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ABSTRACT OF THE DISSERTATION

Quantifying uncertainty in precipitation climatology, twenty-first century change,

and teleconnections in global climate models

by

Baird Grant Langenbrunner

Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2015

Professor J. David Neelin, Chair

The ability of global climate models (GCMs) to simulate climatological precipitation and other

features of the hydrological cycle accurately is acceptable by some metrics, especially at large scales.

Regionally, however, there can be substantial discrepancy in a multi-model ensemble, both in the

annual or seasonal historical precipitation climatology as well as in end-of-century changes. Charac-

terizing this intermodel spread and identifying leading uncertainty patterns and underlying physical

pathways is important in constraining climatological biases and projections of future change. This

dissertation looks at three aspects of precipitation uncertainty in ensembles.

First, El Niño-Southern Oscillation (ENSO) teleconnections are analyzed in an atmosphere-only

ensemble to gauge the ability of atmospheric components of GCMs to reproduce ENSO precipitation

teleconnections. This serves as a test for how well models simulate the atmospheric response to

sea surface temperature forcing in the immediate ENSO vicinity, as well as how accurately they

reproduce the large-scale tropical-to-midlatitude dynamics leading to teleconnected precipitation.

While individual models have difficulty in simulating the exact spatial pattern of teleconnections,

they demonstrate skill in regional amplitude measures and sign agreement of the precipitation

teleconnections at the grid point level, which lends value to the use of such measures in global

warming projections.

Next, objective spatial analysis techniques are applied to a fully-coupled GCM ensemble in order

to visualize patterns of uncertainty in end-of-century precipitation changes and in the historical
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climatology. Global patterns are considered first, with the tropics exerting a clear dominance in

intermodel spread, mainly within zones of deep convection or along convective margins. Regional

domains are considered second, with a focus on the wintertime midlatitude Pacific storm track. A

key region of end-of-century precipitation change uncertainty is identified at the terminus of the

storm track, and large-scale circulation processes related to model differences in upper-level jet

increases are found to play a role. These results help pinpoint a source of intermodel spread in

projected precipitation changes along the North American west coast, especially for the Southern

California region.

Last, an existing perturbed physics ensemble is examined in order to understand the parameter

sensitivity of climatological precipitation and other fields. This ensemble consists of integrations

in which four parameters in the deep convection scheme were systematically varied. Models of pa-

rameter dependence are constructed for precipitation, and this process—termed metamodeling—is

a computationally cheap alternative to brute-force sampling of parameter space in the GCM. A

quadratic metamodel performs generally well but fails to capture sensitive regions of high nonlin-

earity for certain parameter ranges. A second metamodel is constructed by combining an approach

from the engineering literature with the spatial uncertainty patterns used above, and it proves adept

at capturing sensitive regions where its quadratic counterpart fails. Finally, when more than one

field is optimized simultaneously, it is often the case that a set of parameter values that optimizes

one field can degrade performance in another. Concepts from multiobjective optimization are used

to quantify these tradeoffs.
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Chapter 1

Introduction

1.1 Background and overview

Global climate models (GCMs) show widespread uncertainty in their ability to model re-

gional precipitation (P) characteristics. GCM ensembles often agree on large-scale, average P

features, though this doesn’t always translate to consensus at the local or model grid point level.

This regional uncertainty lurks both in seasonal climatologies and in end-of-century global warming

P projections, and it is useful to seek observational constraints on this uncertainty in the current

climate of GCMs and reduce barriers to prediction of future hydrological cycle change.

Intermodel disagreement over P features is at its core a very complex issue. GCM “en-

sembles of opportunity” are groups of models built independently by different modeling groups, so

spread within these ensembles is a result of model structure, resolution, and numerical schemes, as

well as differences in internal variability in the coupled ocean-atmosphere system. Another source of

intermodel spread is differences in how GCMs simulate the dynamic and thermodynamic processes

that interact to produce rain and snow. These interactions require models to bridge large-scale

dynamics with sub-grid scale physics and parameterizations, which themselves can differ widely

among models.

This dissertation discusses published and to-be-published work on intermodel uncertainty,

with a major focus on historical P climatologies and end-of-century changes in model ensembles.

The majority of the model simulation data is from the historical and global warming simulations

available through the Coupled Model Intercomparison Project phase 5 (CMIP5) as well as the

previous phase 3 (CMIP3).
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Chapter 2 presents results from work done in Langenbrunner and Neelin (2013), where

El Niño-Southern Oscillation (ENSO) P teleconnections were analyzed within the CMIP3 and

CMIP5 ensemble archives. These teleconnections are calculated from atmosphere-only runs of

the models—coupled GCMs driven by identical observed sea surface temperatures (SSTs)—and

compared to observations. In using atmosphere-only simulations, one is able to probe the accuracy

of the atmosphere alone in responding to SST anomalies and accurately producing the large-scale

dynamics that lead to remote P anomalies.

Chapter 3 discusses work done in Langenbrunner et al. (2015), in which objective matrix

decomposition techniques are employed to visualize patterns of model uncertainty in P climatology

and end-of-century change in the CMIP5 model ensemble. Further analysis is done to relate model

spread in P characteristics to spread in the larger-scale circulation and SSTs, and the contribution

of internal variability in the historical and pre-industrical control simulations is quantified.

Chapter 4 discusses current work in preparation to be published. Distinct from the above

work, this final chapter uses an available perturbed physics ensemble to explore model uncertainty

related to sub-grid scale physics parameterizations. The ensemble is described in Bernstein and

Neelin (2015, submitted) and is composed of branch runs from the National Center for Atmospheric

Research (NCAR) Community Earth System Model version 1.1 (CESM1.1), in which parameters

related to deep convection and moist processes are systematically changed to see the range of

climates that will result. These simulations are used to visualize uncertainty patterns akin to those

of Chapter 3, and these uncertainty patterns are then employed to create models for the parameter

sensitivity of P and other climatological fields.

The remainder of the current chapter discusses published work to which I have contributed

analysis, as well as some of the major conclusions of those papers.

2
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Figure 1.1: Precipitation climatology (mm day−1) for (left) DJF and (right) JJA during 1979–2005. (a)
Observational estimate of observed precipitation for DJF. (b) Multi-model ensemble mean over the 18 models
for DJF; for models with multiple runs, all runs are averaged before calculating the mean. (c) Comparison
of individual models to observations using the 3 mm day−1 contour as an index of major P features: half
the models are shown in each of keys I and II with the legend giving the color coding for the models.
Shading shows the regions where the observations exceed 3 mm day−1. (d)–(f) as in (a)–(c), but for JJA.
Observations are taken from the global precipitation climatology project (GPCP) version 2.2 (Adler et al.,
2003), and model data were regridded to the GPCP resolution via bilinear interpolation prior to analysis.
Figure appears in Sheffield et al. (2013a), their Fig. 1.
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1.2 Other work in characterizing the simulation of climatology and climate
change projections in multi-model ensembles

1.2.1 The North American climate in CMIP5 simulations

This was a three-part study that concentrated on three aspects of North American climate

in the CMIP5 ensemble. The three studies are described briefly, along with some key figures from

the published articles.

Part I: Sheffield et al. (2013a)

Part I of this study evaluates the historical simulations, focusing on continental and regional

climatologies. I contributed to a section evaluating seasonal P climatologies, comparing an 18-model

CMIP5 ensemble to observed P climatologies over North America during the 1979–2005 time period.

Figure 1.1 shows some results from this work. Comparing observed P climatologies to the ensemble

mean, one can see the models do fairly well at reproducing large-scale P features, and the biases

over North America in the ensemble mean are calculated to be approximately +12% for DJF and

–1% for JJA. However, regional scale disagreement is manifest in individual model biases, which

range widely and typically exceed that of the ensemble mean (see Sheffield et al., 2013a, their Table

3). Generally, there is overestimation of P in more humid and cooler regions and underestimation

in drier regions over North America. One notable aspect that the models reproduce is the DJF

Pacific storm track, specifically the angle of the storm track as it approaches the North American

west coast, though specific placement of the 3 mm day−1 contour does vary notably in space.

The model grids are too coarse to resolve the complex topography along the west coast, so the

exact magnitudes are slightly too large inland and not intense enough at the coast. Finally, the

performance of CMIP5 models in representing climatological P was shown not to have improved

significantly between CMIP3 and CMIP5.

Part II: Sheffield et al. (2013b)

Part II of this study focuses on the seasonal-to-decadal variability of the CMIP5 models.

A portion of this analysis discusses the model accuracy of interannual variability, including ENSO
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teleconnections in the coupled models. The results show a mixture of performance skill, and

ENSO teleconnections are an aspect of climate variability that models show a range of accuracy

in reproducing. Furthermore, no one model stands out as better than others when all types of

variability are considered together, though certain models fare better on specific features. Based on

these conclusions, the discussion points out that no model is particularly unskillful, lending credence

to the utility of a multi-model ensemble. Additionally, this study notes that an overall ranking of

the models would not be possible and found—as in Part I—that no significant improvement is seen

in CMIP5 when compared to CMIP3 in these variability measures.

Part III: Maloney et al. (2014)

Part III of this study analyzes twenty-first century climate projections using the Represen-

tative Concentration Pathway 8.5 (RCP 8.5, Taylor et al., 2012) experiment. This paper builds on

Parts I and II, considering first the continent-wide changes over North America and then shifting

focus to selected regional climate features. My contribution was an analysis of end-of-century P

changes. Figure 1.2 shows the DJF and JJA end-of-century P anomalies for the ensemble mean

(left column). Anomalies are calculated for the 2070–2100 climatology in each model relative to a

1960–1990 base period. Figure 1.2 (right column) shows model agreement on positive and negative

P changes for the 17-model ensemble. During DJF, Figs. 1.2a,c both show P increases to the north

and decreases to the south, with Southern California lying at a latitude between where there is much

less model consensus on predicted change. During JJA, Figs. 1.2b,d show robust drying extending

from Mexico and Central America into the Atlantic Ocean, as well as robust P increases across

Canada and Alaska, though between these regions there is less agreement on predicted change.

1.2.2 California winter P change in the CMIP3 and CMIP5 ensembles

Another study to which I have contributed concerns twenty-first century California winter-

time P changes (Neelin et al., 2013). As noted above, Southern California lies in a tenuous region

between P increases to the north and decreases to the south. This study focuses first on large-scale

features of P change occurring throughout the eastern Pacific Ocean basin and North American

west coast and then discusses the implications this has for California in particular. From Figs. 1.1
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Figure 1.2: (a,b) CMIP5 17-member ensemble mean P change (mm day−1) for RCP8.5 during 2070–2100
relative to 1960–1990 for (top) DJF and (bottom) JJA. The red line is the 4 mm day−1 contour of the
historical climatology. Grid points are cross-hatched where the ensemble mean does not pass a two-tailed t
test for differences of the mean with respect to interannual variability at the 95% level. (c,d) Plots of model
agreement on sign of end-of-century precipitation change for the RCP8.5 scenario. Red colors indicate the
number of models (out of 17) that agree on a negative P change; blue colors indicate the number of models
that agree on a positive P change. The color shaded areas (12 or more models agreeing on sign) pass a
binomial test rejecting the hypothesis of 50% probability of either sign at the 95% level; areas not passing
at this level are left unshaded. Stippled areas use a version of the Neelin et al. (2006) criterion to show grid
points where more than half (9+) of the models both pass a two-tailed t test at the 95% confidence level
and agree on sign. Figures appear in Maloney et al. (2014), their Figs. 1 and 2.

and 1.2, one can see robust subtropical P reductions and midlatitude increases, often referred to as

the rich-get-richer or wet-get-wetter mechanism (see the introduction to Chapter 3 for more detail).

Though this will set the stage for P changes at large scales, dynamical feedbacks become important

at the regional scale, and changes to the circulation affecting the climatological storm track has

implications for the end-of-century P changes occurring along the California coast. In Neelin et al.

(2013), a region encompassing the southeastern terminus of the storm track is discussed as a “jet

extension” region, and it is evaluated critically in this study as an area with significant intermodel
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Figure 1.3: DJF end-of-century P changes for CMIP5. (a,d) Ensemble mean precipitation change in units
of mm day−1 for CMIP5 and CMIP3. Red line shows the 3 mm day−1 contour from the ensemble mean base
period climatology; dashed and dash-dot lines show the same contour from the GPCP and CMAP data sets
during 1979–2008, respectively. Regions that do not pass a significance test for the ensemble mean relative to
internal variability at the 95% level are cross-hatched. (b,e) Agreement on the sign of precipitation change
among the model ensemble for CMIP5 and CMIP3. Blue and green colors indicate a higher number of
models (out of 15) agreeing on positive precipitation change; red colors indicate agreement on a negative
precipitation change. Grid points with 10 models agreeing on sign pass a binomial test at the 94% level;
grid points not passing at this level are left blank. (c,f) End-of-century changes to 200 hPa zonal winds for
CMIP5 and CMIP3. Boxes indicate the region used for averaging in later figures. Figures appear in Neelin
et al. (2013), their Figs. 1, 2, and 6.

disagreement on sign of P change, with implications for Southern California wintertime P changes.
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Figure 1.3 provides a comprehensive comparison between the CMIP3 and CMIP5 ensem-

bles. Comparing Figs. 1.3a and 1.3d, one can see that the region of P increase to the north of

Southern California is extended farther south in CMIP5 relative to CMIP3, which has implications

for wintertime P throughout the state and, if CMIP5 is trustworthy, provides an optimistic outlook

for future water in California. Figures 1.3b and 1.3e show relatively higher agreement in CMIP5 P

increases here as well, adding a measure of robustness to the mean change plots. Figures 1.3c and

1.3f show the twenty-first century changes to the winds at the jet level. One can see that the jet

is getting stronger at the latitude of its core and extends farther east as it approaches the North

American west coast, implicating its role in steering incoming storms toward the California coast.

Figure 1.4 provides a summary of P changes in the model ensemble. Area-averaged P change

is calculated for each model over a storm track termination outline shown in Fig. 1.3. CMIP3

and CMIP5 have comparable scatter for projected P change, though CMIP3 has more noticeable

outliers, and the mean of CMIP5 is shifted toward a positive P change relative to CMIP3. These

differences in mean are subject to t tests and are shown to be significant at or above the 90% level,

implying that the CMIP5 model ensemble shows distinct changes from the CMIP3 ensemble and

indicates an ensemble preference for a slight P increase in this region.
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Figure 1.4: DJF P changes for an area average over the ocean just off the coast of California and extending
into the California coastline (area shown in Fig. 1.4) for CMIP3 models (squares) and CMIP5 models (circles).
(a) Values for all models with the ensemble mean for CMIP3 and CMIP5 respectively. (b) The ensemble
mean for each of CMIP3 and CMIP5 shown at the left with error bars corresponding to ±1 standard error
among the ensemble values (0.20 and 0.17 mm day−1, respectively). Values from individual models from the
same modeling group are stacked vertically. Error bars denote a ±1 standard error estimate due to natural
variability from a given model. Asterisks in the legend denote models with multiple runs included in the
average. Figure appears in Neelin et al. (2013), their Fig. 5.
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Figure 1.5: DJF P change averaged over the region in Fig. 1.3 plotted against DJF 200 hPa zonal wind
change averaged over the same region, for (a) CMIP5 and (b) CMIP3 models. The correlation coefficients
(r = 0.76 and 0.50) and slopes (0.19 and 0.21 mm day−1 [m s−1]−1, respectively) are associated with the
linear regression line shown. Figure appears in Neelin et al. (2013), their Fig. 7.

As a final point, the relationship between twenty-first century change in jet-level winds

and P in the averaging region is shown in Fig. 1.5. A majority of models in both ensembles

indicate a positive change in both quantities, though the CMIP5 ensemble shows a higher correlation

(r = 0.76). The CMIP3 ensemble has a lower correlation (r = 0.50) but a similar slope, so that

a significant jet contribution to P change in this region is apparent in both ensembles, though it

takes a less prominent role in CMIP3.

This connection between model spread in P changes along the California coast and its

relation to shifts in the jet-level winds is a nontrivial source of P change disagreement at the latitude

of Southern California at the end of the storm track, and this is the subject of the latter part of

Chapter 3. But first, Chapter 2 discusses the ability of the CMIP3 and CMIP5 atmosphere-only

models to simulate ENSO P teleconnections in the DJF season.
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Chapter 2

Analyzing ENSO teleconnections in CMIP models as a measure of
model fidelity in simulating precipitation

Abstract

The accurate representation of precipitation (P) is a recurring issue in climate models. El

Niño-Southern Oscillation (ENSO) P teleconnections provide a test bed for comparison of modeled

to observed P. The simulation quality for the atmospheric component of models in the Coupled

Model Intercomparison Project phase 5 (CMIP5) is assessed here, using the ensemble of runs

driven by observed sea surface temperatures (SSTs). Simulated seasonal P teleconnection patterns

are compared to observations during 1979–2005 and to the ensemble of CMIP phase 3 (CMIP3).

Within regions of strong observed teleconnections (equatorial South America, the western equato-

rial Pacific, and a southern section of North America), there is little improvement in the CMIP5

ensemble relative to CMIP3 in amplitude and correlation metrics of P. Teleconnection patterns

within each region exhibit substantial departures from observations, with correlation coefficients

typically less than 0.5. However, the atmospheric models do considerably better in other measures.

First, the amplitude of the P response (root-mean-square error over each region) is well estimated

by the mean of the amplitudes from the individual models. This is in contrast with the amplitude

of the multi-model ensemble mean, which is systematically smaller (by about 30–40%) in the se-

lected teleconnection regions. Second, high intermodel agreement on teleconnection sign provides

a good predictor for high model agreement with observed teleconnections. The ability of the model

ensemble to yield amplitude and sign measures that agree with the observed signal for ENSO P

teleconnections lends supporting evidence for the use of corresponding measures in global warming
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projections.

2.1 Introduction

El Niño-Southern Oscillation (ENSO) is a leading mode of interannual climate variability

originating in the tropical Pacific. ENSO teleconnections are a reflection of the strong coupling

between the tropical ocean and global atmosphere, and SST anomalies in the equatorial Pacific

can have substantial remote effects on climate (Horel and Wallace, 1981; Ropelewski and Halpert,

1987; Trenberth et al., 1998; Wallace et al., 1998; Dai and Wigley, 2000).

In recent decades, measurable progress has been made in simulating ENSO dynamics and

associated teleconnections within ocean-atmosphere coupled general circulation models (GCMs)

(Neelin et al., 1992; Delecluse et al., 1998; Davey et al., 2002; Latif et al., 2001; DeWeaver and

Nigam, 2004; AchutaRao and Sperber, 2006; Randall et al., 2007). A number of studies use the

fully coupled GCMs to assess twentieth-century ENSO variability and teleconnections against ob-

servations (Doherty and Hulme, 2002; Capotondi et al., 2006; Joseph and Nigam, 2006; Cai et al.,

2009). Others examine the evolution of ENSO and these teleconnections under climate change (Do-

herty and Hulme, 2002; Van Oldenborgh et al., 2005; Merryfield, 2006; Meehl et al., 2007; Coelho

and Goddard, 2009). Problems persist in the ability of the models to accurately represent the

tropical Pacific mean state, annual cycle, and ENSO’s natural variability (Guilyardi et al., 2009b;

Cai et al., 2012). Additional uncertainties remain in the role of the atmospheric components of

coupled GCMs in setting the dynamics of ENSO and its teleconnections (Guilyardi et al., 2004,

2009a; Lloyd et al., 2009; Sun et al., 2009; Weare, 2013), as well as how ENSO will behave under

climate change (Collins et al., 2010).

The P response to interannual climate variations like ENSO also continues to be a challenge

for coupled GCMs (Dai, 2006). In the tropics, equatorial wave dynamics spread tropospheric

temperature anomalies, which induce feedbacks within convection zones in surrounding regions

(e.g., Chiang and Sobel, 2002; Su et al., 2003). At midlatitudes, wind anomalies generated by

Rossby wave trains interact with storm tracks to create P anomalies (Held et al., 1989; Chen and

van den Dool, 1997; Straus and Shukla, 1997). These moist teleconnection processes share physical

mechanisms with feedbacks active in climate change (e.g., Neelin et al., 2003). Examination of
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ENSO P teleconnections can therefore contribute to assessing the accuracy of models for these

pathways, but note that this is distinct from the discussion in the literature that the tropical

Pacific may experience “El Niño-like” climate change.

One difficulty with assessing teleconnections from coupled models is that errors in the ENSO

dynamics (e.g., in amplitude or distribution of the main SST anomaly in the equatorial Pacific)

degrade the quality of the simulation at the source region before the teleconnection mechanisms

even begin (Joseph and Nigam, 2006; Coelho and Goddard, 2009). To isolate the atmospheric

portion of the teleconnection pathway, it is useful to employ atmospheric component simulations

forced by observed SSTs, referred to as Atmospheric Model Intercomparison Project (AMIP or

atmosphere-only) runs (Gates et al., 1999). In coupled model runs, errors in position or amplitude

of the main equatorial ENSO SST signal can have a substantial impact on the teleconnections (Cai

et al., 2009), and it is quite challenging for the models to accurately simulate regional signals in P,

even when observed SSTs are specified.

A few studies use atmosphere-only runs to examine ENSO teleconnections. Risbey et al.

(2011) do so for teleconnections over Australia, noting errors in the modeled amplitude and pattern

coherence. Spencer and Slingo (2003) find that issues in the sensitivity of P to tropical Pacific SSTs

lead to errors in the Aleutian low despite otherwise accurate tropical ENSO teleconnections. Cash

et al. (2005) compare two uncoupled atmospheric GCMs forced with identically prescribed SSTs,

finding noticeable variations between the two models in the response of extratropical 500 hPa height

and regional P. They force these models with climatological SST fields and SSTs representative of a

response to a CO2 doubling experiment and find that P difference patterns between the two models

are similar for either case, implying that the differences between the atmospheric components of

GCMs are “relatively insensitive” to the prescribed SST fields.

Because challenges persist in correctly simulating a P teleconnection response (e.g., Rowell,

2013), analysis of the CMIP phase 5 (CMIP5) atmosphere-only ensemble can provide a way to

gauge the fidelity of the current generation of models in simulating large-scale atmospheric pro-

cesses leading to rainfall. In particular, we evaluate December-January-February (DJF) ENSO P

teleconnections during 1979–2005 in the CMIP5 atmosphere-only models, and we compare these to

observations and to the earlier CMIP phase 3 (CMIP3) atmosphere-only ensemble.
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In standard evaluation measures of teleconnection patterns and amplitude, substantial dif-

ferences exist among models and when compared to the observations. In light of such differences,

we turn to other measures in which the multi-model ensemble (MME) may contain useful infor-

mation. These include amplitude measures, a comparison of individual models to the ensemble

mean, and measures of sign agreement. In these alternative measures, the CMIP5 model ensemble

does unexpectedly well compared to observations. The performance on sign agreement measures is

decent enough to motivate questions regarding the optimal way to apply significance tests within

multi-model ensembles. We provide some explanation in the discussion section, noting that even

though a full answer may not yet exist, such alternative measures are relevant to the evaluation of

P change in global warming.

2.2 Datasets and analysis

2.2.1 Data

To produce ENSO P teleconnection patterns, we use modeled and observed monthly mean

SST and P data during the DJF months for the years 1979–2005. For SST observations, we use

the Extended Reconstructed Sea Surface Temperature (ERSST) version 3 data set (Xue et al.,

2003; Smith et al., 2008). For monthly P observations, we employ the Climate Prediction Center

(CPC) Merged Analysis of Precipitation (CMAP) archive (Xie and Arkin, 1997). For modeled

teleconnections, we have downloaded monthly atmosphere-only P and surface temperature (TS)

data from the CMIP3 and CMIP5 archives, as detailed in Table 2.1 (for more information on

atmosphere-only runs, see Gates et al., 1999, and references therein). All modeled P data are

regridded to a 2.5◦×2.5◦ grid via bilinear interpolation prior to calculating teleconnection patterns.

This is the native grid of the CMAP P data set and facilitates direct comparison of modeled

teleconnections to the observations.

2.2.2 Analysis

Linear regression and Spearman’s rank correlation are used to calculate DJF P teleconnec-

tions for the selected time period. Linear regression is widely used for assessing the relationship

13



Table 2.1: CMIP5 and CMIP3 modeling centers and models used, and the number of atmosphere-only
runs available at the time of analysis.

CMIP5
atmosphere-
only

runs CMIP3
atmosphere-
only

runs Modeling center or group

BCC-CSM1.1 3 — — Beijing Climate Center, China Meteorological
Administration (BCC), Beijing, China

CanAM4 4 — — Canadian Centre for Climate Modeling and Analysis
(CCCMA), Québec, Canada

CCSM4 1 CCSM3 1 National Center for Atmospheric Research (NCAR),
Boulder, Colorado, USA

CNRM-CM5 1 CNRM-CM3 1 Centre National de Recherches Météorologiques (CNRM),
Toulouse, France

CSIRO-Mk3.6.0 1 — — Commonwealth Scientific and Industrial Research
Organization (CSIRO) in collaboration with Queensland
Climate Change Centre of Excellence, Victoria, Australia

FGOALS-s2 3 FGOALS-g1.0 3 State Key Laboratory of Numerical Modelling for
Atmospheric Sciences and Geophysical Fluid Dynamics
(LASG), Institute of Atmospheric Physics, Chinese Academy
of Sciences (CESS), Beijing, China

GFDL-HiRAM-
C180

3 GFDL-CM2.1 1 NOAA Geophysical Fluid Dynamics Laboratory (NOAA
GFDL), Princeton, New Jersey, USA

GISS-E2-R 5 GISS-E-R 4 NASA Goddard Institute for Space Studies (NASA GISS),
New York, New York, USA

HadGEM2-A 5 UKMO-
HadGEM1

1 UK Met Office (UKMO) Hadley Centre, Exeter, United
Kingdom

INMCM4.0 1 INMCM3.0 1 Institute for Numerical Mathematics (INM), Moscow, Russia
IPSL-CM5A-LR 5 IPSL-CM4 5 L’Institut Pierre-Simon Laplace (IPSL), Paris, France
MIROC5 2 MIROC3.2(hires) 1 Atmosphere and Ocean Research Institute (The University

of Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), Tokyo, Japan

MPI-ESM-LR 3 MPI-ECHAM5 3 Max Planck Institute (MPI) for Meteorology, Hamburg,
Germany

MRI-CGCM3 3 MRI-
CGCM2.3.2

1 Meteorological Research Institute (MRI), Tokyo, Japan

NorESM1-M 3 — — Norwegian Climate Centre (NCC), Bergen, Norway

between global P and tropical Pacific SSTs, where P at a grid point is regressed against a spatially

averaged SST time series. Here we use the Niño-3.4 index, defined from 5◦S–5◦N and 190◦–240◦E;

for information on El Niño indices, see Trenberth (1997). One caveat is that linear regression

assumes the P data follow a Gaussian distribution, whereas in reality they are zero-bounded and

exhibit non-Gaussian behavior. Spearman’s rank correlation—in which the rank of the data is used

to compute the correlation coefficient (Wilks, 2011)—does not make such assumptions, and it is

used here to provide a check on the sensitivity of teleconnection patterns to the statistical methods

employed. For examples of other studies that use rank correlation, see Whitaker and Weickmann

(2001) or Münnich and Neelin (2005).

Appropriate t tests are used in both the linear and rank methods to resolve grid points that

meet or pass certain confidence levels (von Storch and Zwiers, 1999). The majority of this paper

will focus on a t test applied to teleconnections resolved via linear regression. This test is based on
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calculating a two-tailed p value where the null hypothesis is a linear regression slope of zero. Note

that our use of the Niño-3.4 index yields standard teleconnection patterns, which provide a good

basis for comparison of models to observations. We recognize, however, that there is interesting

work addressing the next level of distinction among different “flavors” of ENSO and the remote

impacts of SST anomalies that have a central (rather than eastern) Pacific signature (Ashok et al.,

2007; Kao and Yu, 2009; Trenberth and Smith, 2009).

2.3 Evaluating modeled patterns and amplitudes of P teleconnections

2.3.1 Teleconnection patterns resolved via linear regression and rank
correlation

Figures 2.1 and 2.2 show observed and modeled P teleconnections for the DJF season

as estimated by linear regression and Spearman’s rank correlation, respectively. We show both

methods to check that teleconnected rainfall patterns are robust against the statistical assumptions

going into the calculation (ENSO composites, not shown, yield similar results). Spearman’s rank

correlation is insensitive to extreme values and so can bring regions with different variance onto

a common footing. This statistical method also offers a significance test that does not assume

Gaussian statistics. Linear regression, by contrast, is easier to interpret in terms of a change

of the physical variables, which in this case is P rate per degree change of SST in the Niño-

3.4 region. Beyond this, comparing modeled to observed teleconnections raises some interesting

questions about the restrictions of the statistical significance tests. The most pertinent question to

arise is how best to use the collective information offered by a multi-model ensemble. Substantial

intermodel variations also occur, and they are discussed in Subsections 2.3.2–2.3.4. Other aspects

of the restrictive nature of these significance tests will be discussed in Section 2.4.

Figures 2.1b and 2.2b show teleconnection patterns obtained from the model ensemble.

Note that there are several ways to obtain a regression representative of all data contained in the

15-model ensemble. The option we choose provides a straightforward test of statistical significance.

Specifically, we perform the regression over all 15 models simultaneously; a straightforward way to

interpret (and program) this is as a concatenated time series of the 15 available models, and so
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Figure 2.1: DJF P teleconnections for the years 1979–2005, as diagnosed through a linear regression
analysis of P against the Niño-3.4 index (mm day−1 ◦C−1). (a) Observed teleconnections. (b) Concatenated
multi-model ensemble (CMME) teleconnections for the CMIP5 atmosphere-only 15-model ensemble. (c) As
in (a), but with a two-tailed t test applied to the regression values and shaded at 95% confidence (black
outline) and 90% confidence (lighter shading). (d) As in (b), but shaded only where a t test yields grid
points significant at or above the 95% level.
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Figure 2.2: As in Fig. 2.1, but for Spearman’s rank correlation analysis between grid point P and the
Niño-3.4 index. Note here that the color bar is unitless and corresponds to the Spearman’s rank correlation
coefficient, with a minimum of +1.0 and a maximum of −1.0. (a),(b) The teleconnection patterns from the
rank correlation applied to the observations and the CMME, respectively. (c) As in (a), but shaded only
where grid points pass the 95% confidence level (black outline) and the 90% confidence level (lighter shading)
of a statistical significance test for the rank correlation analysis. (d) The CMME teleconnections shaded for
grid points that pass at the 95% significance level in the rank correlation analysis.
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we will refer to this as the concatenated multi-model ensemble (CMME), when it is necessary to

distinguish it.

The more classical approach of obtaining a single map of teleconnections for a 15-model

ensemble is to calculate the teleconnections for each member individually and average the 15 pat-

terns together afterward, discussed previously as the ensemble mean. While this is more widely

used, obtaining a test of statistical significance becomes complicated, as one cannot easily take an

average of significance tests across 15 models. Thus in Figs. 2.1 and 1.2, the variant shown is the

first one, although the ensemble mean (not shown) and CMME patterns are nearly identical, with

a global correlation coefficient of r > 0.999. The high correlation between these two methods is to

be expected if the variance in each model is similar and stably estimated. In the remainder of this

paper, we will focus on the ensemble patterns seen in both Figs. 2.1b and 1.1d, and we will refer

to them using ensemble mean and CMME interchangeably.

In Fig. 2.1, we show CMME linear regression DJF teleconnection patterns (Figs. 2.1b,d)

alongside observations (Figs. 2.1a,c). The ensemble pattern in Fig. 2.1b reproduces a number of

observed features. A broad region of reduced P over equatorial South America, stretching out

through the Atlantic intertropical convergence zone (ITCZ), is qualitatively simulated, although

the region of the most intense anomalies is displaced from the observations. The region of increased

P starting off the coast of California and extending through Mexico, the Gulf States, and beyond

Florida into the Atlantic storm track is also qualitatively reflected in the CMME regression. In

the western Pacific, and surrounding the main ENSO region to the north and south, there is a

broad “horseshoe” pattern of reduced P, which the CMME captures reasonably well in terms of

the low-amplitude parts, although the location of the most intense anomalies is off.

Figures 2.1c,d show the same data as Figs. 2.1a,b, but with a two-tailed t test applied to

the regression at each grid point. One can see in Fig. 2.1d that the CMME regression passes a

95% confidence level criterion over fairly broad areas in each major teleconnection region, thanks

to the large amount of information available in the 15-model ensemble. Each of the areas discussed

above passes this significance test, as do some smaller regions, such as southeastern Africa. Figure

2.1c displays observed teleconnections masked to show only grid points that pass the 90% and 95%

confidence levels, indicating a relatively limited area over which the grid point-based regressions
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meet these confidence criteria. Specifically, linear regressions in Fig. 2.1 produce statistically sig-

nificant teleconnections at 36.8% of grid points across the globe in the CMME. The average of the

individual 15 models is 17.6% of grid points, while that of the observations is 16.1%. Thus the

local significance tests for individual models, not shown, are qualitatively similar to the extent of

the observations in Fig. 2.1c.

Given that the CMME yields a statistically significant prediction for the sign of the signal

over the main teleconnection regions, a one-tailed t test (on the side predicted by the CMME)

could be used on the observations (and note that the 90% confidence level of a two-tailed test

would correspond to the 95% confidence level of a one-tailed test). However, when loosening the

confidence restriction from 95% to 90% for observed teleconnections, we only see a small increase

in the extent of regions that pass the significance test. In comparing Figs. 2.1c and 2.1d, one can

see that the CMME is significant at 95% confidence over a broader area than the observations.

Figure 2.2 displays the same information as in Fig. 2.1, but for Spearman’s rank correlation

applied to the CMME and observations. The teleconnection patterns that result using either the

linear or rank method are similar overall, implying that ENSO P teleconnections are robust despite

assumptions made about the distribution of rainfall events a priori. Differences may be noted

between the two methods in particular regions, such as the rank correlation deemphasizing the

narrow band along the equator in South America in the CMME (Fig. 2.2b) relative to the linear

regression (Fig. 2.1b), although not in the observations (Fig. 2.2a). The region passing significance

criteria at the 95% level under the rank correlation of the observations (Fig. 2.2c) is comparable to

that produced for the linear regression of the observations (Fig. 2.1c), and likewise for the CMME.

In the remainder of this chapter, we focus on linear regression teleconnection patterns on account

of the simpler interpretation of the amplitudes.

2.3.2 Regional model disagreement

Another point that can be made with Figs. 2.1 and 2.2 is the large-scale agreement between

teleconnected P patterns in the CMME and in the observations. For reasons discussed in Section

2.5, this agreement is apparent over broader regions where the CMME passes the t test at 95%

confidence, not just the narrower regions where observations pass this test. However, regional
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disagreement between observations and the CMME pattern is also seen, especially in regions where

the observations have intense P.

In addition, the CMME exhibits a general “smoothing” of teleconnection patterns. These

overly smoothed teleconnection patterns in the CMME can be understood when examining indi-

vidual model patterns. Figure 2.3 shows teleconnections for one run of each model in CMIP5,

displayed for the equatorial Americas; substantial regional variability is easily seen. Qualitatively
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Figure 2.3: DJF P teleconnections shown for (a) the observations and (b)–(p) 1 run from each of 15 available
CMIP5 atmosphere-only models (listed alphabetically by model acronym; see Table 2.1 for expansions of
model names). Teleconnections here are resolved via the linear regression analysis as in Fig. 1, with an
identical color bar that has units of mm day−1 ◦C−1. Patterns are plotted for the equatorial Americas to
highlight regional, intermodel disagreement among the ensemble members.
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similar figures highlighting regional disagreement have been produced in other studies that use

coupled GCMs to examine ENSO teleconnections and P characteristics (e.g., Dai, 2006, his Fig.

9). Difficulties in simulating these teleconnections in coupled GCMs persist in the atmosphere-only

models shown here: variations in the location of the strongest P anomaly in Fig. 2.3 are common

from model to model, even though these are the areas that most easily pass significance criteria

on an individual model basis. Over the region where the CMME regression passes a t test at the

95% level, however, one can see that the overall teleconnection pattern is plausible at large scales

in each of the models. Thus, Fig. 2.3 provides a visual sense of the tradeoffs to be quantified:

disagreement among models at regional scales, excessive smoothing relative to observations in the

CMME, and yet some possibility that there is useful information about the teleconnection patterns

in the 15-model ensemble, if it can be suitably extracted.

2.3.3 Taylor diagram analysis of modeled teleconnections

The regional variation among atmosphere-only models leads to a distinction between their

ability (1) to reproduce patterns of teleconnections and (2) to represent the amplitudes of these

patterns. To examine individual model fidelity in simulating patterns and amplitude of rainfall

teleconnections, we look at four regions that show a robust ENSO response; each region displays

a continuous teleconnection signal significant at the 95% confidence level in observations (see Fig.

2.1c).

These four regions include (a) the equatorial Pacific (the “cold tongue” region; positive

DJF ENSO signal), (b) the horseshoe-shaped region in the western Pacific (negative signal), (c)

equatorial South America (negative signal), and (d) a southern section of North America (positive

signal). The equatorial Pacific region is shown for reference, since this is the source region and is

directly forced by the largest ENSO-related SST anomalies. We consider the other three regions

the “teleconnection regions,” since to accurately simulate teleconnected rainfall in each domain,

the models must capture the pathways leading to remote P change. The Taylor diagrams (Taylor,

2001) in Fig. 2.4 show the correlations between the observations and each model plotted against

the root-mean-square error of each model’s pattern (i.e., the standard deviation σmod) normalized

by observations (σobs); we refer to this measure as the teleconnection amplitude. For models with
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multiple runs, correlations and amplitudes are calculated for each run first and then averaged

among them; each individual model is given equal weight in the ensemble mean. Note we use the

ensemble mean here, and not the CMME, although Taylor diagrams using the latter (not shown)

are nearly identical. Additionally, some of the individual models have small negative correlations

with observations in certain regions. These models are used in calculating the ensemble mean,

although for simplicity the domain of the Taylor diagrams is not extended to display these points.

Figure 2.4 allows easy comparison between CMIP3 and CMIP5 atmosphere-only runs.

There is little (if any) improvement from CMIP3 to CMIP5 in reproducing teleconnected rainfall

patterns in these regions. Additionally, models exhibit generally low correlations with observations

(ranging from less than 0.2 to a few instances exceeding 0.7, with an average correlation coefficient

of about r = 0.40). In every region, one can also see that the ensemble mean is typically more

accurate than the majority of individual models in reproducing patterns. However, the ensemble

mean amplitude is substantially lower than that of the individual ensemble members, and it under-

estimates the observations in every region outside of the central equatorial Pacific. As a final point,

we note that Taylor diagrams of the corresponding rank correlation method (not shown) indicate

consistent results.

2.3.4 Teleconnection amplitude in major impact regions

The varied agreement in amplitude measures from Fig. 2.4 suggests that it may be more

reasonable to use amplitude information from individual ensemble members, rather than using

that of the ensemble mean. To get a better sense of how teleconnection amplitude of individual

models might be affected by internal variability within the models themselves, we take advantage

of atmosphere-only models with multiple realizations, and we assess the internal variability among

these runs for each model. We then compare this to the amplitude range of the 15-model ensemble.

Figure 1.5 displays the radial axis from the Taylor diagrams discussed previously, but where multiple

runs from each model are available, we plot them individually (43 total runs for 15 models in CMIP5;

26 total runs for 13 models in CMIP3; see Table 2.1).

The vertical extent of the black lines in Fig. 2.5, representing ±1 standard deviation of

the amplitudes for the runs of a given model, is a measure of internal variability for that model.
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Figure 2.4: Taylor diagrams for the standardized amplitude and correlation of P teleconnections in four
selected regions, as indicated in the inset of each panel: (a) the equatorial Pacific (central ENSO) region,
(b) the “horseshoe” region in the western equatorial Pacific, (c) an equatorial section of South America, and
(d) a southern section of North America. On the Taylor diagrams, angular axes show correlations between
modeled and observed teleconnections; radial axes show standard deviation (root-mean-square error) of the
teleconnection signals in each area, normalized against that of the observations. Shaded red triangles (15
total) and blue circles (11 total) denote each of the CMIP5 and CMIP3 atmosphere-only models, respectively.
The unshaded red triangle is the CMIP5 ensemble mean; the unshaded blue circle is the CMIP3 ensemble
mean. Note that some models have negative correlations with the observed teleconnections in a few regions;
while we include them in calculating the ensemble mean, we do not plot them individually in the diagrams.

The vertical extent of each green bar is ±1 standard deviation of the ensemble mean amplitude,

and it serves as a measure of intermodel variability. Notable points from this diagram include the

following: (1) The ensemble mean systematically underestimates the spread and central tendency

of intermodel variability, with a low bias of about 20–40% outside of the immediate ENSO region.
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Figure 2.5: Standardized amplitude of P teleconnections in each of the four regions identified in Fig. 2.4.
The calculation for this amplitude is discussed in the caption of Fig. 4 and in the text. CMIP5 models (15
models, 43 runs) are shown on the left; CMIP3 models (13 models, 26 runs) on the right; see Table 2.1 for
models used. Each blue dot represents a separate model run, and where multiple runs are available for a
given model, a blue dot is plotted for each. Black bars represent the spread among the multiple runs for
one model (when available), centered at that model’s average amplitude among the multiple runs (±1σ of
the amplitude measure). The green dots and green bars denote the average teleconnection amplitude and
its spread (±1σ) for the entire ensemble in each region. The red dot is the ensemble mean including all
available models and runs, weighted so that each separate model contributes equally.

(2) The regional disagreement among models owes itself partly to internal model variability, but

intermodel variability contributes to the majority of the regional disagreement seen in Fig. 2.3. (3)

Individual models are overestimating the amplitude in the immediate ENSO region for CMIP5,

even though their spread is more symmetric about the observations in remote regions. (4) When

comparing CMIP5 to CMIP3, CMIP5 shows no consistent improvement or change due to model

development. Although the ensemble mean may fall closer to observed amplitudes in some regions

for CMIP5, this comes at the expense of a tendency for individual models to overestimate P

teleconnections in the central ENSO region.

Figure 2.5 suggests that serious errors can result from considering only information available

in the ensemble mean. While its patterns correlate better with observations than most individual

models, the ensemble mean teleconnection amplitude is routinely too low in the remote regions
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considered. It is therefore useful to consider measures of teleconnection amplitude and spread from

individual models, in addition to the ensemble mean, in situations where regional disagreement can

dampen the ensemble mean amplitudes due to averaging varied model signals.

2.4 Sign agreement plots in ENSO teleconnections, and an argument for
agreement plots of P change in global warming scenarios

Agreement plots for the sign of P change under global warming scenarios are commonly

used in multi-model studies (e.g., Randall et al., 2007; Meehl et al., 2007), often as complementary

information to the ensemble mean. Agreement-on-sign tests can be viewed as relatively weak

statements regarding the P change at individual grid points for the model ensemble, and it has

been argued that sign agreement should be used in conjunction with requirements on individual

models that grid points pass statistical significance tests for change in mean P (e.g., Neelin et al.

(2006), hereafter N06; Tebaldi et al. (2011), hereafter T11).

Here we examine agreement-on-sign measures based on the ENSO P regression patterns

for each model. Because we can assess these against observations, we can use this to examine the

procedure as a means of inferring its usefulness. If a procedure that identifies high model agreement

at a grid point also correctly predicts the sign of the observations at that grid point, it can help

build confidence in using corresponding procedures for the global warming case.

Figure 2.6a shows the traditional agreement-on-sign plot for ENSO teleconnections in the

CMIP5 atmosphere-only ensemble. At each grid point, we count the number of models that agree

on a positive or negative DJF teleconnection signal for the linear regression over Niño-3.4, so that

the plot shows the integer value of models that agree on a wet or dry response during ENSO.

The sign of the regression slope at each grid point is equivalent to the sign of the expected DJF

P response during an El Niño event. Areas with 12 or more models agreeing on sign are shaded

based on a binomial test. Specifically, if we consider the null hypothesis that the value of an ENSO

P signal for a given point is equally likely to be positive or negative (i.e., drawn from a binomial

distribution with a probability of p > 0.5), then when 12 or more models agree on sign, the null

hypothesis for this 50–50 probability can be rejected at a confidence level greater than 98% (for 15

models, a sign agreement of 12 or more corresponds to a confidence level of about 98.6%, and 11
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(a) Agreement on ENSO teleconnections

(b) Neelin et al. 2006 (N06) criteria and sign prediction assessment

(c) Tebaldi et al. 2011 (T11) criteria and sign prediction assessment
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Figure 2.6: (a) Agreement on a positive teleconnection signal (linear regression) within the 15-model
ensemble. Blue (red) colors represent high agreement on a positive (negative) P response during ENSO
events. Note that in an ensemble of 15 models, an agreement count of 12 implies that 80% of models agree
on the sign of the P teleconnection at that grid point, which is the area passing a binomial test at 98%
confidence level (discussed in text). (b) Neelin et al. (2006), or N06, significance criteria (cross-hatching)
overlaid on the sign prediction of the 15-model ensemble (colored shading). (c) Tebaldi et al. (2011), or T11,
significance criteria (cross-hatching) overlaid on the sign prediction of the ensemble, as in (b). Details of the
N06 and T11 cross-hatching criteria and sign prediction shading are outlined in the text. The cross-hatching
is shown as an overlay in (b) and (c) to highlight the restrictive nature of the N06 and T11 criteria relative
to the more extensive coverage over which the 15-model ensemble passes the binomial test at the 98% level
and exhibits an accurate prediction of the observed teleconnection signals.
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or more corresponds to 95.8%; both yield fairly similar patterns, so we use the more conservative

12).

The grid points with high sign agreement that pass the binomial test at the 98% level in

Fig. 2.6a cover a region similar to the areas passing the two-tailed t test applied to the CMME

(Fig. 2.1d) at the 95% level. However, the areas of high sign agreement cover a much larger region

than those passing the t test at the 95% level for individual model realizations, which are similar to

the areas passing the t test at this level for observations (see Fig. 2.1c and the discussion in Section

2.3.1).

This last point suggests two comparisons. First, we can contrast regions of high sign agree-

ment identified by the binomial test with examples of criteria that have been considered in the

global warming literature that combine t tests on individual models with sign agreement criteria

from the ensemble. Second, in this ENSO teleconnection test bed, we can evaluate the model

ensemble’s sign prediction against observations. These results are displayed in Figs. 2.6b and 2.6c.

These panels display hatching according to the N06 or T11 criteria, respectively, overlaid on a plot

that assesses the prediction of the model ensemble for the sign of the teleconnection signal; details

of these criteria are outlined below.

To produce the cross-hatching in Fig. 2.6b, we follow the N06 procedure: 1) at each grid

point, count the number of models in the ensemble that have a slope significantly different from

zero at the 95% confidence interval, and 2) cross-hatch grid points where greater than 50% of

models are significant and also agree on the sign of the P teleconnection. The N06 criteria impose

a requirement that at least half of models both be significant and agree on sign.

To produce the cross-hatching in Fig. 2.6c, we follow the T11 procedure: 1) at each grid

point, count the number of models with a teleconnection significant at the 95% confidence interval

(as in N06); 2) for grid points where more than 50% of models show a significant rainfall response,

cross-hatch if 80% or more of significant models agree on the sign of the response; and 3) if fewer

than 50% of models agree on the sign, shade the grid point black.

The underlying color shading in Figs. 2.6b and 2.6c is identical and evaluates the sign

prediction of the atmosphere-only CMME for the teleconnection signal, produced in the following

way: (1) Take the regions of high sign agreement passing the binomial test at the 98% significance
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level in Fig. 6a as a prediction of the sign of the observed teleconnection pattern and compare that

to the observations at the same grid point. (2) If the observations and the model prediction agree on

sign, shade blue for a positive or red for a negative ENSO P signal, representing a correct prediction

by the intermodel agreement plot (Fig. 2.6a). (3) If the observations and Fig. 2.6a disagree on the

sign, shade the grid point purple to indicate an erroneous prediction. (4) If the agreement on sign

does not pass the binomial test criterion of Fig. 2.6a, no prediction is made and the grid point is

left unshaded.

When examining Figs. 2.6b and 2.6c, the most important point is that the model ensemble

prediction of sign does very well when assessed against observations. In major regions for which

model agreement passes the binomial test at 98% confidence, almost the whole area yields the

correct sign. The scattered, incorrect grid points tend to be either isolated or at the edges of

correct regions, such that a scientific assessment of likely areas of increase or decrease based on the

predicted areas (color shading in Figs. 2.6a and 2.6b) would be highly accurate. Potential physical

mechanisms for the success of the sign prediction are discussed in the next section.

Another obvious point in Figs. 2.6b and 2.6c is the similarity between the N06 and T11

approaches. In practice, the T11 test employed here is equivalent to the N06 test defined at a 40%

threshold (80% × 50% = 40%). The one difference is that T11 further specify those grid points

where more than 50% of models are significant but fewer than 80% agree on sign, which they

classify as “no prediction.” This last T11 criterion may be useful in evaluating P change under

global warming, where at a given grid point, statistical significance of the P change for individual

models does not necessarily mean they will agree on sign. In comparing the N06 and T11 procedures

to the regions over which the models correctly predict sign of the observations, it is immediately

apparent that the N06 and T11 tests are highly conservative. Although they do remove the modest

fraction of points for which the sign would have been incorrectly predicted based on high agreement

(passing the binomial test at the 98% level), they do so at the cost of excluding substantial regions

that are correctly predicted. This is evident in Figs. 2.6b and 2.6c, where the hatched areas are

restricted in extent relative to the broader shaded regions.

To show the sign agreement of the model ensemble with observations in more detail, we

display in Fig. 2.7a the number of individual ensemble members that agree on sign with observations
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Figure 2.7: (a) Sign agreement of P teleconnections between each of 15 CMIP5 atmosphere-only models and
the observations. (b) Sign agreement of P teleconnections between the CMIP5 atmosphere-only models and
the ensemble mean, calculated using one run from each model. For (b), each model is individually removed
from the ensemble mean before determining its sign agreement. Both (a) and (b) use Niño-3.4 teleconnection
patterns diagnosed via linear regression. Red areas denote models that agree with the observations or
ensemble mean on a negative P signal during ENSO events; blue areas imply agreement on a positive P
signal.

for ENSO teleconnections. The same criterion for displaying high model agreement (12 or more

models) is used as in Fig. 2.6a. Within this region, it may be seen that there are large portions in

which the number of models agreeing on sign with observations is even higher, including substantial

areas where 100% of models agree with the sign of the observations. To obtain a counterpart of

this plot from the model ensemble, Fig. 2.7b shows the number of models agreeing with the sign

of the ensemble mean. Note that in producing this, we exclude each model’s contribution to the

ensemble mean when determining agreement, so as to avoid inflating the count. The similarities

between Figs. 2.7a and 2.7b indicate that high sign agreement with the ensemble mean can serve

as a predictor for sign agreement with the observations.
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2.5 Discussion

As discussed in the previous section, Figs. 2.6 and 2.7 suggest that there are substantial

regions where models from the CMIP5 atmosphere-only ensemble are providing useful information

on the sign of rainfall teleconnections, despite individual models and the observations failing to meet

t test criteria at the 95% level in parts of these regions. We argue below that this is a combined

consequence of the larger size of the model ensemble relative to individual runs, the nature of the

quantity being tested (the sign), and the models’ skill in predicting the observed sign.

Before addressing this, we consider the possibility that the broader region of skill at sign

prediction in the ensemble (relative to individual model runs) could simply be an issue with ap-

plicability of the t test due to the inherent non-Gaussianity of the rainfall distribution, even at

seasonal time scales. This was addressed in Fig. 2.2 by repeating the teleconnection calculations

using Spearman’s rank correlation, which makes no assumptions of Gaussianity for the grid point

rainfall distributions, and an accompanying statistical significance test. This yields results similar

to those of the linear regression t test.

We now consider an explanation based on the fact that the sign agreement both uses

information from the full model ensemble and tests a different hypothesis than difference from

zero. Because the collective 15-model ensemble contains a much larger set of realizations of internal

variability, it is natural that regions of smaller signal should pass a given significance criteria in

measures that use all 15 models. This is evident in comparing Fig. 2.6a to Fig. 2.1d, where areas

of high sign agreement (passing the binomial test at the 98% level) tend to coincide with areas

that pass a t test on the CMME at 95% confidence. In both cases the broad regions of statistical

significance come from using all 15 models.

Taking this into account, we consider the question of why the models agree so well with the

observations on the sign of the teleconnection patterns, despite doing poorly at detailed distribution.

There are two aspects to this question: one statistical, and the other physical. The statistical aspect

is that where the models exhibit sign agreement of 80%, the best estimate of the parameter P in

the binomial distribution is 0.8. While it is beyond the scope of the paper to establish Bayesian

posterior probability density functions or other measures of margin of error on the inferred P, the

point needed to interpret the results here is straightforward: if the models are sufficiently good
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representations of observations such that the observed signal can be considered to be drawn from

a binomial distribution with a similar value of P at each point, then one would expect the high

level of agreement seen. Thus, the 15-model ensemble shows success at predicting the sign of the

observations in broader regions than those where teleconnection signals pass t tests applied to

individual models or observations. If we consider the fact that these broader regions are those that

pass the 98% confidence level of the binomial test, this success of the ensemble at sign prediction

is completely consistent with expectations and with the statement that the models are doing well

at simulating the observed sign.

The ability of models to provide information beyond what a particular significance test

may suggest is not a new concept in modeled P studies. Risbey et al. (2011) resolve significant

teleconnections in an atmosphere-only model using a 30-yr record and a two-tailed t test. The

authors note that the number of grid points passing a 95% significance criterion is much fewer than

the same method applied to a century of historical data. As a result, they loosen their restriction

to an 80% confidence interval, noting that the associated teleconnection patterns are similar for

records of either length. Power et al. (2011) evaluate projected P changes from the coupled CMIP3

model ensemble, and they demonstrate using the binomial distribution that model consensus on

the sign of end-of-century rainfall anomalies is itself a strong argument for confidence in ensemble

agreement patterns.

That the ensemble does, in fact, get broad areas of small-amplitude change correct in our

teleconnection analysis adds to the discussion in the literature that projected change is worth

assessing even in regions that do not meet t test criteria applied to individual runs (Tebaldi et al.,

2011; Power et al., 2011) if these regions do meet significance tests applied to the ensemble. This is

particularly relevant in global warming studies, where a modest regional P anomaly in a ensemble

mean implies substantial changes in regional P budgets.

An important physical question that arises from the present teleconnection results is this:

Why does the 15-model ensemble perform better at predicting the sign of the observed signal

(including in broad areas of modest P amplitude response) and at yielding the amplitude of the

observed response than the individual models do at reproducing detailed patterns of observed

teleconnections? The unimpressive correlations (Fig. 2.4) are affected by poor individual model skill
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in positioning high-amplitude signals. We suggest that this may be associated with the multiple

physical processes operating in ENSO teleconnections. Specifically, there are atmospheric processes

at work that will have smaller intermodel uncertainty and smaller internal variability but are

widespread lly. An example of these processes is an increase in tropospheric temperature driving

changes in radiative fluxes, as well as driving an increase in water vapor and a corresponding increase

in the threshold for convection (the thermodynamic process sometimes referred to as the “rich-get-

richer” mechanism; Chou and Neelin (2004); Held and Soden (2006); Trenberth (2011)). At the

same time, feedbacks associated with dynamical changes in moisture convergence can produce

large excursions from expected values of P, both in intermodel and temporal variability. The

models contain reasonable approximations to each of these processes, but the location of strong P

changes can be highly sensitive to factors such as model convective parameterizations, including

the threshold for convective onset (Kanamitsu et al., 2002; Neelin et al., 2010).

2.6 Summary and conclusions

Atmosphere-only runs from the CMIP3 and CMIP5 ensembles provide one standard by

which we can judge the ability of the atmospheric components of GCMs to reproduce dynamical

feedback processes that lead to remote seasonal P anomalies. We focus on standard teleconnection

patterns associated with the ENSO Niño-3.4 index. Comparisons among the ensemble of models

and with the observations are made using P teleconnection patterns for the DJF for the years

1979–2005. The patterns and amplitudes of these teleconnections are analyzed in several regions

with robust ENSO feedbacks, including the eastern tropical Pacific, the horseshoe region in the

western tropical Pacific, a southern section of North America, and equatorial South America.

Teleconnection patterns are examined using three methods: linear regression, Spearman’s

rank correlation, and compositing techniques (not shown), all with similar results. The rank cor-

relation method provides an alternative significance test, which is useful in narrowing some of the

questions that arise for regions of low-amplitude signal. Teleconnection patterns defined with linear

regression are useful for questions that involve the amplitude of the signal; as such, we focus on

results from the linear regression.

How well the models perform at reproducing the observed teleconnection patterns (ampli-
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tudes and patterns) depends strongly on the quantity for which they are assessed. In standard mea-

sures of correlation, taken over the regions outlined above, the CMIP3 and CMIP5 atmosphere-only

models exhibit strong regional disagreement with one another and with observations. Comparing

patterns visually, this is associated with regions of strong P change varying substantially from

model to model and with respect to observations, yielding low correlations between modeled and

observed teleconnection patterns (average correlation coefficients on the order of r = 0.40 in the

defined regions).

The ensemble mean performs marginally better than most individual models in correla-

tion measures, largely because the regions of strongest and varying change have been smoothed.

However, the ensemble mean systematically underestimates amplitude measures of the regional

P response by 30%–40%, typically falling more than one standard deviation below the central

tendency of the 15-model ensemble. This underestimation is again associated with regional dis-

agreement among ensemble members, a well-documented artifact in P studies of GCM ensembles

(e.g., N06, Räisänen, 2007; Knutti et al., 2010; Neelin et al., 2010; Schaller et al., 2011). The aver-

age of individual CMIP5 atmosphere-only amplitudes, by contrast, is an accurate predictor for the

observations in all regions but the central ENSO region, where models overestimate the P response.

Sizeable internal variability of P teleconnections is also shown to exist within each model, although

it does not dominate the intermodel spread.

One thing underlined by the low correlations in individual models is that even in atmosphere-

only experiments, where only the atmospheric components of GCMs are being compared, simula-

tion of ENSO teleconnections is fairly challenging for the models. While coupled models will have

additional feedbacks, the atmosphere-only experiments provide a first line of assessment. Further-

more, because we can compare atmosphere-only simulations to observations, we can assess how the

model simulations fare under other metrics commonly used in assessment of ensemble patterns and

intermodel agreement.

Sign agreement measures for a P response in model ensembles are often used for assessing

global warming P changes. Examining sign agreement for the teleconnection patterns, the model

ensemble has broad regions with high consensus on sign, passing a binomial test (to reject the null

hypothesis of 50–50 probability of either sign) at the 98% level. These regions are more spatially
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extensive than the regions for which individual models (or observations) would pass a two-tailed t

test at the 95% (or 90%) level. Furthermore, the regions passing the binomial test correspond well

to the set of points passing a t test (at the 95% level) applied to the 15-model ensemble. Thus the

larger region with high agreement on sign, relative to regions passing criteria (e.g., N06 or T11)

that make use of t tests on individual models, is primarily the result of the sign agreement test

making use of the 15-model ensemble.

For these teleconnection patterns, the sign prediction can be tested against observations.

The models exhibit high sign agreement with observations over similarly broad regions, implying

that high sign agreement within the model ensemble (grid points passing the binomial test at the

98% level) is a good predictor for sign agreement with observations. One can infer from this that

the model ensemble is producing useful information regarding the teleconnected P signal in regions

that do not pass a t test at the 95% level for individual models, provided they pass a significance

test that makes use of information from the full ensemble.

The evaluation of the model simulations for ENSO teleconnections may be used, with due

caution, to draw inferences for assessment of P in global warming projections. Many of the physical

processes leading to rainfall teleconnections are analogous to the global warming case. In particular,

widespread tropospheric warming initiates tropical dynamics that cause similar global P change

in both teleconnections and global warming. In both cases, one can trace localized P anomalies

with high amplitude and sizeable intermodel spread back to tropical regions of strong convergence

feedbacks and regions where large-scale wave dynamics interact with midlatitude storm tracks.

The unimpressive skill of models at capturing the precise regional distribution of large-

amplitude rainfall teleconnections compared to observations is consistent with poor intermodel

agreement on a precise pattern of P change in global warming. However, the skill of individual

models at reproducing the observed teleconnection signal amplitude (assessed from the mean of

the individual model amplitudes, not the ensemble mean) suggests that corresponding measures

for global warming P change may be trustworthy. Furthermore, sign agreement plots for the

atmosphere-only ensemble prove skillful at predicting the sign of observed teleconnections. While

agreement plots for end-of-century P change obviously have different patterns than the signals

considered here, the fact that sign agreement plots are skillful at predicting spatially extensive
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ENSO remote P impacts—which are challenging simulation targets that share physical pathways

with global warming P signals—provides a supporting argument in favor of using sign agreement

plots in global warming studies to make predictions of change from an ensemble of models.
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Chapter 3

Patterns of precipitation change and climatological uncertainty
among CMIP5 models, with a focus on the midlatitude Pacific
storm track

Abstract

Projections of modeled precipitation (P) change in global warming scenarios demonstrate

marked intermodel disagreement at regional scales. Empirical orthogonal functions (EOFs) and

maximum covariance analysis (MCA) are used to diagnose patterns of disagreement in the simulated

climatology and end-of-century P changes in the Coupled Model Intercomparison Project phase 5

(CMIP5) archive. The term “principal uncertainty pattern” (PUP) is used for any robust mode

calculated when applying these techniques to a multi-model ensemble. For selected domains in

the tropics, leading PUPs highlight features at the margins of convection zones and in the Pacific

cold tongue. The midlatitude Pacific storm track is emphasized given its relevance to wintertime P

projections over western North America. The first storm track PUP identifies a sensitive region of

disagreement in P increases over the eastern midlatitude Pacific where the storm track terminates,

related to uncertainty in an eastward extension of the climatological jet. The second PUP portrays

uncertainty in a zonally asymmetric meridional shift of storm track P, related to uncertainty in

the extent of a poleward jet shift in the western Pacific. Both modes appear to arise primarily

from intermodel differences in the response to radiative forcing, distinct from sampling of internal

variability. The leading storm track PUPs for P and zonal wind change exhibit similarities to

the leading uncertainty patterns for the historical climatology, indicating important and parallel

sensitivities in the eastern Pacific storm track terminus region. However, expansion coefficients for

climatological uncertainties tend to be weakly correlated with those for end-of-century change.
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3.1 Introduction

Accurate prediction of end-of-century P change as a result of global warming is critical to

the assessment of future changes in the hydrological cycle, especially at regional scales relevant to

water resource management and decision-making. Global climate models (GCMs) run as part of the

Coupled Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5; Meehl et al., 2007;

Taylor et al., 2012) exhibit robust agreement over large-scale changes related to thermodynamic

arguments that regions of climatological moisture convergence will get wetter (the tropics and mid-

to-high latitudes), while regions of climatological moisture divergence will get drier (the subtropics).

This concept was first noted by Manabe and Stouffer (1980) and Manabe and Wetherald (1980) and

is now referred to as the wet-get-wetter or rich-get-richer mechanism (Chou and Neelin, 2004; Held

and Soden, 2006; Trenberth, 2011). It has been documented extensively in the CMIP archives, and

the patterns it describes can be seen in individual models as well as in the multi-model ensemble

(MME) mean of projected P changes (see Figs. 1a,b). Recent studies have noted that these changes

are detectable in ocean observations (Durack et al., 2012), but their validity can break down at the

regional or grid point level (Chadwick et al., 2012; Roderick et al., 2014), especially for changes over

land (Greve et al., 2014). Alongside these thermodynamic changes are notable dynamic changes

in the atmospheric circulation that ultimately affect P projections, typically framed in terms of a

poleward expansion of subtropical dry zones or the descending branch of the Hadley cell, as well

as a poleward shift, upward expansion, and slight widening of the climatological storm track (Yin,

2005; Lu et al., 2007; Seager and Vecchi, 2010; Scheff and Frierson, 2012b,a; Chang et al., 2012, see

Figs. 1a,b).

Outside of a large-scale or mean meridional framework, however, intermodel agreement on

P changes can diminish greatly. The standard deviation of grid point (local) P changes across

models is one way of quantifying this spread (see Figs. 3.1c,d), and complex P changes occurring

in the tropics or along convective margins can lead to large disagreement in tropical P projections

(Neelin et al., 2003; Chou and Neelin, 2004; Chou et al., 2009), especially over land (e.g., Yin

et al., 2013), even when models agree on bulk measures of tropical change, such as distributions of

P intensity (Lintner et al., 2012). Substantial regional uncertainty also exists in areas with large

internal variability in the P climatology, leading to small signal-to-noise ratios in future projections
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Figure 3.1: (a,b) 36-member ensemble mean end-of-century P changes for the DJF and JJA seasons,
respectively. Anomalies are calculated for the 2070–2100 climatology relative to a 1960–1990 base period.
(c,d) Standard deviation of P anomalies across the 36-model ensemble. (e,f) Agreement on positive P
anomalies for the same models and seasons. In all maps, solid (dashed) lines represent the 1960–1990
(2070–2100) 4 mm day−1 P climatology.

and to noticeable uncertainty and conflicting model changes (Giorgi and Francisco, 2000; Allen and

Ingram, 2002; Neelin et al., 2006; Tebaldi and Knutti, 2007; Hawkins and Sutton, 2011; Tebaldi

et al., 2011; Deser et al., 2012; Mahlstein et al., 2012; Knutti and Sedlácek, 2013; Roderick et al.,

2014). These regions are often located between P increases at mid-to-high latitudes and decreases

in the subtropics, where thermodynamic arguments become less dominant and projections are

susceptible to disagreement in dynamic feedbacks at regional scales (Chou et al., 2009; Seager and

Vecchi, 2010; Shepherd, 2014).

In addition to uncertainty in P projections, models exhibit a range of abilities in simulating

historical P climatology and internal variability in CMIP3 and CMIP5 (Deser et al., 2012; Flato
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et al., 2013). This is especially true for the tropics, where considerable ocean-atmosphere feedbacks,

as well as differences in model parameterization of deep convection, can cause discrepancies in the

P climatology (e.g., Mechoso et al., 1995; Zhang, 2001; Lin, 2007; Brown et al., 2013) and projected

changes (Collins et al., 2011; Brown et al., 2012) among models. GCM biases also exist outside of the

tropics, especially at regional scales where local dynamics come into play (e.g., Kumar et al., 2013;

Langford et al., 2014; Mehran et al., 2014). Finally, only modest (if any) improvement has been

found between CMIP3 and CMIP5 in these biases or in constraining regional model disagreement in

end-of-century changes (Knutti and Sedlácek, 2013; Sheffield et al., 2013a,b; Maloney et al., 2014;

Hirota and Takayabu, 2013).

One region that is particularly sensitive to P change uncertainty is the North American west

coast in the latitude range 30–50◦N. This area lies at the eastern terminus of the Pacific wintertime

storm track and is situated between robust P decreases at lower latitudes and increases at higher

latitudes (Neelin et al., 2013; Berg et al., 2014; Seager et al., 2014). In this region, P exhibits

substantial variability on interannual to interdecadal timescales—especially in the North American

southwest and in southern California (Dettinger et al., 1998)—so that in future projections, signal-

to-noise ratios tend to be small and dynamical changes complex (Seager and Vecchi, 2010; Seager

et al., 2014). Studies have also noted GCM uncertainty in simulating the climatological Pacific

storm track feeding into this region (Delcambre et al., 2013a), as well as widespread disagreement

in end-of-century storm track changes (Yin, 2005; Bengtsson et al., 2006; Ulbrich et al., 2008; Ihara

and Kushnir, 2009; Chang et al., 2012; Chang, 2013; Delcambre et al., 2013b; Grise and Polvani,

2014; Simpson et al., 2014).

In this chapter, we visualize intermodel uncertainty patterns for P projections and cli-

matologies in the CMIP5 ensemble, and we seek coupled or associated patterns of uncertainty

in circulation and temperature fields. We do this by applying empirical mode decomposition

techniques—commonly used in the space-time domain—to the “space-model index” domain. In

the latter half of our analysis, we emphasize the wintertime midlatitude Pacific storm track region,

and in doing so we illustrate the benefits of cross-checking with complementary methods and show

that using several in tandem can strengthen the conclusions drawn for each.
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Table 3.1: Models and affiliated modeling groups used in the analysis. When additional ensemble members
are used for certain models, this is marked in the NE column. When pre-industrial control runs are used to
estimate internal model variability, the number of distinct 30-year intervals are reported in the N30 column.
Asterisks mark the models for which direct atmosphere-only and coupled comparisons were made (25 total).

Coupled models NE N30 Atmosphere-only models Modeling center or group
ACCESS1-0 16 ACCESS1-0* Commonwealth Scientific and Industrial Research

Organization and Bureau of Meteorology, Australia
(CSIRO-BOM)

ACCESS1-3 16 ACCESS1-3*
bcc-csm1-1-m 13 bcc-csm1-1-m* Beijing Climate Center, China Meteorological

Administration, Beijing, China (BCC)
bcc-csm1-1 16 bcc-csm1-1*
BNU-ESM 18 BNU-ESM* College of Global Change and Earth System Science,

Beijing Normal University, Beijing, China (GCESS)
CanESM2 4 33 CanAM4* Canadian Centre for Climate Modelling and Analysis,

Québec, Canada (CCCMA)
CCSM4 5 35 CCSM4* National Center for Atmospheric Research, Boulder,

Colorado, USA (NCAR)
CESM1-BGC 16 —
CESM1-CAM5 10 CESM1-CAM5*
CMCC-CESM 9 — Centro Euro-Mediterraneo per I Cambiamenti Climatici,

Lecce, Italy
CMCC-CM 10 CMCC-CM*
CMCC-CMS 16 —
CNRM-CM5 4 28 CNRM-CM5* Centre National de Recherches Météorologiques,

Toulouse, France
CSIRO-Mk3-6-0 9 16 CSIRO-Mk3-6-0* Commonwealth Scientific and Industrial Research

Organization in collaboration with Queensland Climate
Change Centre of Excellence, Victoria, Australia

EC-EARTH 5 14 EC-EARTH* EC-EARTH consortium
FGOALS-g2 23 FGOALS-g2* LASG, Institute of Atmospheric Physics, Chinese

Academy of Sciences, Beijing, China
GFDL-CM3 16 GFDL-CM3* NOAA Geophysical Fluid Dynamics Laboratory,

Princeton, New Jersey, USA
GFDL-ESM2G 16 —
GFDL-ESM2M 16 —
— GFDL-HIRAM-C180
— GFDL-HIRAM-C360
GISS-E2-H 7 — NASA Goddard Institute for Space Studies, New York,

New York, USA
GISS-E2-R 18 GISS-E2-R*
— HadGEM2-A Met Office Hadley Centre, United Kingdom (additional

HadGEM2-ES realizations contributed by Instituto
Nacional de Pesquisas Espaciais)

HadGEM2-AO 23 —
HadGEM2-CC 7 —
HadGEM2-ES 9 —
inmcm4 inmcm4* Institute for Numerical Mathematics, Moscow, Russia
IPSL-CM5A-LR 33 IPSL-CM5A-LR* Institut Pierre Simon Laplace, Paris, France
IPSL-CM5A-MR 9 IPSL-CM5A-MR*
IPSL-CM5B-LR 9 IPSL-CM5B-LR*
MIROC5 2 MIROC5* Japan Agency for Marine-Earth Science and Technology,

Atmosphere and Ocean Research Institute (The
University of Tokyo), and National Institute for
Environmental Studies, Tokyo, Japan

MIROC-ESM-CHEM 8 —
MIROC-ESM 17 —
MPI-ESM-LR 33 MPI-ESM-LR* Max Planck Institute for Meteorology, Hamburg,

Germany
MPI-ESM-MR 33 MPI-ESM-MR*
— MRI-AGCM3-2H Meteorological Research Institute, Tokyo, Japan
— MRI-AGCM3-2S
MRI-CGCM3 16 MRI-CGCM3*
NorESM1-ME 8 NorESM1-ME* Norwegian Climate Centre, Bergen, Norway
NorESM1-M 16 NorESM1-M*
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3.2 Data, methods, and terminology

3.2.1 CMIP5 data

The primary ensemble in our analysis consists of 36 fully-coupled GCMs; historical forcing

and Representative Concentration Pathway 8.5 (RCP8.5) simulations were used for each model. An

additional ensemble of 30 atmosphere-only runs was also used. Table 3.1 lists model information

for both ensembles. In some cases, additional ensemble members for a given coupled model were

used in order to estimate internal variability; for these models, the total number of additional

realizations is included in the second column of Table 3.1.

We downloaded the following fields, all at monthly resolution: precipitation (P), zonal and

meridional winds at 200 hPa (U200 and V200) and 850 hPa (U850 and V850), surface air temper-

ature (TAS), and skin temperature (TS). We treat the models in each ensemble as independent

samples, though we acknowledge that some of them share structural cores and may have com-

mon biases (Jun et al., 2008b,a; Knutti et al., 2010, 2013). Our goal is to understand intermodel

uncertainty relative to the ensemble mean, not to the “true climate” or observations.

Seasonal end-of-century changes for the RCP8.5 scenario were calculated for each model by

differencing the climatology at the end of the 21st Century (2070–2100) and over a 20th Century

base period (1960–1990). The historical climatologies of the atmosphere-only models cover 1979–

2009. 30-year averages were chosen to minimize interannual-to-decadal model variability; all fields

were regridded via bilinear interpolation to a common 2.5◦ × 2.5◦ grid prior to analysis.

3.2.2 Methods

The methods are described in more detail in the Chapter 3 supplemental information,

though a brief summary is provided here, taking P as the example variable. We use EOF analysis

to visualize patterns of model uncertainty in end-of-century P changes. These EOFs are calculated

across the model dimension—as opposed to the conventional time dimension—and the resulting

modes show patterns of intermodel disagreement over end-of-century P changes relative to the en-

semble mean. Grid point correlation maps between expansion coefficients of P change uncertainty

patterns and temperature or winds allow one to find associated uncertainties in other variables. We
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also use maximum covariance analysis (MCA; sometimes referred to as singular value decomposi-

tion, or SVD). MCA is performed on the covariance matrix between two variables (e.g., P changes

and U200 changes), producing pairs of uncertainty patterns that represent coupled ensemble dis-

agreement.

Our methods complement other studies that have used similar methods to examine uncer-

tainty patterns in GCMs, including intermodel disagreement in tropical P change and its connection

to SST uncertainties (Li and Xie, 2012; Ma and Xie, 2012; Li and Xie, 2013), GCM skill in mod-

eling historical midlatitude jets, uncertainty in jet changes, and relationships with tropical SST

uncertainties (Delcambre et al., 2013a,b), and relationships between large-scale SST uncertainties

and global warming trends in land surface P (Anderson et al., 2015). Similar methods have also

been used in the weather forecasting community for medium-range ensemble forecasts (e.g., Harr

et al., 2008; Keller et al., 2011; Zheng et al., 2013; Chang and Zheng, 2013).

3.2.3 Principcal Uncertainty Pattern (PUP) terminology

For brevity, we refer to all modes that arise from the matrix decomposition techniques

described above as principal uncertainty patterns (PUPs), and we use this term interchangeably

with “patterns” or “modes” from the EOF and MCA analyses when discussing results. This is

done to emphasize that these techniques all seek to capture robust patterns of uncertainty common

among models in an ensemble, even though the methodology used to calculate each may differ.

3.3 End-of-century P changes in the CMIP5 ensemble

To lay the basis for our discussion, Figs. 3.1a,b show the ensemble mean global end-of-

century P change in the RCP8.5 scenario, for the December–January–February (DJF) and June–

July–August (JJA) seasons. Seasonal 4 mm day−1 contours for the base (solid) and future (dashed)

periods are shown for the ensemble mean to establish approximate geographical boundaries for

regions of deep convection and storm track precipitation.

Localized standard deviation plots (Figs. 3.1c,d) give a sense of how individual model P

changes spread about the ensemble mean. In both seasons, the largest spread is over the oceans and
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within tropical zones of deep convection, implicating intermodel uncertainty in changes occurring

to moisture fluxes and deep convective processes in these regions. In DJF (Fig. 3.1c), the largest

intermodel spread is over the western Pacific warm pool and South Pacific Convergence Zone

(SPCZ). Secondary regions include the cold tongue region off the coast of Peru and Ecuador, the

Atlantic ITCZ, and the Indian Ocean. In JJA (Fig. 3.1d), the western and eastern Pacific are

still major areas of spread, as are the tropical Indian and Atlantic Oceans and the Asian monsoon

region. Note these hotspots of disagreement do not always coincide with areas of largest absolute

P change (Figs. 3.1a,b) or P change as a percent of the historical climatology (Figs. S3.1a,b).

We also show agreement plots on the sign of P changes (Figs. 3.1e,f; plotted for agreement

on positive change). Relative to the standard deviation maps, the white regions in agreement maps

reach wider into the extratropics and midlatitudes, where intermodel spread is a result of changes to

both regional dynamics and local thermodynamics. Our concern here is P change disagreement at

regional scales (i.e., at the scale of climate features such as convection zones or storm tracks), though

an equivalent global analysis is shown in the Chapter 3 supplemental information for absolute P

changes (Figs. S3.2 and S3.3) and P change as a percent of the base period climatology (Figs.

S3.4 and S3.5). These patterns show tropical dominance in intermodel disagreement, even with

normalization by the climatology, and so we turn to a regional PUP analysis.

3.4 Regional PUPs of P change disagreement

3.4.1 Criteria for selecting regional PUP domains

We select regional domains using the following criteria: (1) if the regional PUPs are to

have any significance, there should be sizeable disagreement in the region of interest; (2) objective

pattern-seeking techniques are sensitive to the domain size and characteristics, and edge effects can

arise as domain boundaries change; (3) seasonality comes into play when disagreement patterns

are the objective, since zones of heavy P and storm track domains will shift seasonally, and it is

important not to segment climatological features.
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3.4.2 Regional PUPs using EOF analysis

For DJF, we produce P change PUPs for the following regions: the Indian Ocean, the trop-

ical Pacific, the N. Pacific storm track region, and equatorial S. America. For JJA, the regions

include: the Asian monsoon region, the central and western tropical Pacific, the S. Pacific storm

track region, Central America (encompassing the eastern tropical Pacific), and the equatorial At-

lantic region. This regional analysis reveals second-order and structural characteristics that are not

revealed in simpler analyses like those in Figs. 3.1c–f.

The first two EOF PUPs for these domains are shown in Figs. 3.2 (DJF) and 3.3 (JJA). In

order to plot PUPs on a common color bar, each mode is normalized by its standard deviation. Figs.

3.2c and 3.3c show the percent variance that successive modes account for in the EOF analyses (cut

off after 15 modes). For DJF, two regions of uncertainty include the southern edge of the Indian

Ocean convection zone and the tropical Pacific at the western edge of the cold tongue. For JJA,

one can see uncertainty along the southern edge of the ITCZ and along the northern edge of the

cold tongue region in the tropical Pacific.

Table 3.2 lists details about normalization, latitude and longitude range of the domains,

and the percent variances accounted for by the displayed modes. Leading regional PUPs tend to

explain 20%–30% of intermodel uncertainty, and features commonly occur on edges of convection

zones, within storm tracks, and over the equatorial cold tongue. We also include the correlation

coefficient between expansion coefficients for the regional and global domains, “r(reg, glob),” noting

that in some cases PUPs can change order (or be spread across several modes). These correlations

tend to be higher for the tropical domains in Figs. 3.2 and 3.3, reinforcing the dominance of the

tropics in global-scale uncertainty, although there are also notable correlations at higher latitudes.

We focus on the DJF midlatitude Pacific storm track region for the remainder of this study.

We chose the Pacific storm track region after noting strong separation and clear signals in the first

two PUPs (see Figs. 3.2a,b for the modes in this domain, as well as Fig. 3.2c to get a sense of mode

separation).
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a)	  P	  change	  PUP	  1	  for	  regional	  domains	  (DJF)	  –	  normalized	  units	  

b)	  P	  change	  PUP	  2	  for	  regional	  domains	  (DJF)	  –	  normalized	  units	  

c)	  Frac>on	  of	  var.	  in	  first	  15	  PUPs	  

Fr
ac
>o

n	  
of
	  v
ar
ia
nc
e	  

28.67%	   32.96%	  

19.60%	  

22.59%	  

14.55%	   14.92%	  

15.74%	  

16.11%	  

Figure 3.2: (a,b) First and second PUPs for the regions shown in DJF. From left to right, these regions are:
The Indian Ocean region; the tropical Pacific region; the North Pacific storm track region; the equatorial
South America and Atlantic region. For each mode and region, the variance of intermodel disagreement
that the PUP accounts for is written as a percent. (c) The fraction of variance accounted for in each region
for the first 15 modes. Tropical regions show a much stronger response when P units are used, so to plot
patterns on a common color bar, each region has been normalized by the standard deviation of its EOF
values; a unit of ±1 therefore represents a “standard” departure from zero in that region. More detail on
these regions and units can be found in Table 3.2.

a)	  P	  change	  PUP	  1	  for	  regional	  domains	  (JJA)	  –	  normalized	  units	  

b)	  P	  change	  PUP	  2	  for	  regional	  domains	  (JJA)	  –	  normalized	  units	  

c)	  Frac>on	  of	  var.	  in	  first	  15	  PUPs	  
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Figure 3.3: As in Fig. 3.2, but for the JJA season. (a,b) First and second PUPs for each of the regions
shown in JJA. From left to right, these regions are: The Asian monsoon region; the tropical Pacific region;
the South Pacific storm track region; the Central America region; and the equatorial Atlantic. The variance
fraction accounted for by that mode is included next to each region as in Fig. 3.2. (c) The fraction of variance
accounted for in each region for the first 15 modes. The units and color bar for PUP patterns are discussed
in Table 3.2.
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Table 3.2: Details for the regional PUP analysis shown in Figs. 3.2 and 3.3. Regional information is shown
in column 1. For the first two modes in each region, we list the percent variance accounted for in that mode
(column 3), the correlation coefficient between the expansion coefficients for that mode and the expansion
coefficients for the corresponding global modes 1 and 2 (columns 4 and 5), and the standard deviation of
the EOF in that domain (column 6, used for normalizing patterns in Figs. 3.2 and 3.3). Because the sign of
any EOF mode is arbitrary, we show the absolute value of the correlation coefficient. Correlations are bold
where they pass a two-tailed test at the 95% confidence level.

Region (DJF) reg mode % var. | r(reg, glob1) | | r(reg, glob2) | σ(mm day−1)

Indian Ocean 1 28.67% 0.57 0.71 0.44

40◦S–20◦N, 10◦E–120◦E 2 14.55% 0.53 0.31 0.32

Tropical Pacific 1 32.96% 0.98 0.16 0.70

35◦S–20◦N, 125◦E–265◦E 2 14.92% 0.03 0.53 0.47

N. Pacific storm track 1 22.59% 0.03 0.12 0.21

20◦S–60◦N, 135◦E–270◦E 2 16.11% 0.45 0.61 0.18

Equatorial South America 1 19.60% 0.14 0.80 0.32

40◦S–20◦N, 270◦E–365◦E 2 15.74% 0.11 0.35 0.27

Region (JJA) reg mode % var. | r(reg, glob1) | | r(reg, glob2) | σ(mm day−1)

Asian monsoon 1 35.57% 0.94 0.10 0.76

15◦S–40◦N, 65◦E–125◦E 2 11.12% 0.04 0.62 0.42

Tropical Pacific 1 24.72% 0.31 0.78 0.67

15◦S–30◦N, 135◦E–235◦E 2 20.02% 0.83 0.33 0.54

S. Pacific storm track 1 23.12% 0.06 0.06 0.18

60◦S–20◦N, 145◦E–300◦E 2 13.85% 0.58 0.17 0.14

Central America 1 37.99% 0.08 0.91 0.71

10◦S–40◦N, 240◦E–300◦E 2 19.39% 0.75 0.03 0.50

Equatorial Atlantic 1 24.47% 0.25 0.80 0.73

10◦S–25◦N, 305◦E–400◦E 2 21.54% 0.86 0.30 0.57

3.5 Uncertainty in P change in the midlatitude Pacific storm track domain

3.5.1 Storm track P change PUPs and associated uncertainties in circulation
changes

In the midlatitude Pacific, the wintertime storm track is a preferred region of cyclone

activity, generated by baroclinic instability and acting to transport momentum, heat, and moisture

poleward. We use the 4 mm day−1 contour as an approximate storm track outline in the base and

future periods. Cyclones that produce precipitation in this region are steered by the upper-level

jet across the Pacific and trail into the North American west coast, and so we inspect uncertainties

in P change in the context of the broader upper- and lower-level circulation. Delcambre et al.
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(2013a,b) have extensively documented uncertainties in the jet for this region, and we will discuss

model disagreement in a similar way by highlighting the two leading modes:

1. The “jet extension” mode describes disagreement in the eastward extension of the jet and

resulting P changes at the eastern terminus of the storm track, where the 4 mm day−1 contour

hooks slightly northeast at ∼35◦N, 220◦E.

2. The “meridional shift” mode describes uncertainty in the extent of a meridional shift or

poleward displacement of the storm track P, with increases on the poleward edge and decreases

on the equatorward edge of the 4 mm day−1 contour (see Figs. 3.1a,c).

Figure 3.4 shows the first (a,c) and second (b,d) PUPs of the EOF analysis on P changes in

the storm track region (replotted from Figs. 3.2a,b but with units of mm day−1). Vectors represent-

ing coupled disagreement in upper- and lower-level wind changes are overlaid, the components of

which are regressions of end-of-century U-wind and V-wind changes onto the expansion coefficients

for each mode.

We identify the first PUP (Figs. 3.4a,c) as a jet extension mode, with an east-to-west dipole

showing P increases on the southeast flank of the storm track as well as decreases over the western

Pacific. The wind vectors form a cyclonic circulation pattern slightly to the northwest of this center

at both upper (Fig. 3.4a) and lower (Fig. 3.4c) levels, implying that to a first approximation this

pattern represents an equivalent barotropic mode of disagreement.

We identify the second PUP (Figs. 3.4b,d) as a meridional shift mode, showing drying

along the equatorward edge of the storm track in the western half of the domain and implying

disagreement among models in the location and magnitude of poleward P shifts in this region.

Upper-level wind regressions (Fig. 3.4b) show associated anticyclonic uncertainties in circulation

along the equatorward edge of the storm track.

We use the terminology “extension” and “shift” to give names to the uncertainty patterns,

though the changes occurring to the midlatitude jet and resulting P in the midlatitude Pacific

are asymmetric and complex. One robust feature found in the CMIP5 archive is a poleward jet

shift in the western Pacific but equatorward shift in the east (Simpson et al., 2014; Park and An,

2014). Simpson et al. (2014) attribute this equatorward shift in the eastern Pacific to a barotropic
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b)	  P	  change	  PUP	  2	  (mm/day),	  200	  hPa	  winds	  

d)	  P	  change	  PUP	  2	  (mm/day),	  850	  hPa	  winds	  

a)	  P	  change	  PUP	  1	  (mm/day),	  200	  hPa	  winds	  

c)	  P	  change	  PUP	  1	  (mm/day),	  850	  hPa	  winds	  

f)	  U-‐200	  change	  PUP	  2	  (m/s)	  e)	  U-‐200	  change	  PUP	  1	  (m/s)	  

ref.	  vector	  
1	  m/s	  

Figure 3.4: (a-d) First and second P change PUPs for the midlatitude Pacific storm track region during
DJF. (a,b) P change PUPs 1 and 2 (shading) with 200 hPa U- and V-winds change regressions. (c,d) as
in (a,b) but for winds at 850 hPa. Black solid and dotted contours are as in Fig. 3.1. Wind vectors are
drawn in proportion to the 1 m s−1 reference vector. Vectors are plotted black where at least one component
passes a two-tailed t test at the 90% confidence level, and gray otherwise. (e,f) First and second EOF U200
change PUPs during DJF. Gray solid contours show isotachs for the base period ensemble mean, and dashed
contours show isotachs for the end-of-century ensemble mean, starting at 30 m s−1 and plotted at intervals
of 10 m s−1. The first P change PUP accounts for 22.59% of intermodel variance in P change projections,
and the second P change PUP an additional 16.11%. The first U200 change PUP accounts for 41.80% of
intermodel variance, and the second mode an additional 23.13%

stationary wave anomaly off the west coast of North America. Neelin et al. (2013) investigated the

CMIP5 ensemble mean P changes occurring in this region, noting a slight but statistically significant

increase in the region where the climatological storm track approaches the California coast, between

∼33◦N and 42◦N. Seager et al. (2014) attributed this increase primarily to enhanced mean flow

moisture convergence. The circulation regressions in Figs. 3.4a,b may reflect model uncertainty in
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changes to the mean circulation (and associated stationary wave patterns), which would feed into

uncertainty in P change in the storm track termination region.

The first and second U200 change PUPs are displayed in Figs. 3.4e,f. Note that the first

mode (Fig. 3.4e) reinforces the jet extension interpretation: models exhibit disagreement in U200

increases in the jet core, providing a source of uncertainty in the extent to which storms are steered

onto the North American west coast. The second mode (Fig. 3.4f) seems to suggest intermodel

spread over the extent of a poleward shift of the jet in the western Pacific. However, it is actually

the third mode for U200 changes (not shown) that is more strongly related to the meridional shift

P change PUP (see supplementary information for details). To better see coupled uncertainties

between jet and P change uncertainty, we show MCA results in Section 2.5.3.

3.5.2 Internal variability versus intermodel uncertainty

To get a sense of how individual models contribute to the uncertainty patterns in Fig. 3.4,

expansion coefficients for P change PUPs are shown in Figs. 3.5a,b. Red dots represent expansion

coefficients for each of the 36 models in the ensemble and characterize total ensemble spread—i.e.,

a combination of internal variability, climatological uncertainty, and intermodel differences in the

response to radiative forcing. The ensemble mean is represented by the zero line, and the box

and whisker plots to the right show the overall spread of models about the mean (see caption for

details). For models with additional ensemble runs available, black dots show the projection of

those P changes onto the PUPs in Figs. 3.4a–d. The relative spread of the black and red dots

indicates that internal model variability is small compared to overall intermodel uncertainty.

We also estimate internal variability using pre-industrial control runs, which vary in length

from 240–1050 years in the models. We calculate the DJF P climatology for non-overlapping 30-

year periods and produce N30 climatologies for each model (see Table 3.1 for details). We center

these climatologies by that model’s long-term mean at each grid point and then take all possible

pairwise combinations without repeat. The difference between each pair is taken, and the result

is projected onto the P change PUPs in Figs. 3.4a–d. The resulting values represent expansion

coefficients for internal variability. The error bars in Figs. 3.5a,b show ±1 standard deviation of

these values for each model, centered at zero on the vertical axis, representing the spread can that
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b)	  P	  change	  PUP	  2	  expansion	  coeffs.	  

Figure 3.5: (a,b) Expansion coefficients for the first and second P change PUPs, respectively. Red dots
represent each of the 36 models in the ensemble. Black dots show expansion coefficients for additional
ensemble members (see text and Table 3.1 for details). Error bars show internal variability estimation using
pre-industrial control runs in the models (see text for details).

can be attributed to internal P variability alone in the storm track region. This tests whether the

intermodel spread seen by the red dots in Figs. 3.5a,b could arise solely from internal variability. The

magnitude of these error bars is a modest fraction of the ensemble spread, providing evidence that

to leading order, intermodel differences in the response to radiative forcing are likely driving much

of the spread captured by these uncertainty patterns, and internal variability does not contribute

substantially. We explore the role of interannual SST variability and in particular ENSO forcing

in the next section.

3.5.3 Extension and shift modes from MCA

MCA helps reveal coupled patterns in P and U200 change uncertainties that are seen qual-

itatively in Fig. 3.4. In Fig. 3.6, we show MCA results for coupled P and U200 change PUPs, along
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a)	  MCA	  PUP	  1	  for	  P	  change	  (mm/day)	  	  

b)	  MCA	  PUP	  2	  for	  P	  change	  (mm/day)	  	   d)	  MCA	  PUP	  2	  for	  U-‐200	  change	  (m/s)	  	  

c)	  MCA	  PUP	  1	  for	  U-‐200	  change	  (m/s)	  	  

Figure 3.6: First and second MCA PUPs showing end-of-century coupled disagreement between DJF P
and U-200 changes. (a,b) First and second left singular vectors for P in units of mm day−1. (c,d) First and
second right singular vectors for U-200 change in units of m s−1. Note the color bar is reversed in (a,b) vs.
(c,d) in order for blue to coincide with positive P changes, and red to coincide with positive U-200 changes.
Schematic arrows are included to depict the jet extension and shift interpretations. The covariance fraction
is 31.83% for the first PUP and 23.47% for the second. Black and gray contours are as in Figs. 3.4e,f.

with diagrammatic arrows to illustrate the extension and shift modes. Figures 3.6a,c show the first

coupled mode patterns; an arrow in Fig. 3.6a shows location of strong P change disagreement in

the storm track termination region, and an identical arrow in Fig. 3.6c shows collocated model un-

certainty in U200 increases in the historical jet core. Figures 3.6b,d show the second coupled mode

patterns; the arrow in Fig. 3.6b depicts intermodel disagreement in the poleward displacement of

the storm track in the western half of the domain, and the arrow in Fig. 3.6d shows associated

disagreement where the U200 jet is displaced from its historical maximum. MCA here becomes a

useful tool for isolating coupled patterns of uncertainty in P and U200 change uncertainties that

are not obvious in the separate EOF analyses.

Lastly, we have tested the patterns in this storm track region and note they are not sensitive

to domain size, in that changing the domain boundaries by a few degrees latitude or longitude

causes the fraction accounted for by individual modes to change only within a few percent, and the

appearance and qualitative details of the PUPs themselves are stable.
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3.6 Multivariate PUPs for P and surface temperature

Figures 3.7a,b show global correlation maps between end-of-century TAS changes and the

expansion coefficients of P change PUPs in the storm track region. TAS anomalies were pattern-

scaled prior to any calculations, in order to minimize the influence of model differences in warming;

this was done by dividing each model by its global annual end-of-century TAS change between

the 1960–1990 and 2070–2100 periods. When this pattern scaling is applied to P changes prior to

calculating EOFs (not shown), results are similar.

The correlation map for TAS and the first PUP (Fig. 3.7a) identifies a strong connection

between the jet extension and a localized meridional TAS gradient in the mid-to-high latitude

Pacific. For the second mode, the TAS correlations (Fig. 3.7b) show a connection between the

Pacific cold tongue region and storm track P change disagreement.

The tropical correlations in Fig. 3.7b may suggest that uncertainty in storm track P changes

is tied to uncertainty in tropical SSTs via tropical-to-midlatitude teleconnections. Such telecon-

a)	Mode	1	correla,on	–	TAS	and	P	change	exp.	coeffs.	

b)	Mode	2	correla,on	–	TAS	and	P	change	exp.	coeffs.	

c)	Mode	1	correla,on	–	P	and	P	change	exp.	coeffs.	

d)	Mode	2	correla,on	–	P	and	P	change	exp.	coeffs.	

Figure 3.7: Correlation maps between expansion coefficients from P change PUPs over the storm track
region (as in Figs. 3.4a-d) and either (a,b) end-of-century model TAS changes across the model ensemble
at each grid point, or (c,d) P changes. For (a,b), TAS anomalies were pattern scaled by the annual end-of-
century TAS change (global mean for each model) prior to analysis. Stippling shows where correlations pass
a two-tailed t test for statistical significance at the 95% confidence level.
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nections are sometimes referred to as “ENSO-like,” though we take caution in using this term and

define ENSO forcing as a specific SST pattern arising from ocean dynamics in the cold tongue

region, as well as deep tropospheric latent heating anomalies in the tropical Pacific that initiate

teleconnections (see Zhang et al., 1997). If the uncertainties in SST were truly ENSO-like, one

may expect a region of high correlation in tropical P changes in the central-to-eastern Pacific that

resemble typical ENSO P anomalies. Figures 3.7c,d show correlation maps between grid point P

changes and the expansion coefficients in Fig. 3.5. For both modes, the tropical Pacific correlation

pattern for P is quite different from a canonical ENSO P anomaly.

To better quantify the role that intermodel differences in ENSO play in these PUPs, we

produce DJF ENSO composite maps for SST and P in each model’s∼150-year historical run, project

these onto the maps in Fig. 3.7, and then calculate the correlation between these projection values

and the corresponding TAS or P change PUP expansion coefficients. This projection method tests

whether model differences in the strength and location of historical ENSO SST and P anomalies are

associated with uncertainties in end-of-century P changes in the Pacific storm track. Projections

are done for ocean-only grid points between 30◦N and 30◦S, and ENSO events are defined when the

Niño 3.4 index (Trenberth, 1997) is more than one standard deviation above (positive) or below

(negative) the long-term DJF mean. Composites were calculated by extracting linearly detrended P

and SST fields for ENSO events, averaging positive and negative events separately, and subtracting

the two averages (positive-minus-negative). Correlation values are r = 0.18 and r = 0.18 for the

first two correlation maps of TAS (Figs. 3.7a,b), respectively. Correlation values are r = 0.15

and r = 0.54 for the correlations maps of P change PUPs (Figs. 3.7c,d). These correlation values

imply that uncertainties in ENSO composites are able to explain at most about 28% of intermodel

uncertainty associated with the two leading PUPs. Correlation values are comparable when SST

is substituted for TAS in Figs. 3.7a,b, and ENSO composites calculated for the RCP8.5 runs give

similar results.

We have also defined ENSO-like SST forcing using the first EOF of internal SST variability

for each model, which bypasses any requirement that models have correctly placed SST anomalies.

These patterns were calculated for detrended DJF SST data between 30◦N and 30◦S in the historical

period. We proceed as above by projecting each model’s tropical SST pattern onto Figs. 3.7a,b
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and correlate the resulting values with model expansion coefficients. Correlations remain low at

r = 0.20 and r = 0.03, and we conclude that P change PUPs in the Pacific storm track region are

not a manifestation of ENSO variability among models.

That said, common physical mechanisms will be active in the historical and end-of-century

time periods, and so the uncertainty patterns and modes of internal variability may still resemble

another. The extension and shift modes in the storm track region are similar to the those described

by Lau (1988), which are related to a “pulsing” and “wobbling” of the Pacific midlatitude jet and

have implications in storm development and P variability along the North American west coast (e.g.,

Wettstein and Wallace, 2010; Athanasiadis et al., 2010). These jet-driven storm track fluctuations

interact with other modes of circulation variability in the Northern Hemisphere (e.g., Wallace and

Gutzler, 1981). For instance, the western Pacific (WP) dipole pattern seen in the second mode of

U200 change in MCA-based PUPs (Fig. 3.6d) is similar to the WP pattern investigated by Linkin

and Nigam (2008), who identify this as a circulation associated with the North Pacific Oscillation

(NPO) and discuss its link to Pacific storm track fluctuations. Cayan (1992) found that NPO and

WP variability at midlatitudes can have broad-scale effects on sensible and latent heat fluxes in

the Pacific ocean, affecting tropical SSTs. Complementary studies have discussed the effect of the

NPO on sea level pressure anomalies in the midlatitude Pacific, which induce broad SST anomalies

that persist into the following summer, affecting trade winds and tropical Pacific climate variability

(Vimont et al., 2003; Anderson, 2004; Chiang and Vimont, 2004). Caballero and Anderson (2009)

show that the WP pattern can also influence the strength of the descending branch of the Hadley

cell via stationary wave forcing, which will also affect tropical trade winds and tropical Pacific

climate.

It is therefore not out of the question that physical mechanisms underlying P change PUPs

in the midlatitude Pacific storm track have qualitative analogues to internal climate variability.

However, we contend that the processes giving rise to P change PUPs in the storm track region are

to first order distinct from internal climate variability.
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Figure 3.8: (a,b) First and second PUPs for the historical P climatology, in both coupled and atmosphere-
only runs. Shaded contours show PUPs for fully-coupled historical runs (36-model ensemble, for the period
1960–1990), accounting for 26.16% and 16.48% of the variance, respectively. Blue and red contours are
overlaid to show PUPs for atmosphere-only runs (30-model ensemble, for the period 1979–2009), accounting
for 25.75% and 18.88% of the variance, respectively; lines are spaced at an interval of 0.2 mm day−1 with
the zero contour drawn in black. Box and whisker plots to the right of each mode show the median (red
line), the first and third quartiles (box limits), and the total range (whiskers) of expansion coefficients for
the coupled and atmosphere-only runs; units are in standard deviation (i.e., the “typical departure” from the
ensemble mean). (c,d) First and second EOF PUPs for the base period U200 climatology (atmosphere-only
U200 PUPs not shown). The first two modes capture 52.55% and 18.16% of the variance. The color bar is
in units of m s−1. End-of-century P and U-200 contours are included to show the storm track outline and
the climatlogical jets in the base (solid) and future (dashed) period.

3.7 Patterns of climatological uncertainty and parallels to P change PUPs

We also ask whether uncertainties in the base period P climatology are related to those for

P changes. Figures 3.8a,b show PUPs calculated across model P climatology fields during the base

period. Shading is for the coupled ensemble (36 members), and blue/red contours depict PUPs

for the atmosphere-only ensemble (30 members). These maps represent intermodel uncertainties

relative to the MME, and we refer to them as climatology PUPs.

Comparing atmosphere-only (contours) and coupled (shading) PUPs, the disagreement pat-

terns are similar. While there are geographical shifts in emphasis, the first mode (Fig. 3.8a) depicts

an approximate jet extension, along with intermodel spread in the exact latitude that wintertime

P falls along the North American west coast. The second mode (Fig. 3.8b) appears to represent

a combination of climatological disagreement over orographic P or land-sea contrasts (where the
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signal is strongest along the coast), as well as a meridional shift over the western Pacific. In general,

the enhanced intermodel spread along the North American coast in Figs. 3.7a,b is not seen in Fig.

3.4. This implies that similar orographic or land-sea contrast uncertainties are common to both the

historical and end-of-century periods and hence are not present in differences between the two. As

we found previously, this continues to suggest that end-of-century PUPs are depicting intermodel

uncertainty in structural changes to climatological patterns, not amplification of those patterns.

To understand how important the coupled ocean is in producing these climatological un-

certainties, we calculate PUPs for the 25 coupled models whose atmospheric component is the

same in the atmosphere-only runs (see Table 3.1 for details). We then project the atmosphere-

only climatologies in the storm track region (centered by the ensemble mean) onto the first two

coupled climatological PUPs and correlate these projection values with the coupled expansion co-

efficients. This allows one to see how much of the overall uncertainty in coupled runs is present in

the atmosphere-only runs. Correlation values are r = 0.65 and r = 0.91 for the first two modes,

respectively, implying that uncertainty within the atmospheric component of the models alone is

responsible for a significant amount of the disagreement seen in coupled climatological PUPs.

To quantify whether climatological P uncertainties can predict P change uncertainties

among models, we project centered historical climatologies for the 36-model ensemble onto the

change PUPs in Figs. 3.4a–d and then correlate these projections with the corresponding expan-

sion coefficients. The resulting correlations are r = 0.12 and r = 0.47 for the first and second modes,

respectively (and cross-mode correlations hover between these values). This implies that within our

ensemble, uncertainty patterns in the storm track P climatology do not serve as strong predictors

for the uncertainty seen in the extension mode, though they do have some predictive capacity for

the shift mode. When comparing climatological PUPs within the historical and RCP8.5 periods,

the relationship is much stronger. Using the same technique by calculating climatology PUPs

in the RCP8.5 runs and projecting historical runs onto them, the correlations are r = 0.89 and

r = 0.94 for modes one and two. In other words, there is a strong relationship between intermodel

uncertainty in the historical and RCP8.5 climatologies, but when considering the end-of-century

differences, the relationship drops significantly. This also supports our earlier point that P change

PUPs represent uncertainty in radiatively forced changes to individual models’ climatologies.
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Figures 3.8c,d show PUPs for uncertainties in the U200 climatology. We repeat the analysis

above by projecting U200 climatology fields onto the U200 change PUPs from Fig. 3.4, and we then

calculate the correlation between these projection values and the original U200 change PUP expan-

sion coefficients. The correlation values are r = 0.47 and r = 0.42 for the first two modes, implying

that U200 climatological uncertainties can have a modest predictive value for end-of-century change

uncertainties. In other words, information about jet shift uncertainty in the historical climatology

might provide some information about the jet shift response to radiative forcing, but this does not

translate well to information about P change.

We have also explored relationships between U200 PUPs and global P signals for changes

and the base period climatology, as well as internal variability in the historical period (see the

Chapter 3 supplemental information for details). We find that there are qualitative similarities

among all three cases, especially in the storm track region, though their global relationships appear

to be different, and the correlations patterns are fairly weak. We conclude that storm track P change

uncertainty patterns cannot be explained by any measure of model differences in internal variability,

but are driven primarily by uncertainty in individual model responses to radiative forcing.

3.8 Summary and conclusions

In this chapter, we analyze uncertainties in P climatologies and end-of-century changes in

the CMIP5 ensemble. We borrow objective matrix decomposition techniques from the time series

domain to calculate modes of variability across models. This produces patterns of intermodel

disagreement in P projections, and we refer to them generally as principal uncertainty patterns

(PUPs) to emphasize that the relationships they show among fields are of interest independent of

the specific method used to calculate them. PUPs are produced using EOF analysis as well as

MCA and correlation/regression techniques, allowing one to identify leading modes of uncertainty

in one field and possible relationships with other fields.

Focusing on a domain encompassing the wintertime midlatitude Pacific storm track, the

first P change PUP represents intermodel uncertainty in the eastward extension of the steering jet

and resulting P changes over the North American west coast; this is labeled the “jet extension”

mode. The second PUP depicts intermodel disagreement in the extent of a meridional storm track

56



shift, but this signal is confined to the western Pacific and shows zonal asymmetry farther east;

this is labeled the “meridional shift” mode. Regressions of changes in upper- and lower-level winds

onto these PUPs reveal uncertainties in circulation that reinforce these interpretations, and MCA

analysis provides a check on coupled uncertainty in the the zonal wind and P fields.

Measures of internal model variability using both additional ensemble members and pre-

industrial control runs show that internal model variability is not a dominant source of intermodel

uncertainty in P change PUPs in this region. This is found for both long term variability and

interannual ENSO forcing.

Correlations of TAS changes with the extension and shift PUPs reveal intermodel uncer-

tainties in larger-scale temperature fields associated with Pacific storm track P change PUPs. The

first mode shows that uncertainties in changes to meridional temperature gradients are associated

with uncertainties in P increases at the eastern terminus of the Pacific eddy-driven jet. The second

mode shows positive correlations between tropics-wide TAS increases and a poleward storm track

P shift in the western Pacific.

In the historical climatologies, P and U200 PUPs show patterns that are similar to the

extension and shift modes. While models demonstrate a strong relationship between historical

and future climatological uncertainties, these relationships are weak for climatological PUPs and

end-of-century change PUPs in the storm track region. We conclude that the P change PUPs in

the storm track likely arise from intermodel uncertainty in radiatively forced structural changes to

individual model climatologies.

Finally, we reiterate the value of this approach as a set of tools for analyzing patterns of

intermodel spread, and we note the applicability of the “PUP” acronym to any objective process

seeking robust uncertainty patterns in an ensemble. Our results highlight the importance of in-

formed domain selection and cross-checking interpretations with complementary procedures. These

methods have been used in previous model studies and contribute to the growing body of work in

addressing, characterizing, and constraining intermodel uncertainties within an ensemble.
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Chapter 3 supplementary material

S3.1 End-of-century P changes as a percent of the climatology in CMIP5

Figures S3.1a,b show end-of-century P change calculated as a percent of the base period

climatology. In general, the magnitude of percent increases in certain regions are substantially larger

than percent decreases (as the latter should be bounded by −100%). Note also that these maps

are for the ensemble mean, though several individual models give unphysical results, specifically

with percent increases in the Sahel region and the central equatorial Pacific (and these models

are excluded from the ensemble mean in Fig. S3.1). These unrealistic percent values make EOF

analysis difficult, which is discussed later in this supplement.

a)	  DJF	  end-‐of-‐century	  P	  changes	  (units:	  	  %	  of	  hist.	  clim.)	   b)	  JJA	  end-‐of-‐century	  P	  changes	  (units:	  	  %	  of	  hist.	  clim.)	  

Figure S3.1: P change as a percent of the base period climatology at each model grid point, shown for (a)
DJF and (b) JJA.

S3.2 Methods in more detail

In the following subsections, we go into partial detail of the mathematics behind our analyses

and refer the reader to a few helpful publications that discuss the techniques more comprehensively:

Horel (1981), Wallace and Gutzler (1981), Richman (1986), and Hannachi et al. (2006) for EOFs
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or rotated EOFs; Bretherton et al. (1992) and Wallace et al. (1992) for coupled methods like MCA

and correlation maps; von Storch and Zwiers (1999) and Wilks (2011) for textbook discussions of

all of these methods, as well as alternatives.

S3.2.1 EOF analysis for single variables

To aid in our explanation, let X be a N×M matrix consisting of all data from the ensemble

and with N rows and M columns. Here, M is the number of models in the ensemble and N is

the total number of grid points in the chosen domain, while the matrix X can represent end-of-

century changes for a field of interest at N grid points (e.g., end-of-century P changes in CMIP5).

Furthermore, let X ′ be the ensemble matrix centered by the mean of each row of X (i.e., centered

by the ensemble mean at each grid point). Finally, let C = (1/M)(X′X ′ T ) be the N×N covariance

matrix of the centered ensemble matrix.

To visualize leading modes of P change disagreement within the 36-model ensemble, we

begin with global and regional EOF analyses on end-of-century P change fields, which amounts to

an EOF analysis on the covariance matrix C. The decomposition yields a set of N eigenvectors,

which are the modes of variability or disagreement across the ensemble of M models, as well as N

corresponding eigenvalues, which give insight into the percent of overall variance in the ensemble

that each mode accounts for. Note in this analysis that M is typically much less than N , and only

the leading M eigenvalues and eigenvectors (out of N total) have any physical meaning. Positive

and negative values in modes should not be interpreted strictly as P increases or decreases, but

rather model uncertainty in the exact placement of these increases and decreases—as well as the

boundaries between them—relative to the ensemble mean.

Once the EOFs are obtained, expansion coefficients (or principal components) are calculated

by projecting that model’s original centered P change map onto the EOF mode of interest. This

produces 36 different scalar expansion coefficients for the end-of-century EOF calculations, one for

each model. The magnitude of each expansion coefficient represents the contribution of that model

to the disagreement pattern; the larger the magnitude, the more it contributes (either positively or

negatively, relative to the ensemble mean) to intermodel uncertainty. We refer to these values as

either expansion coefficients or model weights.
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S3.2.2 MCA for coupled modes of intermodel disagreement

We explore coupled modes of uncertainty between P and U200 fields using maximum covari-

ance analysis (MCA). MCA is a matrix decomposition performed on the cross-covariance matrix

between two fields. As an example, let the matrix P be a N×M matrix of precipitation anomalies,

for M models at N grid points. Let U be a K ×M matrix consisting of zonal wind anomalies

for M models at K grid points. Let P ′ and U ′ be the original matrices centered by their column

means at each grid point and converted into standardized units. This standardization step prevents

differences in units from affecting the results and is done by dividing the centered P data by the

standard deviation of the flattened P anomalies matrix, and likewise for the centered U200 data

and U matrix. Finally, let S = (1/M)(P ′U ′ T ) be the N ×K cross-covariance matrix between the

two fields.

MCA calculates patterns explaining the maximum amount of covariance in a data set.

MCA will factor the matrix S into three matrices, S = ΠΣYT . Columns in Π are referred to as

left singular vectors, columns in YT are right singular vectors, and each pair has a singular value

associated with it along the diagonal in the matrix Σ. Each pair of singular vectors comprises a

coupled mode of covariability between the two fields (i.e., coupled disagreement pattern between

the two variables relative to the ensemble mean of each field).

For every pair of singular vectors, the singular value in Σ can be used to calculate the

covariance fraction (CF) between the two fields in that mode. We choose to report this instead of

the squared covariance fraction; see Cheng and Dunkerton (1995) for further discussion.

S3.3 Global PUPs of P change disagreement

Figures S3.2 and S3.3 show the first and second PUPs from a global EOF analysis on P

changes, for the DJF and JJA seasons, respectively. To the right of each mode, we display the

expansion coefficients for each ensemble, normalized to have unit variance so that a value of ±1 on

the vertical axis implies one standard deviation departure from the ensemble mean P change. In

these results, global EOFs are computed over all latitudes, though the patterns are weak poleward

of about 60◦, and so we crop the maps slightly in the figures to show better detail.
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a)	  DJF	  global	  P	  change	  PUP	  mode	  1	  (mm/day)	  –	  21.42%	  

b)	  DJF	  global	  P	  change	  PUP	  mode	  2	  (mm/day)	  –	  11.46%	   d)	  Expansion	  coefficients	  for	  PUP	  2	  

c)	  Expansion	  coefficients	  for	  PUP	  1	  
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Figure S3.2: (a,b) First and second P change PUPs from a global EOF analysis on the 36-model ensemble
P change maps, calculated for the DJF season in mm day−1. Solid and dashed P contours are identical
to those of Fig. 3.1. Percent variances accounted for by each PUP are included at the top of each figure.
(c,d) Individual model expansion coefficients corresponding to the modes on the left, in units of standard
deviation relative to the ensemble mean P change. Red and black dots and box and whisker plots are as
described in the main text.

a)	  JJA	  global	  P	  change	  PUP	  mode	  1	  (mm/day)	  –	  17.65%	  

b)	  JJA	  global	  P	  change	  PUP	  mode	  2	  (mm/day)	  –	  14.96%	   d)	  Expansion	  coefficients	  for	  PUP	  2	  

c)	  Expansion	  coefficients	  for	  PUP	  1	  
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Figure S3.3: As in Fig. S3.2, but for the JJA season.
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In both seasons, the first few modes are dominated by model disagreement in P change

within the tropics. For DJF, the first PUP (Fig. S3.2a) has a strong uncertainty signal in the

western Pacific warm pool; the second PUP (Fig. 3.2b) reflects disagreement primarily in the

amount of P decreases over the eastern flank of the SPCZ. For JJA, the first PUP (Fig. S3.3a)

appears to highlight model disagreement in the position of the eastern Pacific ITCZ, though the

entire tropics have patches of uncertainty of similar magnitude. The second PUP (Fig. S3.3b)

is even more tropically confined, again showing disagreement in displacement of the ITCZ and

showing continuous signal along convective margins throughout the Pacific Ocean basin.

S3.3.1 Intermodel disagreement versus internal model variability

The expansion coefficients shown in Figs. S3.2c,d and S3.3c,d give a sense of how individual

models contribute to the corresponding PUP. Each red point represents an individual run from

the model on the horizontal axis and characterize total ensemble spread, a combination of internal

variability and differences in the individual models’ response to radiative forcing. In some cases, a

few particular models are noticeable outliers and project strongly onto the global PUPs, but this is

not consistent across seasons. There is, however, notable consistency among groups of models that

are taken from the same modeling center. For example, the signs and magnitudes of the expansion

coefficients show little variation among the three HadGEM2 models, and this is true in all seasons

and PUPs. The robustness of these patterns against the removal of outlying models has been tested

by eliminating CSIRO and is discussed in the following section.

The box and whisker plots on the right in Figs S3.2c,d and S3.3c,d show the overall spread

of the red points. Note the red line within each box and whisker plot represents the median of

the red points, and the horizontal zero line represents the ensemble mean. The sign of the median

gives information about the model distribution about the ensemble mean for this given pattern,

with a negative median indicating right skew (a longer tail in the positive direction), and a positive

median indicating left skew.

Along with red points in Figs. S3.2c,d and S3.3c,d, the smaller black points give a sense of

how internal model variability compares to intermodel spread. For six models, we have downloaded

additional ensemble runs from the CMIP5 database to calculate end-of-century P changes for
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each (see Table 3.2 for more detail), and these maps are projected onto the full-ensemble PUPs.

Additional runs of a given model (black points) exhibit a variability range that is a small fraction

of the intermodel spread (red points). More quantitatively, in both leading global modes and

seasons, the variance of the black points for a given model is less than 5% of the entire ensemble

variance, except for the CSIRO-Mk-3-6-0 model in the DJF season, which is about 13%. This

is approximately true for the midlatitude Pacific storm track region as well (see the main text),

though internal model variability is a slightly larger fraction.

S3.3.2 EOFs of P change as a percent of the base period climatology

Given that global PUPs calculated on absolute P change are dominated by the tropics, it is

useful to consider normalizing model P changes prior to EOF analysis in a way that could emphasize

higher latitudes while down-weighting the tropical influence. One possible approach—dividing the

P change at each grid point by the base period climatology—becomes difficult in practice because

nearly half of the models in the ensemble show unphysical percent P increases on the order of 103%

or more, particularly in the Sahel region and the central equatorial Pacific.

Masking these unrealistic grid points also proves unfruitful. Figures S3.4 and S3.5 show

PUPs where grid points with P changes outside of the range [−100%,+250%] were masked prior

to EOF analysis (and show up as white grid points in the figures). While this approach does allow

one to see more detail on signals of intermodel uncertainty outside of the tropics, the criteria for

masking are somewhat arbitrary, and the information one gains about regional uncertainty patterns

from Figs. S3.4 and S3.5 relative to Figs. S3.2 and S3.3 does not increase substantially. This is the

reasoning behind the focus on absolute P change PUPs in Chapter 3 and the emphasis on regional

domain analyses.

S3.3.3 Rotated EOFs

We have tested whether varimax EOF rotation (Kaiser, 1958) provides a clearer under-

standing of the P change PUPs in both the global and midlatitude Pacific storm track domains.

Rotation of global modes does not clarify any disagreement patterns already evident in the local

standard deviation plots and original EOFs. Rotation of the midlatitude Pacific storm track PUPs
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a)	  DJF	  global	  P	  change	  PUP	  mode	  1	  (units:	  	  percent	  change)	  –	  13.68%	  

b)	  DJF	  global	  P	  change	  PUP	  mode	  2	  (units:	  	  percent	  change)	  –	  10.62%	  

Figure S3.4: (a,b) First and second P change PUPs calculated over P changes as a fraction of the base
period climatology for DJF. Areas with a P change outside of the range [−100%,+250%] were masked prior
to EOF analysis.

a)	  JJA	  global	  P	  change	  PUP	  mode	  1	  (units:	  percent	  change)	  –	  12.52%	  

b)	  JJA	  global	  P	  change	  PUP	  mode	  2	  (units:	  percent	  change)	  –	  10.48%	  

Figure S3.5: (a,b) Same as in Fig. S3.4 but for the JJA season.
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redistributes the jet extension and shift modes across the first three rotated modes, though this

does not change our original interpretation. EOF rotation therefore confirms that the P change

PUPs in Fig. 3.6 are meaningful and stable, though it does not help gain more information about

regional model disagreement.

S3.4 Testing the sensitivity of PUPs to removal of model outliers

We have calculated the robustness of global P change PUPs to removal of the CSIRO model

(shown in Figs. S3.6 and S3.7). We compare the resulting partial-ensemble PUPs with the original

PUPs (Figs. S3.2 and S3.3) and quantify the similarity by means of a correlation of leading modes

(though this is a blunt tool, and a full analysis would require more advanced methods). Our results

show that removing the CSIRO model does not affect the PUPs substantially.

For DJF, the first and second global PUPs are robust to removal of CSIRO, with correlations

of r = 0.90 and r = 0.9997 . For JJA, these correlations are r = 0.87 and r = 0.88. Furthermore,

despite any small changes in the patterns, one can still draw the major conclusions from the partial-

ensemble PUPs: that global uncertainty patterns are tropically dominated; that the largest type of

uncertainty involves P increases in the deep tropics; that these uncertainties occur along the edges

of tropical convection zones and within the ITCZ. Finally, when the same analysis is applied to the

N. Pacific storm track region during DJF, correlation values are r = 0.9995 and r = 0.9997 for the

first and second modes, respectively.

S3.5 Relationships between P and the U200 jet

As a final point, we investigate relationships between EOFs of U200 in the Pacific storm

track region and global modeled P fields in the GCMs. These maps give insight into where model

uncertainties in storm track U200 are associated with uncertainties in tropical and storm track P,

and to what extent these resemble modes of internal P and U200 variability.

Figures S3.8a,b show end-of-century P changes correlated with the expansion coefficients of

the first and third U200 change PUPs, respectively. Note that we have chosen to display the first

and third PUP for U200 changes, as P change correlations with the second U200 change PUP appear
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a)	  DJF	  global	  P	  change	  PUP	  mode	  1	  (mm/day)	  –	  18.32%	  

b)	  DJF	  global	  P	  change	  PUP	  mode	  2	  (mm/day)	  –	  13.05%	  

Figure S3.6: First and second DJF P change PUPs from a global analysis on a partial ensemble omitting
CSIRO-Mk3-6-0.

a)	  JJA	  global	  P	  change	  PUP	  mode	  1	  (mm/day)	  –	  16.53%	  

b)	  JJA	  global	  P	  change	  PUP	  mode	  2	  (mm/day)	  –	  15.56%	  

Figure S3.7: Same as in Fig. S3.4, but for JJA.
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to represent another variant of the extension mode. For the first U200 mode, P change uncertainty

in the midlatitude Pacific depicts a jet extension mode and is associated with uncertainty in the

southern tip of the SPCZ (in the central Pacific, between the equator and 20◦S). There is also a

region of strong correlation of opposite sign to the north, which may reflect localized uncertainties

in the descending branch of the Hadley circulation associated with jet uncertainties. Correlations

with the third U200 change PUP exhibit a drying along the equatorward edge of the storm track,

which may represent a poleward P shift pattern in the western-to-central midlatitude Pacific, with

an associated tropical P change signal.

e)	  Int.	  variability	  correla1on	  (U-‐200	  mode	  1)	  
	  

f)	  Int.	  variability	  correla1on	  (U-‐200	  mode	  2)	  
	  

b)	  Change	  PUP	  correla1on	  (U-‐200	  mode	  3)	  
	  

a)	  Change	  PUP	  correla1on	  (U-‐200	  mode	  1)	  

c)	  Clim.	  PUP	  correla1on	  (U-‐200	  mode	  1)	  
	  

d)	  Clim.	  PUP	  correla1on	  (U-‐200	  mode	  2)	  
	  

Figure S3.8: Correlations of P with U200, normalized to mm day−1 for a standard U200 deviation. (a,b)
DJF P change values correlated with DJF U200 change PUPs one (as shown in Fig. 3.4e) and three (which
accounts for 19.38% of the variance). (c,d) DJF model P climatologies correlated with expansion coefficients
of U200 climatology PUPs one and two (as shown in Figs. 3.8c,d). (e,f) Monthly DJF P values correlated
with internal U200 variability in the storm track region for EOFs one and two. Stippling in all plots shows
where the correlation passes a t test at the 95% confidence level. Modes of internal U200 variability were
calculated using linearly detrended DJF values across all 36 models at once (here in the time dimension),
with each model’s climatology removed prior to analysis. The two leading patterns of internal jet variability
in the storm track region represent (1) a jet extension (or pulsing) mode, which accounts for 40.95% of the
total variability, and (2) a meridional jet shift (or wobbling) mode, accounting for an additional 15.35%
(these patterns are not shown here but can be seen in other studies (e.g., see Delcambre et al., 2013a, their
Figs. 2a,b)).
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Figures S3.8c,d show P climatologies correlated with the expansion coefficients of U200

climatology PUPs (as seen in Figs. 3.8c,d). In the first mode (Fig. S3.8c), the storm track region

displays a similar jet extension pattern, though the zero contour is displaced and associated tropical

P signals are much more localized along the southeastward sloping SPCZ axis. Again, a region

of significant correlation of opposite sign appears north of the equator and may reflect localized

interaction with the Hadley cell. The second mode (Fig. S3.8d) exhibits a meridional P shift in

the midlatitude Pacific storm track region, though the tropics look quite different from that of Fig.

S3.8b, with a strong signal south of the equator along the 4 mm day−1 contours, as well as a signal

of strong opposite sign over the Pacific warm pool.

Figures S3.8e,f show monthly P values correlated with the first two modes of internal U200

variability in the midlatitude Pacific storm track region. Details of internal variability calculations

are found in the caption, and the first two modes in U200 variability (not shown) are extension and

shift modes, in that order. P correlations with the first mode (Fig. S3.8e) reveal a jet extension

pattern in the midlatitude Pacific, and this is associated with tropical signals of opposite sign on

either side of the equator. The second mode correlation map (Fig. S3.8f) shows a possible shift in

storm track P, though the WP dipole is absent, and a more central-to-eastern Pacific shift appears

in its place, with associated tropical variability evident as another cross-equatorial dipole, this time

concentrated over the western tropical Pacific and maritime continent.

We conclude that while intermodel uncertainty patterns for end-of-century change in the

Pacific storm track region may qualitatively resemble those for the historical climatologies or inter-

nal variability, the underlying processes appear to be distinct. Our results show that change PUPs

are not primarily driven by differences in internal model variability on decadal+ timescales, though

there do appear to be similarities between uncertainties in the P/U200 plots that are reminiscent

of internal variability.
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Chapter 4

Identifying leading sensitivity patterns in a perturbed physics
ensemble, and using these to explore the parameter dependence
of climatological precipitation

Abstract

Proper GCM simulation of precipitation (P) and the hydrological cycle requires that models

correctly capture the interaction of large-scale dynamics with local, sub-grid scale processes, which

themselves rely heavily on parameterizations. Perturbed physics ensembles address this aspect of

sensitivity by isolating uncertainty from model physics, distinct from structural or numerical un-

certainty. The dependence of a climate field on parameter values can be significantly nonlinear, and

this is an important factor affecting model uncertainty, though its explicit form has not yet been

thoroughly addressed in ensemble studies. In this chapter, an existing perturbed physics ensemble

is used to investigate the parameter dependence of historical precipitation climatologies. Fitting

models to a field’s parameter dependence is a computationally cheap alternative that can help

interpolate the GCM response to parameter value combinations not sampled in the integrations.

This approach, termed metamodeling, is used here to reconstruct model fields at specified param-

eter combinations. A quadratic metamodel is employed first, which is created using second-order

polynomial fits of a field at each grid point. This model reproduces global, seasonal root-mean-

square error (rmse) relative to observations with decent skill, though it fails over certain highly

sensitive parameter ranges. A trust region works well at the cost of excluding these ranges. An

alternative metamodel is constructed which combines approaches used in the engineering literature

with the principal uncertainty pattern (PUP) methodology from Chapter 3. For a given param-

eter, the first two or three PUP modes perform well at reconstructing the rmse measure, even in
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highly sensitive ranges. This alternative metamodel is then used to explore questions of parame-

ter optimization while considering multiple parameters and multiple objective functions associated

with different climate fields. Concepts from multiobjective optimization are used to quantify the

tradeoffs encountered when optimal parameter values for multiple fields are contradictory.

4.1 Introduction

As discussed in the previous chapters, global climate models (GCMs) exhibit notable un-

certainty in simulating the current and future hydrological cycle. A large source of uncertainty

not yet discussed is model sensitivity to the parameterization of convective processes leading to

precipitation (P). Within a single GCM, grid point uncertainties due to choice of parameter value

can be equal to (or greater in magnitude than) that arising in a multi-model ensemble from internal

variability or climate change.

Perturbed physics ensembles are good tools for understanding this sensitivity, where the

parameter values of a given GCM are sampled systematically within a plausible range. Recent work

has shown that the parameter dependence of a given climate field can be highly nonlinear (Neelin

et al., 2010; Bracco et al., 2013), and identifying the degree of this nonlinearity in parameter space

is important in model tuning and parameter optimization.

The number of parameters to be sampled N in a perturbed physics ensemble can easily

be on the order of tens, and sampling each at k different values requires kN simulations (i.e., an

order kN problem). Given the inherent impracticality of such a brute-force sampling, optimization

methods can reduce the order of the problem and alleviate computational burden. One relatively

simple method is fitting the parameter dependence with a low-order polynomial regression and is

termed “metamodeling” (Wang and Shan, 2006; Shan and Wang, 2010). A good starting point is a

second-order polynomial regression, which we refer to as a quadratic metamodel in this chapter, and

several studies have shown this form to be quite adept at modeling parameter dependence (Neelin

et al., 2010; Bellprat et al., 2012; Bracco et al., 2013). A basic assumption in a low-order approach is

that the parameter dependence is smooth across a feasible parameter range. Additionally, nonlinear

two-way interactions (or cross-terms) are taken into account for different parameters (i.e., changing

two parameters at once will not give the same result as changing them independently and adding
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the outcome), though in this case three-way and higher-order interactions are neglected.

Bernstein and Neelin (2015, submitted) have created a branch-run perturbed physics en-

semble for the fully coupled Community Earth System Model version 1.0.2 (CESM1). They analyze

the magnitude and spatial distribution of the parameter sensitivity of P, as well as the degree of

nonlinearity in the parameter dependence of P climatology and future climate change fields. The

parameter dependence shows nonlinear behavior in certain ranges, most notably for low values of

the entrainment fraction parameter (dmpdz), which is labeled a “dangerous range.” Identifying

such dangerous ranges in GCM simulations can help inform choices made by modelers as well as

constrain a GCM’s uncertainty in the present-day P climatology and end-of-century changes.

This chapter examines several features related to parameter dependence and sensitivity of

historical P climatology and other fields. First, the principal uncertainty pattern (PUP) methodol-

ogy is applied to the perturbed physics ensemble, and patterns of model uncertainty (or sensitivity)

are shown for individual parameters. Second, the accuracy of a quadratic metamodel is explored for

the parameter dependence of P and surface temperature (TS), with special consideration given to

the dmpdz parameter which exhibits highly sensitive low-end nonlinearity. Third, these sensitivity

PUPs are used in an alternative metamodel approach labelled PUP-cut-HDMR. This PUP-based

metamodel does not require a priori assumptions about the specific type (linear, second-order,

etc.) of parameter dependence and is a successful alternative where its quadratic counterpart

fails. Lastly, P and TS are considered simultaneously, and optimization tradeoffs are illustrated by

borrowing concepts from multiobjective optimization.

4.2 Data

4.2.1 Perturbed physics ensemble

Bernstein and Neelin (2015, submitted) have integrated CESM1 during the historical and

representative concentration pathway 8.5 (RCP8.5) scenarios, akin to the experiments in the Cli-

mate Model Intercomparison Project phase 5 (CMIP5) ensemble (Taylor et al., 2012). This integra-

tion is performed using default parameter values until years 1976 and 2071, at which point branch

integrations are carried out for an additional 30 years by varying the values of four parameters in
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Table 4.1: The four parameters modified in the perturbed physics ensemble. First column lists the parame-
ter shorthand as used in this chapter, with the full parameter name in the second column. The third column
shows the parameter values used in the CESM1 integrations, with the control run values (the parameter
default values) shown with an asterisk. Note in the the text that the first two dmpdz values are discussed as a
dangerous range, so quadratic metamodel fits in this chapter exclude the model runs for the bracketed values
of dmpdz (third column). Units and a short description are listed in the fourth and fifth columns. More
information on this ensemble can be found in Bernstein (2014) and Bernstein and Neelin (2015, submitted).
For more information on CESM1 or the deep convection scheme, see the Community Atmosphere Model 4.0
(CAM 4.0) documentation at Neale et al. (2010).

Parameter Name Units Values Description

dmpdz deep
convective
entrainment
parameter

×10−3 m−1 [0, 0.08,] 0.16, 0.25,
0.5, 1*, 1.5, 2

Turbulent entrainment of
environmental air into deep
convective plume

τ deep
convective
timescale

minutes 30, 60*, 120, 180,
240

Time scale for consumption
rate deep of Convective
Available Potential Energy
(CAPE) by cumulus
convection; necessary for
closure of deep convection
scheme

α downdraft
fraction

fraction (out of 1.0) 0, 0.1*, 0.25, 0.5,
0.75

Fraction or proportionality
factor that determines the
mass flux of an ensemble
downdraft, taking into
account precipitation and
evaporation

ke evaporation
efficiency

×10−6 kg
[m−2s−1]−1/2 s−1

0.1, 0.5, 1*, 5, 10 Evaporation efficiency of
precipitation

* indicates standard or control value

the deep convection scheme. The first 10 years are discarded to allow for model equilibration. This

produces a perturbed physics ensemble of 20 members in both the historical and RCP8.5 scenarios

(including a control run, where default values are used for all parameters). The name, units, and a

short description for the parameters that have been modified are listed in Table 4.1. The data used

here are from the historical integrations of CESM1, and the December-January-February (DJF),

June-July-August (JJA), and annual climatologies are calculated for each parameter value. Future

work will incorporate the RCP8.5 integrations.
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4.2.2 Observational and reanalysis data sets

Monthly P data are used from the global precipitation climatology project (GPCP) version

2.2, a merged satellite and surface rain gauge data set (Adler et al., 2003). Monthly skin temperature

data are used from the National Center for Environmental Prediction (NCEP) reanalysis version

2. Both data wets were provided by NOAA/OAR/ESRL PSD in Boulder, CO, USA and can be

downloaded at http://www.esrl.noaa.gov/psd/.

4.3 Methods

4.3.1 PUP calculations

PUPs are calculated across each parameter axis (i.e., varying each parameter as in Table 4.1

while holding all other parameters at their control values). This is done via empirical orthogonal

function (EOF) analysis on the DJF, JJA, and annual climatologies separately, and the reader is

referred to Chapter 3 for details of these calculations. The EOFs are calculated on fields centered

at each grid point by the control run, so that EOF patterns represent departures from the CESM1

control integration. Note it will be common practice to take parameter values and fields relative

to the control throughout this chapter.

4.3.2 Quadratic metamodel

The parameter dependence of a given climate field φ is emulated using a second-order

polynomial regression. This methodology was adapted from the engineering literature (Wang and

Shan, 2006; Shan and Wang, 2010) and applied to perturbed physics ensembles by Neelin et al.

(2010). A simple but important distinction here is that the quadratic dependence is applied to

each model grid point and season. This allows emulation of the model fields directly, as opposed to

metamodels of objective functions for those fields. Bellprat et al. (2012) and Bracco et al. (2013)

also follow this approach. The model field φ depends on a set of parameter values µ such that φ =

φ(µ). The combination of parameters µ can be written as µ = (µ1, µ2, . . . , µN ) = (dmpdz, τ, α, ke),

where N = 4 as seen in Table 4.1. The metamodel is calculated over these parameter values centered
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by the control or default value,

µ′i = µi − µcont .

Using this notation, the quadratic metamodel approximating a given field φ can be written

for each time step or climatology and at each grid point as:

φ̃ = φcont +

N∑
i=1

aiµ
′
i +

N∑
i=1

biiµ
′
i

2 +

N∑∑
1≤i<j

bijµ
′
iµ
′
j , (4.1)

where φ̃ is a function of the centered parameter values only:

φ̃ = φ̃(µ′1, µ
′
2, . . . , µ

′
N )

Equation 4.1 allows for any number of parameters to be varied at once, which can be written

here as φ̃ = φ̃(dmpdz ′, τ ′, α ′, ke
′). The first term on the right-hand side is the control integration,

which is a function of all parameters held at the control value, φcont = φ(dmpdzcont, τcont, αcont, ke cont).

The second, third, and fourth terms are each the linear, purely quadratic, and interaction terms.

a is a vector containing the linear coefficients from a second-order polynomial regression at each

grid point across N parameter fields. b is a square matrix containing the purely quadratic (ii) and

interaction (off-diagonal, or ij) terms, with bij = bji.

In the metamodel analyses in this chapter, parameter interactions are neglected, so the

final term in equation 4.1 is not calculated and b can be thought of as a symmetric matrix with

quadratic coefficients on the diagonal and zeros elsewhere (bij = 0 when i 6= j). The regression

expands about the control run, which is why φcont must be added back in equation 4.1.

4.3.3 Cut-HDMR

An alternative way of framing the metamodeling approach above is that of high-dimensional

model representation (HDMR), which is borrowed from the engineering literature and is part of

the larger field of global sensitivity analysis (Rabitz and Alis, 1999; Rabitz et al., 1999). At its

heart, HDMR deals with high-dimensional input-output problems in which a given system (physical,

chemical, etc.) has a large number of input variables that can be independently altered and will

74



produce a complex response in the output. The GCM used in this chapter is one such system, and

understanding the behavior or functional form of its parameter sensitivity is the overall goal.

The theoretical formulation of HDMR expresses a given physical system or model output

as a function of all input variables f(µ′) = f(µ′1, µ
′
2, . . . , µ

′
N ). If the output is a model field (e.g., φ

as above), then this simply becomes f(µ′) = φ. HDMR is expressed as a finite expansion in terms

of these input parameters:

f(µ′) = f0 +
N∑
i=1

fi(µ
′
i) +

∑
1≤i<j≤N

fij(µ
′
i, µ
′
j)

+
∑

1≤i<j<k≤N
fijk(µ′i, µ

′
j , µ
′
k) + . . . + f12...N (µ′1, µ

′
2, µ
′
3, . . . , µ

′
N ) .

(4.2)

The first term on the right-hand side, f0, is a constant representing the mean response to

f(µ). The second term represents any variable µi acting independently, so this term can include

first-order but also any higher-order terms (quadratic, cubic, etc.). The third term represents all

possible two-way interactions between two different input variables (and is therefore a quadratic or

second-order term). The fourth term represents any three-way interactions among the variables.

Subsequent terms represent all possible interaction combinations, and the final term represents the

residual N th-order interaction among all variables at once.

This HDMR formulation has several benefits. First, it is a finite expansion and is always

exact at the grid points over which evaluations are done. Second, it requires fewer assumptions

to be made about the underlying functionality of the parameter dependence. Third, and most

importantly, while the number of terms in the expansion can be daunting for large N , most systems

tend to have weak interactions beyond quadratic (Li et al., 2001), and it is often sufficient to

approximate this as

f(µ′) ≈ f0 +
N∑
i=1

fi(µ
′
i) +

∑
1≤i<j≤N

fij(µ
′
i, µ
′
j) , (4.3)

with the third term on the right-hand side representing two-way interactions.

The precise set of choices going into the HDMR expansion can vary (for a discussion of

common approaches, see Rabitz et al., 1999). One option for this problem is cut-HDMR (Rabitz
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and Alis, 1999; Li et al., 2001), in which the expansion is calculated about a reference point, and

each successive function is defined along cut lines, planes, volumes, etc. through that reference

point. Note the quadratic metamodel in equation 4.1 is equivalent to the cut-HDMR metamodel in

equation 4.3 when (1) the control run is set as the reference point such that f0 = f(µcont) = φcont,

and (2) the second term in equation 4.3 is restricted to include only linear and quadratic terms.

While this chapter only considers the linear and purely quadratic terms, we do plan to

incorporate integrations representing off-diagonal interaction points in future work. We justify

the simplification used here by noting that Neelin et al. (2010) tested the impact of including the

interaction terms on a quadratic metamodel and found the sensitivity is modest and in most cases

small. Furthermore, as will be shown later, metrics of model error relative to observations and

reanalyses demonstrate that the near-optimal parameter combinations often tend to occur in the

vicinity of the control parameter values. Therefore the analysis here can be thought of as the first

step in a process deciding how worthwhile it is to integrate the GCM at off-diagonal points.

The utility of these metamodels is their ability to estimate the response of a field to any

parameter combination without explicitly sampling the entire parameter space with GCM integra-

tions. Metamodels for the perturbed physics ensemble here require O(N) calculations to obtain

coefficients for a and the diagonals along b in equation 4.1. Resolving the coefficients for the

interaction terms (off-diagonals in b) requires O(N2) calculations, which becomes impractical for

high-density evaluation. Furthermore, restricting calculations to the parameter axes is more directly

relevant to a physical interpretation of parameter sensitivity.

4.3.4 PUP-cut-HDMR metamodel

One lingering issue associated with a quadratic metamodel is that making assumptions a

priori about the functional form of the sensitivity limits the model’s flexibility, and it may not be

adequate to describe parameter sensitivity over a highly nonlinear range. Motivated by making

the parameter sensitivity more intuitive and simplifying the reconstruction, we construct a new

metamodel which blends PUPs from Chapter 3 and cut-HDMR into a modified “PUP-cut-HDMR”

metamodel. In the results and discussion section, we give examples of visualizing the spatial

sensitivity of fields and displaying the along-axis dependence of the climatological rmse relative to
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observations and reanalyses. The remainder of this section presents a formal contruction of the

PUP-cut-HDMR metamodel.

As a reminder, the subscript k is used to represent sampling density for one parameter µi.

Suppose an EOF analysis is done across the parameter axis for a climate field
#»

φ i with shape (k ×

latitude × longitude). The vector notation
# »

(·) is used to distinguish this field from that in equation

4.1 and represents the sampling dimension k along a parameter axis. Each of the four parameters

in Table 4.1 can be expressed as

#»µ i = (µi1, µi2, . . . , µik) 1 .

EOF analysis of
#»

φ i results in m EOF modes along with m expansion coefficient (or principal

component) vectors #»c i, each of which has length k and corresponds to an EOF mode:

#»c im = (cim1, cim2, . . . , cimk) .

Recall that this EOF analysis is done on the field centered by the control run at each grid point,

φ′ik = φik − φcont for all k in
#»

φ i.

The goal here is to use a pruned set of leading EOF modes to reconstruct the original field

for each parameter value µik. If we assume that the important part of the sensitivity is contained

within the first M EOFs (with M ≤ k), then the kth field for each parameter value µi can be

approximated by reconstructing it using the leading M modes:

φik approx = φcont +

M∑
m=1

cimk EOFim , (4.4)

where the approximated field is a function of µik: φik approx = φapprox(µik). In this analysis, each

EOF mode EOFim is normalized to carry units of the original field, and the vector #»c im is normalized

to have unit variance.

The PUP-cut-HDMR metamodel is first consructed along each parameter axis using equa-

tion 4.4 repeated for all k parameter values, and a new field
#»

φ i approx is built with dimension (k ×
1To be explicit about this notation, taking the parameter α as an example, #»µ i = (µi1, µi2, . . . , µik) corresponds

to #»α = (0, 0.1, 0.25, 0.5, 0.75), as read from Table 4.1, and k = 5.
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latitude × longitude). This represents an approximation to the perturbed physics ensemble across

a single parameter µi using the first M EOFs. This analysis is repeated for all four parameters

µi = dmpdz, τ, α, ke. Reconstructions using the first two and three EOFs will be shown in the

results of this chapter.

Finally, from the approximated ensemble above, we can extend the metamodel off param-

eter axes in order to explore the full parameter space. This is done by borrowing concepts from

cut-HDMR. We make the assumption that the contribution to parameter sensitivity for each vari-

able acts independently and is additive, as discussed for equations 4.2 and 4.3. This is perhaps

easiest to think about in terms of varying two parameters simultaneously. Suppose dmpdz and α

are both varied off-axis, and the other two variables τ and ke are held at their control values. The

resulting field φ(dmpdz ′, α ′, τcont, ke cont) can be approximated by summing the control run and

separate approximations from dmpdz and α:

φ(dmpdz ′, α ′, τcont, ke cont) ≈ φcont + φ(dmpdz ′, αcont, τcont, ke cont)

+ φ(dmpdzcont, α
′, τcont, ke cont) .

To minimize extrapolation, the field is only constructed at combinations of the points al-

ready sampled in the perturbed physics ensemble (see Table 4.1). The resulting field will have

dimension (latitude × longitude) and is labeled the PUP-cut-HDMR metamodel:

φ̃(µ′1k, µ
′
2k, . . . , µ

′
Nk) = φcont +

N∑
i=1

(
φik approx − φcont

)

= φcont +
N∑
i=1

( M∑
m=1

cimk EOFim

)
,

(4.5)

where equation 4.4 was substituted into the second line above. Note that since EOF calculations

are done relative to the control field, φcont must be subtracted for each approximation and then

added at the end. This control-centered approach has the benefit of being easily modified if the

modeler chooses to add more integrations at other parameter values. As before, N = 4 represents

the parameters in Table 4.1, and the value for k does not have to be uniform for the N parameters.
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(c) control minus obs

(a) control

(b) observations

mm day –1

mm day –1

P climatology for JJA

Figure 4.1: 1986–2005 P climatology during JJA for (a) the CESM1 control run, (b) observations, and (c)
control-minus-observations. Black contours show the 4 mm day−1 contour from the CESM1 control run in
(a) and (c), and for the observations in (b). Observed P data are from the GPCP version 2.2 data set.

4.4 Results and discussion

4.4.1 Sensitivity patterns for P

To simply the presentation of maps, JJA is used as the example season, though DJF and

annual sensitivity measures will be discussed later. Figures 4.1a,b display the JJA P climatology

for the control run and observations. Figure 4.1c shows the control-minus-observed climatology,

giving a sense of where CESM1 is over- and underestimating P. Note the excessive P on either side

of the equator in the central Pacific, as well as underestimated P in Latin and Central America,

more broadly across the Pacific cold tongue, and at midlatitudes. The Asian monsoon region and

the Indian Ocean are also notable in the magnitude and spatial complexity of P bias. For a related

discussion of parameter sensitivities in the historical climatologies, see Bernstein (2014). Figure
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(a) dmpdz (b) τ

(c) α (d) ke

mm day –1

High-minus-low parameter differences for P climatology

Figure 4.2: Differences in the 1986–2005 JJA P climatology for the highest-minus-lowest parameter values
(as noted in Table 4.1). Note that the low value used for dmpdz is 0 (so that this analysis includes bracketed
values in Table 4.1). This figure has been adapted from Bernstein (2014), her Fig. 3.2.1.2.

4.1c serves as a common example of GCM bias in the CMIP5 archive and highlights why parameter

optimization—with the hope of constraining this bias—is a worthwhile activity.

Figure 4.2 displays climatological P sensitivity across individual parameters in the perturbed

physics ensemble. These figures show the result of taking the P climatology for the lowest parameter

value and subtracting it from that for the highest parameter value (i.e., high-minus-low parameter

differences; see Table 4.1 for details). The areas that show the highest sensitivity are within zones

of deep convection (as visualized by the 4 mm day−1 control run climatology), as well as on these

margins and in the cold tongue region. The magnitude of the sensitivity is large (well over 3 mm

day−1 in certain regions), especially over the tropics, where deep convection plays a central role in

setting tropospheric temperature and moisture profiles.

P climatology PUPs across parameter axes

This perturbed physics ensemble lends itself well to a PUP analysis, and the first and

second EOF modes for all four parameters are displayed in Figs. 4.3 and 4.4. There is striking

similarity between the first mode for each parameter in Fig. 4.3 to its counterpart in Fig. 4.2.
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(a) dmpdz (70.0%) (b) τ (91.8%)

(c) α (80.6%) (d) ke (83.1%)

mm day –1

P climatology PUP mode 1

Figure 4.3: First mode from a PUP analysis applied to the 1986–2005 JJA P climatology across each
parameter axis separately. Percent variances accounted for by each mode are included on the maps.

(a) dmpdz (21.4%) (b) τ (3.7%)

(c) α (12.2%) (d) ke (9.8%)

mm day –1

P climatology PUP mode 2

Figure 4.4: Second mode from a PUP analysis applied to the 1986–2005 JJA P climatology across each
parameter axis separately. Percent variances accounted for by each mode are included on the maps.
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For all parameters except dmpdz, the first PUP captures over 80% of the variance in the model

sensitivity. This value is lower for dmpdz at 59.9%. The second EOF modes are shown in Fig.

4.4, and one can see that for dmpdz in particular, substantial P sensitivity is carried into the

second mode, explaining an additional 29.7% of its variance. This particular behavior for dmpdz

is associated with a strong nonlinearity that will be discussed below. The other three parameters,

in contrast, have comparatively weak signals in the second mode, capturing less than 10%. The

patterns for the third modes (not shown) are even smaller in magnitude and each capture around

5% or less of the variance.

Quadratic metamodel results

Transitioning from spatial maps of P sensitivity, we now focus on the global rmse of a given

P climatology relative to observations and reanalyses. Bernstein and Neelin (2015, submitted)

display the global rmse of P climatologies as a function of parameter value, and this information

is repeated in Fig. 4.5 (solid color lines). Note that the magnitude of error in the P climatology

can be decreased 10–20% simply by varying parameter values, and that in certain cases optimal

parameter values exist at the endpoints of the sampled parameter range.

Note that the rmse in Fig. 4.5 is an example of an objective function that describes some

aspect of model performance or error. In this chapter, we will use rmse and mean-square-error

(mse) relative to reanalyses or observations to objectively assess model performance in simulating

a given field. Multiobjective optimization entails the optimization of multiple objective functions

at once, and this will be discussed later.

In Fig. 4.5, the rmse exhibits a fairly linear dependence for some parameters (e.g., for τ

in Fig. 4.5b), though dmpdz and α show notable sensitivity and nonlinearity. The colored dashed

lines show the rmse reconstructed using the quadratic metamodel. The second-order metamodel

performs generally well and is able to reproduce the nonlinear nature of the rmse along the param-

eter axes, especially when the nonlinearity is low-order like that of α. Certain parameter ranges,

however, do not lend themselves well to the quadratic metamodel. This can be seen in Fig. 4.5b,

where the metamodel is unable to capture the precise characteristics of the rmse around τ = 175,

and also in Fig. 4.5a, which displays high sensitivity and nonlinearity in the low-end dmpdz (low
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entrainment) range.

Note here in Fig. 4.5a, the quadratic metamodel has been trained over the entire dmpdz

range. Looking more closely, the highest sensitivity where the metamodel has difficulty is in the

first two parameter values (0 and 0.08). The metamodel could also be trained over a shorter range

or “trust region” where the nonlinearity is more aptly described by a second-order metamodel.

Figure 4.6a compares the performance of a quadratic metamodel for dmpdz when trained over the

full parameter range (dashed line) or over the trust region excluding the first two values (dotted

line). Relatively speaking, when the metamodel fit includes the highly sensitive values at low

(c) (d)

(a) (b)

Global rmse values for P with metamodel reconstructions (mm day–1)

Figure 4.5: Solid colored lines show global rmse values for P climatologies (model-minus-observations) in
mm day−1, as a function of parameter value, for (a) dmpdz, (b) τ , (c) α, and (d) ke (see Table 4.1 for more
information). Dashed colored lines show the reconstruction of global rmse values by the quadratic metamodel,
fit over all parameter values in each case. The solid and dashed gray lines show rmse reconstructions using the
first two and first three EOF PUPs, respectively, and these are also done across all parameter values. Rmse
values are calculated relative to P observations in the GPCP version 2.2 data set. Error bars are estimated
by splitting the historical simulation into non-overlapping five-year chunks and taking the standard deviation
of their rmse values at each parameter value.
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(a)

(b)

Trust region versus entire dmpdz range

PUP-cut-HDMR with 1 through 4 EOFs

Figure 4.6: (a) and (b) as in Fig. 4.5a, with solid lines showing the full rmse across the dmpdz parameter
range. (a) shows a comparison between a quadratic metamodel fit over the entire dmpdz range (colored
dashed line) and a fit over the trust region, which excludes the first two dmpdz values (colored thick dotted
line). (b) shows a PUP-cut-HDMR fit over the entire dmpdz parameter range, showing the rmse reconstruc-
tion using the leading mode (gray dotted line), the first two leading modes (gray dashed line), the first three
leading modes (light gray solid line), and the first four leading modes (dark gray solid line).

entrainment, it is not able to capture the sensitivity in this region, and in such a case modifying

the fit to focus on the trust region yields a more successful metamodel.

PUP-cut-HDMR metamodel results

The gray lines in Fig. 4.5 show rmse reconstructions using the PUP-cut-HDMR metamodel

on each parameter axis. Gray dashed lines show the first two EOFs (M = 2) and gray solid lines

show the first three (M = 3). These reconstructions are quite adept at capturing the degree of

nonlinearity in the rmse curves, and in every case the first two modes perform better than the
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quadratic metamodel, while the first three modes are nearly indistinguishable from the full model

results.

Given the highly sensitive low-end range of dmpdz, it is useful to ask how it behaves for

each EOF in the PUP-cut-HDMR analysis. Figure 4.6b shows reconstructions of the global rmse

using anywhere from the first EOF to the first four EOFs. Using just the first mode (dotted line),

the PUP-cut-HDMR method is very poor at reconstructing global rmse, giving insight into the

failure of the quadratic metamodel over the full range in Fig. 4.6a. With the addition of the second

mode in Fig. 4.6b (dashed line), however, the performance of the PUP-cut-HDMR metamodel is

able to capture the strong sensitivity at low dmpdz values.

To get a sense of how nonlinear the contribution from each EOF is across the parameter axes,

Fig. 4.7 shows the seasonal breakdown for the first three modes. These projections are normalized

to carry P units of mm day−1, with a magnitude that translates to the relative contribution of the

individual EOFs, and with the zero line representing the control run. The behavior of individual

modes in Fig. 4.7 helps to understand the nonlinearity and performance of the metamodel in Fig.

4.6. Focusing on the first modes (Fig. 4.7 solid lines) for all seasons and parameters, one can

broadly see that they display varying degrees of nonlinearity. Sensitivity is highest for the dmpdz

parameter (top row of Fig. 4.7). The first modes show significant nonlinearity of what appears to

be fairly low order, which explains the similarity between the first mode in the PUP-cut-HDMR

metamodel (dotted gray lines in Fig. 4.6b) and the quadratic metamodel fit over the entire dmpdz

range (dashed colored lines in Fig. 4.6a). The second dmpdz modes in Fig. 4.7 highlight the

particularly sensitive and nonlinear form of the low-end range. The improved performance of PUP-

cut-HDMR relative to the quadratic metamodel in Fig. 4.6 is apparent here: PUP-cut-HDMR is

able to recover both the low- and high-end nonlinearities in the parameter dependence with as little

as two EOFs.

Figure 4.7 also gives insight into the contribution of each parameter value to the EOF modes

shown in Figs. 4.3 and 4.4. For example, the leading EOF for τ (second row of Fig. 4.7) shows

a fairly linear dependence across the range, implying variations in τ contribute to Fig. 4.3b in a

linear fashion. By contrast, the leading EOF for dmpdz, associated with Fig. 4.3a, begins with a

strong and high-gradient influence at low dmpdz values, increases monotonically through its range
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(c) α

(d) ke

(a) dmpdz

(b) τ

Projections of EOF modes onto P across parameter axes (mm day–1)

Figure 4.7: Projections of the first three EOFs for each variable onto the difference between global P at
a given parameter value and the control run for that parameter. Specifically, this projection calculation is
〈P(µ′i) · PEOF〉 / 〈PEOF〉, with the term in angle brackets 〈·〉 representing a spatial average. Units for vertical
axes are in mm day−1. Units on horizontal axes are as in Table 4.1.
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with a low-order structure, and tapers off at the high end. To capture the additional and highly

nonlinear structure in the low-end dmpdz range seen in Fig. 4.6, the second EOF is necessary,

which is notably nonlinear at low dmpdz in Fig. 4.7. A modeler interested in which regions or

climate features are most impacted by parameter variations could use Figs. 4.3 and 4.4 to build

intuition about the spatial structure of the sensitivity and then use Fig. 4.7 to evaluate the form

of the nonlinearity and the parameter value ranges that are most influential.

4.4.2 Sensitivity patterns for TS

In the process of parameter tuning and optimization, the desired outcome is a set of optimal

parameter values that minimize some objective function for the fields and variables of interest. Here,

global rmse has been chosen as the objective function, and P has been the focus so far. Monthly

TS climatologies are now examined, and a parallel set of figures is produced for this second field.

degrees Celsius

degrees Celsius

TS climatology for JJA

(c) control minus reanalysis

(a) control

(b) reanalysis

Figure 4.8: 1986–2005 TS climatology during JJA for (a) CESM1 control run, (b) reanalysis, and (c)
control-minus-reanalysis. Skin temperature reanalysis data are from the NCEP-DOE Reanalysis version 2.
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Figure 4.8 shows control, observed, and control-minus-observed TS climatology for JJA.

The control shows a general warm bias of around one degree Celsius or less over the oceans and

slightly higher warm biases over land. Notably large positive TS biases exist along the west coasts

of North and South America as well as southern Africa and interior parts of Asia including the

Tibetan Plateau region. These positive land biases are often collocated with adjacent negative

biases and appear to coincide with large mountain ranges (Himalayas, Rockies, and Andes). Areas

with significant cold biases include the north Pacific and high southern latitudes.

The high-minus-low parameter difference maps for TS during JJA are shown in Fig. 4.9.

Besides the tropical Pacific increase in TS for dmpdz in Fig. 4.9a, increasing any of these parameter

values tends to decrease TS in the JJA season, and land areas with complex topography again show

the largest magnitudes of TS uncertainty. Comparing these difference maps to Fig. 4.2 for P, one

can see that TS uncertainty is not collocated with areas of largest P uncertainty, which tend to occur

in the tropics within regions of deep convection. Instead, the largest magnitude TS uncertainties

occur mostly on land and without preference for latitude. Note that the parameters this ensemble

has sampled are part of the deep convection scheme, which is not directly related to TS, highlighting

the ease with which sub-grid scale parameterization uncertainty can propagate to other components

of a coupled GCM.

Figures 4.10 and 4.11 show the first and second EOFs from the PUP analysis applied to

TS JJA climatologies. As noted for P climatology PUPs, the spatial patterns for the first TS mode

are very similar to the high-minus-low differences in Fig. 4.9. The first modes for τ , α, and ke

capture about 80–90% of the variance, and dmpdz falls in slightly lower at 72%. The second mode

captures around 10% or less for all variables except dmpdz, which is higher at 18%. This behavior

is similar to that for P climatology PUPs: a significant amount of the uncertainty is captured in

the first mode, though the highly nonlinear low-end range for dmpdz causes a notable amount of

sensitivity to spill over into the second mode.

Metamodel reconstruction of global rmse for TS is shown in Fig. 4.12. As in the P rmse

analysis, parameter dependence for TS can be highly nonlinear in certain ranges, such as low-end

dmpdz values. The quadratic metamodel in Fig. 4.12 (dashed colored lines) is adequate in some

parameter ranges but fails to reconstruct global rmse error in some of the same places where it
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(a) dmpdz (b) τ

(c) α (d) ke

degrees Celsius

High-minus-low parameter differences for TS climatology

Figure 4.9: Differences in the 1986–2005 JJA TS climatology for the highest-minus-lowest parameter values
(as noted in Table 4.1). Note that the low value used for dmpdz is 0 (so that this analysis includes bracketed
values in Table 4.1).

fails for P. Also note that the minima of the rmse curves change between TS and P, leading to

contradictions over which parameter values will optimize model performance for those fields. For

example, if a modeler is interested in tuning dmpdz in order to minimize global rmse for P and TS

simultaneously, the DJF season leads to a tradeoff where minimum rmse values for P are in the

higher end of the range (dmpdz ≈ 1.0–1.5), but minimum rmse values for TS draw the modeler

toward the lower end of the range (dmpdz ≈ 0.25–0.50). Therefore tradeoffs are encountered even

when considering a single parameter.

The PUP-cut-HDMR metamodel reconstructed using two EOFs (gray dashed line) performs

as well or better than the quadratic metamodel, confirming that the majority of quadratic parameter

dependence is captured by the first PUP modes in Fig. 4.10. However, this metamodel still has

issues in certain parameter ranges, including most of the intermediate τ and α values. The PUP-

cut-HDMR metamodel that includes the first three EOFs (gray solid line) is notably better in these

ranges, though it still shows some lack of skill for α around 0.25 and 0.5.
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(a) dmpdz (72.0%) (b) τ (82.7%)

(c) α (91.0%) (d) ke (82.2%)

degrees Celsius

TS climatology PUP mode 1

Figure 4.10: First mode from a PUP analysis applied to the 1986–2005 JJA TS climatology across each
parameter axis separately. Percent variances accounted for by each mode are included on the maps.

(a) dmpdz (18.2%) (b) τ (9.7%)

(c) α (4.4%) (d) ke (10.6%)

degrees Celsius

TS climatology PUP mode 2

Figure 4.11: Second mode from a PUP analysis applied to the 1986–2005 JJA TS climatology across each
parameter axis separately. Percent variances accounted for by each mode are included on the maps.
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4.4.3 P and TS error surfaces as a function of two parameters

Comparing Figs. 4.5 and 4.12, it is obvious that two different climate fields will often have

minima that occur at different parameter values. This makes the process of model tuning and

optimization difficult, as changing a parameter value can improve model performance in one field

but degrade it in another, and this is strongly dependent on region and season. Until now, we

have looked at sensitivity taken one parameter axis at a time, but in a N = 4 parameter space

sampled at density k, there are k4 possible combinations for parameter values. The metamodels

in this chapter can be used to approximate the model response to any of these parameter value

(c) (d)

(a) (b)

Global rmse values for TS with metamodel reconstructions (degrees Celsius)

Figure 4.12: Solid colored lines show global rmse values for TS climatologies (model-minus-reanalysis) in
degrees Celsius, as a function of parameter value, for (a) dmpdz, (b) τ , (c) α, and (d) ke (see Table 4.1 for more
information). Dashed colored lines show the reconstruction of global rmse values by the quadratic metamodel,
fit over all parameter values in each case. The solid and dashed gray lines show rmse reconstructions using the
first two and first three EOF PUPs, respectively, and these are also done across all parameter values. Rmse
values are calculated relative to skin temperature reanalysis data from the NCEP-DOE Reanalysis version
2. Error bars are estimated by splitting the historical simulation into non-overlapping five-year chunks and
taking the standard deviation of their rmse values at each parameter value.
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(c) (d)

(a) (b)

P climatology rmse surface for dmpdz versus α

TS climatology rmse surface for dmpdz versus α

P (JJA)

TS (JJA)

P (DJF)

TS (DJF)

Figure 4.13: Rmse values as a function of dmpdz (vertical axis) and α (horizontal axis). Bivariate spline in-
terpolation was used to extrapolate a surface extending from along-axis rmse values from the PUP-cut-HDMR
metamodel (using the first three EOFs). This was accomplished using the Scipy ‘SmoothBivariateSpline’
class for surface interpolation. (a,b) DJF and JJA surfaces for P rmse values. (c,d) DJF and JJA surfaces
for TS rmse values. P units (top row) are in mm day−1, and TS units (bottom row) are in degrees Celsius.
Blue and red lines show control axes for the α and dmpdz parameters, colored to match seasonal conventions
in other figures. Contours vary in these plots but the light gray contour lines are spaced at a constant value
of 0.05 mm day−1 or degrees Celsius. A colored x is placed by eye at the approximate locations of rmse
minima.

combinations and, in the process, develop an understanding of the behavior of a field through its

parameter space.

For the sake of illustration, we next vary two parameters at a time while holding the other

two at control values. The two-dimensional rmse surface that results is in reality a four-dimensional

rmse surface sliced at the control value by the two-dimensional plane of the parameters that are

being varied. Note this is an estimate done without explicit interaction terms, as discussed earlier;

while there are caveats to this approximation, we note there is already rich and nonlinear behavior
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in the metamodel that is worth investigating.

Figure 4.13 shows two-dimensional rmse surfaces for global P and TS fields, calculated

using PUP-cut-HDMR while varying the α and dmpdz parameters. To calculate these results,

the PUP-cut-HDMR metamodel was applied to α and dmpdz separately, and model fields were

reconstructed at all possible combinations of the sampled dmpdz and α values in Table 4.1 (8 × 4

= 40 total combinations). Global rmse values were calculated, and the resulting surfaces were then

smoothed using cubic bivariate spline interpolation to a 10 × 10 mesh. Blue and red lines represent

the parameter axes for DJF and JJA, respectively; the control run is located at the intersection of

these lines.

In both seasons and for both P and TS, moving from the control point to the lowest value on

these rmse surfaces represents an improvement in model error by as much as 10%. Following along

the parameter axes, the rmse values correspond to those seen for dmpdz and α in Figs. 4.5 and

4.12. Darker regions on these surfaces indicate lower rmse values, and for a modeler whose goal is

to minimize some objective function or measure of model error, preferable parameter combinations

lie in the darker regions.

Note that the details of the surface change both as a function of climate field (P versus TS)

and season (DJF versus JJA). Such complex parameter sensitivity gives tradeoffs when attempting

to optimize two fields at once. For example, the optimal α value for DJF P climatology (Fig. 4.13a)

lies in the middle of the α range, but optimizing TS instead would draw α toward lower values. This

type of contradiction is encountered frequently, and the tradeoffs involved in minimizing more than

one objective function simultaneously are apparent in this two-dimensional illustration. Another

noteworthy point is that the control run at the intersections of lines does not coincide with the lowest

rmse point on these surfaces as approximated by each colored x. While only two parameters and

two fields are considered here, this distance between the control and the minima on these surfaces

highlight imperfectly constrained parameterizations in this GCM. Finally, high rmse gradients on

these surfaces represent the most sensitive and nonlinear ranges. These are areas for the modeler

to avoid whenever possible, bearing in mind tradeoffs from different objective functions.
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(c) DJF

(d) JJA

(a) DJF (b) JJA

TS versus P mean-square-error

TS versus P mean-square-error (zoomed with Pareto front)

Figure 4.14: (a,b) DJF and JJA scatter plots of mse for TS versus P relative to their respective reanalysis
and observational data sets, calculated for the global domain. Control points are indicated with stars.
Yellow-orange-red squares represent the mse of each of 1000 parameter combinations (as calculated from
Table 4.1) in the ensemble using PUP-cut-HDMR. Shading indicates the Euclidean distance (as a function
of four parameters) to the control, normalized to have a maximum of 1 (dark red) and minimum of 0 (light
yellow). (c,d) Same as top row, but zoomed closer, with colors now indicating along-axis points. The symbols
in (c,d) represent distinct parameters according to the legend, with shading giving insight into its value. If a
symbol has a darker shade than the legend, the parameter value is lower than its control value. If a symbol
has a lighter tint than the legend, the parameter value is higher than its control value. Squares are plotted
as gray to increase visibility for along-axis values. Vertical axis units are [degrees Celsius]2, and horizontal
axis units are mm2 day−2. Red circles are included in (c,d) for the value corresponding to an on-axis run
with α = 0.25. Purple arrows are included in (c,d) for the value corresponding to an on-axis run with ke = 5
(see Table 4.1 for units).

4.4.4 Visualizing tradeoffs with Pareto fronts for global fields

The surfaces illustrated in Fig. 4.13 show the contradictions that often arise in the process of

multiobjective optimization. Figure 4.13 allows one to visualize these tradeoffs when two parameters

are varied at once, though it is more useful to visualize these tradeoffs when all N = 4 parameters
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are varied. Figure 4.14 shows results from the PUP-cut-HDMR model calculated for all possible

parameter combinations. Each point in Figs. 4.14a,b represents a unique parameter combination,

µ = (dmpdz, τ, α, ke), from a set of (8 × 5 × 5 × 5) = 1000 total points (see Table 4.1). These

points can be viewed as projections of high-dimensional objective function vectors onto the P

and TS mse plane. Colors represent the Euclidean distance in parameter space between a point’s

parameter values and the control values; the distances are normalized to have a maximum of one

(light yellow) for the combination of all parameters at their highest endpoints, and zero (dark red)

for all parameters at the control. The control integration itself is plotted as a star.

The edge of the cloud of points that lies closest to the origin in Figs. 4.14a,b represents

a Pareto front. This is a boundary in the objective function space where improvement in one

objective function comes at the cost of degradation in another, and points on this boundary together

represent the “Pareto optimal” solutions. Here, the Pareto front is a line, but in reality it is a high-

dimensional surface dictated by the number of objective functions being evaluated. In other words,

the Pareto fronts here are visualized on pairs of objective function dimensions in what could be a

much higher-dimensional space.

Figures 4.14c,d show a zoomed version of Figs. 4.14a,b, and schematic Pareto fronts have

been drawn in light orange. Using these as a guide, the modeler can visualize when a given

parameter value combination will improve the objective function (move the point closer to the

Pareto front), or when there are solely tradeoffs to be considered (move the point along the Pareto

front). Furthermore, one can estimate the percent improvement that would be obtained by updating

from the control run to a new set of parameter values. In the case of these global mse measures,

some positive news to the modeler is worth noting. First, the control integration sits near the edge

of the Pareto front in DJF and fairly close in JJA, indicating that it is well tuned to observations

at the global scale. Second, the points in Figs. 2.14a,b that are farthest from the Pareto front are

also farthest from the control parameters (i.e., they tend to be more yellow than red). This latter

observation implies that optimal parameter values for a model at the global scale will be within

the vicinity of the control values, though specifics will differ based on objective functions.

To provide a practical example, we look more closely at Fig. 4.14d. We can start with the

control run and ask what parameter changes might be made to improve the objective functions
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both for P and for TS. In this case, updating ke from 1 to 5 would accomplish this by placing the

new point at the light purple diamond that sits on the Pareto front (as indicated by a purple arrow).

This would lower both the P and TS error and shift the model closer to the Pareto front. Making

this change, however, would cause a small increase in P mse during DJF by as much as 10%. This

can can be seen in Fig. 4.14c, where the control run is located closer to the Pareto front than the

purple diamond to its right. While the changes to model performance are by mse measures modest,

the modeler could use this information together with other variables and objective functions—as

well as empirical data for the parameters being changed—to make an informed decision on whether

it is a sensible parameter update.

4.4.5 Visualizing tradeoffs and Pareto fronts for the tropical Pacific region

Until now, objective functions have been applied over a global domain, but modelers are also

typically interested in optimizing regional fields. Figure 4.15 shows rmse surfaces for the domain

40◦S–40◦N and 120◦E–200◦E. This encompasses the tropical (and subtropical) Pacific Ocean and

includes the intertropical convergence zone (ITCZ) and south Pacific convergence zone (SPCZ).

This particular perturbed physics ensemble is therefore quite relevant given the importance of deep

convection and moist processes in this region. Comparing Figs. 4.15a,b with those for the global

analysis in 4.13, one can see that the tropical Pacific rmse is generally higher for P (given the sheer

magnitude of P in the tropics) and lower for TS (since high southern latitudes showing large bias in

Fig. 4.8c have been excluded from the domain). The shapes of the rmse surfaces and the locations

of minima are similar across parameter and season, and the distance between each origin and the

red or blue x gives a visual sense of how much the model can be improved in these two dimensions,

typically between 5 and 10%.

Figure 4.16 shows the TS versus P mse scatter plot for all parameter combinations in the

tropical Pacific. Note in Figs. 4.16a,b that the control run for the tropical Pacific domain lies slightly

off the Pareto fronts in DJF and JJA for this region. This stands in contrast to the global analysis

in Fig. 4.14, likely because the model has been historically tuned with global measures in mind.

This also gives additional information to modelers who for many purposes want to reduce regional

model error, especially with regard to P and the hydrological cycle. Approximate Pareto fronts are
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(c) (d)

(a) (b)

P climatology rmse surface for dmpdz versus α over tropical Pacific

TS climatology rmse surface for dmpdz versus α over tropical Pacific

P (JJA)

TS (JJA)

P (DJF)

TS (DJF)

x x

Figure 4.15: Rmse values as a function of dmpdz (vertical axis) and α (horizontal axis). Bivariate spline in-
terpolation was used to extrapolate a surface extending from along-axis rmse values from the PUP-cut-HDMR
metamodel (using the first three EOFs). This was accomplished using the Scipy ‘SmoothBivariateSpline’
class for surface interpolation. (a,b) DJF and JJA surfaces for P rmse values. (c,d) DJF and JJA surfaces
for TS rmse values. P units (top row) are in mm day−1, and TS units (bottom row) are in degrees Celsius.
Blue and red lines show control axes for the α and dmpdz parameters, colored to match seasonal conventions
in other figures. Contours vary in these plots but the light gray contour lines are spaced at a constant value
of 0.05 mm day−1 or degrees Celsius. A colored x is placed by eye at the approximate locations of rmse
minima.

drawn in Figs. 4.16c,d, and it is clear that several possible parameter combinations distinct from

the control values or other sampled integrations can help can help improve model performance in

this region.

Focusing on Figs. 4.16c,d, it is useful to look for parameter changes that would move the

model closer to the Pareto front in this regional domain. This is true for both DJF and JJA if we

choose the light blue upside down triangle (circled in red), which corresponds to an increase in α

from 0.1 to 0.25. Comparing this to the global domain, Figs. 4.14c,d also show that this α update
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(a) DJF (b) JJA

TS versus P mean-square-error over tropical Pacific

TS versus P (zoomed with Pareto front) over tropical Pacific

(c) DJF
(d) JJA

Figure 4.16: (a,b) DJF and JJA scatter plots of mse for TS versus P relative to their respective reanalysis
and observational data sets, calculated for the tropical Pacific domain. Control points are indicated with
stars. Yellow-orange-red squares represent the mse of each of 1000 parameter combinations (as calculated
from Table 4.1) in the ensemble, calculated using PUP-cut-HDMR. Shading indicates the Euclidean distance
(as a function of four parameters) to the control, normalized to have a maximum of 1 (dark red) and minimum
of 0 (light yellow). (c,d) Same as top row, but zoomed closer, with colors now indicating along-axis points.
The symbols in (c,d) represent distinct parameters according to the legend, with shading giving insight into
its value. If a symbol has a darker shade than the legend, the parameter value is lower than its control value.
If a symbol has a lighter tint than the legend, the parameter value is higher than its control value. Squares
are plotted as gray to increase visibility for along-axis values. Vertical axis units are [degrees Celsius]2, and
horizontal axis units are mm2 day−2. Red circles are included in (c,d) for the value corresponding to an
on-axis run with α = 0.25.

causes the model to move closer to the Pareto front during JJA and along the Pareto front during

DJF. This result, which requires only changing one parameter, could improve model performance

in these objective error measures in the tropical Pacific domain by 10–15% for P and by 5–10% for

TS, with a modest improvement globally as well. Again, a modeler would at this point be expected

to bring in relevant information that helps inform whether an α update is sensible. For example,
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making informed decisions about α based on knowledge of convective physics and incorporating

observations when available will help determine whether the update is physically plausible.

As a final point, we focus on the Pareto front drawn in Fig. 4.16d. At the very corner of

this front, one can see three separate parameter combinations from the metamodel (gray squares)

that have a notable separation from other points in this scatter plot. From the figure itself (i.e., the

gray shading), the parameter values that correspond to these points are not obvious, but it would

be fairly straightforward to construct an interactive plot (or a very basic graphical user interface)

that allows the user to click on these squares and obtain the parameter values for them. Armed

with this knowledge, a modeler could then integrate the GCM using these parameter values and

others nearby, and these additional points could be fed into the metamodel to check its predictive

capacity and better constrain it in the vicinity of the Pareto front.

4.5 Summary and conclusions

An existing perturbed physics ensemble is used to explore several key aspects of parameter

sensitivity for precipitation (P) and surface temperature (TS). Perturbed physics ensembles isolate

uncertainties in sub-grid scale physics and parameterizations in a global climate model (GCM),

and the ensemble used here consists of integrations in which four influential parameters in the deep

convection scheme are systematically sampled.

For a GCM, varying N parameters each at a density k would require kN total simulations

to fully sample the parameter space. Such a calculation is unfeasible, and metamodeling is used as

a cost-efficient alternative. A quadratic metamodel calculated over seasonal P and TS fields proves

adept at capturing parameter sensitivity over most ranges of the sampled parameters, though it fails

over highly sensitive regions, especially those associated with low entrainment fraction parameter

values. This can in part be remedied by training the metamodel over a trust region that excludes

these sensitive points.

An alternative metamodel is developed using leading modes from uncertainty pattern tech-

niques developed in Chapter 3 in combination with a metamodeling approach from the engineering

literature. We label this the PUP-cut-HDMR metamodel and show that it is able to capture the

highly sensitive parameter dependence where the quadratic metamodel fails, serving as a skill-
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ful alternative when parameter sensitivity is highly nonlinear. This metamodel is then used to

extrapolate off parameter axes and sample the full parameter space in the model ensemble.

We demonstrate the utility of this metamodel by analyzing objective functions (model

root-mean-square error and mean-square error relative to observations) over the global domain

and the tropical Pacific. This is first illustrated as a function of two parameters at a time and

gives quantitative information on how the model error varies in parameter space. We then evaluate

combinations of parameters in objective function space, yielding information about what parameter

combinations can improve multiple objective functions simultaneously. The concept of a Pareto

front is used to visualize tradeoffs where updating parameterizations can yield improvement in

one model field but degradation in another. We discuss particular cases where updating parameter

values based on global and regional objective functions can result in measurable model improvement.

Exploring how a model and its fields behave in parameter space is an important step in

model tuning and optimization. The contributions here provide quantitative and visualization tools

for understanding changes in GCM fields as a function of multiple parameters. The type of analysis

shown here for GCM performance in current climate could in future work be extended to include

global warming simulations. We anticipate that constraining current GCMs by observations will

not only be critical to improving their simulation of the current climate but may also help narrow

the range of uncertainty seen in end-of-century projections.
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Knutti, R., and J. Sedlácek, 2013: Robustness and uncertainties in the new cmip5 climate model
projections. Nature Climate Change, 3 (4), 369–373.

Kumar, S., V. Merwade, J. L. Kinter, and D. Niyogi, 2013: Evaluation of temperature and precipi-
tation trends and long-term persistence in CMIP5 twentieth-century climate simulations. Journal
of Climate, 26 (12), 4168–4185.

Langenbrunner, B., and J. D. Neelin, 2013: Analyzing ENSO teleconnections in CMIP models as
a measure of model fidelity in simulating precipitation. Journal of Climate, 26 (13), 4431–4446.

Langenbrunner, B., J. D. Neelin, B. R. Lintner, and B. T. Anderson, 2015: Patterns of precipitation
change and climatological uncertainty among CMIP5 models, with a focus on the midlatitude
Pacific storm track. Journal of Climate, 28, 7858–7872.

Langford, S., S. Stevenson, and D. Noone, 2014: Analysis of low-frequency precipitation variability
in cmip5 historical simulations for southwestern north america. Journal of Climate, 27 (7),
2735–2756.

Latif, M., K. Sperber, J. Arblaster, P. Braconnot, D. Chen, A. Colman, U. Cubasch, C. Cooper,
P. Delecluse, D. Dewitt, L. Fairhead, G. Flato, T. Hogan, M. Ji, M. Kimoto, A. Kitoh, T. Knut-
son, H. Le Treut, T. Li, S. Manabe, O. Marti, C. Mechoso, G. Meehl, S. Power, E. Roeckner,
J. Sirven, L. Terray, A. Vintzileos, R. Voß, B. Wang, W. Washington, I. Yoshikawa, J. Yu,
and S. Zebiak, 2001: Ensip: the el niño simulation intercomparison project. Climate Dynamics,
18 (3-4), 255–276.

Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency
changes in the circulation pattern. Journal of the Atmospheric Sciences, 45 (19), 2718–2743.

Li, G., C. Rosenthal, and H. Rabitz, 2001: High dimensional model representations. The Journal
of Physical Chemistry A, 105 (33), 7765–7777.

Li, G., and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles.
Geophysical Research Letters, 39 (22), L22 703.

Li, G., and S.-P. Xie, 2013: Tropical biases in cmip5 multimodel ensemble: The excessive equatorial
pacific cold tongue and double itcz problems. Journal of Climate, 27 (4), 1765–1780.

Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere
feedback analysis. Journal of Climate, 20 (18), 4497–4525.

Linkin, M. E., and S. Nigam, 2008: The north pacific oscillation–west pacific teleconnection pattern:
Mature-phase structure and winter impacts. Journal of Climate, 21 (9), 1979–1997.

Lintner, B. R., M. Biasutti, N. Diffenbaugh, J.-E. Lee, M. Niznik, and K. Findell, 2012: Amplifica-
tion of wet and dry month occurrence over tropical land regions in response to global warming.
Journal of Geophysical Research, 117 (D11106).

Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo, 2009: The role of atmosphere feedbacks during
ENSO in the CMIP3 models. Atmospheric Science Letters, 10 (3), 170–176.

106



Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the hadley cell under global warming.
Geophysical Research Letters, 34 (6), L06 805.

Ma, J., and S.-P. Xie, 2012: Regional patterns of sea surface temperature change: A source of
uncertainty in future projections of precipitation and atmospheric circulation. Journal of Climate,
26 (8), 2482–2501.

Mahlstein, I., R. W. Portmann, J. S. Daniel, S. Solomon, and R. Knutti, 2012: Perceptible changes
in regional precipitation in a future climate. Geophysical Research Letters, 39 (5), L05 701.

Maloney, E. D., S. J. Camargo, E. Chang, B. Colle, R. Fu, K. L. Geil, Q. Hu, X. Jiang, N. Johnson,
K. B. Karnauskas, J. Kinter, B. Kirtman, S. Kumar, B. Langenbrunner, K. Lombardo, L. N.
Long, A. Mariotti, J. E. Meyerson, K. C. Mo, J. D. Neelin, Z. Pan, R. Seager, Y. Serra, A. Seth,
J. Sheffield, J. Stroeve, J. Thibeault, S.-P. Xie, C. Wang, B. Wyman, and M. Zhao, 2014:
North american climate in CMIP5 experiments: Part III: Assessment of Twenty-first Century
projections. Journal of Climate, 27 (6), 2230–2270.

Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of co2

concentration in the atmosphere. Journal of Geophysical Research: Oceans, 85 (C10), 5529–
5554.

Manabe, S., and R. T. Wetherald, 1980: On the distribution of climate change resulting from an
increase in co2 content of the atmosphere. Journal of the Atmospheric Sciences, 37 (1), 99–118.

Mechoso, C. R., A. W. Robertson, N. Barth, M. K. Davey, P. Delecluse, P. R. Gent, S. Ineson,
B. Kirtman, M. Latif, H. L. Treut, T. Nagai, J. D. Neelin, S. G. H. Philander, J. Polcher, P. S.
Schopf, T. Stockdale, M. J. Suarez, L. Terray, O. Thual, and J. J. Tribbia, 1995: The seasonal
cycle over the tropical pacific in coupled ocean–atmosphere general circulation models. Monthly
Weather Review, 123 (9), 2825–2838.

Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh,
R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. Weaver, and Z.-C.
Zhao, 2007: Climate change 2007: The physical science basis. Contribution of Working Group
I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change., chap.
Global climate projections. Cambridge University Press.

Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipi-
tation simulations relative to satellite-based gauge-adjusted observations. Journal of Geophysical
Research: Atmospheres, 119 (4).

Merryfield, W. J., 2006: Changes to enso under co2 doubling in a multimodel ensemble. Journal
of Climate, 19 (16), 4009–4027.
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multi-model study. Ocean Science, 1 (2), 81–95.

Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in
the Pacific: Implications for ENSO. Journal of Climate, 16 (16), 2668–2675.

110



von Storch, H., and F. W. Zwiers, 1999: Statistical analysis in climate research. Cambridge Uni-
versity Press.

Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the
northern hemisphere winter. Monthly Weather Review, 109 (4), 784–812.

Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch,
1998: On the structure and evoluation of ENSO-related climate variability in the tropical Pacific:
Lessons from TOGA. Journal of Geophysical Research, 103 (C7), 14 241–14 259.

Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime
sea surface temperature and 500-mb height anomalies. Journal of Climate, 5 (6), 561–576.

Wang, G. G., and S. Shan, 2006: Review of metamodeling techniques in support of engineering
design optimization. Journal of Mechanical Design, 129 (4), 370–380.

Weare, B., 2013: El niño teleconnections in cmip5 models. Climate Dynamics, 41 (7-8), 2165–2177.

Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track
variability and their relationship to the background flow*. Journal of the Atmospheric Sciences,
67 (5), 1420–1437.

Whitaker, J. S., and K. M. Weickmann, 2001: Subseasonal variations of tropical convection and
week-2 prediction of wintertime western north american rainfall. Journal of Climate, 14 (15),
3279–3288.

Wilks, D. S., 2011: Statistical methods in the atmospheric sciences, International geophysics series,
Vol. 100. 3rd ed., Academic Press.

Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge
observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteo-
rological Society, 78 (11), 2539–2558.

Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr sst normals during
1871–2000. Journal of Climate, 16 (10), 1601–1612.

Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century
climate. Geophysical Research Letters, 32 (18), L18 701.

Yin, L., R. Fu, E. Shevliakova, and R. Dickinson, 2013: How well can cmip5 simulate precipitation
and its controlling processes over tropical south america? Climate Dynamics, 41 (11-12), 3127–
3142.

Zhang, C., 2001: Double ITCZs. Journal of Geophysical Research: Atmospheres, 106 (D11),
11 785–11 792.

Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: Enso-like interdecadal variability: 1900–93.
Journal of Climateou, 10 (5), 1004–1020.

Zheng, M., E. K. M. Chang, and B. Colle, 2013: Ensemble sensitivity tools for assessing extraopical
cyclong intensity and track predictability. Weather and Forecasting, 1133-1156.

111


	Introduction
	Background and overview
	Other work in characterizing the simulation of climatology and climate change projections in multi-model ensembles
	The North American climate in CMIP5 simulations
	California winter P change in the CMIP3 and CMIP5 ensembles


	Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation
	Abstract
	Introduction
	Datasets and analysis
	Data
	Analysis

	Evaluating modeled patterns and amplitudes of P teleconnections
	Teleconnection patterns resolved via linear regression and rank correlation
	Regional model disagreement
	Taylor diagram analysis of modeled teleconnections
	Teleconnection amplitude in major impact regions

	Sign agreement plots in ENSO teleconnections, and an argument for agreement plots of P change in global warming scenarios
	Discussion
	Summary and conclusions

	Patterns of precipitation change and climatological uncertainty among CMIP5 models, with a focus on the midlatitude Pacific storm track
	Abstract
	Introduction
	Data, methods, and terminology
	CMIP5 data
	Methods
	Principcal Uncertainty Pattern (PUP) terminology

	End-of-century P changes in the CMIP5 ensemble
	Regional PUPs of P change disagreement
	Criteria for selecting regional PUP domains
	Regional PUPs using EOF analysis

	Uncertainty in P change in the midlatitude Pacific storm track domain
	Storm track P change PUPs and associated uncertainties in circulation changes
	Internal variability versus intermodel uncertainty
	Extension and shift modes from MCA

	Multivariate PUPs for P and surface temperature
	Patterns of climatological uncertainty and parallels to P change PUPs
	Summary and conclusions

	Supplementary material
	End-of-century P changes as a percent of the climatology in CMIP5
	Methods in more detail
	EOF analysis for single variables
	MCA for coupled modes of intermodel disagreement

	Global PUPs of P change disagreement
	Intermodel disagreement versus internal model variability
	EOFs of P change as a percent of the base period climatology
	Rotated EOFs

	Testing the sensitivity of PUPs to removal of model outliers
	Relationships between P and the U200 jet

	Identifying leading sensitivity patterns in a perturbed physics ensemble, and using these to explore the parameter dependence of climatological precipitation
	Abstract
	Introduction
	Data
	Perturbed physics ensemble
	Observational and reanalysis data sets

	Methods
	PUP calculations
	Quadratic metamodel
	Cut-HDMR
	PUP-cut-HDMR metamodel

	Results and discussion
	Sensitivity patterns for P
	Sensitivity patterns for TS
	P and TS error surfaces as a function of two parameters
	Visualizing tradeoffs with Pareto fronts for global fields
	Visualizing tradeoffs and Pareto fronts for the tropical Pacific region

	Summary and conclusions

	Bibliography



