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Projecting Large Fires in the Western US With an
Interpretable and Accurate Hybrid Machine Learning
Method
Fa Li1 , Qing Zhu2 , Kunxiaojia Yuan2 , Fujiang Ji1 , Arindam Paul3 , Peng Lee3,
Volker C. Radeloff1 , and Min Chen1

1Department of Forest and Wildlife Ecology, University of Wisconsin‐Madison, Madison, WI, USA, 2Climate and
Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,
3American Family Insurance, Madison, WI, USA

Abstract More frequent and widespread large fires are occurring in the western United States (US), yet
reliable methods for predicting these fires, particularly with extended lead times and a high spatial resolution,
remain challenging. In this study, we proposed an interpretable and accurate hybrid machine learning (ML)
model, that explicitly represented the controls of fuel flammability, fuel availability, and human suppression
effects on fires. The model demonstrated notable accuracy with a F1‐score of 0.846± 0.012, surpassing process‐
driven fire danger indices and four commonly used ML models by up to 40% and 9%, respectively. More
importantly, theMLmodel showed remarkably higher interpretability relative to otherMLmodels. Specifically,
by demystifying the “black box” of each ML model using the explainable AI techniques, we identified
substantial structural differences across ML fire models, even among those with similar accuracy. The
relationships between fires and their drivers, identified by our model, were aligned closer with established fire
physical principles. The ML structural discrepancy led to diverse fire predictions and our model predictions
exhibited greater consistency with actual fire occurrence. With the highly interpretable and accurate model, we
revealed the strong compound effects from multiple climate variables related to evaporative demand, energy
release component, temperature, and wind speed, on the dynamics of large fires and megafires in the western
US. Our findings highlight the importance of assessing the structural integrity of models in addition to their
accuracy. They also underscore the critical need to address the rise in compound climate extremes linked to
large wildfires.

Plain Language Summary Anthropogenic climate change has caused more frequent and widespread
large fires in the western United States (US). Interpretable and accurate methods that can predict large fires in
advance and at a high spatial resolution are essential for more targeted fire risk mitigation strategies, but the
trade‐off between accuracy and interpretability persists in current fire models. For example, machine learning
(ML) fire models can be more accurate than process models but operate as “black‐boxes” with a poor
understanding of fire physics. Process fire models are more physically interpretable but remain less accurate
than ML models. This research offers a novel perspective on the tradeoff and quantification of model physical
interpretability and accuracy for wildfire predictions in the western US. More importantly, this study proposes a
more interpretable and accurate ML fire model that explicitly incorporates fire knowledge while leveraging
data‐informed modeling advantages. The model predicted fire risk showed high consistency with actually
occurred fire events, and revealed strong and multivariate climate controls on large fires and megafires in the
western US. Our proposed fire model enables better predictions and understanding of large fires and megafires
in the western US.

1. Introduction
Large fires in the western United States (US) have become more frequent and widespread, exerting increasingly
devastating impacts on ecosystems and human society. The median annual burned area in western US has
quadrupled during 2005–2018 relative to 1984–1999 (Iglesias et al., 2022). Notably, the extreme fires (e.g., top
one percent in terms of fire size) have remarkedly expanded to a broader geographical extent (Iglesias
et al., 2022). These fires have led to pervasively increases in tree mortality rates (Hicke et al., 2016) and have
substantially changed ecosystem structures, compositions, as well as their biophysical and biogeochemical
properties (Bowman et al., 2009; F. Li et al., 2012; Zhu et al., 2022).
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Human activities are a primary cause of these large fires over the western US (Nagy et al., 2018), with more
frequent ignitions occurring in the wildland‐urban interface (WUI) (Radeloff et al., 2018, 2023). These human‐
started fires pose significant threats to millions of residential homes and infrastructure, leading to billions of
economic lost (Mietkiewicz et al., 2020). Additionally, air pollutants released by these fires, such as particulate
matters, are closely linked to serious health issues such as infant mortality (Pullabhotla et al., 2023). The
emissions of black carbon along with greenhouse gases like carbon dioxide and methane can exacerbate global
warming, creating conditions more favorable for future fires. Over the past few decades, anthropogenic climate
change has significantly increased the risk of fires in the western US (Abatzoglou & Williams, 2016; Turco
et al., 2023; Zhuang et al., 2021). This trend is anticipated to continue, especially under future high‐emission
scenarios (Touma et al., 2021). Therefore, accurate predicting of the occurrence of large fires is of utmost
importance to manage and mitigate the rising fire risk in the western US.

Despite the notable advancements in fire prediction models, there remains a gap between their accuracy and
interpretability. Traditional models, such as empirical process models (Bradshaw, 1984; Jolly et al., 2019) and
simplified statistical models (e.g., linear or generalized linear), are interpretable due to their reliance on well
established relationships between fire occurrences in the western US and fire weather conditions, such as vapor
pressure deficit (VPD), dead fuel moisture, and fire weather indices (FWIs) (Abatzoglou & Williams, 2016;
Abatzoglou, Battisti, et al., 2021; Balch et al., 2022; Williams et al., 2019). While effective at capturing inter‐
annual fire dynamics at a regional scale (Abatzoglou & Williams, 2016; Higuera & Abatzoglou, 2021), these
models often fall short in representing sub‐regional heterogeneity and intra‐annual variations of fire risk at a
relatively higher spatial resolution (Kondylatos et al., 2022; J. Li et al., 2020; Wang et al., 2021). The limitations
in accuracy may stem from imperfect parameterization of the emergent climate‐fire relationships (F. Li
et al., 2023; Littell et al., 2016), and inadequate representation of complex interactions between fires and their
drivers, such as climate, fuel availability (Parks et al., 2014), topography (Alizadeh et al., 2023), and human
activities (Fusco et al., 2016). To address these challenges, recent studies have employed advanced machine
learning (ML) models along with critical socio‐environmental factors to predict fires in the US (Gray et al., 2018;
J. Li et al., 2020; Wang & Wang, 2020; Wang et al., 2021). Despite the improvement in accuracy, most ML
models operate as “black boxes” and lack transparency in their decision‐making processes (Arrieta et al., 2020;
Kondylatos et al., 2022; F. Li et al., 2023). For example, the opacity inherent in neural network or deep‐learning
models diminishes their interpretability (F. Li et al., 2023; Zhu et al., 2022). Even though some ML models, like
decision trees (DTs) and random forest (RF), provide insights into variable importance, this information often
remains static across the whole data set, which hinders a comprehensive understanding of the complex, spatio-
temporally heterogeneous nature of fire controls (Kondylatos et al., 2022; F. Li et al., 2023; Wang et al., 2021).

To enhance the transparency and interpretability of ML models, eXplainable AI (XAI) has emerged as an
important tool in Earth science. XAI, as a form of post‐hoc interpretability method, offers a deeper understanding
of model predictions. It provides detailed insights, such as the magnitude and the sign (positive or negative) of
each driver's influence on specific predictions (Arrieta et al., 2020). This capability is especially valuable in
discerning the diverse drivers of fire occurrences across space and over time (Kondylatos et al., 2022; Wang
et al., 2021). Recent studies have successfully integrated XAI and ML algorithms to predict and analyze fire
dynamics in the frequently burned area of continuous US (Wang et al., 2021) and a part of the Eastern Medi-
terranean (Kondylatos et al., 2022). However, these studies either focus on a coarse spatial resolution (e.g., 0.25°)
or limit themselves to short‐term predictions (e.g., next‐day fire risk prediction). Longer‐term fire prediction at a
relatively higher spatial resolution allows for more time to implement more spatially‐resolved fire risk mitigation
and adaptation, but persists as a challenge due to the stochastic characteristic of fires, and the spatiotemporally
heterogenous dependencies of fires on underlying drivers.

Additionally, an important yet often overlooked aspect in ML applications to wildfire science is the potential
discrepancy between the relationships inferred from ML models and the actual physical or causal relationships
between fires and their drivers. For example, even ML models with similar accuracy levels can show substantial
differences in the modeled variable importance and the underlying causality importance (Turbé et al., 2023; Yuan,
Zhu, Li, et al., 2022). Such discrepancies can lead to divergent model responses to input factors when extrap-
olating well‐trained ML models for spatiotemporal predictions (Yuan, Zhu, Li, et al., 2022; Yuan et al., 2024).
The physical or causal interpretability of different ML models remains underexplored in wildfire science, which
fuels concerns from practitioners about the model trustworthiness (Jain et al., 2020; Murdoch et al., 2019). While
ML models generally outperform process‐models regarding accuracy, inconsistency between ML modeled and
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physical relationships could produce unreliable predictions. This unreliability, in turn, can lower user confidence
and hinder the broader adoption of MLmodels in this field. Therefore, developingMLmodels that are both highly
accurate and interpretable, and that adhere closely to physical processes, is crucial for effectively predicting and
understanding wildfires.

In this study, we aim to predict and understand large fires in the western US 1 month in advance at a high spatial
resolution (1 km) and in an interpretable manner. Specifically, we developed and employed a hybrid and
interpretable ML large fire prediction model to specifically predict the spatiotemporal dynamics of fire risk across
grid cells over western US. We assessed the accuracy of the model developed by comparing it with three fire
indices, as well as four ML models widely used in fire prediction. Beyond accuracy, we also examined the
physical interpretability for each ML model by integrating XAI with well‐established principles of fire physics,
allowing us to highlight the significant impacts of structural differences in models on their projected fire dy-
namics, even among those with similar level of accuracy. Finally, we coupled our model and XAI to understand
the drivers of large fires, including the megafires in the extreme fire year 2020 (Higuera & Abatzoglou, 2021), in
the western US.

2. Methods
Following prior studies (Gray et al., 2018; Jain et al., 2020; J. Li et al., 2020; Preisler et al., 2004), we modeled the
conditional probability of a fire escalating into a large one over a certain size, given an ignition event. We used a
typical threshold of 405 ha (ha) to define “large fires” in the western US, as utilized in previous research
(Dennison et al., 2014; Gray et al., 2018; J. Li et al., 2020). This modeling of large fire probability addresses the
inherent stochasticity and complexity of ignitions, thus representing the potential risk of large fires without
explicitly including ignitions, conceptually similar to that depicted by FWIs (Jolly et al., 2015; Sharples, 2022).

For modeling large fire probability, we employed the hybrid ML model developed by us along with four other
widely‐used ML models: DT (F. Li et al., 2018; Song & Ying, 2015), RF (Gray et al., 2018; F. Li et al., 2018),
Extreme Gradient Boosting (XGBoost) (Michael et al., 2021), and artificial neural network (ANN) (F. Li
et al., 2023; Zhu et al., 2022). We also used three fire indices for model comparison. Two of the fire indices were
from the United States National Fire‐Danger Rating System (USNFDRS) (Bradshaw, 1984), including energy
release component (ERC) and burn index (BI). ERC and BI have permeated US firefighting organizations and
been used for supporting most of the local wildfire preparedness and management since 1978 (Bradshaw, 1984;
Jolly et al., 2019; Schlobohm & Brain, 2002). Another fire index is the Canadian fire weather index (FWI), a
widely used fire indices for understanding and estimating fire risk regionally and globally (Jolly et al., 2015; Van
Wagner, 1974). We evaluated these models, focusing on both accuracy and physical interpretability in predicting
large fires in the western US.

2.1. Hybrid Machine Learning Fire Model

We developed the hybrid ML fire model by explicitly considering the controls of fuel availability and human
suppression on large fires while representing the complex relationships between fires and their drivers of fuel
flammability through the attention mechanism (F. Li et al., 2023; Vaswani et al., 2017). Specifically, as shown in
Equation 1 and Figure 1, the large fire probability ( fFire) in the model is determined by three groups of key factors:
fuel availability ( fFA), fuel flammability ( fFF), and human suppression ( fHS), based on knowledge‐driven and
process‐based modeling schemes of wildfires (Kelley et al., 2019; F. Li et al., 2012, 2019; Rabin et al., 2017).
Similar to prior studies (Kelley et al., 2019; F. Li et al., 2012), fFire is represented as the product of fFA, fFF, and fHS
(Equation 1). fFA and fFire non‐linearly increase with rising fuel availability (Equation 2), whereas stronger human
suppression leads to a curvilinear decrease in both fHS and fFire (Equation 3) (Kelley et al., 2019; F. Li et al., 2012).
Fuel flammability, a predominant controlling factor in the temporal dynamics of fires in the western US
(Abatzoglou &Williams, 2016; Abatzoglou, Battisti, et al., 2021; Higuera & Abatzoglou, 2021), is influenced by
a range of variables including fuel aridity (Abatzoglou & Williams, 2016; Higuera & Abatzoglou, 2021), wind
speed (Abatzoglou et al., 2018, 2023; Westerling et al., 2006), topography (Holsinger et al., 2016; Linn
et al., 2007), and land cover types (Balch et al., 2022; Calviño‐Cancela et al., 2016). The relationship between
flammability and these driving‐factors can be complex, and often characterized by non‐linear (Abatzoglou,
Battisti, et al., 2021; Balch et al., 2022), time‐lagged (Abolafia‐Rosenzweig et al., 2022; F. Li et al., 2023; Littell
et al., 2009), and spatially varied dependencies (e.g., the dominant driver can be varied across grid cells or fire
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events) (F. Li et al., 2023; Littell et al., 2016). Therefore, to capture these intricate relationships, we applied an
attention‐augmented long short‐term memory network (LSTM) model (F. Li et al., 2023) (Equation 4). It
summarized the time series of input variables (Table 1) from the month preceding the fires as hidden state vectors,
while the attention mechanism dynamically identified important time steps and variables crucial for fire pre-
diction (Gui et al., 2021; Guo et al., 2019; F. Li et al., 2020; F. Li et al., 2023; Qin et al., 2017). To further alleviate
the issue of correlation between different drivers that may bias model training, we adopted the widely used
dropout (Srivastava et al., 2014) and weight decay regularization (Zhang et al., 2018) techniques for preventing
model overfitting. Details of the input variables and data sets used were listed in Table 1, and details of the
attention‐based mechanisms for fire modeling were described in F. Li et al. (2023). The four variables in the
model ( fFire, fFA, fFF, and fHS) are scaled between 0 and 1. The information of fire occurrence date and fire size was
derived from the fire occurrence database used (Table 1). With the occurrence date information, we retrieved the
drivers before a large fire used for predictions. In the event of a large fire (i.e., a positive sample), fFire equals one,
and fFire equals zero for small fires (i.e., negative samples). The target is to predict the large fire probability in next
month if there is an ignition using the input socio‐environmental conditions in Table 1. We employed binary cross
entropy (Ruby & Yendapalli, 2020), to quantify the bias between model predictions and observations.

fFire = fFA × fFF × fHS (1)

fFA =
1

1 + e− k1 (FA− FA0)
(2)

Figure 1. The scheme of the hybrid machine learning model proposed for large fire probability prediction. The model output
( fFire) represents the large fire probability if an ignition occurred, and depends on constraints from fuel availability ( fFA), fuel
flammability ( fFF), and human suppression ( fHS). The values of fFire, fFA, fFF, and fHS range from zero to one with a lower
value representing lower probability for a large fire. The fFA ( fHS) is modeled through an empirical logistic function, showing
positive (negative) relationship between large fire probability and fuel availability (human suppression). For the fFF, an
attention‐augmented long short‐term memory network model is applied to represent the complex associations among fuel
flammability and multi‐drivers such as vapor pressure deficit, wind speed, topography (top), and land cover types; all the
drivers and their abbreviations used for modeling fFF are described in Table 1. When fFire is larger, the large fire probability is
higher; when fFA, fFF, and fHS are larger, the limitations of fuel availability, fuel flammability, and human suppression on
large fires are weaker.
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fHS =
1

1 + e− k2(HS− HS0)
(3)

fFF = Attention(x) (4)

where FA, and HS represent fuel availability proxied by net primary productivity (Cattau et al., 2020; Ellis
et al., 2022), and human suppression proxied by population density (Kelley et al., 2019; F. Li et al., 2012; Zhu
et al., 2022), respectively. FA0 and HS0 are model parameters representing a 50% limitation of fuel availability
(e.g., fFA(FA0)= 0.5) and human suppression on large fires, respectively. k1 and k2 are the steepness of the logistic
curve; k1 is a positive number representing positive control of fuel availability on large fires; k2 is a negative
number indicating negative control of human suppression on large fires. The limitation of fuel flammability ( fFF)
is modeled through the attention mechanism described by F. Li et al. (2023), and x in Equation 4 represents the
drivers of fuel flammability.

2.2. Alternative Models for Large Fire Probability Prediction

Four baseline ML models, including DT, RF, XGBoost, and ANN, were compared with the model proposed by
us. The DT model resembles a single‐tree structure, making it easily interpretable for fire prediction (Coffield
et al., 2019). Although DT can outperform other MLmodels in certain fire prediction cases (Coffield et al., 2019),
its single‐tree structure generally makes it more prone to overfitting compared to RF and XGBoost. RF deploys an
ensemble learning strategy (Breiman, 2001), reducing overfitting by constructing multiple trees, each trained on a
randomly selected subset of features and data. In contrast, the XGBoost mitigates overfitting by constructing
multiple shallow‐depth trees through a gradient boosting algorithm (Ke et al., 2017). In addition, we used the
ANNmodel, which comprises multiple hidden layers and has demonstrated reasonable accuracy in fire prediction

Table 1
Data Sets Used for Machine Learning Fire Prediction Model Development

Variable category Data sources Data links References

Wildfire Fire Program Analysis fire occurrence database https://www.fs.usda.gov/rds/archive/
Catalog/RDS‐2013‐0009.5

Short (2021)

Burned index (BI) Gridded surface meteorological data (gridMET) https://www.climatologylab.org/gridmet.
html

Abatzoglou (2013)

Energy release component (ERC)

100‐hr dead fuel moisture (FM100)

1,000‐hr dead fuel moisture (FM1000)

Temperature (T)

Relative humidity (RH)

Reference
Evapotranspiration (ET0)

Precipitation (Pr)

Vapor pressure deficit (VPD)

Wind speed (WS)

Topography (Top) Shuttle Radar Topography Mission (SRTM) data https://www.usgs.gov/centers/eros/
science/usgs‐eros‐archive‐digital‐
elevation‐shuttle‐radar‐topography‐

mission‐srtm‐1

Farr et al. (2007)

Land cover types MODIS annual International Geosphere‐Biosphere
Program (IGBP) classification data

https://lpdaac.usgs.gov/products/
mcd12q1v006/

Friedl and Sulla‐
Menashe (2019)

Net primary productivity (NPP) MODIS Net Primary Production data (MYD17A3HGF) https://lpdaac.usgs.gov/products/
myd17a3hv006/

Running
et al. (2015)

Population distribution (Popu) Gridded Population of World Version 4 (GPWv4) https://sedac.ciesin.columbia.edu/data/
set/gpw‐v4‐population‐density‐rev11

Doxsey‐Whitfield
et al. (2015)
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(Joshi & Sukumar, 2021; F. Li et al., 2023). These four ML models predict the probability of large fires in the
upcoming month by using various drivers (Table 1) from the preceding month.

Additionally, we used the ERC, BI, and FWI indices for model comparison. ERC and BI were derived from the
empirical physics‐based USNFDRS (Bradshaw, 1984), and have been most frequently used to guide fire man-
agement decisions or predict large fires in US (Gray et al., 2018; Jolly et al., 2019; J. Li et al., 2020). ERC
represents the amount of heat released per unit area during flaming, mainly dependent on fuel moisture. BI in-
dicates the flame length, largely determined by both the fuel moisture and the rate of fire spread (Bradshaw, 1984;
Jolly et al., 2019). FWI represents fire intensity and fire danger given the meteorological conditions used for the
index calculation, including temperature, precipitation, relative humidity, and wind speed (Dowdy et al., 2010;
Van Wagner, 1974). The model first calculated three moisture codes, representing moisture levels of fuels in
various soil depths at daily, weekly, and monthly scales; then using the calculated codes, two indices that
represent fuel available for combustion and fire spread rate, were calculated, respectively; subsequently, the FWI
was calculated based the two indices in the second step (Dowdy et al., 2010). The FWI data was downloaded from
the Copernicus Emergency Management Service (see the section of Open Research) and re‐gridded into the 1 km
spatial and monthly temporal resolutions. A higher value of either ERC, BI, or FWI indicates a greater fire risk.
The concurrent fire risk during a fire event was denoted as ERC‐Cur, BI‐Cur, and FWI‐Cur, respectively.
Moreover, we used ERC, BI, and FWI values from 1 month prior to a fire, labeled as ERC‐Pre, BI‐Pre, and FWI‐
Pre, respectively, to assess fire predictability using these time‐lagged fire indices.

2.3. Model Evaluation

In evaluating fire models, we focused on two key aspects: accuracy and physical interpretability. In terms of
accuracy, we used the F1‐score (F. Li, Zhu, et al., 2022; Raschka, 2014), which effectively balances precision and
recall rates (Equation 5). A higher precision indicates that a greater portion of predicted large fires are correct
(Equation 6), whereas a higher recall rate implies that the model successfully detects a larger portion of actual
large fires (Equation 7). A larger F1‐score value signifies a model that better balances both precision and recall
rates.

F1 =
2 × Precision × Recall
Precision + Recall

(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP and FP are the number of correctly and falsely predicted large fires, respectively. FN is the number of
large fires that model fails to predict.

We assessed the model physical interpretability by combining XAI and fire physical knowledge. For XAI, we
used the additive feature attribution (AFA) scheme (Lundberg & Lee, 2017) to estimate each driving factor's
contribution to model predictions. AFA assumes that each model prediction can be linearly decomposed into the
summed contribution of its driving factors (Equation 8). Specifically, we used the integrated gradients method
(Sundararajan et al., 2017) to infer the contribution value (∅i) of each driver in neural‐network‐based ML fire
prediction models. This method, particularly developed for neural‐networks, uses the path integral of the gra-
dients for the ith dimension as the contribution from the ith driver (Sundararajan et al., 2017). Surpassing many
XAI methods, the integrated gradients algorithm satisfies two fundamental axioms for ML attribution: sensitivity,
meaning that if model predictions differ with one input feature different, that feature should contribute non‐zero to
the output, and implementation invariance, which asserts that models yielding identical outputs for the same
inputs are fundamentally equivalent, despite differences in their implementation. This approach shows superior
performance in extracting the underlying rules for neural networks (Sundararajan et al., 2017; Turbé et al., 2023).
Additionally, we used the SHapley Additive explanation (SHAP), specifically designed for tree‐based ML
models and known here as tree‐SHAP (Lundberg & Lee, 2017; Lundberg et al., 2018), to interpretate fire pre-
diction models including DT, RF, and XGBoost. Tree‐SHAP is computationally efficient and has demonstrated

Earth's Future 10.1029/2024EF004588

LI ET AL. 6 of 18

 23284277, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F004588, W
iley O

nline L
ibrary on [03/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



better identification of influential factors than classic attribution methods for tree‐based ML models (Lundberg
et al., 2018).

fFire =∑
n

i=0
∅i (8)

where ∅i represents the contribution of the ith driving factor to the large fire probability ( fFire), and n is the
number of drivers considered.

The outputs of XAI enable us to explore the dependency of the large fire probability on its drivers. Specifically,
the XAI measures the contribution from each driver to the predicted large fire probability (Equation 8). With the
information, an XAI‐based fire‐driver partial dependency plot can be derived with the X‐axis showing the values
of the investigated driver and Y‐axis showing its contribution to fire predictions (see Section 3.4). Such a plot
allows us to visually ascertain whether a driver exerts a positive or negative influence on the predicted large fire
probability (Kondylatos et al., 2022; Lundberg et al., 2018; Sundararajan et al., 2017; Wang et al., 2021). In the
plot, if increases in the values of a driver increase (decrease) large fire probability, a positive (negative) rela-
tionship between the driver and fires is learned by the MLmodel (Kondylatos et al., 2022; Lundberg & Lee, 2017;
Wang et al., 2021). Additionally, we quantitively assessed the sign of a driver's influence on large fire probability
using segmented regression (where a positive slope represents positive influence, and vice versa) (Pilgrim, 2021).
We then compared these XAI‐revealed relationships in the ML models with established physical principles to
determine whether a ML model correctly captured the sign (positive or negative) of these relationships. For
example, from a mechanistic perspective, if a variable is known to positively influence large fires but the model
indicates a negative relationship, we conclude that the model demonstrates poor physical interpretability of that
relationship. We compared modeled relationships against all existing well‐established physical knowledge (see
Section 3.2). The greater the number of physical relationships a model correctly captured, the higher its physical
interpretability was.

2.4. Experimental Settings

The data sets used to develop the ML fire prediction model are listed in Table 1. For fire modeling, we used the
Fire Program Analysis fire occurrence database (Short, 2021), which includes all fire events reported by federal,
state, and local fire organizations from 1992 to 2018 (Short, 2021), with each report recording the location, and
occurrence date of each fire event. We considered three groups of drivers related to fuel flammability, fuel
availability, and human suppression. For fuel flammability, factors such as BI, ERC, 100‐hr and 1,000‐hr dead
fuel moisture (FM100 and FM1000, respectively), air temperature (T), relative humidity (RH), reference
evapotranspiration (ET0), precipitation (Pr), and VPD were taken into account. The meteorological data were
derived from the gridMET data set, which covers the contiguous US from 1979 to present and has been frequently
used for fire modeling in the US (Abatzoglou, 2013; Gray et al., 2018; J. Li et al., 2020). The raw gridMET data,
originally with a daily temporal resolution, was aggregated to a monthly scale by averaging the daily values for
each variable within each respective month. Additionally, we incorporated the land cover types (500 m spatial
resolution) and topography conditions (90 m spatial resolution) into the fire models due to their potential effects
on fuel flammability (Alizadeh et al., 2023; Balch et al., 2022; Varner et al., 2015). We further used the NPP
product and population distribution data from MODIS and Gridded Population of World Version 4 (GPWV4)
(both 1 km spatial resolution) to represent fuel availability and human suppression, respectively. All the data sets
were unified into the same spatial (1 km) and temporal (monthly) resolutions. Details of the data sets, including
data sources and links, and references, are presented in Table 1.

With the data sets in Table 1, we trained and evaluated the ML fire prediction models. Specifically, data sets
jointly covered by all variables in Table 1 were used for model development. During the studied period, 7,019
fires with their sizes larger than 405 ha were regarded as large fires. To avoid a highly imbalanced data, we
randomly selected small fires at 1.5 times the number of large fires from small fire samples (Kondylatos
et al., 2022). We evaluated fire model performance through both random cross validation and temporal cross
validation. For the random cross validation, we randomly selected 80%, 10%, and 10% of the fire events for model
training, validation (avoid overfitting during model training, Prechelt, 2002; Yuan, Zhu, Li, et al., 2022), and
testing, respectively. Since the random sampling may vary model performance, we repeated the experiments five
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times, and each of the experiment involved data set sampling, and model training and evaluation. The mean and
standard deviation of the model performance across these experiments were used for the final model comparison.
For the temporal cross validation, we trained the model using data before 2019 and used the fire samples during
2019–2020 that the model has never seen in the Fire Program Analysis fire occurrence database (Short, 2022) as
an independent evaluation data set. Additionally, we analyzed fires and their drivers during 2019–2020 through
comparison with the satellite‐derived fires in the Monitoring Trends in Burn Severity (MTBS) (Finco et al., 2012)
data set. In our model, all the parameters in the three sub‐modules, including fFA (i.e., k1 and FA0), fFF (i.e.,
weights in attention‐augmented LSTM), and fHS (i.e., k2 and HS0), were learned from the new data sets (Table 1).
While the attention‐based mechanisms used here were from the F. Li et al. (2023), the parameters were relearned
together with the fFA and fHS modules rather than directly adopting from the previous study due to their differences
in learning tasks (predicting burned area vs. predicting large fire probability) and studied regions (tropics vs.
western US). The inputs for the fFA and fHS modules were fuel availability and human suppression proxied by NPP
and population density, respectively. The inputs for the fFF module were time series of the environmental factors
in Table 1 except NPP and population density. The time steps were set to 8 months (i.e., the months prior to the
fire ignition month) to capture the antecedent hydroclimatic conditions from monthly to inter‐seasonal scales that
may affect fire dynamics in the fire month (Buch et al., 2023; Ermitao et al., 2022; Littell et al., 2016). Details of
the hyperparameter settings for the ML models, including the learning rate, batch size, dropout rate and weight
decay of our model, are listed in Table S1 in Supporting Information S1, which were determined through the grid
search method (F. Li et al., 2020; F. Li et al., 2023; Liashchynskyi & Liashchynskyi, 2019). We also included the
code of our model with detailed comments for further reading (see Data Availability Statement section). To
further demonstrate the importance of considering the compound climate controls from multiple critical drivers
on fire prediction, we conducted ablation experiments. For the ablation experiments, we repeated the afore-
mentioned random cross validation scheme five times, and kept all the experimental settings the same while
ablating some important drivers for model training and evaluation. Subsequently, we compared the model per-
formance with and without considering the important drivers (see Section 3.4).

3. Results and Discussions
3.1. Performance on Large Fire Prediction

We found that our model exhibited higher accuracy in large fire predictions compared to baselines (Figure 2).
Among all the models, the F1‐score of our model was the highest (0.846 ± 0.012), about 20%–40% higher than
that of the index‐based models (i.e., BI‐Pre, BI‐Cur, ERC‐Pre, ERC‐Cur, FWI‐Pre, and FWI‐Cur), and
approximately 4%–9% higher than those of three ML models (DT, ANN, and XGBoost). The accuracy of our
model was slightly higher than that of the RF model (0.842 ± 0.007), although the difference was not statistically
significant (t‐test, p > 0.05). This comparative accuracy necessitates further comparison of the two ML models in
terms of their structures and interpretability (see Section 3.2). The F1‐score of the index‐based models ranged
from 0.605 ± 0.008 to 0.704 ± 0.011, consistently lower than the ML fire prediction models (Figure 2), which
ranged from 0.776 ± 0.009 to 0.846 ± 0.012. The lower performance of the process‐driven models highlights the
need for further improvement in the empirical relationships between fires and their drivers, and parameterizations
of such relationships (F. Li et al., 2019; Zhu et al., 2022). However, the higher performance of ML models does
not guarantee more reliable fire predictions, due to the black‐box nature of ML models and the risk of overfitting.

3.2. Notable Model Structural Discrepancy Relative to Wildfire Physics

We found that the fire‐driver relationships captured by our model showed higher consistency with established
physical knowledge. We compared the sign of each physical relationship between drivers and fires with those
from the ML models (Figure 3). The corresponding signs and references for the fire physics were listed in Table
S2 in Supporting Information S1. Compared to other ML models, a larger portion of (10 out of 13) relationships
were correctly captured by our model. Among the correctly captured relationships, the positive influences of
evaporative demand (ET0), wind speed (WS), and slope, were more consistently captured across most MLmodels
(Figure 3). Although the RF model showed comparable accuracy to our model (Figure 2), its modeled re-
lationships were generally less physically interpretable (Figure 3), similar to the poor interpretability of the DT,
ANN, and XGBoost models. These findings suggest that substantial model structural uncertainties could exist
across ML models despite their almost equivalent accuracy. The pervasive lack of interpretability for the ML
models underscores the importance of trustworthy model development and model evaluation beyond accuracy,
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such as model physical interpretability or causality structure assessment
(Eyring et al., 2019; F. Li, Hao, et al., 2022; F. Li, Zhu, et al., 2022; Yuan,
Zhu, Li, et al., 2022; Yuan, Zhu, Riley, et al., 2022).

For the fire physics listed in Figure 3, we acknowledge the complexity of the
dependency between fires and climate variables. For example, previous studies
have revealed non‐linear relationships between fires and climate wetness
conditions (Andela & Van Der Werf, 2014; Y. Chen et al., 2011; F. Li
et al., 2023). In fuel‐limited ecosystems, an increase in precipitation in wet
season could amplify fire activities during dry season through enhancing fuel
availability (Andela &Van DerWerf, 2014). In contrast, dry‐season fires may
negatively respond to short‐term increasing precipitation due to over‐wet fuel
moisture (Andela & Van Der Werf, 2014). In our analysis, we considered the
drivers present 1month before fires and explicitly included information on fuel
availability for fire predictions. Thus, changes in climate wetness primarily
influenced predicted fire probability through their direct impacts on fuel
moisture, rather than availability. Given that increases in fuel moisture typi-
cally decrease fuel flammability and limit fires, we assume negative re-
lationships between large fire probability and climate wetness variables
including FM100, FM1000, Pr, and RH, and positive relationships with BI,
ERC, and ET0 (Figure 3). These relationships align with findings from pre-
vious studies on the temporal variability of the western US fires during his-
torical period (Abatzoglou & Williams, 2016; Holden et al., 2018; Littell
et al., 2016).

3.3. Distinct Differences in Model Predicted Fire Patterns

We found distinct differences in the association between actual burned grid cells and large fire probability
predicted by different ML models (Figure 4). In grid cells where large fires occurred, we would expect a high
large fire probability, as the fire drivers had already met the necessary conditions for the fire occurrence (Jolly
et al., 2019; J. Li et al., 2020). While a higher predicted large fire probability of our model generally corresponded
to a greater number of burned grid cells, the relationship between large fire probability and the number of burned
grid cells exhibited non‐monotonic characteristics for the ANN, XGBoost, and RF models (Figure 4). For
example, the majority of burned grid cells for RF were distributed with fire probability ranging from 0.68 to 0.94,
from 0.66 to 0.92 for XGBoost, and from 0.88 to 0.96 for ANN. Few burned grid cells were observed where the
large fire probability reached the highest value in the three models (Figure 4). However, for the DT model, most

Figure 2. The machine learning fire model developed in this study
outperforms fire indices and other machine learning fire models on accuracy.
Fire indices include different versions of burning index, energy release
component, and fire weather index. Machine learning models include
decision tree, artificial neural network, extreme gradient boosting, random
forest, and the model proposed in this study. The larger F1‐score represents
better model performance.

Figure 3. Benchmarking machine learning modeled relationships with physical knowledge. The bottom row shows the
physics, where “+” and “− ” represent positive and negative relationships between fire drivers (full name of the drivers are
shown in Table 1) and fires, respectively. The machine learning correctly and incorrectly modeled relationships are shown as
“Y” and “N”, respectively. When the sign of a modeled relationship between a driver and fires is consistent with that of the
physical knowledge, the model correctly captured that relationship here, and vice versa.
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burned grid cells were concentrated at the highest large fire probability values, despite its lower accuracy and
physical interpretability (Figures 2 and 3). These findings suggest that different ML models can yield distinct fire
predictions due to structural uncertainties (Figure 3), despite having comparable prediction accuracies (e.g., our
model vs. RF). For the three fire indices, while most of the burned grid cells occurred with the highest FWI values
(Figure 4), moderate values of BI and ERC coincided with more burned grid cells than their highest values.
Similar patterns of BI and ERC compared with actual fires have also been revealed by Jolly et al. (2019), sug-
gesting the need for more advanced fire indices that can more effectively reflect actual fire activities and aid fire
management (Bradshaw, 1984; Jolly et al., 2019; J. Li et al., 2020; VanWagner, 1987). The tendency observed in
our model, where a higher large fire probability corresponds to more burned grid cells, indicates its potential
utility for early warning of large fires 1 month in advance.

3.4. Strong and Compound Climate Controls on Large Fires

Using the high accurate and interpretable fire model proposed, we found that climate variables, including ET0,
ERC, T, and WS, predominantly controlled fuel flammability and thus large fires (Figure 5a) during 2002–2018.
Specifically, increases in these dominant drivers were associated with increased fuel flammability (Figure 5b),
consistent with existing fire physical knowledge (Abatzoglou et al., 2023; Holden et al., 2018; Jolly et al., 2019;
McEvoy et al., 2020). ET0 emerged as the largest contributor to fuel flammability, followed by ERC (Figure 5a).
ET0 is strongly associated with drought and wildfire risk in the western US (Abatzoglou &Williams, 2016; Littell
et al., 2016; McEvoy et al., 2016, 2020), with a higher value reflecting a larger evaporative demand over water‐
unlimited surface. Similarly, a higher ERC value represents a drier fuel moisture condition and thus higher fire
danger (Brown et al., 2004; Finney et al., 2011; Jolly et al., 2019). After the two variables, the impacts of T and
WS were the most prominent (Figure 5a). High temperature can dry out dead fuels (Holden et al., 2018; Williams
et al., 2012) and high wind speed can accelerate fire spread, contributing to a considerable portion of large fires in
the western US (Abatzoglou et al., 2018, 2023; Westerling et al., 2006). While ET0 and ERC were the most
important two variables (Figure 5a), our model performance significantly (one‐tailed t‐test, P < 0.05) decreased
by 7.5%, and 5.6% if we only used ET0 or ERC as the hydroclimatic drivers for model training and evaluation
(i.e., ablating other hydroclimatic drivers), respectively. These findings indicate the importance of considering the
compound effects of multiple key drivers, rather than focusing solely on one specific driver, when predicting large
fires in the western US (Richardson et al., 2022).

We further predicted and analyzed the top five megafires in 2020 (Figure 6). We found that the large fire
probability for the top five megafires in 2020 was anomalously high compared to the multi‐year (2002–2020)
average fire probability over the same grid cells and in the same month (Figure 6a). While about one fifth of grid
cells in western US exhibited high large fire probability (fire probability greater than 0.9) (Figure S1 in Sup-
porting Information S1), the majority of grid cells burned overlapped with high large fire probability, especially
for the top four megafires (Figure 6b). The fire model predictions were able to reflect the interannual variations in
fire occurrences. For example, compared to the smaller fire occurrences in 2019 (Figure S2 in Supporting

Figure 4. Distinct differences in large fire probability over actually burned grid cells predicted by five machine learning fire
prediction models and three fire indices. The horizonal axis represents the model predicted large fire probability, and the
vertical axis represents models. The deeper red (blue) color represents a larger (smaller) number of burned grid cells falling
into the divided bin of the predicted large fire probability on the horizontal axis. The number of burned grid cells in each bin
is normalized by the maximum number of burned grid cells across all the horizontal bins for each model.
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Information S1) and the multi‐year average, the large fire probability in 2020 was notably higher for several
megafires, including August Complex, SCU Lightening Complex, North Complex, and Hennessey (Figure 6c),
which burned approximately 4,325, 1,642, 1,281, and 1,268 km2, respectively. In contrast, the Cameron Peak
megafire exhibited a moderately large fire probability (Figures 6b and 6c). The effective prediction of those
megafires with 1‐month lead time allows for more targeted fire management strategies, such as prescribed
burning and fuel treatment (Kolden, 2019; Stephens & Ruth, 2005).

Further attribution analysis confirmed the prominent impacts of aforementioned multiple dominant climate
variables on the five megafires (Figures 6d–6h). Interestingly, although the key variables remained consistent,
their ranking and relative importance varied across the five megafires (Figure 6). For example, ERC was the most
important variable for the August Complex fire (Figure 6d), while ET0 was more important for the other
megafires (Figures 6e–6h). Additionally, RH was more important for the August Complex and North Complex
fires (Figures 6d and 6f). These results suggest the spatially varied controls on wildfires, which cannot be
differentiated using static variable importance information across the entire data set. Existing studies suggest that
anthropogenic climate change is likely to lead to more intense and frequent multi‐variate‐controlled climate
extremes and compound hazards, including drought related to wildfires (Abatzoglou, Rupp, et al., 2021;
AghaKouchak et al., 2020; Hao et al., 2022). Therefore, a reliable approach to modeling such spatiotemporally‐
varied and compound climate effects on wildfires is essential for effectively mitigating and adapting the adverse
impacts of climate change.

3.5. Perspectives

The fire model that we developed in this study well balanced accuracy and physical interpretability (Figure 7) and
could aid a more trustworthy solution for fire predictions. Similar to prior studies (Arrieta et al., 2020; Hu
et al., 2023), we revealed the tradeoff between model accuracy and interpretability for both ML models and
process‐driven fire indices (Figure 7). Both highly interpretable but less accurate fire indices, and highly accurate
but less interpretable MLmodels, could reduce confidence in fire predictions. While we acknowledge that the fire
model proposed has limitations, particularly being less interpretable than process‐driven models, it is much more
interpretable than the other ML models, and shows substantially higher accuracy compared to process‐driven
index‐based models (Figure 7). Our model exhibits high accuracy relative to the commonly used ML models

Figure 5. Dominant climate variables and their quantitative contributions to fuel flammability. The mean contribution from each driver to quantified fuel flammability
(a) where positive (negative) values represent positive (negative) contributions, and a larger absolute value represents a larger contribution. The contributions from the
top four dominant variables to fuel flammability (b) where the deeper red (blue) color represents a higher (lower) value of fuel flammability predicted by the machine
learning fire model.
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in terms of F1‐score through the random‐cross validation (Figures 2 and 7), and also shows reasonable accuracy
through the temporal‐cross validation scheme (F1‐score = 0.839 ± 0.006). Additionally, we emphasize the great
importance of physical knowledge in the process‐driven models, despite their structural and parametrization
uncertainties (Ji et al., 2024; F. Li, Hao, et al., 2022; F. Li, Hao, et al., 2024; Wu et al., 2020; Yuan et al., 2021;
Yuan, Zhu, Riley, et al., 2022). Such knowledge serves as a foundation for designing more trustworthy ML
models and is essential for validating these models beyond just their accuracy.

We underscore that high interpretability of ML with reasonable accuracy is essential for more trustworthy ML
development, however, building a trustworthy ML model could be beyond interpretability and accuracy. First, a
ML model with lower or less acceptable accuracy can indicate likely missing or biased critical drivers of the

Figure 6. Anomaly high large fire probability driven by compound fire weather overlapped with the top five largest megafires in 2020. The large fire probability anomaly
(a) predicted by the model proposed 1 month in advance and their overlap with the top five megafires (b). For each grid cell in (a), deeper red (blue) color represents
anomaly higher (lower) fire probability compared to that of the grid‐level multi‐year (2002–2020) average in the same month. The colored boundaries in (a) and
(b) represent the area burned depicted by the Monitoring Trends in Burn Severity data. Comparison of the 2020 large fire probability with that of 2019 and multi‐year
average (c). The contributions from climate variables to the top five megafires (d–h).
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predicted variable or defective model structures or parameterization (F. Li
et al., 2023; Yuan, Zhu, Li, et al., 2022; Yuan, Zhu, Riley, et al., 2022). If so,
the relationships learned by ML models can be less trustworthy (Murdoch
et al., 2019). Second, if a model shows reasonable accuracy but its modeled
relationships are less interpretable or violate principal physics, further in-
vestigations are required to diagnose the causes (e.g., model structure issues)
(F. Li, Zhu, et al., 2022; Runge et al., 2019, 2023; Yuan et al., 2021; Zeng
et al., 2023). Maximizing both interpretability and accuracy ideally aids
trustworthiness (Murdoch et al., 2019), however, a tradeoff between them is
practically common (e.g., Figure 7) (Arrieta et al., 2020). A ML model that
well balances interpretability and accuracy is, therefore, useful in real‐world
applications such as wildfire prediction (Jain et al., 2020; F. Li et al., 2023;
Marcinkevičs &Vogt, 2020; Murdoch et al., 2019). Finally, while the concept
of trustworthiness can be varied in different disciplines (Toreini et al., 2020),
trustworthy ML in computer science includes other critical aspects apart from
interpretability and accuracy, such as fairness, auditability, privacy, and
safety (Eshete, 2021; Murdoch et al., 2019; Toreini et al., 2020). The concept
of trustworthy ML and how to quantify trustworthiness in Earth science (e.g.,
wildfire science) warrant further exploration before we can better evaluate
and compare trustworthiness across Earth ML models.

We highlight the importance of evaluating the interpretability of ML models, particularly with reference to well‐
known physics. With XAI, we found substantial uncertainty in ML learned relationships (Figure 3). Specifically,
integrated gradients and tree‐SHAP were used to infer the fire‐driver relationships for neural‐network and tree‐
based ML models, respectively. Since the two XAI methods used are not mathematically identical, we did not
directly compare the sign of the XAI outputs (i.e., Equation 8). Instead, similar to previous studies (Kondylatos
et al., 2022; Lundberg & Lee, 2017; Wang et al., 2021), we derived the dependency plot between each driver and
its contribution to fires (e.g., Figure 5b), and then checked whether increases in a driver positively or negatively
(i.e., the signs) influence the large fire probability. By doing so, the inferred signs reflect the trend of the asso-
ciation between each driver and fires rather than the signs of the original XAI outputs. Nevertheless, we
acknowledge that differences in XAI methods may still influence the inferred relationships across different ML
models, and more efforts are required to develop more advanced XAI methods that are computational efficient
and appliable to all kinds of ML models (Saeed & Omlin, 2023; Turbé et al., 2023). We further demonstrated that
the ML structural uncertainties can bias model predictions (Figure 4), indicating the critical need for improving
model structures rather than only focusing on accuracy. Our proposed interpretability evaluation framework
integrates XAI and physics, aiding better understanding and diagnosing the black‐box ML models in the Earth
science.

This study mainly focuses on next‐month large fire probability prediction using prior fire conditions. The po-
tential physics that support such a modeling scheme include (a) pre‐fire conditions can exert important effects on
fuel flammability (e.g., fuel moisture) and availability (e.g., fuel accumulation) and thus fires in the following
month (Abolafia‐Rosenzweig et al., 2022; Ermitao et al., 2022); (b) hydroclimatic conditions may show certain
persistence characteristics (e.g., persistent drought) and thus prior fire conditions can reflect certain fire condi-
tions in the next month (Littell et al., 2016; Robertson & Vitart, 2018; Tuel &Martius, 2023). The reasonable high
accuracy (Figure 2) indicates that most of the large fires in the western US can be successfully predicted by our
modeling scheme 1 month in advance, and the lead time enables fire management before fire occurrence. For
megafires that can spread for multiple months such as the August Complex megafire which started from August
and ended in early November (Varga et al., 2022), our model reasonably captured the persistently high fire risk in
August, September, and October over the footprint of the megafire (Figure S3 in Supporting Information S1).
However, our model can only iteratively predict the next‐month fire risk when the latest data set of fire drivers is
available, rather than directly predicting the fire risk with lead time of few months. Furthermore, we acknowledge
that when fire conditions sharply change between the predicted month and its prior months (e.g., pre‐fire con-
ditions can be substantially different from the next‐month fire occurrence conditions), the ML model may fail to
predict fires in the next month. While including the hydroclimatic conditions in the fire‐occurred month can be an
optional prediction scheme (Gray et al., 2018; J. Li et al., 2020; Wang et al., 2021), the scheme itself requires

Figure 7. Comparison of fire model performance from two dimensions:
accuracy and physical interpretability. The physical interpretability here is
measured as the percentage of correctly modeled relationships between fires
and their drivers relative to fire physics.
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predicted hydroclimatic information from weather/climate forecast models which remain challenging from sub‐
seasonal to seasonal scales (Doblas‐Reyes et al., 2013; He et al., 2021; F. Li, Zhu, et al., 2022; Robertson &
Vitart, 2018). Additionally, in our proposed model, we followed the previous studies (Balch et al., 2017; B. Chen
et al., 2021; Ellis et al., 2022; Hantson et al., 2015) and considered NPP as a proxy of fuel availability. Further
investigation is required by considering improved spatiotemporal representation of fuel availability (e.g., using
fuel products upscaled by integrating field measurements, remote sensing, and ML (D’Este et al., 2021; Morais
et al., 2021; Walker et al., 2020)), possibly varied fire responses to fuel availability across land cover types
(Ermitao et al., 2022), and other critical aspects of fuel characteristics, such as fuel size, types, spatial arrangement
and continuity, and chemical composition of fuels (Gale et al., 2021).

4. Conclusions
Predicting large fires with a long‐term lead time and at a high spatial resolution is essential for early fire warning
and fire management. This study developed a fire model, which demonstrated higher accuracy in large fire
prediction compared to other commonly used ML models and fire indices. With explainable AI, we revealed
substantial model structural uncertainties among ML fire prediction models, which affected their predictions
despite their comparable accuracy. Our model exhibited higher interpretability and was more consistent with
established fire physics. With the highly accurate and interpretable fire model, we revealed strong compound
effects of climate variables related to evaporative demand, ERC, temperature, and wind speed on controlling large
fires and top megafires in the western US. Our developed fire model could facilitate early fire warning and enable
targeted fire management. Our results highlight the urgent need for high accurate, interpretable, and trustworthy
AI development, underscore the necessity for moving model evaluation beyond accuracy, and demonstrate the
importance of comprehensively modeling the compound climate controls on large fires.

Data Availability Statement
All the dataset used and the hybrid fire model code are available in F. Li, Zhu, et al. (2024).
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