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Abstract: This paper demonstrates an automated computer vision system for outdoor tree 

crop enumeration in a seedling nursery. The complete system incorporates both hardware 

components (including an embedded microcontroller, an odometry encoder, and an 

uncalibrated digital color camera) and software algorithms (including microcontroller 

algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust 

performance in a natural outdoor environment. The enumeration system uses a three-step 

image analysis process based upon: (1) an orthographic plant projection method integrating 

a perspective transform with automatic parameter estimation; (2) a plant counting method based 

on projection histograms; and (3) a double-counting avoidance method based on a 

homography transform. Experimental results demonstrate the ability to count large numbers 

of plants automatically with no human effort. Results show that, for tree seedlings having a 

height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms 

successfully estimated the number of plants with an average accuracy of 95.2% for trees 

within a single image and 98% for counting of the whole plant population in a large sequence 

of images. 
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1. Introduction 

To help cope with the rapid increase in the human population and future demands on worldwide food 

security, automation in agriculture is necessary. For example, there is a need to develop automatic 

systems for plant enumeration in fruit and nut tree seedling crops to save human resources and improve 

yield estimation. Most sensors used in agriculture have limited resolution, and cannot acquire the full 

scope of available plant and soil information. Advanced sensors, like cameras, that can characterize 

spatial and color information of natural objects play a crucial role in the future development of 

agricultural automation [1–3]. 

In the fruit and nut tree nursery industry, accurate counts of tree seedlings are very important in their 

production management and commerce [4,5]. Disease resistant tree rootstocks are planted from seeds in 

an outdoor nursery and they are later grafted to have fruit, which is a different cultivar from the disease 

resistant cultivar of the root system (i.e., to combine the best features of two cultivars). Variability in 

germination rate and consumption by birds create uncertainty in the number of marketable seedlings 

available for sale. Traditionally, human workers must manually count the seedlings each spring after 

they have grown large enough to be safe from the birds and the final crop stand is stable. This method is 

slow, tedious, and costly for workers to perform. Additionally, while this method can be accurate when 

carefully conducted, in practice, human error and bias are still present and can lower the accuracy of the 

final count, particularly when workers get fatigued or distracted. 

Recently, methods for plant population and spacing measurement using machine vision have been 

introduced for different kinds of plants. A daylight sensing system is presented in [4] to measure early 

growth stage corn populations. The algorithms used in the system include steps for image sequencing to 

merge information between consecutive video frames, vegetation segmentation using a truncated 

ellipsoidal decision surface and a Bayesian classifier, and plant counting based on the total number of 

plant pixels and their median positions. The image sequencing step in this study does not consider the 

case of a camera perspective change, however. In [5], algorithms for automatically measuring corn plant 

spacing at early growth stages are introduced. Plant morphological features, plant color, and the crop 

row centerline are among multiple sources of information utilized by the algorithms for corn plant 

detection and localization. This work points out that the estimated interplant spacing errors are due to 

crop damage and sampling platform vibration, which caused mosaicking errors. A machine  

vision-based corn plant spacing and population measurement system is presented in [6]. Algorithm steps 

in this paper include image sequencing using SIFT (Scale Invariant Feature Transform) feature 

matching, vegetation segmentation based on color channels, corn plant center detection using a 

skeletonizing algorithm, and calculation of corn spacing and plant count. This algorithm yields 

satisfactory results with images captured from the top view. In [7], we had proposed a mobile platform 

that utilizes active optical sensing devices (LIDAR and light curtain transmission) to detect, localize, 

and classify trees. Promising results in our recent work helped system designers select the most reliable 
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sensor for accurate detection of trees in a nursery and to automate labor-intensive tasks, such as weeding, 

without damaging crops. 

In recent years, high-resolution remote-sensing techniques have been utilized in agricultural 

automation for counting mature trees. An automatic approach for counting olive trees is introduced in [8] 

with very high spatial remote sensing images. This approach contains two main steps: The olive trees 

are first isolated from other objects in the image based on a Gaussian process classifier with different 

morphological and textural features; candidate blobs of olive trees are then considered valid if their sizes 

are in a range specified by a prior knowledge of the real size of trees. In [9], a method for counting palm 

trees in Unmanned Aerial Vehicles (UAV) images is presented. To detect palm trees, SIFT keypoints 

are extracted from the images, and then analyzed by an Extreme Learning Machine (ELM) classifier. 

The ELM classifier uses prior knowledge trained on palm and non-palm keypoints. The output of this 

step is a list of palm keypoints that are then merged using an active contour method to produce the shape 

of each tree. Local binary patterns are used to distinguish palm trees from other objects based on their 

shapes. A general image processing method for counting any tree in high-resolution satellite images is 

described in [10]. Steps used in this method include HSI (hue, saturation, intensity) color space transform 

of the original image, image smoothing, thresholding of the extracted hue image, histogram equalization 

for HSI channels, candidate region detection, delineation, and tree counting. 

This paper presents an uncalibrated camera system for fast and accurate plant counting in an outdoor 

field and incorporates a single high quality camera, an embedded microcontroller to automate the image 

capturing process, and a computer vision algorithm. The algorithm includes the steps of orthographic 

plant projection based on a perspective transform, plant segmentation using excessive green, plant 

detection by utilizing projection histograms, and plant counting that compensates for overlapping areas 

between consecutive images (to avoid double-counting). Both the camera and microcontroller were 

mounted on an ATV (all-terrain vehicle) and the images were analyzed offline. 

Compared to previously described systems, the advantages of the proposed system are: It is easy to 

setup without requiring any camera calibration, it is robust to shadows in the background (e.g., soil, plant 

residue, and plants in other rows) and, among the target plants, it powerfully copes with noise and foliage 

occlusion, and is suited for use on a mobile vehicle in the field where row paths are rough and camera 

vibration common. The ATV platform was used in this paper to simulate the normal orchard tractors 

that the system was designed to be mount on. The objective was to have a system that can be mounted 

on a tractor and the counting done as part of the existing field operations. The most compatible existing 

operation is the fertilization step that is done at the same time as the counting. Figure 1 shows two small 

tractors performing the fertilization step at the same time as plant counting. This step is compatible 

because the tractors travel each row and are generating minimal dust. It is also the main argument against 

a single purpose UAV because by adding a machine vision module onto the front of the tractor shown 

in Figure 1, we can also count plants in an existing trip of a ground vehicle that is traveling each row. 

This paper is organized as follows: In Section 2, we describe the system design and the proposed 

algorithm. The algorithm is detailed in Sections 3 and 4 for plant counting for a single image and on an 

image sequence, respectively. Section 5 presents the experimental results of the system. Finally, this 

paper draws to a conclusion and discusses future work in Sections 6 and 7, respectively. 
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Figure 1. Tractors are performing the fertilization step at the same time as the counting,  

at Sierra Gold Nurseries, CA, USA. 

2. System Design and Algorithms 

In the experimental system an ATV was used to simulate a tractor, as the base platform. The mobile 

vehicle had an attached arm to hold a camera, and a rotary shaft encoder was mounted on the wheel axle 

for odometry sensing. Image data are based on 24-bit digital color images taken by an electrically 

controlled, high-resolution, digital single-lens reflex camera (model EOS Rebel T3, Canon Inc., Tokyo, 

Japan). The camera was equipped with a zoom lens (model EF-S 18–55 mm 1:3.5–5.6 IS II, Canon Inc., 

Tokyo, Japan) aimed at the target plants and held fixed on the arm mounted to the mobile vehicle at an 

orientation of approximately 60° relative to the ground plane. An embedded microcontroller (model 

Raspberry Pi version 1 model B+, Raspberry Pi Foundation, UK) was used to activate the camera via a 

solid-state relay. The odometry signal was an input into the microcontroller to control the distance 

travelled between image acquisition events. A control algorithm was created to allow the microcontroller 

to trigger image acquisition by the camera at set spatial intervals. Because a difference in image 

resolution might dramatically affect the processing speed of the whole system from image transfer, plant 

segmentation, feature detection, and calculation of homography transformation matrix, the resolution 

640 × 480 was selected as the best trade-off between speed and quality, so that accurate results can be 

obtained in an acceptable length of processing time. All camera parameters, including aperture, focal 

length, shutter speed, white balance, and ISO were manually set to have the best quality images in an 

outdoor scene. Figure 2 shows all details of the devices on the ATV, including the arm to mount the 

camera, the microcontroller with a relay and the wheel encoder. 

The algorithm contains steps of perspective transform (with automatic determination of parameters) 

for orthographic plant projection, excessive green color segmentation, Gaussian smoothing, projection 

histogram, and local maxima detection for plant counting for a single image. To overcome potential 

problems with double-counting of plants in an image sequence, SURF (Speeded Up Robust Features) 

keypoint detection, SURF descriptor extraction [11], FLANN (Fast Library for Approximate Nearest 

Neighbors) descriptor matching [12], filtering of descriptor matches, and calculation of homography 

transform were utilized with GPU implementations. Figure 3 shows a block diagram of the  

proposed algorithm. 



Sensors 2015, 15 18431 

 

 

 
(a) 

 
(b) (c) 

Figure 2. (a) The ATV with an arm to mount the camera, the wheel encoder, and the 

microcontroller to activate the camera via a relay; (b) the vehicle in operation capturing 

pictures of plants; and (c) manual counting of plants by a staff person. 

 

Figure 3. Flowchart representation of the algorithm. 
  



Sensors 2015, 15 18432 

 

 

3. Plant Counting in a Single Image 

3.1. Plant Straightening Using a Perspective Transform 

Since the original image is collected using a perspective view, a correction method to straighten the 

plants (i.e., orthographic projection) for later processing in the steps of projection histogram calculation 

and local maxima detection is required. Existing studies [13,14] have investigated the affine rectification 

of the ground plane to make parallel world lines appear parallel in the rectified image. Only one 

vanishing point is needed in these methods when the camera is at a fixed angle tilting downward toward 

the ground. This affine rectification method has proven robust to create a virtual orthographic view of 

the scene. The method can be successfully applied to our system if a vanishing point could be found; 

however, parallel world landmarks do not exist in the field and thus requires another way of transforming 

the image. In this section, a perspective transform technique is presented using four predefined points in 

the source image space and four in the destination image space. The 3 × 3 perspective transform matrix 

P is solved so that: ݔ′ݕ′1 ൩ = ۾ ቈݔݕ1  = ଵଵ ଵଶ ଶଵଵଷ ଶଶ ଷଵଶଷ ଷଶ ଷଷ൩ ቈݔݕ1  (1)

where i = {1, 2, 3, 4}; (ݔ, ,ᇱݔ) and ൫ݕ  ,ᇱ൯ are the i-th points in the source and destination imagesݕ

respectively. The four points in the source image are defined as (ݔଵ, (ଵݕ = (0,0) (2a)(ݔଶ, (ଶݕ = (ܹ − 1,0) (2b)(ݔଷ, (ଷݕ = (ܹ − ܪ,1 − 1) (2c)

and (ݔସ, (ସݕ = (0, ܪ − 1) (2d)

where W and H are the source image width and height, respectively. The four points in the destination 

image are calculated based on how the perspective changes with respect to x and y directions: ൫ݔᇱଵ, ᇱଵ൯ݕ = (௫, ௬) (3a)൫ݔᇱଶ, ᇱଶ൯ݕ = (W − 1 − ௫, ௬) (3b)൫ݔᇱଷ, ᇱଷ൯ݕ = (ܹ − 1 + ௫, ܪ − 1 + ௬) (3c)

and ൫ݔᇱସ, ᇱସ൯ݕ = (−௫, ܪ − 1 + ௬) (3d)

where δx and δy express how the perspective is needed to change (see Figure 4). These parameters can 

be determined automatically using our proposed algorithm that contains all steps from plant 

straightening to local maxima detection. The algorithm of auto-determination of perspective transform 

parameters is used only once on the first image of each dataset. The determined δx and δy are then applied 

to the remaining images in the set. This algorithm will be described in detail later in this section. Based 

on the obtained perspective transform matrix P, the destination image is transformed by ܫ(ݔ, (ݕ = ܫ ൬ଵଵݔ + ݕଵଵ + ݔଷଵଵଷ + ݕଷଶ + ଷଷ , ݔଶଵ + ݕଶଶ + ݔଷଵଶଷ + ݕଷଶ + ଷଷ൰ (4)



Sensors 2015, 15 18433 

 

 

where Ip(x, y) and I(x, y) are the destination and source images, respectively. Figure 4 shows a sample 

image of ten small peach trees before and after performing a perspective transform. In this example,  

the average inclination angle of plants, with respect to x-axis, is significantly corrected from 74.81° to 82.77°. 

(a) (b) 

Figure 4. An image before (a) and after (b) performing a perspective transform for plant 

straightening. The (red) solid lines show the plant inclination. The average inclination angle 

(with respect to x-axis) of the ten plants in the original image (a) is 74.81°; and it is 82.77° 

in the corrected one (b). 

3.2. Plant Segmentation Based on Excessive Green 

Different algorithms for soil, ground, and plant segmentation have been introduced in [15–17].  

This step herein utilizes a fast and efficient method to segment green objects from the soil or background. 

The plants and the less-green background in the perspective transformed image were segmented by 

comparing the excessive green value [17] of each pixel to a certain threshold: ݔ)ܩ, (ݕ = ቊܫ(ݔ, ,(ݕ if ቀ2ܫ(ݔ, (ݕ − ,ݔ)ܫ (ݕ − ,ݔ)ܫ ቁ(ݕ  ܶ0, otherwise 				  (5)

where G(x, y) is the green-segmented image; ܫ, ܫ, and ܫ are the green, red, and blue image channels 

of Ip(x, y), respectively; and Tg is a predefined threshold, which was fixed to 40 in this paper. This green 

color segmentation technique is very fast and effective in our system in segmenting plants from the 

backgrounds of soil, shadow, or non-green objects. Gaussian smoothing was applied to the thresholded 

excessive green image to eliminate background noise and reduce the effects of foliage occlusion. In this 

paper, based on the maximum plant height (approximately 40 cm) and the degree of foliage occlusion 

from plant to plant, the Gaussian kernel standard deviation size was fixed to 7. Figure 5 presents the 

green-segmented image of the transformed image in Figure 4 and the corresponding smoothed image. 
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(a) (b) 

Figure 5. A green-segmented image (a) and its Gaussian smoothed image (b) where plants 

are isolated. 

3.3. Projection Histogram and Local Maxima Detection 

A vertical projection histogram [14] of the smoothed image is calculated in this section. It is 

constructed by projecting plant pixels along vertical lines (columns) in a region of interest (ROI). The 

number of bins in the histogram is equal to the number of columns in the image. In our system, because 

the camera is fixed on the mobile vehicle, we manually select the ROI to fit all plants in the field row. 

Let PV(Gg) be the vertical histogram of the smoothed image Gg, giving 

PV(Gg) = {hj(Gg): j = 0, 1, …, W − 1} (6)

Local maxima are detected by finding the histogram bins, where their gray values are greater than 

their neighbors as 

L(i) = {hi(Gg): hi−1(Gg) < hi(Gg) and hi+1(Gg) < hi(Gg), i = 1, 2, …, W − 2} (7)

where L(i) is the gray value of the local maximum at bin i. The number of plants is then determined 

based on the number of local maxima. It is noted that the detection of the plants at the left and right 

borders explicitly followed Equation (7) and the definition of ROI, although objects outside the ROI 

occasionally appear to human eyes, as at the right bottom edges of Figure 5. The (red) numbers in Figure 5 

represent the number of detected trees. 

3.4. Auto-Determination of Perspective Transform Parameters 

Notice that this step combines all steps from Sections 3.1–3.3 and it is done once on the first image 

of each dataset to have the optimal perspective transform parameters δx and δy for plant straightening 

and vertical histogram projection. The parameters δx and δy are estimated based on a list of detected local 

maxima as follows: 

∆൫δ௫, δ௬൯ = arg maxஸஔೣஸௐ/ସஸஔஸு/ଶܮ(݇)ಽ
ୀ  (8)
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where nL is the number of local maxima and it is predefined as 10 for the image in Figure 5. This step 

particularly requires proper parameter tuning for the Gaussian filter to smooth the projection histogram 

and to have less noise in the detection of local maxima. 

4. Plant Counting in an Image Sequence 

Once the number of plants in each image is determined, the accumulated count in all images in a 

sequence is determined using a special method to avoid double-counting of trees between images.  

To serve this purpose, the homography transformation between every two successive images is 

considered. SURF is one of the best algorithms for keypoint detection and descriptor extraction and it is 

being used successfully in the applications of object recognition [18], image stitching [19], 3D 

reconstruction [20], and background motion compensation [21,22]. In this paper, SURF was utilized for 

the calculation of the homography transformation matrix, because it is fast to compute and has good 

performance when based on integral images and an integer approximation of the determinant of Hessian 

blob detector. The extracted SURF descriptors are matched between two consecutive images using 

FLANN, which allows fast and accurate nearest neighbor searches in high dimensional spaces. 

Furthermore, it can select the optimal matching parameters automatically without any tuning from users. 

Good matches are thenceforth obtained based on the condition of common distance, i.e., the matches 

having distances less than a minimum distance threshold will be discarded. In our case, a vehicle is 

moving along a field row and taking pictures of plants, two consecutive images of the same planar ground 

surface can be related by homography. The good matches obtained are used as the input to find a 

homography transformation between each set of successive images, without the need for camera 

calibration. Once the homography transformation matrix is found, camera translation with respect to 

vehicle’s horizontal movement can be extracted to estimate the overlap between successive images and 

avoid double-counting of plants. Defining It−1(x, y) = [xt−1, yt−1, 1]T and It(x, y) = [xt, yt, 1]T the image 

points as time t − 1 and t, a homography H is represented through 

ቈݔ௧ݕ௧1  = ۶ ቈݔ௧ିଵݕ௧ିଵ1  = ℎଵଵ ℎଵଶ ℎଵଷℎଶଵ ℎଶଶ ℎଶଷℎଷଵ ℎଷଶ ℎଷଷ൩ ቈݔ௧ିଵݕ௧ିଵ1  (9)

where h13 is the coefficient of x-translation and that is the parameter we want to utilize for estimating the 

overlapping between successive images. It is noted that the scaling parameters h11 and h22 approach 1 

because there are no zoom-in or zoom-out operators from the camera and the vehicle is travelling along 

the plant row. In our case, an affine homography is considered an appropriate model of image 

displacement and is a special type of a general homography where h31 and h32 are close to 0 and h33 

approaches 1. In this paper, the Hessian threshold for the keypoint detector was fixed to 400, i.e., the 

features having a Hessian value larger than this threshold are retained. A RANSAC-based method was 

used to estimate the homography matrix so as to 

۶ = argmin۶ ቆݔ௧ − ℎଵଵݔ௧ିଵ + ℎଵଶݕ௧ିଵ + ℎଵଷℎଷଵݔ௧ିଵ + ℎଷଶݕ௧ିଵ + ℎଷଷቇଶே
ୀ+ ቆݕ௧ − ℎଶଵݔ௧ିଵ + ℎଶଶݕ௧ିଵ + ℎଶଷℎଷଵݔ௧ିଵ + ℎଷଶݕ௧ିଵ + ℎଷଷቇଶ൩ (10)
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where N is the total number of keypoints and ( , )i i
t tx y  is the image point i at time t. Local maxima 

positions of plants are then compared to the x-translation parameter h13 to determine whether they are 

double-counted. Due to the effect of camera distortion (i.e., the plants at the image border are less straight 

than those closer to image center), this determination step requires a “buffer” for the plants at the image 

border to reduce the amount of counting errors. When h13 > 0, the comparison (il − b > h13) implies that 

the plant at the local maxima position il (obtained from the Equation (7)) is considered double-counted 

if its difference from the buffer b is greater than h13. When h13 ≤ 0, the comparison (il + b < W + h13) is 

to check if the plant at il is double-counted, where W is image width. The buffer b can be estimated 

automatically based on half of the average of distances between two neighbor local maxima. 

5. Experimental Results 

A computer (CPU model Core i7 at 3.4 GHz, Intel Co., Santa Clara, CA, USA, with 12-GB DDR3 

random-access-memory) was used for all processing steps, except that an 1152 core GPU (model 

GeForce GTX 760, NVidia Co., Santa Clara, CA, USA) graphics card was utilized for implementing the 

GPU-based SURF descriptor extraction and FLANN matching algorithms. Experiments were conducted 

on 941 images containing 9915 juvenile Prunus persica L. “Nemaguard” peach trees (approximately 

10.54 plants per image). Accounting for image overlap, the 941 images contained 2178 distinct peach 

trees when double-counting was eliminated. The images of the juvenile peach trees were collected from 

seven rows, with a 10 cm in-row plant distance between two neighboring plants, in an outdoor tree 

nursery (Sierra Gold Nurseries, Yuba City, CA, USA). Table 1 shows information for the datasets used 

in the experimental results, where Sets 1, 2, and 3 (namely, Group 1) were taken on the same day and 

Sets 4 to Set 7 (namely, Group 2) were acquired on another day. The maximum plant height was 

approximately 30 cm, and 40 cm in Groups 1 and 2, respectively. The overlap between two consecutive 

images was increased from approximately 60% in Group 1 to approximately 90% in Group 2. These 

plant images were selected as examples of plants covered by shadow (from human, other plants, or 

random objects), green and other objects in the background, small plants, and different plant sizes. 

Figure 6 presents sample images showing examples of the green plant residue between the rows of 

plants, a second row of trees at the back (Figure 6a) and eight small plants (Figure 6b). In this study,  

the ground truth number of plants and overlap of images were measured manually. The number of small 

plants was defined based on a maximum plant height of 15 cm. It is noted that there were no plants 

imaged in shadow from Sets 3 to 7, and no additional objects on the background in Set 3. In the final 

design of our system on a tractor, a metal tunnel will be used to eliminate the current issues of shadows 

and green objects (i.e., the adjacent row) in the background. The purpose of presenting results of these 

critical issues here was to experimentally show the robustness of the proposed algorithm. In the 

experiments, all parameters were fixed (i.e., not optimized image by image) in order to have consistent 

results between different images and datasets. 
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Table 1. List of datasets and their detail information for experiments. 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Total 

# images 

All 121 127 93 150 150 150 150 941 

Containing shadows 18 3 0 0 0 0 0 21 

Containing green 

material on the 

background 

6 10 46 150 150 150 150 662 

Containing other 

objects on the 

background 

3 5 0 13 13 6 9 49 

Containing small 

plants 
18 21 12 6 5 11 34 107 

# plants 

In individual images 1469 1481 1154 1398 1402 1505 1506 9915 

In the image sequence 609 505 525 160 136 94 149 2178 

With shadows in 

individual images 
46 7 0 0 0 0 0 53 

Of small size in 

individual images 
26 42 13 6 5 15 53 160 

Average image overlap 59.2% 64.7% 53.8% 89.4% 91.1% 93.8% 90.4%  

(a) (b) 

Figure 6. Sample images of green objects in the background (a) where there is plant residue 

on the soil and plants in the next row; and small plants (b). 

Table 2 shows the average plant counting accuracies in both plant counting within a single image and 

for an image sequence, where double-counting was avoided. Within a single image, on average  

0.51 counting mistakes out of 10.54 plants per image (i.e., an average accuracy of 95.2%) were observed. 

Accuracies obtained when excluding the challenging cases 95.4% (shadows), 95.4% (additional green 

objects), 95.3% (other objects), and 95.3% (small plants) were approximately equivalent to the overall 

performance, demonstrating the robustness of the method. Notice that the underlined numbers in Table 2 

for the cases of “shadow” and “green objects” were taken from those without the exclusion. In an image 

sequence, when double-counting was minimized, an accuracy of 98% in all images was achieved. This 

accuracy is better than the single image performance because, on average, errors in a sequence of 
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overlapped images compensate for one another. The plant counting error in every image is shown in 

Figure 7. The maximum estimation error was five plants and was mostly associated with high levels of 

foliage occlusion. By estimating the homography transformation between consecutive images, the proposed 

system also produced knowledge on the amount of image overlap. Comparing the actual overlap to that 

estimated by homography, we obtained an average error of only 2.54%. The average processing time for 

all steps in the software algorithm was approximately 300 ms per image pair. 

Table 2. Average counting accuracy and the estimated image overlap using a homography transform. 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Avg.* 

Within 

single 

images 

w.r.t. individual 

images 
95.8% 95.5% 96.4% 93.8% 93.6% 95.8% 95.3% 95.2% 

Avg. count errors 

per image 
0.51 0.52 0.44 0.57 0.60 0.42 0.47 0.51 

Std. Dev. of count 

errors per image 
0.82 0.67 0.67 0.74 0.83 0.59 0.63 0.72 

Excluding the case 

of shadows 
96.2% 95.8% 96.4% 93.8% 93.6% 95.8% 95.3% 95.4% 

Excluding the case 

of green objects on 

the background 

95.7% 95.5% 96.7% - - - - 95.4% 

Excluding the case 

of other objects on 

the background 

95.6% 95.6% 96.4% 93.9% 93.7% 96.1% 95.8% 95.3% 

Excluding the case 

of small plants 
95.8% 95.4% 96.5% 94.0% 93.9% 96.2% 95.4% 95.3% 

For an image sequence 99.2% 98.2% 99.2% 96.3% 95.6% 99% 98.6% 98% 

Estimated image overlap 57.1% 62.1% 58.7% 87.6% 88.6% 91.7% 88.6%  

*: The final average values were calculated across all datasets. 

 

Figure 7. Tree counting errors in 941 images. 

Comparisons in terms of counting accuracy and system characteristics between our method and the 

other two methods in [4,6] (where corn plants were used) are shown in Table 3. The results are presented 

with respect to counting in individual images, and for an image sequence using our peach tree data. In 



Sensors 2015, 15 18439 

 

 

the method [4], the block matching based image sequencing algorithm was not applicable to our data, 

which were captured from a camera held at an angle of 60°. Due to a large number of incorrect matches 

yielded by the block matching based algorithm, our image sequencing algorithm (without the perspective 

transform) was substituted for the block matching in [4] to allow comparison of subsequent steps. The 

accuracies yielded by [4] were significantly lower than ours. The iterative rules based on the number of pixels 

and positions were sensitive to plant size and plant center locations. Additionally, these rules required 

parameter tuning for refining plant and background regions. Similarly, in the method from [6], when the top 

view was used, it led to plant counting errors when the direct image sequencing was utilized without the 

perspective transform. Using skeletonization for plant center detection, the method in [6] yielded a high 

error rate when there was foliage occlusion. For individual images, our system yielded an average 

accuracy of 95.2% (0.51 ± 0.72 count errors per image) compared to 86.9% (1.38 ± 1.34) for the method 

of [4] and 71.4% (2.05 ± 1.96) for the method in [6]. In the case of the image sequence, our total accuracy 

(98%) was substantially better than those of the other two methods (77.8% and 71.9%). It is worth 

mentioning that our method was able to work well with less than 60% image overlapping compared to 

85% of [4]. 

Table 3. Accuracy and system characteristics comparison of the proposed method to [4,6]. 

 The Method of [4] The Method of [6] The Proposed Method 

Accuracy comparison (using peach tree seedling data) 

Within 

individual 

images 

w.r.t. individual 

images 
86.9% 71.4% 95.2% 

Avg. count errors 

per image 
1.38 2.05 0.51 

Std. Dev. of count 

errors per image 
1.34 1.96 0.72 

In an image sequence 77.8% 71.9% 98% 

System characteristics 

Plant size (growth stage) V3 to V4 growth stages * 
Early to V3  

growth stages * 

Early growth stage to 

40 cm height 

Camera view Top view Top view 
Perspective view at an 

angle of 60° 

Image overlap 85% n/a 54% to 91% 

Method 

Image sequencing 

Block matching 

(substituted by our image 

sequencing method 

without perspective 

transform) 

SIFT feature matching, 

homography transform 

SURF descriptor 

extraction, RANSAC 

feature matching, 

homography transform 

Plant segmentation 
Bayesian classification on 

color spaces 

Bayesian classification 

on color spaces 
Excessive green 

Plant counting 

Iterative rules based on the 

number of pixels and 

positions 

Skeletonization for 

plant center detection 

Perspective transform, 

Gaussian smoothing, 

projection histogram 

*: The V3 growth stage in corn implies three leaves with visible leaf collars. 



Sensors 2015, 15 18440 

 

 

6. Conclusions 

A digital imaging system for tree crop enumeration was successfully developed and tested.  

The system uses an embedded microcontroller mounted on an ATV (to simulate a tractor that will be 

used in actual practice the field) to receive the odometry signal and trigger the image acquisition. In this 

paper, the ability to automatically count a large number of small peach trees, with no human effort 

compared to manual counting, was demonstrated. The estimated count allows confirmation of the 

germination rate and final plant stand prior to budding in tree seedlings grown in outdoor nurseries.  

For the juvenile trees to a 40 cm height and 10 cm within-row plant spacing, the method successfully 

counted plants with an average accuracy of 95.2% in individual images and 98% for counting the whole 

plant population in a long image sequence. The method also provides robust performance for the cases 

of plants in shadow, green and other colored objects on the image background, small plants, and  

foliage occlusion. 

7. Future Work 

Future work should include (1) automating the system to perform real-time analysis and plant 

counting in the field; (2) improving and optimizing the algorithms to support larger seedlings;  

(3) counting multiple rows (Figure 8) simultaneously for a redundant check on the count or allowing a 

count with fewer passes through the field; (4) supporting measurements of stem width and plant height; 

and (5) plant phenotyping for tree crops in seedling nurseries and for mapping the location of each plant 

for individual plant care. 

 

Figure 8. Sample image of rows for the purpose of counting multiple rows simultaneously. 
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