;
1 for u > 1; v > 1:

(3)

The link between the probability integral transformation and the theory of copulas now becomes

clear: the copula is the joint distribution function of the probability integral transforms of each of
the variables Xt and Yt with respect to their marginal distributions, Ft and Gt. We now move on

to an extension of the the key result in the theory of copulas: Sklar's (1959) theorem for conditional
distributions:

Theorem 2 (Sklar's Theorem for Continuous Conditional Distributions) Let Ht be a con-
ditional bivariate distribution function with continuous margins Ft and Gt, and let Ft¡1 be some

conditioning set. Then there exists a unique conditional copula Ct : [0; 1] £ [0; 1] ! [0; 1] such
that

Ht(x;yjFt¡1) = Ct(Ft(xjFt¡1);Gt(yjFt¡1)jFt¡1); 8x; y 2 ¹R (4)

Conversely, if Ct is a conditional copula and Ft and Gt are the conditional distribution functions
of two random variables Xt and Yt, then the function Ht de¯ned by equation (4) is a bivariate

conditional distribution function with margins Ft and Gt.
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The density function equivalent of (4) is useful for maximum likelihood analysis, and is obtained
quite easily, provided that Ft and Gt are di®erentiable, and Ht and Ct are twice di®erentiable.

ht (x;yjFt¡1) ´ @2Ht (x;yjFt¡1)
@x@y

=
@Ft (xjFt¡1)

@x
¢ @Gt (yjFt¡1)

@y
¢ @2Ct (Ft (xjFt¡1) ; Gt (yjFt¡1) jFt¡1)

@(Ft (xjFt¡1)@ (Gt (yjFt¡1))
´ ft (xjFt¡1) ¢ gt (yjFt¡1) ¢ ct (u;vjFt¡1) ; 8(x; y) 2 ¹R2 (5)

where u ´ Ft (xjFt¡1), and v ´ Gt (yjFt¡1). The expression in equation (5) is precisely the same

as that in equation (2), which we obtained using the theory on the distribution of transformations
of random variables. Taking logs of both sides we obtain:

LXY = LX +LY + LC (6)

and so the joint log-likelihood is equal to the sum of the marginal log-likelihoods and the copula

log-likelihood.

We can also obtain a corollary to Theorem 2, analogous to that of Nelson's (1999) corollary to

Sklar's Theorem, which enables us to extract the conditional copula from any conditional bivariate
distribution function, but ¯rst we need the de¯nition of the `quasi-inverse' of a function.

De¯nition 3 (Quasi-inverse of a distribution function) The quasi-inverse, F (¡1), of a dis-
tribution function F is de¯ned as:

F(¡1)(u) = inffx : F(x) ¸ ug, for u 2 [0;1]: (7)

If F is strictly increasing then the above de¯nition returns the usual functional inverse of F ,
but more importantly it allows us to consider inverses of non-strictly increasing functions.

Corollary 1 Let Ht be any conditional bivariate distribution with continuous marginal distribu-

tions, Ft and Gt, and let F(¡1)
t and G(¡1)

t denote the (quasi-) inverses of the marginal distribu-
tions. Finally, let Ft¡1 be some conditioning set. Then there exists a unique conditional copula

Ct : [0;1] £ [0; 1] ! [0; 1] such that

Ct (u; vjFt¡1) = Ht
³
F (¡1)
t (ujFt¡1) ;G(¡1)

t (vjFt¡1) jFt¡1
´

; 8u;v 2 [0;1] (8)

This corollary completes the idea that a bivariate distribution function may be decomposed into

three parts. Given any two marginal distributions and any copula we have a joint distribution, and
from any given joint distribution we can extract the implied marginal distributions and copula.
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3 Two-stage estimation of copula models

Let the conditional distribution (Xt;Yt) jFt¡1 beparameterised as Ht (µ0) ´ Ct (Ft ('0) ;Gt (°0) ; ·0),
so LXY (µ0) = LX ('0) + LY (°0) + LC ('0; °0;·0), where '0 2 int (©) µ Rp, °0 2 int (¡) µ Rq ,
·0 2 int (K) µ Rr and so µ0 ´ ['00; °

0
0;·

0
0]
0 2 int(£) ´ int (©) £ int (¡) £ int (K) µ Rp+q+r ´ Rs,

where int (A) is the interior of the set A. As F , G and C are conditional on Ft¡1, they will be writ-

ten as functions of the entire information set and the appropriate parameter: Ft
¡
Zt;'

¢
, Gt

¡
Zt; °

¢

and Ct
¡
Zt; µ

¢
, although of course not all of the elements of Zt will in general be required.

It will not always be the case that the parameter vector µ0 decomposes so neatly into three
components, associated with the ¯rst margin, second margin and the copula. Cross-marginal

distribution restrictions are one example where this condition would fail to hold. We discuss this
scenario in Section 3.3. In the interim sections we will assume that the decomposition is possible.

In this paper we allow for the situation that the amount of data available on X is possibly
di®erent to that available on Y , which is also possibly di®erent to the amount of overlapping data

on both X and Y . This scenario is depicted in Figure 1. For simplicity, let X be the variable with
the most data available. We will denote the number of observations on X, Y and the common
sample as nx; ny and nc respectively. All data lengths are assumed to be (¯xed) functions of n,

and we will set nx = n. We consider cases where nynx ! ¸y and nc
nx ! ¸c, where 0 < ¸y · 1 and

0 < ¸c · 1. One such situation is that ny = nx ¡ d1 and nc = ny, that is, where the sample on

Y started later than the sample on X, and that the di®erence in the number of observations is
constant as n ! 1. Another situation is where nynx = dy and ncnx = dc for all n, that is, that the

ratio of the number of observations on Y; and in the common sample, to those available on X is
constant. To simplify notation, we assume that all samples (on X, Y and the common sample)

start at t = 1 and run through until t = nx, ny and nc respectively.
There have been other suggestions made in the literature on how to deal with unequal amounts of

data: Harvey, et al. (1997) suggest using the Kalman ¯lter, and Kofman and Sharpe (2000) discuss
using the EM algorithm and its Bayesian alternative, the Imputation Posterior method. Anderson

(1957) and Stambaugh (1997) suggest using the marginal/conditional distribution decomposition
of a joint distribution, for the case of i:i:d: multivariate normal random variables. The relationship

between our method and theirs is discussed in the following section. Little and Rubin (1987)
present many di®erent methods of dealing with missing observations, and provide numerous further

references on the topic.

3.1 The estimator

Our two-stage (or more accurately, `three-stage') maximum likelihood estimator is denoted µ̂n, and

its components are given below.

9



'̂nx ´ arg max
'2©

n¡1x
nxX

t=1

log ft
¡
Zt; '

¢
(9)

°̂ny ´ arg max
°2¡

n¡1y

nyX

t=1
log gt

¡
Zt; °

¢
(10)

·̂nc ´ arg max
·2K

n¡1c
ncX

t=1

log ct
³
Zt; '̂nx ; °̂ny ;·

´
(11)

µ̂n ´
h
'̂0nx ; °̂

0
ny ; ·̂

0
nc

i0
(12)

We show that this estimator is consistent for µ0, and that it is asymptotically normal. The

asymptotic variance-covariance matrix of this estimator is slightly di®erent that of the standard
two-stage MLE, and below it is discussed in some detail.

The method of estimation presented in this paper relies on the copula decomposition of a joint

distribution, repeated in equations (13) and (14) below. The method of Anderson (1957), Little
and Rubin (1987), and Stambaugh (1997) uses themarginal/conditional decomposition in equations

(15) and (16) below.

ht (xt; yt; µ0) = ft (xt;'0) ¢ gt (yt; °0) ¢ ct (Ft (xt;'0) ; Gt (yt;°0) ;·0) , so (13)

LXY (µ0) = LX ('0) +LY (°0) +LC ('0; °0;·0) (14)

ht (xt; yt; µ0) = ft (xt;'0) ¢ ht;yjx (ytjxt; °0; ·0) , so (15)

LXY (µ0) = LX ('0) +LY jX ('0; °0; ·0) (16)

For the multivariate normal distribution, Anderson (1957) showed that one could obtain an
estimate of µ0 by ¯rst maximising LX using all nx observations to obtain an estimate of '0, and then

maximising LY jX using ny = nc observations, conditioning on the estimate of '0. Our estimator
applies to any joint distribution, subject to satisfying regularity conditions presented in Appendix

2, and simpli¯es estimation one step further, by decomposing the conditional likelihood function,
LY jX , into the marginal likelihood of Y , LY , and the copula likelihood, LC. This additional

decomposition reduces the computational di±culty of estimation, and allows for more irregular
data sets5.

It must be pointed out that all of the following results rely on the assumption that the data

generating process of the variables is known up to a vector of undetermined parameters, µ0. This
is obviously quite a restrictive assumption. The econometrics literature contains some work on the

estimation of models of the conditional mean that are robust to misspeci¯cation of the conditional
5The method of Anderson (1957) and Little Rubin (1987) cannot deal with the data situation presented in Figure

1; they require that ny = nc .
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variance and/or the conditional density, see Gourieroux, et al., (1984) for example, and on the
estimation of models of the conditional mean and variance that are robust to misspeci¯cation of

the conditional density, see Bollerslev and Wooldridge (1992). To the author's knowledge, corre-
sponding results for the estimation of conditional densities are not available, though such results

would be of great interest. We leave this for future work.

We now present the consistency and asymptotic normality results for the two-stage estimator

presented above. These results are based on the work of Newey and McFadden (1994) and White
(1994), both of which provide thorough reviews of two-stage maximum likelihood estimation theory.

All assumptions for this section are collected in Appendix 2, and all proofs are in Appendix 3.

Theorem 3 (Consistency of '̂nx and °̂ny) Let assumptions 1 to 6 hold. Then '̂nx
p¡! '0 and

°̂ny
p¡! °0 as n ! 1.

Theorem 4 (Consistency of ·̂nc) Let the assumptions of the previous theorem hold, and let as-
sumption 7 hold in addition. Then ·̂nc

p¡! ·0 as n ! 1.

Theorem 5 (Asymptotic normality of µ̂n) Let the assumptions of the previous theorems hold,
and let assumption 8 hold in addition. Then

B0¡1=2
n ¢ N1=2 ¢ A0

n ¢
³
µ̂n ¡ µ0

´ D¡! N (0; Is) (17)

where

N ´

2
664

nx ¢ Ip 0 0
0 ny ¢ Iq 0

0 0 nc ¢ Ir

3
775 , (18)

A0
n ´

2
664

n¡1x
Pnx
t=1E

£
r'' logf0

t
¤

0 0
0 n¡1y

Pny
t=1 E

£
r°° log g0t

¤
0

n¡1c
Pnc
t=1 E

£
r'· log c0t

¤
n¡1c

Pnc
t=1 E

£
r°· log c0t

¤
n¡1c

Pnc
t=1 E

£
r·· log c0t

¤

3
775(19)

B0
n ´ var

·Xn

t=1

h
n¡1=2x s001t; n¡1=2y s002t; n¡1=2c s003t

i0¸
,

=

2
664

n¡1x
Pnx
t=1 E

£
s01t ¢ s001t

¤
(nxny)¡1=2

Pny
t=1 E

£
s01t ¢ s002t

¤
(nxnc)¡1=2

Pnc
t=1 E

£
s01t ¢ s003t

¤

(nxny)¡1=2
Pny
t=1 E

£
s02t ¢ s001t

¤
n¡1y

Pny
t=1 E

£
s02t ¢ s002t

¤
(nync)¡1=2

Pnc
t=1 E

£
s02t ¢ s003t

¤

(nxnc)¡1=2
Pnc
t=1 E

£
s03t ¢ s001t

¤
(nync)¡1=2

Pnc
t=1 E

£
s03t ¢ s002t

¤
n¡1c

Pnc
t=1 E

£
s03t ¢ s003t

¤

3
775

(20)

where s01t ´ r' log ft
¡
Zt;'0

¢
, s02t ´ r° log gt

¡
Zt; °0

¢
, s03t ´ r· log ct

¡
Zt;µ0

¢
, f0
t ´ ft

¡
Zt; '0

¢
;

g0t ´ gt
¡
Zt;°0

¢
and c0t ´ ct

¡
Zt;µ0

¢
.
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Remark 1 If nx = ny = nc ´ n, then the result of the above proposition simpli¯es to

B0¡1=2

n ¢ A0
n ¢ p

n
³
µ̂n¡ µ0

´ D¡! N (0; Is) (21)

with B0
n and A0

n as de¯ned above.

The matrix A0¡1

n B0
nA0¡10
n is also known in the theory of estimating equations (or inference

functions) as the `Godambe information matrix', named for Godambe (1960) who introduced the
theory of estimating equations, if we take the right-hand sides of equations (9) to (11) as our

`estimating equations'. McLeish and Small (1988) provide an overview of the theory estimating
equations, and Bera and Bilias (2001) present some of linkages between these estimation methods

and method more common in econometrics. Joe and Xu (1996) and Xu (1996) use the estimating
equations framework for their two-stage estimator of copula models, however we elected to use the

maximum likelihood framework owing to its familiarity to econometricians, and the large body of
econometric theory already existing on this estimator.

3.2 Estimation of the covariance matrix

We discuss in this section the consistent estimation of the covariance matrix of the two-stage
estimator presented above. Following White (1994), we say that if ÄV ¡1=2

n
p

n(Äµn ¡ µ0)
D¡! N (0; I),

then the asymptotic covariance matrix of the estimator Äµn is ÄVn, or that avar(Äµn) = ÄVn. For the
two-stage estimator we have that B0¡1=2

n ¢ N1=2 ¢ A0
n ¢ (µ̂n ¡ µ0)

D¡! N (0; I). Notice that the root n

scaling factor is wedged between the Hessian and the inverse square root of the outer product of
the scores. We can modify it as follows

B0¡1=2
n ¢ N1=2 ¢ A0

n ¢
³
µ̂n ¡ µ0

´
= B0¡1=2

n ¢ n¡1=2c ¢ N1=2 ¢ A0
n ¢ pnc

³
µ̂n¡ µ0

´

´ B0¡1=2
n ¢ N¤1=2 ¢ A0

n ¢ pnc
³
µ̂n¡ µ0

´

Thus the asymptotic covariance matrix is A0¡1
n ¢N¤¡1=2

1 ¢B0
n¢N¤¡1=2

1 ¢A0¡10
n , whereN ¤1 ´ lim

n!1
N¤.

The form of N¤
1 will depend on the relationship between nx;ny and nc as n ! 1. If it is assumed

that the di®erence between nc and nx and ny is constant as n ! 1, then N¤1 = Is, and so avar(µ̂n)
takes the same form as the standard two-stage maximum likelihood estimator. If instead the ratio

between nc and nx, and nc and ny is assumed constant, then N¤
1 =

2
664

dx ¢ Ip 0 0
0 dy ¢ Iq 0

0 0 Ir

3
775, where

lim
n!1

nx
nc

´ dx ¸ 1 and lim
n!1

ny
nc

´ dy ¸ 1.

For a consistent estimate of the covariance matrix, we need a consistent estimate of both A0
n

and B0
n. In the following two lemmas, we provide conditions under which sample analogues of these

matrices are consistent.
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Lemma 1 (Consistency of Ân) Given assumptions 1, 2, 3 and 5, we have that Ân¡ A0
n
p¡! 0,

where A0
n is given in Theorem 5 and

Ân ´

2
664

n¡1x
Pnx
t=1 r'' log f̂t 0 0

0 n¡1y
Pny
t=1 r°° log ĝt 0

n¡1c
Pnc
t=1r'· log ĉt n¡1c

Pnc
t=1r°· log ĉt n¡1c

Pnc
t=1 r·· log ĉt

3
775 (22)

where f̂t ´ f
¡
Zt; '̂nx

¢
, ĝt ´ g(Zt; °̂ny ) and ĉt ´ c(Zt; µ̂n).

Lemma 2 (Consistency of B̂n) Given assumptions 1, 2, and 9, then B̂n ¡B0
n
p¡! 0, where B0

n

is given in Theorem 5 and

B̂n ´

2
664

n¡1x
Pnx
t=1 ŝ1t ¢ ŝ01t (nxny)¡1=2

Pny
t=1 ŝ1t ¢ ŝ02t (nxnc)¡1=2

Pnc
t=1 ŝ1t ¢ ŝ03t

(nxny)¡1=2
Pny
t=1 ŝ2t ¢ ŝ01t n¡1y

Pny
t=1 ŝ2t ¢ ŝ02t (nync)¡1=2

Pnc
t=1 ŝ2t ¢ ŝ03t

(nxnc)¡1=2
Pnc
t=1 ŝ3t ¢ ŝ01t (nync)¡1=2

Pnc
t=1 ŝ3t ¢ ŝ02t n¡1c

Pnc
t=1 ŝ3t ¢ ŝ03t

3
775

where ŝ1t ´ r' logft
¡
Zt; '̂nx

¢
, ŝ2t ´ r° log gt

³
Zt; °̂ny

´
and ŝ3t ´ r· log ct

¡
Zt; ·̂nc

¢
.

Theorem 6 (Consistency of the covariance matrix estimator) Given assumptions 1 to 3,
5, 6 and 9 then Â¡1

n ¢ N¤¡1=2 ¢ B̂n ¢ N¤¡1=2 ¢ Â¡10
n is a consistent estimator of the asymptotic

covariance matrix of µ̂n.

Remark 2 The consideration of the case that nx 6= ny 6= nc lead to a slightly more complicated

form for the covariance matrix of the two-stage maximum likelihood estimator. In the case that
nx = ny = nc ´ n, the appropriate covariance matrix estimator is Â¡1

n ¢ B̂n ¢ Â¡10
n .

In ¯nite samples we use the asymptotic covariance matrix of the estimator as an approximation
to the true ¯nite sample covariance matrix. For the estimator presented above the covariance

matrix estimate is: Â¡1
n ¢ N¡1=2 ¢ B̂n ¢ N¡1=2 ¢ Â¡10n , which simpli¯es to n¡1Â¡1

n ¢ B̂n ¢ Â¡10
n in the

case that nx = ny = nc ´ n.

3.3 Cross-marginal distribution restrictions

Consider now the case that we cannot separate the parameters of the two marginal distributions
from each other. One possible cause of this is the presence of cross-marginal distribution restrictions,
or the dependence of one marginal on some function of the residual of the other marginal (such as a

multivariate moving average model, or a multivariate GARCH model, for example). In this section
we show how to adapt the estimator presented above when we cannot separate the parameters of

the marginal distributions from each other, but we can separate them from the parameters of the
copula.
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Assume now thatH (µ) = C (F (';°) ; G (';°) ;·), and so LXY (µ0) = LX ('0; °0)+LY ('0; °0)+
LC ('0; °0;·0). We may still achieve some computational simpli¯cation by ¯rst estimating ['00; ° 00]

0,

and then estimating ·0 conditional on the estimates of ['00; ° 00]
0. The estimator is denoted µ̂nc:

£
'̂0nc ; °̂

0
nc

¤0 ´ arg max
['0;° 0]02©£¡

n¡1c
ncX

t=1
log ft

¡
Zt;';°

¢
+ n¡1c

ncX

t=1
log gt

¡
Zt; ';°

¢

·̂nc ´ arg max
·2K

n¡1c
ncX

t=1
log ct

¡
Zt; '̂nc ; °̂nc; ·

¢

µ̂nc ´ £
'̂0nc ; °̂

0
nc ; ·̂

0
nc

¤0

In the ¯rst stage of this method we assume that Xt and Yt are independent, and so maximising

the joint likelihood is equivalent to maximising the sum of the marginal likelihoods. In the second
stage we model the dependence of Xt and Yt directly, by maximising the copula likelihood, condi-

tioning on the marginal parameter estimates. In the case that Xt and Yt truly are independent,
the two-stage method is fully e±cient.

The consistency results of the previous section hold, and the asymptotic normality results need
just a minor modi¯cation:

Theorem 7 (Asymptotic normality of µ̂nc) Let the assumptions of Theorem 5 hold. Then
B0¡1=2

n ¢ A0
n ¢ pnc

³
µ̂nc ¡ µ0

´ D¡! N (0; Is), where

B0
n ´ var

·Xn

t=1

h
n¡1=2c s0012t; n¡1=2c s003t

i0¸

= n¡1c

" Pnc
t=1 E

£
s012t ¢ s0012t

¤ Pnc
t=1 E

£
s012t ¢ s003t

¤
Pnc
t=1E

£
s03t ¢ s0012t

¤ Pnc
t=1 E

£
s03t ¢ s003t

¤
#

,

A0
n ´ n¡1c

2
664

A11 A12 0

A21 A22 0
A31 A32 A33

3
775

where s012t ´
"

r' log ft
¡
Zt;'0; °0

¢
+r' log gt

¡
Zt;'0; °0

¢

r° log ft
¡
Zt;'0; °0

¢
+r° log gt

¡
Zt;'0; °0

¢
#
, s03t ´ r· logct

¡
Zt; µ0

¢
, A11 ´

Pnc
t=1 E

£
r'' log f0

t
¤
+E

£
r'' log g0t

¤
, A12 ´ Pnc

t=1 E
£
r°' log f0t

¤
+E

£
r°' log g0t

¤
, A21 ´ Pnc

t=1E
£
r'° log f0t

¤
+

E
£
r'° log g0t

¤
, A22 ´ Pnc

t=1E
£
r°° log f0t

¤
+ E

£
r°° log g0t

¤
, A31 ´ Pnc

t=1 E
£
r'· logc0t

¤
, A32 ´

Pnc
t=1 E

£
r°· log c0t

¤
and A33 ´ Pnc

t=1 E
£
r·· log c0t

¤
.

The estimator of the covariance matrix of µ̂nc is an obvious adjustment of that for µ̂n. We now
turn to an analysis of the e±ciency of the two-stage estimator.
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3.4 E±ciency of the estimator

In the situation that we have the same amount of data available for all three estimators, '̂, °̂ and ·̂,
it is well known (see Le Cam, 1956, for example) that the one-stage maximum likelihood estimator

is the most e±cient estimator, in that it attains the minimum asymptotic variance bound. In this
section we compare the asymptotic e±ciency of the two-stage estimator discussed in Section 3.1

with the one-stage maximum likelihood estimator. The asymptotic e±ciency of two asymptoti-
cally normal estimators are compared by examining the di®erence of their asymptotic covariance

matrices. The small sample e±ciency of these estimators is compared in the next section.
In this section we also discuss the one-step adjusted two-stage maximum likelihood estimator,

see Newey and McFadden (1994) or White (1994), for our case. The adjusted estimator is a
single step modi¯cation of the two-stage estimator requiring no maximisations, which achieves the

minimum asymptotic variance bound.

The one-stage maximum likelihood estimator is denoted µ̂effnc , as it is known to be the most

e±cient estimator when nx = ny = nc. It is based by necessity on the common sample period. Let
M0
nc denote the asymptotic variance of µeffnc , thus representing the minimum asymptotic variance

bound. De¯ne D0
n ´ A0¡1

n ¢ B0
n ¢ A0¡10

n . As presented in the previous section, the asymptotic
covariance matrix of the two-stage estimator is A0¡1

n ¢N ¤¡1=2
1 ¢ B0

n ¢ N¤¡1=2
1 ¢ A0¡10

n . If the di®erence

between the sample sizes is constant, then A0¡1
n ¢N¤¡1=2 ¢B0

n ¢N¤¡1=2 ¢A0¡10
n ¡D0

n
p¡! 0, and the two-

stage maximum likelihood estimator is asymptotically less e±cient than the one-stage maximum

likelihood estimator, regardless of the magnitude of the di®erence in the (¯nite) sample sizes. If the
ratio between the sample sizes is constant, however, there exist situations in which the two-stage

maximum likelihood estimator is asymptotically not less e±cient than the one-stage estimator.
This is made clear in the following proposition.

Proposition 1 Let our two-stage estimator be denoted µ̂n and let the one-stage maximum likelihood
estimator be denoted µ̂

eff
nc . The asymptotic covariance matrices of these two estimators are A0¡1

n ¢
N¤¡1=2
1 ¢ B0

n ¢ N¤¡1=2
1 ¢ A0¡10

n and M0
nc respectively. Let D0

n ´ A0¡1
n ¢ B0

n ¢ A0¡1 0
n . If lim

n!1
nx
nc ´ dx > 1

or lim
n!1

ny
nc ´ dy > 1 and if dx or dy is `su±ciently large', then the two-stage maximum likelihood

estimator is not less e±cient than the one-stage estimator. If we let Mij denote the (i; j)th element
of the matrix M0

nc and similarly for C0
n; then a su±cient condition is that dx > Dii

Mii
for some

i 2 [1; p], or that dy > Djj
Mjj for some j 2 [p+ 1; q].

The intuition behind this is that we must have enough extra observations on the marginal

distributions to o®set the loss of information incurred by estimating each marginal distribution
separately. If this is the case then the two-stage estimator will be more e±cient in the estimation
of the marginal parameters. Regardless of the amount of extra information available on the marginal

distributions, the two-stage estimates of the copula parameters will always be less asymptotically
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e±cient than the one-stage estimates. It is this fact that leads us now to consider a modi¯cation
of the two-stage estimator that improves its e±ciency.

3.4.1 One-step adjustment of the two-stage estimator

Newey and McFadden (1994) and White (1994) discuss a method of adjusting any consistent,

asymptotically normal estimator to make it fully e±cient. This method involves taking a single
iteration of the Newton-Raphson algorithm from the parameter estimate towards the true param-

eter.

Theorem 8 (Fully e±cient two-stage estimator) Let Assumptions 1 to 5, and 8 hold, and let
the adjusted two-stage estimator be de¯ned as below.

µ̂
¤
n ´ µ̂n ¡ Â¡1

n ¢

2
664

n¡1x
Pnx
t=1 s1t

¡
Zt; '̂nx

¢

n¡1y
Pny
t=1 s2t

³
Zt; °̂ny

´

n¡1c
Pnc
t=1 s3t

³
Zt; µ̂n

´

3
775 (23)

where µ̂n is de¯ned in equation (12) and Ân, s1t, s2t and s3t are as de¯ned in Lemmas 1 and 2.
Then µ̂¤n attains the minimum asymptotic variance bound.

The above result is very powerful, in that it shows that we may employ the computationally
simpler two-stage estimator presented above, modify it without need of further optimisation, and

achieve a fully e±cient maximum likelihood estimator. An estimator for the asymptotic covariance
matrix of µ̂¤n is given below.

Proposition 2 (Covariance matrix estimator for µ̂
¤
n) Given assumptions 1 to 3, 5, 6 and 9

then the asymptotic covariance matrix of µ̂
¤
n de¯ned in Theorem 8 may be consistently estimated by

M̂nc , where

M̂nc ´ B̂¤¡1
n ,

B̂¤¡1
n ´ n¡1c

Xnc

t=1

2
664

ŝ¤1t ¢ ŝ¤01t ŝ¤1t ¢ ŝ¤02t ŝ¤1t ¢ ŝ¤03t
ŝ¤2t ¢ ŝ¤01t ŝ¤2t ¢ ŝ¤02t ŝ¤2t ¢ ŝ¤03t
ŝ¤3t ¢ ŝ¤01t ŝ¤3t ¢ ŝ¤02t ŝ¤3t ¢ ŝ¤03t

3
775

and ŝ¤1t ´ ŝ1t + r' log ct
³
Zt; µ̂

¤
n

´
, ŝ¤2t ´ ŝ2t + r° logct

³
Zt; µ̂

¤
n

´
and ŝ¤3t = ŝ3t.

Estimation of even moderately-sized bivariate time-varying conditional density models is quite

a computational burden, and the estimation of time-varying conditional density models of higher
dimension may be near impossible. Themethods presented in this section allow for the fully e±cient

estimation of the parameters of a time-varying conditional density model in a less computationally
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burdensome manner. If the unknown parameters may be separated into those associated with a
particular marginal distribution or with the copula, then we may estimate the elements of the

parameter vector separately. These estimates are still consistent and asymptotically normal, under
some conditions, though are not e±cient. By applying the one-step adjustment of the estimator

presented above, we obtain a fully e±cient estimator. It is hoped that the methods presented here
enable future researchers to more easily estimate multivariate models of higher dimensions than

the current standard of two.

4 Small sample properties

In this section we present the results of a Monte Carlo study of the small sample properties of the

estimators discussed above. A general study of the small sample properties of these estimators is
not possible; each particular data generating process (DGP) must be considered separately.

4.1 Simulation design

We consider three di®erent DGPs, with speci¯cations that were constructed to resemble those
commonly found in models of daily ¯nancial data: weak dependence in the conditional mean,

and highly persistent conditional variance. All three DGPs are bivariate distributions, with both
marginals being conditionally normal with the same AR(1)-GARCH(1,1) speci¯cations:

Xt = 0:01 + 0:05Xt¡1 + "t; "t s N (0; hxt )

hxt = 0:05 + 0:1"2t¡1 +0:85hxt¡1

Yt = 0:01 + 0:05Yt¡1 + ´t; ´t s N (0; hyt )

hyt = 0:05 + 0:1´2t¡1 +0:85hyt¡1

The DGPs di®er in the amount of dependence between the two variables. We examine the case
that the variables have the Clayton copula, with the copula parameter chosen so as to imply rank

correlations of 0:25, 0:50 and 0:75; low, medium and high dependence.

(Xt;Yt) jFt¡1 s H ´ Clayton (Normal;Normal; ·)

· = 0:41; 1:10 or 2:50.

We do not consider DGPs with time-varying conditional dependence, nor time-varying higher
order marginal moments, in order to keep the simulation tractable: we compare the two-stage

estimator with the one-stage estimator, the latter estimator being quite computationally di±cult
even for relatively simple models such as the one above.

In addition to the three DGPs, we consider six possible data situations: nx = 1500 and 3000, and

ny=nx = 0:25; 0:50 and 0:75. In all cases we assume that nc = ny. The three estimators considered
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are the two-stage estimator, µ̂n ´
h
'̂0nx ; °̂

0
ny; ·̂

0
nc

i0
, the one-step e±cient two-stage estimator, µ̂

¤
n,

and the standard one-stage estimator, µ̂
eff
nc . We will compare the estimators by looking at their

mean squared error (MSE):

MSE
³
µ̂
´

´ 1
N

XN

i=1

³
µ̂i¡ µ0

2́

where µ̂ is the estimator, µ0 is the true parameter, µ̂i is the estimate based on the ith Monte Carlo

replication and N = 1000 is the number of Monte Carlo replications.

4.2 Results

Let us ¯rstly contemplate what we expect to ¯nd. We expect that '̂nx has a lower MSE than

'̂effnc for small ny=nx and for low dependence cases. This is because the cost of using only the
common sample is higher, and the gains from using information on Y are lower. In no case would

we expect that °̂ny is better than °̂effnc , given the above set-up. For ·̂nc versus ·̂effnc it is not clear
what to expect: theoretically we know that the one-stage estimator is more e±cient, but in small

samples there may be gains from using a better estimate of '0 than obtainable from the one-stage
estimator. If the gains exist at all, we would expect them to be greatest for small ny=nx and low

levels of dependence. For small samples it is also not clear how µ̂
¤
n will compare to µ̂

eff
nc , as both

are asymptotically fully e±cient. The fact that µ̂
¤
n requires an estimate of the covariance matrix of

µ̂n may lead to some di®erences, however.

We computed the ratio of MSEs of the two-stage estimator to the one-stage estimator, and

the one-step e±cient estimator to the one-stage estimator for each of the eleven parameters of the
model. A ratio of less than one indicates that the estimator has a lower MSE than the one-stage

estimator. To simplify interpretation, we discuss only a summary of the complete results, presented
in Tables 1 to 3. The complete results are in Tables 4 to 6. For the summary results, we present the

average of the ¯rst marginal distribution's ¯ve parameter MSE ratios, and similarly for the second
marginal distribution6. The copula contains only one parameter, and so we present the actual ratio
of MSEs in this case. Table 1 presents the results for the two-stage estimator and Table 2 presents

the results for the one-step e±cient two-stage estimator.

[ INSERT TABLE 1 HERE ]

For the low dependence case (rank correlation of 0:25) we can see that for none of the combina-
tions of nx and ny considered was the one-stage estimator as good as the two-stage estimator for

the parameters of the ¯rst margin; all MSE ratios are less than one. The two-stage estimator was
slightly worse than the one-stage estimator for the parameters of the second margin, with the MSE

6The complete results in Tables 4 to 6 con¯rm that examining only at the mean ratio for each marginal distribution

does not distort the general conclusions.
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ratios ranging from 1:07 to 1:51. For the copula parameter the two-stage estimator was slightly
better than the one-stage estimator in all but one case, and was much better than the one-stage

parameter in the case that nx = 1500 and ny=nx = 0:25. Thus we see that although asymptotically
the two-stage estimator is known to be less e±cient than the one-stage estimator for the copula

parameter, in small samples the improved estimates of the ¯rst margin parameters outweigh the
loss of information incurred through multi-stage estimation.

As expected, greater dependence generally leads to higher MSE ratios - the loss of information
from using the two-stage estimator rather than the one-stage estimator is greater for rank correla-

tions of 0:50 and 0:75. Notice, however, that the MSE ratio of the copula parameters do not change
very much with the level of dependence. In most cases this ratio is close to one, indicating that in

terms of this parameter the two estimators are equally good.
Overall the results presented in Table 1 are surprisingly positive: the MSEs of the two-stage

estimator are, in many cases, smaller than those of the one-stage estimator, and in the cases where
the two-stage estimator MSEs are greater, this increase is moderate. Of course, these results are

speci¯c to the DGPs selected for this Monte Carlo study; similar results cannot be assumed for all
possible DGPs.

While the results for the two-stage estimator were surprisingly good, the results for the one-step
e±cient estimator are surprisingly bad. In only a couple of cases did the one-step e±cient estimator

outperform the one-stage estimator, and in numerous cases the ratio of MSEs was very large, in
some cases greater than 100. Asymptotically we know that the one-step e±cient estimator is fully
e±cient, and so is better, asymptotically, than the two-stage estimator. It appears, however, that

the use of an estimated Hessian and vector of scores leads to poor small sample properties in the
one-step e±cient estimator7 ;8. The MSE ratios for the parameters of the ¯rst margin are generally

good, presumably owing to the larger amount of data and the better Hessian and score vector
estimates. The MSE ratios for the copula parameter are also moderate for the larger data sets and

higher ny=nx ratios for the same reason.

[ INSERT TABLE 2 HERE ]
7There are two potential sources of error here: the ¯rst is the standard small sample variability of estimates,

and the second is the possible numerical error introduced by using numerical derivatives rather than analytical

derivatives. Analytical derivatives for the model considered would be very cumbersome to derive and program due

to the probability integral transformations that are employed. Given this, it seems likely that most researchers

estimating a copula model would use numerical derivatives rather than analytical derivatives, making our use of

numerical derivatives appropriate.
8The small sample properties of the one-step e±cient estimator may be improved by employing a modi¯cation of

this estimator proposed by Newey (1987). We do not investigate this possibility here. That Newey's modi¯cation

still requires the use of estimates of the hessian and scores suggests the possibility that the modi ēd one-step e±cient

estimator would merely match the performance of the two-stage estimator, rather than outperform it.
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The very high MSE ratios for the one-step e±cient estimator are driven by the fact that the
parameter estimates are in many cases outside of the feasible region. As n ! 1 this problem does

not arise, but clearly in ¯nite samples one needs to be conscious of it. In Table 3 below we present
the MSE ratios for a `modi¯ed' one-step e±cient estimator: we set the parameter estimate to be

just inside the boundary of the feasible region in the case that the one-step e±cient estimator is
outside the boundary9.

[ INSERT TABLE 3 HERE ]

The results presented in Table 3 indicate that the modi¯ed one-step e±cient estimator has

better small sample properties than the original one-step e±cient estimator, however it is still
worse than the two-stage estimator.

On the whole, these results suggest that the two-stage estimator is a reasonable alternative
to the fully e±cient one-stage estimator. There were numerous situations where the two-stage

estimator actually outperformed the one-stage estimator, as the two-stage estimator is able to
exploit all available information on both variables. In the cases where a loss of e±ciency was

incurred this loss was moderate. Our simulation results also suggest that the two-stage estimator is
preferable to the one-step e±cient two-stage estimator. The need for estimates of the Hessian and
scores for the one-step e±cient estimator induces greater mean squared error in the ¯nite samples

considered.

5 A model of the euro and yen exchange rates

In this section we apply the methods discussed above to a model of the conditional joint distribution
of daily Japanese yen - U.S. dollar and euro - U.S. dollar exchange rates. The data set employed

runs from January 1991 to June 2001 for the yen, and from January 1999 to June 2001 for the
euro, so that nx = 2695 and ny = nc = 643. The data are plotted in Figure 2. It is possible that

the fact that the euro came out on January 1, 1999, rather than some other date, carries useful
information on the conditional distribution of the euro/dollar exchange rate, i.e. that the missing-

data mechanism cannot be ignored. We will assume, however, that we can ignore the missing-data
mechanism10.

9For the GARCH inequality constraint, ®+ ¯ < 1, we do the following. Let ®̂¤n and ^̄¤
n be the one-step e±cient

parameter estimates. The modi¯ed one-step e±cient parameter estimates are set to: ®̂²n ´ 0:9999®̂¤n=
³
®̂¤n+ ^̄¤

n

´
and

^̄²
n ´ 0:9999^̄

¤
n=

³
®̂¤n+ ^̄¤

n

´
.

10For example, if enough countries now using the euro had failed to meet the requirements laid down for joining,

it is conceivable that the emergence of the euro would have been delayed. Thus, the fact that such a delay did not

occur may carry information on the economic performance of the countries now using the euro, and possibly also on

the conditional distribution of the euro itself. This possibility is left for future research.
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[ INSERT FIGURE 2 HERE]

The yen/dollar and euro/dollar rates are the two most frequently traded exchange rates, rep-

resenting over 50% of total foreign exchange turnover11 in 1998. The signi¯cance of these two
exchange rates in the global foreign exchange market and the fact that there exist quite di®erent

amounts of data on each of these variables make them a prime application for the estimator in-
troduced above: market participants can neither wait for more euro data to arrive, nor are they

willing to throw away the additional information they have on the yen. Using the estimator from
Section 3, we can use all available data on each exchange rate.

The Student's t distribution has previously been found to provide a good ¯t to individual
exchange rates, see Bollerslev (1987) and Patton (2001a) for example, and so we employ it for

the marginal distributions of both the yen and the euro exchange rates. For the yen margin an
AR(1,10) model was estimated for the conditional mean, and a GARCH(1,1) model was estimated

for the variance. The euro data exhibited no signi¯cant time variation in either the conditional
mean or the conditional variance, and so these conditional moments were set to constants12. The

estimated parameters and standard errors for these marginal distributions are presented in Table
7 below.

[ INSERT TABLE 7 HERE ]

The ¯gures under the heading `e±cient two-stage' are the parameter estimates found by applying
the one-step adjustment to the standard two-stage estimates, as discussed in Section 3.4.1. These

estimates require a speci¯cation for the copula, and above we present the results obtained using
Clayton's copula13, which is discussed below. The reader can see that the parameter estimates do

not di®er greatly between the standard two-stage and the e±cient two-stage methods, though the
standard errors are quite di®erent: speci¯cally, the standard errors on the yen parameters are much

greater for the e±cient two-stage estimator than the standard two-stage estimator. Clearly in our
case the gains from using a fully e±cient estimator are outweighed by the fact that we cannot use all

available data on the yen. Given this fact, and the ¯nding in Section 4 that the two-stage estimator
has better small sample properties than the one-step e±cient estimator, we will concentrate below

on the results from the standard two-stage estimator.
11Source: Bank for International Settlements (1999). The BIS only produces this report every three years, and

so no ¯gures for the euro itself are yet available. The 1998 ¯gure for the individual currencies now in the euro is

approximately 30:8%. The corresponding ¯gure for the yen - U.S. dollar exchange rate is 20:9%.
12The absence of signi¯cant time variation in the conditional mean and variance is almost certainly due to the

small amount of data available. With time, and more data, we expect that this hypothesis will be rejected.
13The results obtained using the other two copulas considered in this paper were not substantially di®erent, and

so are not presented. They are available from the author upon request.
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The evaluation of the goodness-of-̄ t of the models for the marginal distributions is of critical im-
portance: the joint distribution of the transformed variables, Ut ´ Ft(Zt; '̂nx) and Vt ´ Gt(Zt;°ny ),

will be modelled with a copula, which has by construction margins that are Uniform(0; 1). If the
marginal distribution models are misspeci¯ed then the variables Ut and Vt will not be uniform and

the copula will be misspeci¯ed. In light of this, we employ a number of tests of the marginal spec-
i¯cations. It should be pointed out that all of the tests we employ ignore the impact of sampling

variability in the parameter estimates on the distributions of fUtgnt=1 and fVtgnt=1. The ¯rst two
tests follow Diebold, et al. (1998), who suggested testing that Ut s i:i:d: Unif (0;1) and Vt s i:i:d:

Unif (0; 1) in two stages: ¯rstly testing that Ut and Vt are i:i:d: via LM tests, and then testing
that they are Uniform(0,1). We test the i:i:d: assumption by regressing (Ut ¡ ¹Un)k and (Vt ¡ ¹Vn)k

on twenty lags of both variables for k = 1; 2; 3;4. We test the Unif (0; 1) hypothesis via the well-
known Kolmogorov-Smirnov test. The results of these tests are presented in Table 8 below. As

this table shows, both marginal distribution models pass both tests.

[ INSERT TABLE 8 HERE ]

We employ two further tests, suggested in Patton (2001a). These tests jointly test the hy-
potheses of i:i:d: and uniformity via `hit' tests. The support of the distribution is divided into ¯ve

regions, Rj , according to quantiles, with boundaries at 0, 0.1, 0.25, 0.75, 0.9 and 1, representing
the extreme upper and lower tails, the intermediate upper and lower tails, and the centre of the

distribution. The hit random variable is de¯ned as taking the value 1 if the transformed variable
(Ut or Vt) lies in the region and zero else. That is: HitXjt ´ 1fUt 2 Rjg and HitYjt ´ 1fVt 2 Rjg,

for j = 1; 2; ::; 5. Under the null hypothesis that Ut s i:i:d: Unif (0;1) we have that HitXjt s i:i:d:
Bernoulli

³
PrF̂

h
HitXjt

í
. We may then test this hypothesis for each of the ¯ve regions. Testing

each region separately enables us to see if de¯ciencies exist in the model's ¯t in particular regions
(such as in the tails if regions 1 and 5 are misspeci¯ed, or in uncaptured skewness, if both upper

or both lower regions are misspeci¯ed). We may also test the joint hypothesis that all ¯ve regions
are well speci¯ed via a multinomial test, also described in Patton (2001a). We perform these tests,

including as regressors the number of hits in the last day, week and month to test for serial de-
pendence, and a constant to test for misspeci¯cation of the conditional density. The results are

presented in Table 9 below.

[ INSERT TABLE 9 HERE ]

The above table shows that both margins pass the individual hit tests for all ¯ve regions and

pass the joint test also. We thus conclude that the marginal distributions are adequately modelled,
and proceed to the modelling of the copula.

There is a vast literature in statistics on the generation of families of copulas, though only a few

have been used in modelling. For the purposes of comparison we will estimate three of the more
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common copulas: the Gaussian, or normal, copula, the Plackett copula and the Clayton14 copula.
The functional forms of these three copulas are presented in Appendix 4, and further details on them

may be found in Nelsen (1999) or Joe (1997). The normal copula is the copula associated with the
bivariate normal distribution, and thus is the dependence function implicitly assumed whenever the

bivariate normal distribution is used. Plackett's (1965) copula is symmetric, like the normal copula,
but exhibits less dependence in the (bivariate) tails of the distribution. Clayton's (1978) copula

is an asymmetric copula, exhibiting greater dependence in the negative tail than in the positive
tail. In Figure 3 we present diagrams to help illustrate the three copulas. Copulas themselves

are di±cult to develop intuition for graphically, and so we present instead the joint distributions
formed by using particular copulas to link together two standard normal random variables. In all

cases the parameter of the copula is calibrated to yield a linear correlation coe±cient of 0.5. The
three left panels present contour plots of the three joint densities. These panels clearly show the

asymmetry implied by Clayton's copula, and show that both the normal and Plackett copulas are
symmetric. The three right panels examine the di®erent dependence structures by looking at the

conditional density of one variable, X , given the other, Y , for three possible values of Y : -1.96,
0 and 1.96. These panels show that Clayton's copula has greater dependence for Y < 0, and less

dependence for Y > 0. They also show that the conditional density using Plackett's copula is
skewed for Y 6= 0, and that it has more probability mass at zero than the normal when Y = 0.

[ INSERT FIGURE 3 HERE ]

Little evidence of time variation in the conditional copula was found15, and so only constant
versions of the copulas were ¯tted. See Patton (2001a and 2001b) for examples of time-varying

conditional copula models of exchange rates and stock returns, respectively. Speci¯cation tests,
discussed below, indicate that the assumption of a constant conditional copula could not be rejected

for this data set. The estimated copula parameters and copula likelihoods are presented in Table
10 below.

[ INSERT TABLE 10 HERE ]

This table shows that the Clayton copula had the best ¯t, in terms of the likelihood function.

As these copulas are non-nested, however, we cannot conduct standard likelihood ratio tests to
determine whether the improvement in the copula likelihood was signi¯cant. In the place of a

standard likelihood ratio test, we employed a recent test proposed by White (2000), and imple-
mented by Sullivan, et al., (1999), Sullivan, et al., (2001) and Hansen and Lunde (2001), called the

14Joe (1997) refers to this copula as the Kimeldorf and Sampson copula.
15As for the euro margin, we expect that this is due to the small amount of data available. It should be noted

that although the copula and the euro margin are both assumed constant, the presence of time variation in the yen

margin makes our model a time-varying conditional density model.
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`reality check'. This test may be used to determine whether a particular model is as good as the
best alternative model considered, according to some performance measure. We used the likelihood

ratio as our performance measure. The reality check was originally developed to control for data
snooping, where researchers search over thousands of models to ¯nd a good ¯t, but it can be equally

well applied in our situation with just three models. We employed the bootstrap version of this
test, and used the stationary bootstrap of Politis and Romano (1994) to deal with our non-i:i:d:

data. The reader is referred to White (2000) for a detailed description of the implementation of
this test. We performed the test three times, once with each model as the null, and found that the

normal copula was the only one that could be rejected: the p-value for this test was 0:08 indicating
that at the 10% alpha level we had evidence that the normal copula was not as good as the best

alternative. Neither the Plackett nor the Clayton copulas could be rejected as being equal to the
best, with p-values of 0:23 and 0:57 respectively.

Finally, we conducted speci¯cation tests on the three copulas, using the bivariate extension of
the hit tests used for the marginal models. We de¯ned seven regions of interest in the support of

the copula, depicted in Figure 4, and tested the goodness-of-¯t in the individual regions and in all
regions simultaneously for all three copula models.

[ INSERT FIGURE 4 HERE ]

In Table 11 below we present the results of the speci¯cation tests for the three copula models.
These results show that all three copulas passed the joint test of correct speci¯cation in all regions,

but only the Clayton copula passed all seven individual region tests; the normal and the Plackett
copulas failed at the 10% alpha level in region 1, the extreme negative bivariate tail. This is

precisely the region where the Clayton copula di®ers most from the other two copulas, in that the
Clayton copula suggests strong dependence in the lower tail, while the normal and Plackett copulas

do not. It appears that the dependence between the yen-dollar and euro-dollar exchange rates is
better modelled by a copula that captures the increased dependence in this negative tail, such as

the Clayton copula.

[ INSERT TABLE 11 HERE ]

The increased dependence in the lower (joint) tail of the bivariate distribution of the yen/dollar
and euro/dollar exchange rates suggests that these variables are more dependent during depreci-

ations of the dollar than during appreciations of the dollar. This is in contrast with the results
of Patton (2001a), who found that the yen/dollar and German mark/dollar exchange rates were

more dependent during appreciations of the dollar than depreciations. The implication of these two
results is that the type of asymmetry (greater dependence in the lower joint tail than the upper

joint tail, or vice versa) in the dependence function of exchange rates may be time-varying. In our

24



short sample on the euro we did not detect any time-variation in dependence, however for longer
time series switches in the type of asymmetry may be important, and need to be captured in the

copula model.

6 Conclusion

This paper proposed a two-stage maximum likelihood estimator for parametric copula models
for time series, in the framework of Newey and McFadden (1994) and White (1994). The use

of this estimator greatly eases the computational burden associated with the estimation of time-
varying multivariate density models. We showed in this paper that the estimator is consistent

and asymptotically normal, under standard conditions, and provided a consistent estimator of its
covariance matrix.

The estimator is also °exible enough that the case that unequal amounts of data are available
on each variable is easily handled. Numerous situations exists where we have di®ering amounts of

data on the variables of interest: models of developed and emerging markets, models of recently
°oated stocks and the market portfolio, and models involving the euro. Our estimator may be

interpreted as an extension of that of Anderson (1957) and Stambaugh (1997) to more irregular
data sets, and to non-normal, serially dependent random variables.

A bene¯t of this estimator is that, when adjusted as in equation (23), it attains the minimum
asymptotic variance bound, and so is fully e±cient. A simulation study also showed that the unad-

justed two-stage estimator has good ¯nite sample properties. Possibly the main drawback of this
method is that a complete speci¯cation of the conditional density is required, and that this speci-
¯cation must be assumed to be correct. Many of the copula estimators in the statistics literature,

see Genest and Rivest (1993), Genest, et al., (1995) and Cap¶eraµa, et al., (1997), were developed so
that the researcher was able to obtain an estimate of the copula without specifying the marginal

distributions. The extension of these methods to the time series case is not straightforward: even
if we abstract from the shape of the marginal distributions we must still model the dynamics, and

this is not easily done in a nonparametric fashion. The impact of misspeci¯cation of one or more
marginal distributions is an important problem, and will be addressed in future research.

We applied our estimator to a model of the joint distribution of daily Japanese yen - U.S. dollar
and euro - U.S. dollar exchange rates. These rates are the two most frequently traded exchange

rates, and have the characteristic that we have much more data available on the yen than we do on
the euro. We estimated three di®erent copula models and found some evidence that the Clayton

copula, which allows for asymmetry in the dependence structure, provided a better ¯t than the
other two copulas, which impose symmetric dependence. Applications of the theory of copulas

appears fertile ground for research. We hope that the results presented in this paper provide some
assistance in its application to the modelling of economic time series.
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7 Appendix 1: Proofs for Section 2

Proof of Theorem 1. See the proof of Theorem 2.1.4 of Casella and Berger (1990)

Proof of Theorem 2. See the proof of Theorem 1 of Patton (2001a).

Proof of Corollary 1. See the proof of Corollary 1 of Patton (2001a).

8 Appendix 2: Assumptions for Section 3

Presented below are the assumptions required at some stage in the proofs of the theorems. They are

collected here for convenience and ease of reference. Most of these assumptions are based on those
presented in White (1994). In addition to the assumptions below we make the usual assumptions

that observed data are a realisation of a stochastic process on a complete probability space and
that all functions are measurable.

Assumption 1 (Conditions on the log-likelihoods) (a)(i) For each ' 2 ©, E
£
logf

¡
Zt;'

¢¤

exists and is ¯nite, t = 1;2; :::;

(ii) For each ° 2 ¡, E
£
log g

¡
Zt; °

¢¤
exists and is ¯nite, t = 1;2; :::;

(iii) For each µ 2 £, E
£
log c

¡
Zt; µ

¢¤
exists and is ¯nite, t = 1; 2; :::;

(b)(i) E
£
log f

¡
Zt; ¢

¢¤
is continuous on ©, t = 1; 2; :::;

(ii) E
£
log g

¡
Zt; ¢

¢¤
is continuous on ¡, t = 1;2; :::;

(iii) E
£
log c

¡
Zt; ¢

¢¤
is continuous on £, t = 1; 2; :::;

(c)
©
log f

¡
Zt; µ

¢ª
,
©
logg

¡
Zt;°

¢ª
and

©
log c

¡
Zt;µ

¢ª
obey the weak uniform law of large num-

bers.

Assumption 2
©
n¡1x

Pnx
t=1 E

£
log f

¡
Zt;'

¢¤ª
and

©
n¡1y

Pny
t=1 E

£
logg

¡
Zt;°

¢¤ª
are O (1) uniformly

on © and ¡ respectively, and
©
n¡1x

Pnx
t=1 E

£
log f

¡
Zt; ¢

¢¤ª
and

©
n¡1y

Pny
t=1E

£
log g

¡
Zt; ¢

¢¤ª
have

unique maximisers '0 and °0 interior to © and ¡.

Assumption 3 f
¡
Zt; ¢¢, g

¡
Zt; ¢¢ and c

¡
Zt; ¢¢ are continuously di®erentiable of order 2 on ©, ¡

and £ respectively almost surely, t = 1; 2; :::.

Assumption 4 (Conditions on the scores) (a)(i) For all ' 2 ©, E
£
n¡1x

Pnx
t=1 s1

¡
Zt;'

¢¤
<

1
(ii) For all ° 2 ¡, E

£
n¡1y

Pny
t=1 s2

¡
Zt;°

¢¤
< 1

(iii) For all µ 2 £, E
£
n¡1c

Pnc
t=1 s3

¡
Zt;µ

¢¤
< 1

(b)(i) E
£
n¡1x

Pnx
t=1 s1

¡
Zt; '

¢¤
is continuous on © uniformly in nx = 1; 2; :::.
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(ii) E
£
n¡1y

Pny
t=1 s2

¡
Zt;°

¢¤
is continuous on ¡ uniformly in ny = 1;2; :::.

(iii) E
£
n¡1c

Pnc
t=1 s3

¡
Zt;µ

¢¤
is continuous on £ uniformly in nc = 1;2; :::.

(c)(i)
©
s1

¡
Zt;'

¢ª
obeys the weak uniform law of large numbers

(ii)
©
s2

¡
Zt;°

¢ª
obeys the weak uniform law of large numbers

(iii)
©
s3

¡
Zt;µ

¢ª
obeys the weak uniform law of large numbers

where s1
¡
Zt; '

¢
´ r' log f

¡
Zt; '

¢
, s2

¡
Zt; °

¢
´ r° log g

¡
Zt; °

¢
and s3

¡
Zt; µ

¢
´ r· log c

¡
Zt; µ

¢

are the vectors of scores.

Assumption 5 (Conditions on the hessians) (a)(i) For all ' 2 ©, E
£
n¡1x

Pnx
t=1r'' logf

¡
Zt;'

¢¤
<

1, nx = 1;2; :::.
(ii) For all ° 2 ¡, E

£
n¡1y

Pny
t=1 r°° log g

¡
Zt; °

¢¤
< 1, ny = 1;2; :::.

(iii) For all µ 2 £, E
£
n¡1c

Pnc
t=1 r·· log c

¡
Zt; µ

¢¤
, E

£
n¡1c

Pnc
t=1 r'· log c

¡
Zt; µ

¢¤
and

E
£
n¡1c

Pnc
t=1 r°· log c

¡
Zt; µ

¢¤
are < 1, nc = 1; 2; :::.

(b)(i) E
£
n¡1x

Pnx
t=1r'' log f

¡
Zt; '

¢¤
is continuous on © uniformly in nx = 1;2; :::.

(ii) E
£
n¡1y

Pny
t=1 r°° log g

¡
Zt; °

¢¤
is continuous on ¡ uniformly in ny = 1;2; :::.

(iii) E
£
n¡1c

Pnc
t=1 r·· logc

¡
Zt;µ

¢¤
, E

£
n¡1c

Pnc
t=1 r'· log c

¡
Zt; µ

¢¤
and E

£
n¡1c

Pnc
t=1 r°· log c

¡
Zt; µ

¢¤

are continuous on £ uniformly in nc = 1; 2; :::.

(c)(i)
©
r'' log f

¡
Zt; '

¢ª
obeys the weak uniform law of large numbers

(ii)
©
r°° log g

¡
Zt;°

¢ª
obeys the weak uniform law of large numbers

(iii)
©r·· log c

¡
Zt;µ

¢ª
,

©r'· log c
¡
Zt;µ

¢ª
and

©r°· log c
¡
Zt; µ

¢ª
obey the weak uniform

law of large numbers.

Assumption 6 E
£
n¡1c

Pnc
t=1 r·· log c

¡
Zt; µ

¢¤
, E

£
n¡1c

Pnc
t=1 r'· log c

¡
Zt; µ

¢¤
and

E
£
n¡1c

Pnc
t=1 r°· log c

¡
Zt; µ

¢¤
are O (1) and negative de¯nite uniformly in n.

Assumption 7 Let '̂ and °̂ be consistent estimators of '0 and °0. Then
©
n¡1c

Pnc
t=1 log c

¡
Zt; '̂; °̂;·

¢ª

has a unique maximiser ·0 interior to K.

Let us simplifynotation for the following assumption: let s01t ´ s1
¡
Zt;'0

¢
, and ŝ1t ´ s1

¡
Zt; '̂nx

¢
.

Similarly for s2t and s3t. Let us de¯ne log g
¡
Zt; °

¢
= r° log g

¡
Zt; °

¢
= 0 for t > ny and

log c
¡
Zt; µ

¢
= r· log c

¡
Zt;µ

¢
= 0 for t > nc to deal with time indices beyond the sample sizes

available.

Assumption 8 The double array
½h

n¡1=2x s001t; n
¡1=2
y s002t; n

¡1=2
c s003t

i0¾
obeys the central limit theorem

with covariance matrix B0
n, given below, where B0

n is O (1) and positive de¯nite.

B0
n ´

2
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s03t ¢ s001t

¤
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£
s03t ¢ s002t

¤
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Pnc
t=1E

£
s03t ¢ s003t

¤

3
775

(24)
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The above de¯nition of the covariance matrix B0
n is the natural extension of the standard

de¯nition to the case of unequal amounts of data, and reduces to the standard case when nx =

ny = nc. To see where the unusual scaling ¯gures come from, recall that the covariance matrix is
de¯ned as

B0
n ´ var

·Xn

t=1

h
n¡1=2x s001t;n¡1=2y s002t;n¡1=2c s003t

i0¸

Noting that the expectation of the scores are zero at the true parameter, and expanding the
above expression for the variance yields equation (24).

Let Bn (µ) be the matrix Bn evaluated at the point µ, and so B0
n de¯ned above equals Bn (µ0).

We use this de¯nition in the following assumption.

Assumption 9 (a) The elements of Bn are ¯nite and continuous on £ uniformly in n = 1;2; :::.

(b) The elements of
n£

s001t; s002t; s003t
¤0 ¢

£
s001t; s002t; s003t

¤o
obey the weak uniform law of large num-

bers.

Andrews (1988), Gallant and White (1988), White (1994) and White (2001) provide some
results on laws of large numbers for dependent, heterogeneously distributed random variables that

may be used to satisfy assumption 9 (b).

9 Appendix 3: Proofs for Section 3 (draft)

Proof of Theorem 3. See proof of Theorem 3.13 of White (1994).

Proof of Theorem 4. See proof of Theorem 3.10 of White (1994).

Proof of Theorem 5. For the complete proof of the standard two-stage maximum likelihood

case see the proof of Theorem 6.11 of White (1994). Below we provide a sketch of the modi¯cations
that need to be made to accommodate the di®ering sample sizes.

Firstly, some more notation: A (µ) =
2
664

n¡1x
Pnx
t=1 E

£
r'' log ft

¡
Zt; '

¢¤
0 0

0 n¡1y
Pny
t=1 E

£r°° log gt
¡
Zt; °

¢¤
0

n¡1c
Pnc
t=1 E

£
r'· log ct

¡
Zt;µ

¢¤
n¡1c

Pnc
t=1E

£
r°· log ct

¡
Zt;µ

¢¤
n¡1c

Pnc
t=1E

£
r·· log ct

¡
Zt;µ

¢¤

3
775

so A(µ0) = A0
n.
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As usual, the proof starts by taking a Taylor series expansion of the scores evaluated at the
estimated parameters about the scores evaluated at the true parameters, which equal zero due to

the assumption that the true parameters lie in the interior of £.

0 =

2
664

n¡1x
Pnx
t=1 s1t

¡
Zt; '̂nx

¢

n¡1y
Pny
t=1 s2t

³
Zt; °̂ny

´

n¡1c
Pny
t=1 s3t

³
Zt; '̂nx ; °̂ny ; ·̂nc

´

3
775 =

2
664

n¡1x
Pnx
t=1 s1t

¡
Zt; '0

¢

n¡1y
Pny
t=1 s2t

¡
Zt;°0

¢

n¡1c
Pny
t=1 s3t

¡
Zt;µ0

¢

3
775 +A

¡¹µn
¢

¢

2
664

'̂nx ¡ '0

°̂ny ¡ °0
·̂nc ¡·0

3
775

where ¹µn ´ ¸µ̂n +(1 ¡ ¸) µ0, and ¸ 2 [0;1]. So

A
¡¹µn

¢
¢

2
664

'̂nx ¡ '0

°̂ny ¡°0

·̂nc ¡ ·0

3
775 = ¡

2
664

n¡1x
Pnx
t=1 s1t

¡
Zt;'0

¢

n¡1y
Pny
t=1 s2t

¡
Zt; °0

¢

n¡1c
Pny
t=1 s3t

¡
Zt;µ0

¢

3
775

N1=2 ¢ A
¡¹µn

¢
¢

2
664

'̂nx ¡ '0

°̂ny ¡°0

·̂nc ¡ ·0

3
775 = ¡N1=2 ¢

2
664

n¡1x
Pnx
t=1 s1t

¡
Zt;'0

¢

n¡1y
Pny
t=1 s2t

¡
Zt; °0

¢

n¡1c
Pny
t=1 s3t

¡
Zt;µ0

¢

3
775

B0¡1=2
n ¢ N1=2 ¢ A ¡¹µn

¢ ¢

2
664

'̂nx ¡ '0

°̂ny ¡°0

·̂nc ¡ ·0

3
775 = ¡B0¡1=2

n ¢

2
664

n¡1=2x
Pnx
t=1 s1t

¡
Zt; '0

¢

n¡1=2y
Pny
t=1 s2t

¡
Zt;°0

¢

n¡1=2c
Pny
t=1 s3t

¡
Zt;µ0

¢

3
775

B0¡1=2

n ¢ N1=2 ¢ A (µ0) ¢

2
664

'̂nx ¡ '0

°̂ny ¡°0

·̂nc ¡ ·0

3
775 = ¡B0¡1=2

n ¢

2
664

n¡1=2x
Pnx
t=1 s1t

¡
Zt; '0

¢

n¡1=2y
Pny
t=1 s2t

¡
Zt;°0

¢

n¡1=2c
Pny
t=1 s3t

¡
Zt;µ0

¢

3
775 + op (1)

D¡! N (0; I)

by assumption 8 and Theorem 8.10 of Lehmann and Casella (1998, p58).

Proof of Lemma 1. See the proof of Corollary 3.8 of White (1994).

Proof of Lemma 2. See the proof of Theorem 8.26 (i) of White (1994).

Proof of Theorem 6. We must show that Â¡1
n ¢N ¤¡1=2 ¢B̂n ¢N¤¡1=2¢Â¡10

n ¡A0¡1

n ¢N¤¡1=2
1 ¢B0

n ¢
N¤¡1=2
1 ¢ A0¡10

n
p¡! 0. The above two lemmas showed that Ân¡ A0

n
p¡! 0 and B̂n ¡B0

n
p¡! 0, and

by de¯nition we have that N¤ ! N¤
1. The result then follows from Assumption 6 and Proposition

2.30 of White (2001).

Proof of Theorem 7. Follows that of Theorem 5 suitably modi¯ed.

Proof of Proposition 1. The asymptotic e±ciency of asymptotically normal estimators are
compared by analysing their asymptotic covariance matrices. Speci¯cally, the one-stage estimator
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is more e±cient than the two-stage estimator if
³
avar(µ̂n) ¡avar(µ̂effn )

´
is a positive semi-de¯nite

matrix.
Consider the case that dx > D11

M11
, so that d¡1x < M11

D11
. Notice that we may write the ¯rst (p£ p)

elements of the matrix A0¡1
n ¢ N¤¡1=2

1 ¢ B0
n ¢ N¤¡1=2

1 ¢ A0¡10
n as d¡1x times the ¯rst (p£ p) elements of

the matrix D0
n. Let ¸ = [ ;̧ 0], where 0 is a column vector of p+ q + r ¡ 1 zeros and ¸ 2 Rn f0g.

Then the quadratic form

¸0 ¢
³
avar(µ̂n) ¡avar(µ̂

eff
n )

´
¢ ¸ = 0̧ ¢

³
A0¡1

n ¢ N¤1=2
1 ¢ B0

n ¢ N¤1=2
1 ¢ A0¡10

n ¡M0
nc

´
¢ ¸

= 0̧ ¢ ¡d¡1x D11 ¡M11
¢ ¢ ¸

< 0̧ ¢
µ

M11

D11
D11 ¡M11

¶
¢ ¸

= 0

Whereas if we let _̧ =[0; ]̧ then we ¯nd:

_̧ 0 ¢
³
avar(µ̂n) ¡ avar(µ̂effn )

´
¢ _̧ = _̧ 0 ¢

³
A0¡1

n ¢ N¤¡1=2
1 ¢ B0

n ¢ N¤¡1=2
1 ¢ A0¡10

n ¡M0
n

´
¢ _̧

= ¸0 ¢ (Ds;s ¡ Ms;s) ¢ ¸
¸ 0 by the e±ciency of the one-stage estimator

Thus we ¯nd that the di®erence between the asymptotic covariance matrices under the above
assumption is inde¯nite: neither estimator is more e±cient than the other. The two-stage estimator
is a more e±cient estimator of the parameters in the marginal distribution (in the above case, for the

¯rst parameter of the ¯rst marginal distribution) while the one-stage estimator is a more e±cient
estimator of the copula parameters.

Proof of Theorem 8. The proof involves showing that
p

nc
³
µ̂
¤
n¡ µ̂

eff
n

´
p¡! 0 as nc ! 1.

Allowing for di®ering sample sizes causes no di±culties here and the proof of Theorem 7.9 of White

(1994) obtains.

Proof of Proposition 2. Theorem 8 gives us that µ̂¤n has the same asymptotic distribution

as the one-stage maximum likelihood estimator µ̂
eff
n , and thus the same asymptotic covariance

matrix. As we have assumed correct speci¯cation, we know that the asymptotic covariance matrix

of µ̂
eff
n is ~B0¡1

n , the inverse of the Fisher information matrix. For this estimator ~B0
n takes the form

~B0
n = n¡1c

Xnc

t=1

2
664

~s01t ¢ ~s001t ~s01t ¢ ~s002t ~s01t ¢ ~s003t
~s02t ¢ ~s001t ~s02t ¢ ~s002t ~s02t ¢ ~s003t
~s03t ¢ ~s001t ~s03t ¢ ~s002t ~s03t ¢ ~s003t

3
775

where ~s01t ´ r' log ht
¡
Zt;µ0

¢
, ~s02t ´ r° log ht

¡
Zt;µ0

¢
and ~s03t ´ r· log ht

¡
Zt; µ0

¢
, since this esti-

mator maximises the complete joint likelihood, rather than the individual components of the like-

lihood. Notice that r' loght
¡
Zt; µ0

¢
= r' log ft

¡
Zt;'0

¢
+ r' log ct

¡
Zt; µ0

¢
, r° log ht

¡
Zt; µ0

¢
=
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r° log gt
¡
Zt; °0

¢
+ r° log ct

¡
Zt;µ0

¢
and r· log ht

¡
Zt;µ0

¢
= r· log ct

¡
Zt;µ0

¢
´ s03t for the case

that we may write ht
¡
Zt; µ0

¢
= ft

¡
Zt;'0

¢ ¢ gt
¡
Zt;°0

¢ ¢ ct
¡
Ft

¡
Zt; '0

¢
;Gt

¡
Zt; °0

¢
;·0

¢
, which is

what we have assumed.
Under the conditions given we have that the above scores evaluated at the true parameter µ0

may be consistently estimated by the scores evaluated at the estimated parameter µ̂
¤
n. It follows

then that B̂¤
n is consistent for ~B0

n, and thus that M̂nc is consistent for M0
nc .
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10 Appendix 4: Normal, Plackett and Clayton copulas

Below we present the functional forms of the three copulas considered in this paper, namely the
normal (or Gaussian) copula, Plackett's copula and Clayton's copula. For an extensive collection of

bivariate copulas and some details on their characteristics the reader is referred to Chapter 5 of Joe
(1997). We will denote the c:d:f: form of the copula with an upper case C , and the density form

with a lower case c. The functions de¯ned below are only for (u; v) 2 [0;1]2, that is, for observations
in the support of the copula. The c:d:f: of each copula may be extended to the entire real line as

described in equation (3), while the copula densities are as given below for (u;v) 2 [0;1]2 and zero
for (u; v) =2 [0;1]2.

Normal copula

C (u; v; ½) =

©¡1(u)Z

¡1

©¡1(v)Z

¡1

1
2¼

p
1 ¡ ½2

¢ exp

(
¡

¡
r2 + s2 ¡ 2½rs

¢

2 (1 ¡ ½2)

)
dr ds

c(u; v; ½) = 1p
1 ¡ ½2

¢ exp

(
¡©¡1 (u)2 + ©¡1 (v)2 ¡ 2½ ¢ ©¡1 (u) ¢ ©¡1 (v)

2 (1 ¡ ½2)

)

¢exp
(

¡©¡1 (u)2 +©¡1 (v)2

2

)

where ©¡1 is the inverse of a univariate standard normal c:d:f:, for ½ 2 (¡1;1).

Plackett's copula

C (u;v;Ã) =

8
<
:

1+(Ã¡1)(u+v)¡
p

(1+(Ã¡1)(u+v))2¡4Ã(Ã¡1)uv
2(Ã¡1) if Ã ¸ 0, Ã 6= 1

u ¢ v if Ã = 1

c (u;v;Ã) =

8
<
:

Ã(1+(Ã¡1)(u+v¡2uv))q
([1+(Ã¡1)(u+v)]2¡4Ã(Ã¡1)uv)3

if Ã ¸ 0, Ã 6= 1

1 if Ã = 1

Clayton's copula

C (u; v; ±) =

( ¡
u¡± + v¡± ¡ 1

¢¡1=± if ± > 0

u ¢ v if ± = 0

c(u; v; ±) =

(
(1 + ±) (uv)¡1¡±

¡
u¡± + v¡± ¡ 1

¢¡2¡1=± if ± > 0
1 if ± = 0
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11 Tables

Table 1: Ratio of two-stage estimator MSE to one-stage estimator MSE

ny=nx = 0:25 ny=nx = 0:50 ny=nx = 0:75
Rank correlation = 0.25

First margin 0.1639 0.4243 0.7524
nx = 1500 Second margin 1.0673 1.5109 1.069

Copula 0.2422 0.9345 0.9244

First margin 0.2108 0.548 0.7893
nx = 3000 Second margin 1.1819 1.1905 1.0753

Copula 0.9662 1.0063 0.9784

Rank correlation = 0.50
First margin 0.2312 0.7066 1.6421

nx = 1500 Second margin 1.9149 1.956 1.5235
Copula 1.0268 0.8991 0.9467

First margin 0.2666 0.6586 1.2042

nx = 3000 Second margin 1.7432 1.5031 1.5561
Copula 0.8707 1.0339 0.9714

Rank correlation = 0.75

First margin 0.4815 0.7746 2.2068
nx = 1500 Second margin 3.0706 3.8138 3.4899

Copula 1.4216 1.0805 0.9381

First margin 0.5775 1.2669 2.0971
nx = 3000 Second margin 4.0657 2.8347 2.7536

Copula 0.9913 1.0139 1.0123

Note: This table presents the ratio of the two-stage estimator small sample MSE to the one-stage

estimator small sample MSE for each parameter of the joint distribution, for 1000 Monte Carlo replications.

We present the average ratios for each marginal distribution, and the actual ratio for the (single) copula

parameter. `nx' refers to the amount of data on the ¯rst margin, while `ny=nx' is the ratio of the amount

of data on the second margin to that on the ¯rst. We set nc = ny.
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Table 2: Ratio of one-step e±cient estimator MSE to one-stage estimator MSE

ny=nx = 0:25 ny=nx = 0:50 ny=nx = 0:75

Rank correlation = 0.25
First margin 0.2196 0.6297 1.1946

nx = 1500 Second margin 112.00 46.514 3.0494
Copula 4.1904 6.0718 1.0207

First margin 0.3978 1.1177 1.5469
nx = 3000 Second margin 23.389 6.8785 3.0242

Copula 2.2087 1.5156 1.1176
Rank correlation = 0.50

First margin 0.3441 1.1493 2.7740
nx = 1500 Second margin 3863.6 149.91 4.1160

Copula 13.713 2.9769 1.2843
First margin 0.5039 1.3346 2.5238

nx = 3000 Second margin 460.86 7.7345 4.4457
Copula 3.9978 2.2217 1.3357

Rank correlation = 0.75
First margin 0.7710 1.1919 4.0205

nx = 1500 Second margin 455.46 28.485 10.026

Copula 42.352 4.8292 1.6233
First margin 1.2666 2.7622 4.5771

nx = 3000 Second margin 77.767 15.107 8.0658
Copula 9.4008 3.2043 1.6235

Note: This table presents the ratio of the one-step e±cient two-stage estimator small sample MSE to

the one-stage estimator small sample MSE for each parameter of the joint distribution, for 1000 Monte

Carlo replications. We present the average ratios for each marginal distribution, and the actual ratio for the

(single) copula parameter. `nx' refers to the amount of data on the ¯rst margin, while `ny=nx' is the ratio

of the amount of data on the second margin to that on the ¯rst. We set nc = ny .
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Table 3: Ratio of modi¯ed one-step e±cient estimator MSE to one-stage estimator MSE

ny=nx = 0:25 ny=nx = 0:50 ny=nx = 0:75

Rank correlation = 0.25
First margin 0.2196 0.6297 1.1946

nx = 1500 Second margin 12.082 31.692 3.6890
Copula 2.2677 1.7333 1.0207

First margin 0.3978 1.1177 1.5469
nx = 3000 Second margin 10.875 9.6398 3.0242

Copula 1.8369 1.5156 1.1176
Rank correlation = 0.50

First margin 0.3441 1.1493 2.6678
nx = 1500 Second margin 61.708 20.5412 4.9941

Copula 11.6722 2.9757 1.2843
First margin 0.5039 1.3346 2.5238

nx = 3000 Second margin 273.75 12.755 4.4457
Copula 3.5549 2.2217 1.3357

Rank correlation = 0.75
First margin 0.7710 1.1917 4.0205

nx = 1500 Second margin 43.424 38.905 11.127

Copula 34.791 4.3804 1.6233
First margin 1.2666 2.7622 4.5771

nx = 3000 Second margin 68.864 21.263 8.0658
Copula 4.5003 3.2043 1.6235

Note: This table presents the ratio of the modi¯ed one-step e±cient two-stage estimator small sample

MSE to the one-stage estimator small sample MSE for each parameter of the joint distribution, for 1000

Monte Carlo replications. We present the average ratios for each marginal distribution, and the actual ratio

for the (single) copula parameter. `nx' refers to the amount of data on the ¯rst margin, while `ny=nx' is the

ratio of the amount of data on the second margin to that on the ¯rst. We set nc = ny.
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Table 4: Ratio of estimator MSE to one-stage estimator MSE, rank correlation = 0.25

Two-stage One-step e±cient Two-stage One-step e±cient
nx= 1500 nx= 3000

ny=nx= 0:25

¹x 0.2323 0.2298 0.2585 0.2576
Áx 0.2911 0.2860 0.2662 0.2616

!x 0.0349 0.0717 0.1096 0.2588

®x 0.2015 0.3760 0.2684 0.7540

¯x 0.0597 0.1347 0.1512 0.4569
¹y 0.9798 6.2254 0.9883 5.4261

Áy 1.0446 7.7988 1.0623 5.7681

!y 1.0389 97.336 1.2272 55.915
®y 1.2395 375.19 1.3074 16.065

¯y 1.0338 73.445 1.3243 33.769

·c 0.2422 4.1904 0.9662 2.2087

ny=nx= 0:50
¹x 0.5039 0.5009 0.5128 0.5063

Áx 0.5451 0.5360 0.6033 0.5928

!x 0.2026 0.4042 0.5273 1.2707

®x 0.5719 1.0552 0.5414 1.5318
¯x 0.2979 0.6524 0.5552 1.6871

¹y 0.9577 5.1416 0.9232 4.8861

Áy 1.2059 6.4554 1.1373 6.0349
!y 2.1917 128.04 1.3163 11.047

®y 1.2634 8.4137 1.2498 6.4429

¯y 1.9359 84.523 1.3261 5.9812

·c 0.9345 6.0718 1.0063 1.5156
ny=nx= 0:75

¹x 0.7272 0.7241 0.7807 0.7748

Áx 0.8142 0.8054 0.8513 0.8371
!x 0.6917 1.3817 0.7481 1.7849

®x 0.8088 1.4706 0.7973 2.0635

¯x 0.7203 1.5914 0.7692 2.2745

¹y 0.9637 2.1639 0.9857 2.2372
Áy 1.1122 2.6064 1.0789 2.4776

!y 1.0220 3.8734 1.0792 3.2528

®y 1.1820 3.6073 1.1425 3.9945

¯y 1.0647 2.9962 1.0902 3.1587
·c 0.9244 1.0207 0.9784 1.1176
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Table 5: Ratio of estimator MSE to one-stage estimator MSE, rank correlation = 0.50

Two-stage One-step e±cient Two-stage One-step e±cient
nx= 1500 nx= 3000

ny=nx= 0:25

¹x 0.2512 0.2491 0.2715 0.2698
Áx 0.3756 0.3714 0.3758 0.3709

!x 0.0902 0.1879 0.1241 0.2984

®x 0.3129 0.6131 0.3703 0.9971

¯x 0.1258 0.2990 0.1916 0.5832
¹y 1.0657 32.818 1.2447 6.6575

Áy 1.5353 37.174 1.4986 8.3499

!x 2.8973 436.21 2.4352 1320.3
®y 1.9235 18360 1.5584 250.74

¯y 2.1528 452.09 1.9792 718.27

·c 1.0268 13.713 0.8707 3.9978

ny=nx= 0:50
¹x 0.5464 0.5425 0.5581 0.5544

Áx 0.8418 0.8265 0.7321 0.7214

!x 0.6582 1.3151 0.6206 1.5039

®x 0.7865 1.4819 0.7677 2.0066
¯x 0.7003 1.5804 0.6144 1.8866

¹y 0.9710 5.2243 1.1331 5.6302

Áy 1.6103 8.9915 1.4310 7.4175
!y 2.8625 477.96 1.7947 11.119

®y 1.7234 37.273 1.4951 7.9972

¯y 2.6130 220.12 1.6615 6.5082

·c 0.8991 2.9769 1.0339 2.2217
ny=nx= 0:75

¹x 0.8058 0.7968 0.8094 0.8033

Áx 1.1858 1.1676 1.2523 1.2300
!x 3.1082 5.6013 1.4269 3.3519

®x 1.1944 2.2870 1.2159 3.2775

¯x 1.9165 4.0172 1.3165 3.9560

¹y 1.0865 2.5000 1.1060 2.5808
Áy 1.4481 3.4861 1.6464 4.0011

!y 1.7967 5.8550 1.7373 5.2610

®y 1.5795 4.3542 1.6066 5.5399

¯y 1.7066 4.3850 1.6842 4.8457
·c 0.9467 1.2843 0.9714 1.3357
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Table 6: Ratio of estimator MSE to one-stage estimator MSE, rank correlation = 0.75

Two-stage One-step e±cient Two-stage One-step e±cient
nx= 1500 nx= 3000

ny=nx= 0:25

¹x 0.2921 0.2896 0.2811 0.2790
Áx 0.6762 0.6645 0.5910 0.5826

!x 0.4246 0.8552 0.6470 1.5659

®x 0.5765 1.0606 0.7094 1.9049

¯x 0.4383 0.9849 0.6592 2.0008
¹y 1.1884 9.1711 1.1063 5.7635

Áy 2.8080 33.257 2.7113 14.901

!y 4.1007 949.22 7.9919 238.66
®y 3.1254 782.74 2.9529 25.426

¯y 4.1306 502.88 5.5663 104.08

·c 1.4216 42.352 0.9913 9.4008

ny=nx= 0:50
¹x 0.5581 0.5525 0.5841 0.5809

Áx 1.1393 1.1236 1.2162 1.1996

!x 0.2172 0.4453 1.4974 3.5455

®x 1.3921 2.5570 1.4794 3.8855
¯x 0.5663 1.2811 1.5576 4.5994

¹y 1.1415 5.8964 1.1449 5.7048

Áy 2.5993 14.392 2.4983 13.127
!y 7.0964 66.693 4.0292 25.208

®y 3.0955 25.174 2.9409 17.395

¯y 5.1363 30.271 3.5603 14.101

·c 1.0805 4.8292 1.0139 3.2043
ny=nx= 0:75

¹x 0.8779 0.8747 0.8327 0.8249

Áx 1.9364 1.9115 1.9923 1.9494
!x 3.2606 6.6357 2.6665 6.3185

®x 2.2108 4.3404 2.3814 6.1699

¯x 2.7484 6.3401 2.6128 7.6227

¹y 1.1610 2.7589 1.1882 2.6908
Áy 2.6674 6.3029 2.4473 5.7116

!y 5.4271 18.380 3.4318 11.270

®y 3.4128 9.9011 3.2746 10.479

¯y 4.7810 12.786 3.4261 10.177
·c 0.9381 1.6233 1.0123 1.6235
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Notes to Tables 4, 5 and 6: These tables present the ratio of the mean-squared error of the two-

stage estimator and the one-step e±cient estimator of a given parameter to the one-stage estimator of that

parameter. A value less than (greater than) one indicates that the estimator has lower (higher) MSE than

the one-stage estimator. ¹x; Áx; !x; ®x and ¯x correspond to the mean, AR parameter, GARCH constant,

GARCH innovation and GARCH smoothing parameters for the ¯rst margin. These are similarly de¯ned for

the second margin. ·c indicates the parameter of the copula. nx is the number of observations on the ¯rst

margin, and ny=nx is the ratio of the number of observations on the second margin to those on the ¯rst. We

set nc = ny . Tables 4, 5 and 6 present the results for rank correlations of 0.25, 0.50 and 0.75 respectively.

All simulations were done with 1000 replications.

Table 7: Results for the Marginal Distributions

Standard two-stage E±cient two-stage
Coe® Std Error Coe® Std Error

Yen Margin

¹x 0:0190 0:0109 0:0188 0:0277

Á1x ¡0:0059 0:0188 ¡0:0064 0:0372
Á10x 0:0674 0:0179 0:0680 0:0356
!x 0:0067 0:0032 0:0068 0:0059

¯x 0:9419 0:0151 0:9418 0:0225
®x 0:0465 0:0114 0:0466 0:0214

ºx 4:7285 0:4190 4:7170 1:2182

Euro Margin

¹y 0:0803 0:0254 0:0782 0:0253
¾2
y 0:4507 0:0345 0:4437 0:0414

ºy 6:2016 1:6898 6:3586 1:6438

Note: This table presents the estimated parameters and asymptotic standard errors of the marginal

distribution models for the yen - U.S. dollar and euro - U.S. dollar exchange rates. The e±cient two-stage

estimates are computed using Clayton's copula.
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Table 8: LM Tests of independence and

Kolmogorov-Smirnov Tests of the density

(Ut ¡ ¹U ) (Vt ¡ ¹V )
First moment 40:2020 32:9100

p-value 0 :5192 0 :8173
Second moment 36:7712 30:0963

p-value 0 :6690 0 :8981
Third moment 38:2055 30:3702

p-value 0 :6070 0 :8914
Fourth moment 40:5122 32:2420

p-value 0 :5056 0 :8389

K-S Stat 0:0315 0:0303
K-S p-value 0 :5410 0 :5887

Note: The ¯rst panel of this table presents the results of LM tests of the independence of the ¯rst four

moments of the variables Ut and Vt, described in the text. We regress (Ut¡ ¹U )k and (Vt ¡ ¹V )k on twenty

lags of both variables, for k = 1;2; 3; 4. The test statistic is (T ¡ 40) ¢ R2 for each regression, and is

distributed under the null as Â2
40. The second panel present the results of a Kolmogorov-Smirnov test on Ut

and Vt.

Table 9: Hit test results for the marginal distributions

Yen / USD Euro/USD

Test stat 1 1:4470 4:2744

p-value 1 0 :8360 0 :3701
Test stat 2 0:9549 4:0508

p-value 2 0 :9166 0 :3992
Test stat 3 6:5721 6:6988

p-value 3 0 :1603 0 :1527
Test stat 4 5:3716 0:9661

p-value 4 0 :2513 0 :9149
Test stat 5 4:9258 5:9009

p-value 5 0 :2950 0 :2067
Test stat ALL 15:8095 15:5528

p-value ALL 0 :4663 0 :4846

Note: `Test stat' refers to the likelihood ratio statistic testing the null hypothesis that the model is

correctly speci¯ed. `P-value' refers to the area in the right tail of the distribution of the test statistic, a Â2
4

random variable for the individual region tests and a Â2
16 random variable for the joint test. The numbers
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1 through 5 refer to the regions of the marginal distribution support described in the text. `ALL' refers to

the joint test of all regions simultaneously.

Table 10: Copula model results

Normal Plackett Clayton

Parameter estimate 0:0718 1:2754 0:0963
Log-likelihood 1 :7228 2 :1136 2 :9376

Note: This table presents the estimated copula parameter and the value of the copula likelihood at the

optimum for the three copula models considered in this paper: the normal copula, Plackett's copula and

Clayton's copula.

Table 11: Hit test results for the copula models

Normal P lackett Clayton

Test stat 1 7:8820 8:7042 5:9965
p-value 1 0 :0960 0 :0889 0 :1994

Test stat 2 3:6064 3:5719 3:5453
p-value 2 0 :4619 0 :4670 0 :4710

Test stat 3 4:6596 4:9653 4:6301
p-value 3 0 :3240 0 :2909 0 :3274

Test stat 4 3:2530 3:3407 3:2459
p-value 4 0 :5164 0 :5025 0 :5176

Test stat 5 1:4820 1:5375 1:6279
p-value 5 0 :8298 0 :8200 0 :8038

Test stat 6 4:1717 4:1618 4:1754
p-value 6 0 :3833 0 :3845 0 :3828

Test stat 7 0:8631 0:7688 0:8980
p-value 7 0 :9298 0 :9426 0 :9248

Test stat ALL 25:5641 26:0446 23:9226
p-value ALL 0 :5970 0 :5706 0 :6856

Note: `Test stat' refers to the likelihood ratio statistic testing the null hypothesis that the model is

correctly speci¯ed. `P-value' refers to the area in the right tail of the distribution of the test statistic, a Â2
4

random variable for the individual region tests and a Â2
28 random variable for the joint test. The numbers

1 through 7 refer to the regions of the copula support depicted in Figure 3. `ALL' refers to the joint test of

all regions simultaneously.
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Figure 1: One possible scenario where the amounts of data available on each individual variable are

di®erent, as is the amount of data available for the estimation of the copula.
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Figure 2: Daily yen - U.S. dollar and euro - U.S. dollar exchange rates, from Jan 1991 to June
2001.
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Figure 3: Left Panels: Contour plots of three distributions all with standard normal marginal
distributions and linear correlation coe±cients of 0.5. Right Panels: The conditional density of

X given Y for three values of Y when both X and Y are standard normal random variables, with
copulas such that their correlation is 0.5.
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Figure 4: Regions used in the hit tests
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