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LBL-8928 

Warren M. Garrison 

ABSTRACT 

An important source of information on :he question of whether 

or not toxic or other deleterious substances are formed in the 

radiation sterilization of foods Is the chemical study of reaction 

products and reaction mechanisms in the radiolysis of individual 

food components. The present evaluation of the radiation chemistry 

of amino acids, peptides and proteins outlit.es the various radiation-

induced processes which lead to amino acid degradation and to the 

synthesis of amino acid derivatives of higher molecular weight. Among 

the latter are the a.a'-diaraino dicarboxylic adds which are formed as 

major products in the radiolysis of peptides both in aqueous solution 

and in the solid state. The a,a1-diamino acids are of particular 

interest as irradiation products because they represent a class of 

compounds not normally encountered in plant and animal protein 

sources. Such compounds have, however, been isolated from certain 

types of bacteria and pathogenic toxins. All of the available data 

strongly suggest that the a,a'-diamino acids are produced in 

significant yield in the radiation sterilization of high protein 

foods. The Importance of initiating extensive chemical and bio­

logical studies of these and of other high molecular weight products 

in irradiated food is emphasized. N O T I C E 

Thia report w u prepared u in account of work 
aponsored by dw United States Government. Nettie* the 
United Statei not the United Slates Department of 
Energy, nor m y of their employees, nor any of their 
conlraciora, eubcontractars, or their employee!, makes 
any warranty, exprela or implied, or assumes any legal 
liability or retponslbilily f.-.r the accuracy, compteteneu 
at usefulness af any tnfohnaiion, apparatus, product cr 
process disclosed, or rep,*aenu thai lis use would not 
Infringe privately owned lights. 

ttmMi&uiuw w tm uooumwT is u«u«msi»i 

http://outlit.es


1 

THE RADIATION CHEMISTRY OF AMINO ACIDS, PEPTIDES AND PROTEINS IN 

RELATION TO THE RADIATION STERILIZATION OF HIGH-PROTEIN FOODS 

t Warren M. Garrison 
Materials and Molecular Research Division 

Lawrence Berkeley Laboratory, University of California 
Berkeley, California 94720 

1. Introduction 

The use of ionizing radiation for the preservation of foods offers 

extraordinary possibilities for greatly increasing the availability of 

foodstuffs throughout the world. Broad economic and social advantages 

would be derived from the development of a successful food irradiation 

technology. 

In recent years it has been shown that the radiation sterilization 

of meats in the frozen state in the absence of oxygen yields products with 

essentially the same taste, aroma and color as the unirradiated samples. ' 

The question of the wholesomeness of irradiated high-protein foods is 

receiving careful consideration. Extensive biological testing of the 

nutritional and toxicological aspects of the holesomeness problem are in 
1-4 progress in a number of countries. 

Chemical identification of products formed in the radiolysis of 

food constituents offers an important potential source of information on 

the question of whether or not toxic or other deleterious compounds are 

formed. Major chemical components of meat include water, protein and 

lipid in the approximate percentages of 65, 25 and 15 percent respectively. 

Present address: P. 0. Box 744, Alamo CA 94507 
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Radiation chemical change in the protein and lipid fractions 

from energy absorbed directly, in the organic component and from the in­

direct action of reactive radical species formed in the radiation decom­

position of water. We review here the radiation chemistry of amino acids, 

peptides and protein in aqueous solution and in the solid state with 

particular reference to the subject of product identification. 

Although the concentration of free amino acids in biological 

tissue is relatively low, we include a discussion of their radiation chem­

istry because such studies have provided basic information in the develop­

ment of our understanding of the more complex radiation chemistry of pep­

tides and protein. 

2. Amino Acids in Aqueous Solution 

The radiolysis of water is well described. ' The formation of 

major decomposition products can be summarized in terms of the formula-

tier.. 
H „ 0 — > H_0«.,H„,OH.H.e' . 

aq 
H,0,,H-,OH,H,e" ,H + (1) 

i. i i. aq 
where s represents the hydrated electron. For y-rays and fast electrons 

the 100 eV yields, (G), of the free radical products correspond to 

G(OH) = 2.8, G(e" ) = 2.7 G(H) = 0.55, 

The reactions of the major radical products, of e and OH, with 

the simpler a-amino acids, glycine and alanine in oxygen-free solution 
8—12 yields ammonia, keto acid and fatty acid as major products. Detailed 

chemical studies of chese systems, including the use of added second 

solutes for the preferential scavenging of e and OH, led to formulation 

of the reaction scheme 
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e~ + NĤ CH(R)COO~ •* NH3 + CH(R)COO~ (2) 

OH + NĤ CIURJCOO" -*• H 20 + NH^C(R)COO" (3) 

followed by 

CH(R)C00~ + NHuCH(R)COO~ + CH2(R)COO~ + NHtc(R)COO_ (4) 

CH(R)COO~ + NH^C(R)COO" ->• CH2(R)COO_ + NH2=C(R)COO~ (5) 

2 NĤ C (R) COO" -•• NH2=C (R) COO" + MltcH (R) COO- (6 ) 

The lab i l e imino acid derivative produced in the disproportionation steps 

5,6 hydrolyzes spontaneously 

H20 + NH2=C(R)COO" -v NH* + RCOCOO~ (7) 

The overall stoichiometry of reactions 2-7 gives 

GCPH-) ̂ G(RCOCOOH) + G (C^RCOOH) ~ 5 

The yield of higher molecular-weight products from glycine and 
+• -alanine is low. Radicals of the type NH_C(R)COO disproportionate almost 

quantitatively as shown in steps 5,6. In the case of glycine a small 
+• -fraction of the NH.CHCOO radicals undergoes dimerization to yield 

12 a,a'-diamino8uccinic acid 

COOH- CH 2(NH 2) - CH 2(NH 2) - COOH 

Since neither ethylamine nor (3-alanine were found to undergo the 

reductive deamination reaction 2, it was proposed that e adds to 

the C=0 bond of the a-amino acid and that the reduced intermediate then 

dissociates. 
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e + NHTCH(R)COO •*• NBLCH(R)C-/ - > NH. + CH(R)COO (2a) aq 3 3 \ Q 3 

The radical products of reactions 2,3 have since been studied quite ex­
tensively by the pulse radiolysis technique. The reaction sequence 2a 
has also been observed in ESR studies of the reactions of photo-generated 

18 electrons with amino acid in aqueous glasses at low temperatures. 
With the aliphatic amino acids of higher molecular weight, i.e., 

with ct-amlnobutyric acid, valine, leucine etc. The reductive examination 
- 19-22 reaction 2(2a) continues to represent a major path for removal of e 

However, with the longer aliphatic side-chains, the analogues of reactions 
3,4 are no longer confined to the C-H bond at the a-carbon position. Other 
sites along the chain become involved. The radicals so formed react as 
typical aliphatic carbon radicals and preferentially dimerize rather than 

D 

disproportionate via reactions 5b. With a-aminobutyric acid, for example, 
both a,a'-diamine suberic acid ° ̂  

COOH-CH(NH„)-(CH-) -CH(NH„)-COOH„ 
1 l L l »® 

and a,a'-diaminomethyl pimelic acid 

COOH-CH(NH2)-(CH2) -CH(CH3)-CH(NH2)-COOH 
19 are formed as major products with a combined yield of G ~3. 

Studies of product yields in the radiolysis of phenylalanine in 
neutral oxygen-free solution show that a major fraction of e is removed 
via the reductive deamination reaction 2. ' Recent pulse radiolysis 
studies indicate that ~50 percent of a reacts via 2 while the remainder 

aq 25 adds to the aromatic ring. The OH radical reacts both at the a-carbon 
oo 26 27 position via 3 and also through ring addition. ' ' Comparison of the 
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observed yields for phenylalanine destruction, G(-Ph) with the yields of 

phenylpropionic acid, phenylpyruvic and tyrosine indicate that unidenti­

fied higher molecular-weight products are produced In appreciable yield 
23 to account for G(-Ph) ~5. By analogy with results obtained in radioly-

28 29 sis studies of aqueous benzene, ' one of these (dimer) products would 

correspond to the a,a'-diamino acid. 

COOH-CH (NH2) -CH 2-/~~ V-/~A -CH,,-CH (NH 2) --COOH 

Both e and OH react with tryptophan, and histidine almost quan-
30-33 titatively through ring addition. However, chemical studies show 

that the net destruction of solute is considerably less than G(0H)+G(e~ ) 
aq 31 ~ 5. For example with tryptophan G(-M) < 1 in oxygen-free solution. 

The evidence is that in the radiolysis of unsaturated ring systems a recon-

stitution reaction is involved" ' ' 

OH + M -»• MOH (8) 

e~ + M -»• MH + 0H~ (9) 
aq 

MOH + MH -> M + M(HOH) (10) 

M(HOH) •*• M + H 20 (11) 

The presence of a second solute at concentrations sufficient to 

preferentially scavenge OH in these systems leads to an enhancement in the 

yield for solute destruction since the possibility for self protection 
35 through water elimination (reaction 10) is precluded i.e. 
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OH + RH •*• R (12) 

MH + R •+ MH(R) (13) 

The radiation chemistry of cy s t e ine (NH*CH(CH2SH)C00~) and other 

a l i p h a t i c t h i o l s i n d i l u t e oxygen free so lu t ion occurs exius ive ly at the 
ou 36j37 
SH group 

e" + RSH •> R + HS~(H„S) (14) 
aq 2 

OH + RSH •*• RS + H 2) (15) 

followed by 

R + RSH -> RH + RS (16) 

2RS -> RSSR ( 1 7 ) 

to give G(cystine) — G(alanine) + GOH-S) ~ 3. Pulse r a d i o l y s i s s tudies 
38 39 a r e in accord wi th the above formulat ion. ' Similar chemistry has 

been observed with pen ic i l l amine . The dimer product cys t ine (RSSR) in 

equat ion (17) i s of course , an a , a ' -d iamino acid . 

COOH- CH(NH2) - CH 2-S-S-CH 2 - CH(NH2) - COOH 

It is, in fact, the only a,a'-diamino acid found naturally in food proteins. 

3. Amino Acids in the Solid State 

The production of major products in the y-radiolysis of the simpler 

a-amino acids in the solid state has been shown to be consistent with the 
13,21,22 reacion sequence: 

NH*CH(R)C00~ - v m + NH*C(R)C00~ + H + + e" (18) 

e" + NH*CH(R)COO~ -ww- NH'tcH(R)C00= •*• NH3+CH(R)COO- (19) 
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followed by: 

CHOOCOO" + NH*CH(R)COO~ + CH2(R)COO~ + NH*C(R)COO~ (20) 

2NH*C(R)C00~ •*• NH2=C(R)COO~ + NH2CH(R)C00~ (21) 

and 

H20 + NH2=C(R)C00~ + NH* + RCOCOO" (22) 

on dissolution of the irradiated solid in 0,-free water. With glycine 

and alanine at room temperature: G(NH 3)~5, G(RC0C00H) ̂ 2.5,G(RCH2COOH) 
40 41 

~ 2.5. ESR studies of solid glycine and alanine at 90°K show the 
+ • = presence of the electron adduct radical NH,CH(R)C00 which dissociates on 

warming to yield NH„ + CH(R)C00~. The similarities between the radiation 

chemistry of these amino acids In the solid state and in aqueous solution 

are quite striking. 

Higher molecular-weight amino acids also yield free ammonia as a 

major product on radiolysis in the evacuated solid state. Ammonia yields 

for solid aspartic acid, serine* phenylalanine, cystine and cysteine, for 

example, are all in the range G~2 to G~5. ' ' ' Systematic studies 

of the yields of organic products from these more complex amino acids with 

the exception of cysteine as noted below do not appear to have been made 

to date. However, ESR studies have confirmed the importance of the re­

ductive deamination reaction 19 in the radiolysis of a number of these 

higher molecular-weight amino acids. ' The ESR studies also show that 

the spin centers formed in thr ionization step 18 and in the abstraction 

reaction 20 are not confined to the a-carbon position as is the case with 

glycine and alanine. The sidechain radicals (as noted in section 2) would 



RSH - •+• RS + H ++ e~ 

e" + RSH -»• NH, + CH(CH2SH)COO~ 

e~ + RSH -*- H2S + NH2CH(CH2)COO' 

8 

preferntially dimerize on dissolution of the irradiated solid in water to 

yield a,a'-dlaraino acids as major reaction products. 

Although the radiation chemistry of cysteine in aqueous solution 

is confined exclusively to the SH group, this is not the case in the radi-

olysis of solid cysteine. Free ammonia in the solid state is produced as 

a major product with G(NH-) ~1.8. An "NH2-free" fraction of organic 

products is produced with G ~1.2; 8 mercapto propionic acid is a major 

component of this fraction. The major features of the chemistry are con-
44 sistent with the reaction sequence 

(23) 

(24) 

(25) 

followed by the radical removal steps 

RSH + CH(CH2SH)COO~ -*• RS + CH2(CH2SH)COO- (26) 

RSH + NH2CH(GH2)COO" •*• RS + NH2CH(CH3)COO~ (27) 

2RS -»• RSSR (28) 

to give cystine, alanine and B mercapto r>:r. ionic acid as the major organic 

products. 

4. Peptides in Aqueous Solution 

Radiation chemical studies of amino acid derivatives in aqueous 

solution containing added second solutes preferentially reactive toward 

e and OH, have shown that reductive deamination bye" is a chararter-aq aq 
istic reaction of compounds containing a carbonyl bond a to the amino 

group. For the general case 
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• - + H H T C O O C : * NHlc(R )C«^ + NH, + CR-C^ (2«) . eaq i i. \ x J -£ ^ J / - x 

where X represents 0~, OH, OR, NHR etc. For example, in the radiolysis 
* , i * 16,47,48 

of aqueous glycylglycine 

e" + NHtcH(R)CONHCH(R)COO" * NH. + CH(R)CONHCH(R)COO~ (30) 

OH + NH*CH(R)CONHCH(R)C00'" + H 20 + NH*CH(R)CNHC(R)C00~ (31) 

wh^Lch steps are then followed by 

CH(R)COKHCH(R)COO~ + NH*CH(R)CONHCH(R)COO~ •*• 
CH2(R)CONHCH(R)COO~ + NH*CH(R)CONHC(R)C00~ (32) 

2NH"tcH(R)C0NHC(R)C00" ->• NHtcH(R) CONHC (R)COO~ (33) 

NH^CHWCONHC(R)COO 
48 to give G(ammonia)_; 3.8, G(acetylglycine)~ 2.9, G(diamino succinic)~ 1.7.' 

The radical products of reactions 30,31 have been observed in 

pulse radiolysis studies of a number of aqueous peptide systems. ' 

Reaction 29 has also been observed in ESR studies of the reaction of elec-
51 52 trons with peptides in aqueous glasses at low temperature. ' 

Analogous chemistry has been observed with oligo peptide deriva-
53 

tives of more complex amino acids. In these cases, as with the corre­
sponding free amino acid, OH attack can also occur along the amino acid 

Ol OO CA 
side-chain (cf sec.2). ' ' With peptides, both types of radicals i.e., 

-CONHC- and -CONHCH-

I II 
preferentially dimerize to yield a.a'-diamino acid derivatives. 
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There is a marked increase in chemistry as the concentration of 
58 the peptide is increased above 0.1M. With N-acetylalanine the ammonia 

yield increases from G~0.5 at 0.1M to a limiting value of G(NH,)~2.8 

in the concentration range above ~ 2M. This increase in G(NH.) is accom­

panied by the formation of propionic acid as a major reaction product. 

In 0.1M N-acetylalanine solution G (propionic) — 0.1. In 2M solutions 

G(propionic) approaches a value of 2. Addition of second solutes to 2M 

N-acetylalanine solutions to quantitatively scavenge e (and OH) has 
aq 

essentially no effect on the process involved in formation of the amide 
58 and fatty acid. The possibility that the electrons in concentrated 

peptide solutions are scavenged via reaction 44 (see below) prior to 

their hydration has been considered but there are certain stoichiometric 

against this which may or may not be valid. ' There is also some ex­

perimental evidence that excited molecules are involved in the radiolytic 

cleavage of the peptide main chain in concentrated aqueous solution. ' ' 

It appears that more work will be required before the mechanisms for cleav­

age of the peptide chain in concentrated solution are completely under­

stood. 

5. Peptide in the Solid State 

Main-chain cleavage with formation of amide and fatty acid func­

tions is also a major reaction in the radiolysis of peptides in the solid 
C O £ 0 

state. * Preliminary studies of this reaction were made with the 
59 62 N-acylamino acids, ' but subsequent work showed main-chain cleavage . 

to be a major reaction mode in the radiolysis of the polyamino acids as 
58 well. For acetylglycine, acetylalanine and polyalanine, which have been 

studied in greater detail, the yields of major products (measured after 
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hydrolysis correspond to G(amide~3. G(fattyacid)~ 2, G(keto a c i d ) ~ l , and 
C O C Q fl*) 

G(diamino acid)—I. ' * The major reaction stoichiometrics are ac­

counted for in terms of the formulations 

3RC0NHCHR2 •*• RCONH 2 + CH 2R 2 + 2RCONHCR2 (40) 

RC0NHCHR2 ->• RC0N»CR2 + H 2 (41) 

where the radical products of equation 40 represent the long-lived free 

radicals observed in solid peptides by ESR spectroscopy. ' The 

dehydropeptlde formed In 41 reacts with water on dissolution to form 

amide and keto acid 

H 20 + RC0N=CR2 •> RC0NH2 + R 2CO (42) 

The yield for amide production has been determined for a series 

of aliphatic, aromatic and sulfur-containing amino acids in the N-acetyl 
58 form. In the case of the aliphatic series, the length of the side 

chain has relatively little effect on the yield of main-chain degradation. 

The effect of aromatic groups of acetyl phenylalanine and tyrosine is to 

quench in part the production of amide function. The presence of the 

sulfur moiety of methionine appears to have little effect on the cleavage 

reaction. 

Since the yield for amide and fatty acid production in the radi-

olysis of N-acetylalanine in 2M solution (Section 4) is essentially the 

same as it is in the solid state, it seems reasonable to consider the 

possibility that a common reaction is involved. As noted above, ESR 

studies of the reactions of electrons with N-acetyl alanine and 
51 52 N-acetylglycine in aqueous glasses at low temperature ' have provided 

evidence for the reductive "deamidatlon" of the peptide bond via reaction 44. 
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The analogous reaction sequence has been observed in ESR studies of 

N-acetyl glycine in the solid state. ' 

The stoichlometry of equation 40 would then be in accord with 

the reaction sequence 

RC0NHCHR2 • — — ~ ) • RC0NHCR2 + H + e (43) 

e" + RCONHCfflL -•- RCNHCHR2 •*• RCONH~ + CHR2 (44) 

CHR 2 + RC0NHCHR2 + RC0NHCR2 + CH 2R 2 (45) 

followed by the dimerization reaction 39. Supporting physical evidence 

of main-chain cleavage in the radiolysis of solid polyamino acids has 

been reported; £n accord with the chemical findings, the irradiated 

samples show lower intrinsic viscosities and lower number average molec-
. . t 65,66 ular weights. 

The long-lived radical centers formed in steps 43, 45 may be 

located on the peptide main-chain (type 1) as formulated above and/or on 

the side chain (type II) in the case of the more complex amino acid 

residues. ' ' In either case subsequent dimerization yields a,oc'-

diamino acid derivatives. 

6. Enzymes and Proteins in Aqueous Solution 
67—71 Early chemical studies of the reactions of ionizing radiation 

on proteins In dilute aqueous solution were confined primarily to measure­

ments of amino acid loss at relatively high dosages. These studies pro­

vided preliminary and qualitative evidence that the aromatic and hetero­

cyclic residues and the cysteine-cystine moieties are most susceptible to 

the indirect actions of ionizing radiation on proteins in oxygen-free 
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solution. The Importance of C-H bonds of the peptide main-chain as major 

loci of OH attack In the radlolysls of structural proteins was established 
72 chemically some time later. 

The pulse radlolysls-spectrophotometrlc technique Is being used 

effectively In quantitative studies of the relative and absolute rates 

of reaction of e and OH with the more reactive amino acid residues of aq 
protein. Such studies have provided specific quantitative information on 

the reaction of e with various globular proteins at the disulfide link-
73-75 age, at the unsaturated side chains of histidlne and tryptophan, and 

77 78 at the carbonyl group of the peptide main chain. ' Similar studies 

have seen made of the reactions of the OH radical with proteins at the 
78 79 8C 81 

SH linkage of cysteine, ' the unsaturated double bonds of histidine ' 
82 83 78 

and the aromatic amino acids, ' and the C-H bonds of the peptide chain. 

The use of selective free-radicals formed in the reactions OH+2CNS~-»-(CNS)2 

+ 0H~; 0H+2Br~ •*• Br2-K)H , has provided a very important pulse-radiolysis 

technique for the identification of specific amino acid residues essential 
79—83 to the activity of a particular enzyme system. 

Although there has been a great deal of very significant informa­

tion obtained In these pulse radiolysis studies of the reactions of e 

and OH with proteins in oxygen-free solution, still, our knowledge of the 

chemical nature and yields of the final organic products of these reactions 

is extremely limited. However, from the chemical studies made on model 

peptide systems (Sec. 1-4) it seems clear that radicals formed by OH 

attack at the peptide main-chain and at side chain loci yield radicals 

which in almost all cases preferentially dlmerize to yield a.a'-diamino 

acid derivatives. We have also observed that the yield of these high 
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molecular weight dimers depends to a certain extent on the fate of the 

hydrated electron. If e~ i s captured by a non dissociative process at 
aq 

an unsaturated side-chain locus via reaction akin to 9 or at a peptide 

C«0 linkage via reaction 35. Then reconstitution reactions as formulated 

in equations 10,37 can occur and will decrease the a.a'-diamino acid yield. 

On the other , dissociative capture of e by an N-terminal C=0 bond (eq. 
aq 

29) or by a -SH linkage (eq. 23) for example, will lead to a maximal 

yield of a,a'-diamino acid derivatives. In any event, the main point here 

is that a.a'-dlamlno acids are major potential products of the radiolysis 

of proteins in aqueous media. It should be emphasized here also that the 

a,a'-diamine acids represent a class of compounds which (with the exception 

of cystine as noted in Sec. 2) are not found naturally in food protein. 

Such compounds have, however, by Isolated from various bacteria and from 
84 certain pathogenic toxins. In the following section we see that it is 

very likely that the a,ot'-diamino acids are formed in even higher yield in 
the radiolysis of solid protein. 

7. Enzymes and Proteins in the Solid State 

Amino-acid analysis of both globular and fibrous proteins follow­

ing irradiation in the evacuated solid state Indicate that the various 
85—88 amino acids are destroyed more or less at random. These measurements 

of amino acid destruction are fairly approximate since dosages of 100 Mrad 

and above are required to produce a measurable decrease in the percent com­

position of a particular amino acid. These studies do show, however, that 

there is no highly preferential destruction of a relatively few amino 

acids as is observed in the aqueous case. The maximum variations in 
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"radiation sensitivity" in the radiolysis a solid proteins range over 

a factor of ~ 3 . 

As observed with solid peptides (Sec. 5), the major degradation 

products formed in the radiolysis of solid proteins, both globular and 
86—89 fibrous, include: amide with G ~2.5, carbonyl (keto acid plus 

aldehyde) with G ~* 1, fatty acids with G ~1, and long-lived free 
45 91 radicals with G—5. ' All of these chemical findings, together, 

strongly support the idea that the reaction stoichiometrics represented 

by equations 40,41 for the poly amino acids are also of major importance 

in the radiolysis of solid proteins. Similarly, the evidence given in 

Sec. 5 for the ionic processes 43-45 as intermediate steps in the radi­

ation "deamidation" of the main chain in peptides would appeqr to be 

equally valid in the radiolysis of solid proteins. In the protein case, 

the equivalent of the radicaldimerization step 39 would yield avery complex mix­

ture of symmetrical and uiBymmetrical a,a'-diamino acid derivatives. The presence 

of heavy-metal :ions (Cu ,Ee , Ni ) exerts a pronounced protective effect 
92-94 on the enzymatic activity of irradiated solid enzymes. The presence 

of heavy-metal ions reduced the yield of stable free radicals observed 

at room temperature and also reduced the yield of main-chain cleavage in 

the radiolysis of solid fibrous proteins. These findings are consistent 

with the idea that the heavy-metal ions scavenge electrons, in competition 

with reaction 44. 

Although the formation of amide and fatty acid functions in ac­

cordance with equation 40 explicitly states that cleavage of the peptide 

main chain occurs, this does not necessarily mean that lower molecular 

weight products will be observed. The average number molecular weight 
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of solid polyamino acids and fibrous proteins does indeed decrease on 

irradiation. ' ' However, globular proteins show a much lower yield 

of molecular fragments even after chemical reduction of intramolecular 

disulfide bonds. ~ The reason for this difference can be related to 

the fact that in the irradiation of protein and high molecular weight 

polypeptides a number of main chain breaks plus the concomitant radical 

pair would be introduced into the macromolecular via equation 40 even at 

the lowest practicable dosages. On the dissolution of irradiated globular 

proteins, radical combination within the glob would be favored by the con­

straints imposed by the secondary and tertiary structures. With the poly­

amino acids and fibrous proteins such constraints are minimal and the 

separation of radical fragments on dissolution would be competitive with 

combination. 2 1' 2 2' 9 1 

8. Summary and Conclusions 

The present detailed evaluation of the various types of chemistry 

involved in the radiolysis of amino acids and peptides raises new questions 

regarding the wholesomeness of irradiated high-protein foods. Of partic­

ular concern is the fact that the radiolysis of peptide derivatives of the 

a-amino acids found in protein leads to synthesis of high molecular-weight 

a.a'-diamino acids as major products both in aqueous and solid systems. 

These a.a'-diamino acids represent a class of compounds not normally found 

in plant and animal protein sources. Such compounds have, however, been 

isolated from several bacteria and from certain pathogenic toxins. 

Although no detailed chemical analyses for a,a'-diamino acids in 

irradiated protein have been undetaken, all of the chemical and physical 
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evidence available to date indicates that such compounds are produced 

in the radiolysls proteins both in aqueous and solid systems. Admittedly, 

the isolation and quantitative determination of a.a'-dlaraino acids in 

Irradiated protein represent a formidable experimental undertaking because 

of the anticipated complexity of the mixture of diamlno acids which could 

be produced in the dimerization of peptide radicals of types I and II. 

It seems Imperative, however- that such a program be inltated to establish 

whether or not the radiation synthesis of a,a'-dianiino acids in high pro­

tein foods is an Important factor in wholesomeness considerations. This 

is particularly true because the present radiation chemical evidence tends 

to support the position of the U. S. Food and Drug Administration viz 

that ionizing radiation should be classified as a food additive. 

The successful application of radiation sterilization techniques 

to high protein foods such as meats requires, in most cases, that the food 

be in the frozen atate at -30° ± 10°C during irradiation to obtain a prod-
1 2 5 uct with acceptable taste and aroma. ' ' Meat irradiated in the frozen 

state will undergo less net chemical change per unit dose than that 

irradiated above 0°C. However, as the temperature is lowered below 0°C 

higher irradiation doses are required to achieve the same blocidal effect. 

In frozen aqueous systems the recombination of primary radical and ion 
102 103 pairs is favored because diffusion processes are impeded in the sold. ' 

However, the fraction of e and OH that can be chemically scavenged in a 
aq 

frozen solution is strongly dependent on solute concentration. With molar 

concentrations of solutes that are effective scavengers for both e and 

OH, the observed chemical yields in frozen solutions at low temperature 

represent a major fraction of that observed in the corresponding liquid 
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system. ' Since the organic components of meat, on the basis of 

weight percent, correspond to an ~ 5 molar solution of reactive organic 

solute (MW=100), it is concluded that the chemistry induced by reactions 

of e and OH in meat at -30°C can be quite significant. ESR measurements 

of radical yields in the radiolysis of solid proteins indicate that net 

chemistry arising from equation 40 at -30°C is about 80 to 90 percent of 

that observed at room temperature. ' 

An explanation for the very great decrease in the yield of odor-

causing products from meat irradiated at -30°C as compared to the yield 

at room temperature can be readily formulated. Assume that the precursor 

of an odor-causing product RH is the radical R and that the primary yield 

of R is not greatly dependent on temperature over the range 0° to -30°C. V 
Two competing processes can be considered to be involved in the removal 

of R 

R + R'H •> RH + R' (46) 

2R -»• R 2 (47) 

Since the activation energy for dimerization is less than that for ab­

straction, reaction 47 would be favored at low temperature. The higher 

molecular-weight product R, would be less volatile (or non-volatile) and 

would contribute less to the odor of the irradiated product. 
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