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ABSTRACT

The Disruptive Anti-Covering Location Problem: nevadeling perspectives and

solution approaches

by

Matthew Russell Niblett

Dispersive strategies and outcomes are readilyrappen many geographic
contexts. In particular, dispersive strategieslmaseen in activities such as: the
scattering of military missile silos and ammunitimmkers, center-pivot crop
irrigation systems, location of parks, franchiseetiocation, and territorial species
den/nest locations. Spatial optimization modelsesgnt dispersion where selected
facility locations are maximally “packed” or maxitlya‘separated.” The Anti-
Covering Location Problem, in particular, is oneninich a maximum number of
facilities are located within a region such thatreacility is separated by at least a
minimum distance standard from all others. In ttustext, facilities are “dispersed”
from each other through the use of the minimum isejme standard. Solutions to
this problem are called maximally “packed” as thexests no opportunity to add

facilities without violating minimum separation sthards.
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The Anti-Covering Location Problem (ACLP) can bdiked on a continuous
space domain, or more commonly, using a finiteogdiscrete locations. In this
dissertation, it is assumed that there exists @etis set of sites, among which a
number will be selected for facility locations, atihét this general problem may
represent a number of different problems rangingfhabitat analysis to public
policy analysis. The main objective of this disatan is to propose a new and
improved optimization model for the ACLP when apgdlto a discrete set of points
on a Cartesian plane using a combination of separabnditions called core-and-
wedge constraints. This model structure, by ity d&finition, demonstrates that all
planar problems can be defined using at most seligure constraints for each site.
In addition, the use of an added set of facet cam$ in reducing computational
effort is explored.

Anti-covering location model solutions are maximadacked, providing an
“optimistic” estimate of what may be possible ismkrsing facilities. But, what if
less than optimal sites are employed in a dispensattern. That is, to what extent
can an optimal maximally packed configuration bsujpted? This possibility is
explored through the development of a new moddea#he Disruptive Anti-

Covering location model.
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l. Dispersion

A. Introduction

Dispersion is directly related to location problenmssuch problems, dispersion
between facilities, and or demands, has often bemasured as a function of
distance. When considering dispersive behavias,aften within the context of
facility site location. Facility site location h&mng been a topic of interest to
researchers in geography, economics, engineemgplanning. To understand
dispersion, one must first discuss facility sitedton.

Facility site location has been of importance taonkmad since pre-historic times
when “hunter and gatherers” chose sites for encansnSuch location decisions
were tantamount to long term survival. This interesite selection has never waned
and has even intensified since the emergenceie$ cédgricultural practices,
scientific principles, and industrial economiest Ewample in the 1600’s Pierre de
Fermat described a point location problem as fdlotgiven three points on the
plane, find a fourth point which minimizes the safithe distances to the other three
points.” Since these early beginnings, geograplaasrsyell as regional scientists,
industrial engineers, econometricians and busipkessers have formulated

prescriptive models for facility location and gesldocation questions.



1. Location Theory

An early example of a quantitative description oibest to locate a factory is
the classic Weber problem (Weber, 1909) that ire®locating a manufacturing
plant such that the costs of transporting the ratenmals to the plant and the
finished goods from the plant to the market areimiied. Another classic example
is Christaller’s (1933) central place theory, whibkorizes an explanation of why
retail centers were arranged in distinct pattemrsouthern Germany. Christaller
assumed a competitive economic process of retaieoswvho located in such a
manner as to achieve at least a minimum thresHdddsiness activity, assuming
that products and prices among retailers weretindgishable.

Christaller extended the concepts of how distamcedemand affected the
placement of markets relative to an underlying lwdseistomers. Christaller
references earlier researchers, such as Hettnerind902 had suggested areas of
research that should be explored and which coudahtfy and explain, “Distances
between settlements of the same economic charaCtatstaller and Hettner were
both concerned with the location of facilities ppes of spatial entities, and why
they were uniquely dispersed across the lands€pestaller believed that distance
and the cost of obtaining resources of varying &@te key elements that led to such
a dispersive pattern. Christaller identified twpexsts of spatial dispersion that are
critical components of his theory; threshold anmbea

The concepts of threshold and range in the cepkaae model can be

conceptualized in varying ways. In terms of bussnesonomics, the threshold can



be thought of as the minimum level of demand neédedistain a business facil
at a given location, and the range is the maximistadce a person is willing -
travel to buy a good or servi(Hurst, 1972)Christaller recognized that the
seemed to be a dispersed pattern of cities prayiskmvices to the surroundi
places, and that the concs of threshold and range are essential to understg
such dispersion oflaces.An example of a central place pattern for a ma
orientation is given in thFigure 1 Notice that central places are dispersed

unique geometrical arrgement.

Figure 1. Maximally dispersed central place theory arrangerant on 25 node:
(K=3)

o

Church and Bel{1990 examined the spatial and economic implication
relaxing the gemetrical packing requirement of classical Centtat® Theory

They found that relaxing the geometric packing t@mst still resulted in demar



being satisfied. They found that with unpacked taghes, those that resulted from
relaxing the packing constraint, fewer facilitiesre required to meet demand and
that often they were more widely spaced thoughdidncrease the length of
journey to a shop. Additionally, they found thatdek-systems emerged, that is,
where no further market entry was possible jush&hristaller’s classic work.
Church and Bell further note that non-integesystems are possible, as are systems
that are stable combinations of co-existkygrinciples. One critical point of this
outcome is that consumers have fewer choices unpacked landscape, but on the
upside, economies of scale could increase the afrggods and services available.
Furthermore, they found that if two entreprenewrsocated in the same central
place rather than monopolizing a limited hinterlatng two would actually receive
greater economic benefits. Church and Bell (198@psst this result is consistent
with retail trends of the 1990’s and the duplicatratio concept of Berry and
Garrison (1958). Thus, Church and Bell have shdwvan dispersion between
facilities is possible, and in many ways, desirarid more representative of the
“real world.” One interesting point that Church a@dell (1990) did not consider is
whether such centers are maximally dispersed. Hew&hurch and Bell (1990)
mention a sequel to their paper dealing with dersatistributed in a discrete,
punctiform, manner that would require the sameswrelr supply centers at any
hierarchical level; it appears this paper was neleseloped.

It took seventeen years before research involviegti@l Place Theory within

the context of whether central place facilities wakult from a maximally dispersed



process to be considered. In 2007, Curtin and Ghdeveloped a model for which
facilities were maximally dispersed but had prat¢dahresholds. They formulated
two dispersion models: one that considers the siggbd system, and one that deals
with a multiple-good system. Specifically, two medis for generating multiple-good
systems are presented: a multiple-type dispersiotheirand &-value constraint set
formulation. These formulations allowed the hiehéral systems to grow by
increasing the number of maximally dispersed pla€hsir paper showed that stable
k-levels were identified that met the classic tertdtcentral place theory for
maximally dispersed facilities. They suggest thaie objective of maximal
dispersion is posited as both a motivating faatarentral place location decisions,
and as the optimal outcome of a mature systemnifaleplaces (Curtin & Church,
2007, p.167).” In other words, the classic cengtate patterns of Christaller’s
central place theory have been shown to be maxidadpersed (Curtin & Church,
2007).

Central place theory, however, is not only limitectities and economics. One
can observe a similar phenomenon, the locatioren§ghesting sites, in territorial
species. There are underlying factors that infleembere a nest or den site is
located and how the maintenance of territory e$féloe distribution of these nest/den
sites across a landscape. In this case, the thdestio be thought of as the minimum
level of available resources necessary for a teraitspecies to support themselves
and maintain a nest/den site at a location, andaihge can be thought of as the

maximum energy expended or the furthest distarateatin animal could reasonably



travel in order to maintain a reliable supply obdo If a territory does not contain
enough food resources within a reasonable reastport an animal, it fails to

meet a threshold of success, just as a retaifaitewhen the customer base falls
short of a threshold within the range of the gahdgt like central places, viable
territories or “home ranges,” must be dispersedhdiin the economic and territorial
species conceptualization of central place thetdiggersive strategies are necessary

to maintain a viable business location or mainteraof a territory.

2. Use of Dispersive Strategies

Dispersive strategies are observed in many diftdoamations at varying scales.
Dispersion manifests itself in the location of itemial species den/nesting site
location, forest management activities, urban packtions, strategic facility
placement, competitive retail store locafiombnoxious facility location, halfway
houses, and the location of correctional rehakiitecenters among others. In each
of these examples there is an underlying procésdegy, or objective that tends to
generate spatially dispersed activities.

In the territorial species den/nest site case glspn is caused by the necessity
of protecting the food source and to preserve talskai site to secure the success of
the species progeny. Similarly, with forest managetiactivities, such as logging
and fuels removal for the reduction of forest firteensity, one wants to disperse

these activities so that no one part of the fasesverly impacted by these activities.

! Competitive retail could be chain stores that getids, banking facilities, and
franchise stores such as automobile sales lotéaahdbod restaurants.



Competitive retail store location, particularly foanchises, is similar to the
territorial species case; the franchiser does m@ottwo many franchises located
close together because they will cannibalize dates each other and hinder the
success of an individual franchisee.

In the case of obnoxious facility location (e.qdélls, half-way houses, and
correctional rehabilitation centers) or semi-obosi facilities (e.g. fire stations,
police precincts, etc.), policy makers try to spréd@ese facilities out so as to
minimize the impact to the public at large (Chu&ctbarfinkel, 1978; Erkut &
Neuman, 1989). In rehabilitation homes, in paracudlispersion is sought after to
minimize the interaction of individuals with negatisocietal influences, and thus
the recidivism rate of the individuals (Grubesi@kt2011). Another example of
strategic placement of facilities is the well afenter pivot irrigation system. Such
center-pivot systems are often separated in sugdyaas to maximize irrigated areas
as efficiently as possible with variable sized eemivot systems (New & Fipps,
2000). Figure 2 shows an example of a packed cordigpn of center-pivot
irrigation systems in eastern Washington state, UB¥% examples listed above are
only a sampling; there are many examples of disge@ocesses and locational
outcomes in the context of ecology (Church, 2008%iness economics (Erkut &

Neuman, 1989), and social institutions (Grubesi.€2011).



Figure 2. Example of several center-pivot irrigatimm systems expanding in
farmlands of eastern Washington state, USA. Centesf image is:
46°48'16.98" N 119°00'31.84" Wfrom Google Earth

(1 N : .2

Google earth

B. Modeling Dispersion

Dispersion has been an objective of consideraliégast in the field of location
science. There are three basic forms of disperSioa first involves the dispersal of
facilities from population centers (See Church &@n, 1976; Church & Garfinkel,
1978 as early examples of this type of problem$edond form of dispersion
involves the dispersal of facilities from each oth&eeping facilities as far apart as
possible from each other has been the subjechumder of different problem
settings, ranging from military defense (Erkut, @p® franchisee store location

(Current & Storbeck, 1994). A third form of dispers, which is a hybrid of the first



two forms, involves keeping facilities away fronchather as well as away from
population (Berman & Huang, 2008).

Moon and Chaudhry (1984) were among the first tppse a formal problem
dispersing facilities from each other on a netwagdled thep-dispersion problem.
This problem involves locatingp” facilities on a network, such that the minimum
distance of separation between the closest péacdities is maximized. Moon and
Chaudhry (1984) also proposed a model which maxchthe sum of minimum
separation distances, with one separation distdefieed for each facility, while
locating p-facilities. This problem was called frdefense problem. Kuby (1987)
expanded this concept to a problem that involvesimiaing the sum of all
separation distances between all pairs of faglitiekut and Neuman (1991) added a
fourth classic form which involves locating p-faids as well. For their problem,
each facility is represented by the sum of sepamatistances to the othpsl
facilities. Their objective was to maximize the $iest of these facility defined
sums. Curtin and Church (2006) proposed generaldaf these problems which
involve the location of different types of faciét, where interaction between
different types has a defined repulsion weight lagidand Church (2013) have
shown that all four classic forms outlined by Erkatdt Neuman (1991) can be
viewed as special cases of general dispersion nusiiel) a concept based on vector
assignment.

There is one other important form of facility disgien and it is based upon a

standard of minimum separation. Moon and Chaudt®g4) were the first to focus



on a minimum separation standard. They proposémttte as many facilities as
possible while keeping them at leastistance apart from each other. They called
this the anti-covering location problem. It hasrbesed in a number of different
ways. Grubesic and Murray (2008) proposed its msmalyzing policies that dictate
that sex offender residences should be kept seghitaim each other as well as from
selected fixed elements on the landscape, likespanki schools. Downs et al. (2008)
used the anti-cover problem to analyze the carrgagacity of a population of
Sandhill cranes, Williams (2008) employed a sepamatistance in the selection of
biological reserve sites, Church (2013) has useddstimating the size and extent
of core habitat, and Murray and Church (1996) desa form of anti-covering for a
forest harvest selection problem. Grubesic e8l12) analyzed the impacts of
alcohol outlet distribution in Philadelphia basgubn a proposed policy change
involving privatization.

More general forms of this problem have been ddfifiee dashboard layout
(Castillo et al. 2008), map label placement (Rib&irLorena, 2008a), DNA
sequencing (Joseph, Meidanis, & Tiwari, 1992) ddibcation of undesirable
facilities (Berman & Huang, 2008). A number of teitjues have been used to solve
the anti-cover problem and related problems, inolygreedy (Chaudhry et al.
1986), bee colony optimization (Dimitrijeévet al. 2012), Lagrangian relaxation
(Murray & Church, 1997hb), genetic algorithms (Chlaygl 2006), column generation
(Ribeiro & Lorena, 2008a), and greedy randomizeapéide search (Cravo et al.

2008).
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Most of the applications of the anti-covering moeletail the use of an integer-
linear programming model. Prospective sites arenafientified in advance as
“discrete” locations, representing centers of rasédls (Church, 2013), commercial
parcels (Grubesic et al. 2012), or nodes of a nétwdurray and Church (1997a)
have shown that the discrete anti-cover probleamiequivalent problem to the
vertex packing problem on a network or the maximdépendent set problem on a
graph. This demonstrates that the discrete anticproblem belongs to the class of
non-deterministic polynomial-time (NP) hard. Thees be possible uncertainty in
potential site positions, and Wei and Murray (20i&)e analyzed the impacts of
site uncertainty within the context of the anti-eoyproblem.

Research that is focused on modeling anti-covaesmxtensive and a number of
model formulations have been proposed. In chapteet these model structures are
reviewed. After that a new form of ACLP is proposesed upon a new concept of
“Core and Wedge.” With this concept, it is showatthll Euclidean-based discrete
point anti-covering models can be formulated witinast 7 clique constraints per
site. Optimal solutions to the anti-covering probleepresent the largest number of
facilities that can be simultaneously located whi#eping each of them at least a
minimum distancey;,, from each other. Unfortunately, there can beuoirstances in
which a maximum packing is disrupted. They may iseugited by earlier residential
choices, already established crane nests andtest or by poor choices in already
located franchisee establishments. Whether maxpaekting arrangements are

disrupted by accident, happenstance or by inteot) disruption and the potential

11



impact of disruption should be of interest whemgghis type of model. In chapter
three, a description of the two basic ways in whiahanti-covering problem has
been formulated as an integer programming probgegivien.

Following this a problem and model formulation regented which seeks to
maximally disrupt potential solutions to the ardivering problem; that is, a model
that identifies the minimum packing configuratiém.addition, a model is also
formulated that allows one to determine if there @ther packing configurations
between the maximally packed configuration, thei&dvering Location Problem
(ACLP), and the minimally packed configuration, Disruptive Anti-Covering
Location Problem (DACLP). Chapter five presentsdbmputational experience of:
the previous and new “Core & Wedge” formulationgresenting the ACLP, and the
formulations representing the DACLP. In additiomeav heuristic designed to
quickly solve the ACLP on very large datasets scdeed and an example of a
solution is given. Chapter six contains some cafiolyiremarks and directions for

future research.

C. Outline of Dissertation

The focus of this dissertation is on dispersion igsdse with respect to facility
location, and in particular, how it can be modehethin the context of an integer
programming problem considering a discrete seaafity locations. This chapter
briefly describes the structural organization @& thssertation and gives a brief
overview of dispersion. The subsequent chapterasafellows: Chapter 2 reviews

existing dispersion models. Chapter 3 describessidand new mathematical

12



methods of modeling dispersion within the contéxhe Anti-Covering Location
Problem (ACLP). Chapter 4 describes two new ACLRIet® Chapter 5 explores
how such problems might be solved. Chapter 6 detraies how a real world
dispersion problem can be modeled and solved. ligjr@hapter 7 concludes the
dissertation with a discussion of the theoreticalarpinnings, uses, and

implementations of the dispersive techniques diesdrin this dissertation.
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[I.  Areview of dispersive location strategies

This chapter reviews the location modeling literatpertaining to dispersion.
The primary purpose of this chapter is to discuss dispersion has been modeled
previously. Previous models of dispersion can loédm down into two types of
dispersive modeling. The first type can be thowdla#s maximizing a measure of
dispersion, or “dispersiveness,” between faciliteefacilities, or facilities to
demands. The second type of dispersive modelistargdards based. In this case, a
minimum separation standard is employed. The nis&betveen these two ways of
mathematically representing dispersion will be dssed. Formulations for the
problems discussed in this chapter are not provied, though, chapter 3 presents
formulations specifically related to the standdydsed Anti-Covering Location
Problem (ACLP), the focus of this dissertation. Né&t us begin the discussion of

general dispersion problems.

A. Maximizing “Dispersiveness”

As mentioned above, dispersive modeling has takerdifferent paths. The first
is maximizing a measure of “dispersiveness” andst#wnd is a standards-based
approach. The case where facilities are separetettheir demands, and/or each
other, has often been modeled as the p-Maxian @mobl he case where facilities
are separated from only each other has been tetraq@Dispersion problem. First,
the p-Maxian Problem is discussed. Subsequentiycassion of the p-Dispersion

problem will be presented.
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B. Dispersiveness and the p-Maxian

The Maximum Median, or Maxian, problem was firssciébed, with a
formulation representing it, by Church and Garfinf#®78). It was further expanded
by Chandrasekaran and Daughety (1981) as a muttifdeility location problem.
The Maxian problem is the antithesis of the megianblem where the objective is
to site a facility as far as possible from centdrpopulation. Church and Garfinkel
(1978) describe the basis of a finite optimal setaf Maxian problem on a network.
The p-Maxian problem is defined as follows: sima#ausly locatg points
(facilities) as far from each othanda given set of nodes (demands). This is the first
such problem that considered dispersion betweetdddacilities and a set of
demands.

Thep-Maxian problem maximizes “dispersiveness” betwkilities and
demands, as a function of distance, without a nmuninseparation standard. Church
and Garfinkel (1978) note that the one-faciptiMaxian mathematical objective
function is identical to the absolute medigAedian) objective function of Hakimi
(1964), except that the objective sense of Hakiforsulation is to minimize. In
Hakimi’s p-Median problem “dispersiveness” is not desired;tedian distance of
a facility location and assigned demands is mingaiizT his is contrary to the
Maxian problem where separation between facildied demands is also
maximized. Church and Garfinkel note that withaubhjective to disperge
facilities apart from each other theMaxian solution would involve co-locating all

p-facilities at the optimal 1-Maxian point. Howev#rere are several ways that
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“dispersiveness” can be measured between faciliiiasconfiguration. In particular,

this relates to thp-Dispersion problem discussed below.

C. Dispersiveness and p-Dispersion

Several derivations of separation distance measiaes been presented and
discussed in the literature. These implementat@ave been used in tipe
Dispersion problem. Thg-Dispersion problem, first described by Shier (1977
involves the location gb-facilities such that the minimum distance betwten
closest pair of facilities is maximized. Shier segigd that this problem was ideal for
placing a fixed number of fire hydrants over aetrgetwork. Kuby (1987) further
notes that the-Dispersion model could be used to avoid canniatibn of market
areas for franchise stores.

Erkut and Neuman (1991) describe four possibleablvges when maximizing
dispersion between facilities. The paper by Cuathid Church (2006) contains a
succinct, easily understood, synopsis of Erkutidadman’s work. The classic
representations of “dispersiveness” described lyttand Neuman for facilities of a
single type using distance as a metric are asvigtio

1) The Max-Min-Min representation maximizes the disjpan of thep facilities

to be located. Specifically, the objective of thedal is to Maximize the
Minimum separation distance Minimum (hence Max-NMim) of each
facility to its closest neighbor. That is, the altjee considers the smallest
separation distance of each facility and its clbeegyhboring facility and

maximizes the separation distance of this pairs Plairticular representation

16



2)

3)

of dispersiveness is the classic form of what Maond Chaudhry (1984) call
the p-dispersion problem. However, Shier (1977) inijiakscribed this
formulation as the p+1-dispersion problem, the ddidhe p-Center problem.
Several formulations of this model type have besvetbped with example
applications and procedures in the literature (drasekaran & Daughety,
1981; Kuby, 1987).

The Max-Sum-Min representation Maximizes the SurthefMinimum
(Max-Sum-Min) separation distances for every fac#ind the facility closest
to it. This has been referred to as phBefense problem by Moon and
Chaudhry (1984). The difference between the Max-Min and the Max-
Sum-Min is that the Max-Min-Min is concerned witiet“worst case” of
separation between a facility and its closest rn®ghg facility. The Max-
Sum-Min is concerned with theverall sum of minimum separations between
each facility and its closest neighboring facility.

The Max-Min-Sum representation Maximizes the Minimaf the Sum
(Max-Min-Sum) of separation distances between ditiaand all other
facilities. Note the nuance here as compared tofdlizad in the max-sum-
min representation above. In this case, the separdistances adll

facilities is considered, whereas in the max-sum-rapresentatiorgnly the
sum of the smallest separation distances betwéatilidy and its closest
facility is considered. This representation wastfiefined in Erkut and

Neuman (1991).
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4) The Max-Sum-Sum representation Maximizes the SutheSum distances
from a facility to all other facilities. Kuby (198 formulated this problem,
which he calls the Maxisum problem, that locaidacilities maximizing the
sum(Maxisum) distance between all pairs of open iigcdites. Kuby’s
maxisum formulation locates facilities over a netikvor a set of discrete
points. However, some facilities may be in closaxpnity to one another as
the sum distance betweepenfacility sites is maximized.

The four measures of “dispersiveness” presentedeabapture the four principal
ways one might wish to separate facilities of thms type. Figure 3 shows these
representations of dispersion graphically by lowgfive facilities, shown as the red
dots. The top left panel shows the results of utiegViax-Min-Min model, which
maximizes the separation distance of the closesbtptacilities. This is indicated by
the blue arrow connecting the closest pair of iteed. The top right panel shows the
Max-Sum-Min model, where the sum of the distanoes, for each facility to its
closest neighboring facility, is maximized. Thesgahces are shown by the blue
arrows. The bottom left panel shows the resulth@Max-Min-Sum model, where
the minimum sum of separation distances from difiato all other facilities is
maximized. The blue arrows show which distanceseaceunted for in the Min-
Sum (associated with site 52). The bottom rightgbahows the solution of the Max-
Sum-Sum model where the sum of all separationmistabetween located facilities

is maximized, as indicated by the blue arrows. uEdnd Neuman point out that
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Figure 3. Modeling outcomes of the Ma-Min-Min (top left), Max- Sum-Min
(top right), Max-Min-Sum (bottom left), and Max-Sum-Sum (bottom
right) approaches to dispersior

u

L
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these four forms of dispersiveness can be grougtedwo bases. The first base
involves those objectives concerned with the “woeste” separation distance
between a facility and its closest neighbor, ohwiite sum of worst-case separation
distance between all facilities. That is, “worsseaseparation efficiency versus
collective sum of worst-cases, one for each facilihe second measure involves the
total or sumof separation between facilities. Erkut and Neurfi®91) were the first
to summarize the four basic models of dispersion.

Curtin and Church (2006) identified a nuance thatgrevious four models fail
to account for: the concept of dispersion betweeilifies of differing types. They
develop a general class of facility location modk&t optimize multiple type facility
dispersion. This type of modeling has been sucaligsised to show that central
places are maximally dispersed, and is an optimiome for which central places
are mature (Curtin & Church, 2007). Additionallgey suggest strategies for
constraint elimination to reduce computation tit@artin and Church (2006) address
dispersion between facilities of differing typesiateveloped a form for each of the
objectives codified by Erkut and Neuman (1991)

Lei and Church (2013) identified a concept that lsarused to unify all four
previous modeling implementations of dispersion.drel Church (2013) identified
four new partial sum models that are generalizeah$oof the four models discussed
by Erkut and Neuman (1991). The partial sum dispensroblem conceptually is
quite simple. How dispersion is measured may lgrediter importance to facilities

that are closest to one another. For example, disgethe closest 3 or 4 neighboring
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facilities to any given facility may only be of teaterest, rather than only the
closest facility or all facilities. Their paper meld this type of dispersion using
partial sums. Furthermore, they introduce a gemamalel called Max-PSum-PSum
which is a form which represents all basic form&d€ut and Neuman (1991) as
special cases.

In all of the representations of dispersion disedg® this point, no minimum
separation standard has been considered. In adtitiine previously discussed
problems, there has been interest in formulatingpdel that will disperse facilities
over a landscape based upon “equity” (ProkopyendK& Martinez-Torres, 2009).
Such representations of equity could be seen as gasily implemented using a
standard of separation. The next section focusedfsgally on standards based

dispersion.

1. Standards Based “Dispersiveness”

Dispersiveness can also be implemented throughnaatds based approach,
typically implemented using distance or weightestahice where facilities are
located where they have to be separated by atdeastimum distance of
separation. Moon and Chaudhry (1984) introducesidbnstruct in their seminal
work of 1984. Moon and Chaudhry (1984) also prodaselassification scheme to
introduce and define a variety of distance conséiproblems. One of those
problems is the Anti-Covering Location Problemy@ep problem, that involves
maximizing the number of facilities placed in a hdad region or problem domain,

such that each facility is at leastlistance from each and every other located
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facility. This problem has also been called thekpag problem in the field of
mathematics and computer science, in which a maxsetaf circles, spheres, or
other polygons that can be tessellated, are pdokea finite 2 or 3 dimensional
space. An introductory book describing variousleipgacking configurations within
the context of mathematics has been written by KdnStephenson (2005).

Conceptually the-dispersion and-separation, or anti-covering location
problems are “duals” of each other. The p-Dispergimblem involves locating a
fixed number of facilities and maximizing the segiaon distance, whereas the Anti-
Covering Location Problem (ACLP) involves maximigithe number of facilities
with a minimum separation distance standard. Ekengh these two problems can
be considered duals of one another, past work iffasedl in their underlying
formulations.

Yoshimoto and Brodie (1994) describe an approaahdignificantly tightens the
neighborhood constraint used in the original formtioh of Moon and Chaudhry
(1984). Murray and Church (1996) developed an aggirahat further tightens the
neighborhood constraint described by YoshimotoBadlie (1994). In addition,
Murray and Church (1996) describe how cliqgues nayded to reduce several
individual constraints into a single tight cliguenstraint. Erkut, ReVelle, and
Ulkusal (1996) focused on generating integer frigformulations of the Anti-
Covering Location Problem (ACLP).

Their paper described six different formulationgresenting the ACLP. Their

paper demonstrated the usefulness of varying fatiom approaches that aid in
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obtaining integer solutions to the ACLP. The reafordoing this is that the ACLP
is a difficult problem to solve to provable optiritygl as it belongs to the NP-Hérd
class of problems (Murray & Church, 1997a). Erkudle (1996) describe a
particularly important formulation. They describ&éamulation that utilizes the
concept of neighborhood constraints and “cliqueistmints. Specifically, Erkut et
al. (1996) defined a clique constraint as contgjnire neighborg, of a potential
facility location,i, that are all mutually within half of the sepaoatistandard af,
and that are within the separation standard of etteér. This has been termed the
“Core Cligue” representation. A detailed descriptaj this constraint approach is
given in chapter three.

Murray and Church (1997a) describe a formulatiorefmesent the ACLP which
consists of a neighborhood constraint and a maxatigaie. A maximal clique is
defined as a set of neighbgrhat are within the separation standard of sitationi
and all other membefjsThe neighborhood constraint contains all of fkesswithin
the separation standardidhat are not members of the maximal clique. Muenag
Church (1997a) show that the maximal clique candmeputed by solving several
vertex packing problems for all potential site libi@as. Several other applied papers
have been written that involve the ACLP, that foonsseveral applications and
problem solving approaches (Castillo et al. 20Q8stillo et al. (2008) discuss
several packing problems, including one of packiagous sized circles into a finite

region, though they do not consider site-benefih&ir formulation.

2 NP-Hard stands for Non-deterministic Polynomiaieihard.
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The Anti-Covering Location Problem has been usadadeling a broad
spectrum of problems. For example, the ACLP has lbeed in: the Cartographic
Label Placement Problem (Ribeiro & Lorena, 2008a)imating carrying capacity
of territorial species (Downs et al. 2008); evalugplanning policy and sex
offender residency (Grubesic & Murray, 2008; Grubes al. 2011; Grubesic, et al.
2008); evaluating liquor store permitting and plaeat (Grubesic et al. 2012); DNA
sequencing (Joseph, Meidanis, & Tiwari, 1992); $oanning problems (Murray
& Church, 1995); center pivot irrigation systems(N& Fipps, 2000); analyzing
historical and modern settlement patterns (Ruggl€hurch, 1996; Curtin &
Church, 2007); industrial problems such as contdosing, dash-board layout,
cutting patterns (Castillo et al. 2008) and faloutting patterns (Wong & Leung,
2009).

Approaches to solving these problems have varmugsproblems are small
enough that they are easily solved to optimalitheW problems are not solvable to
optimality, often another approach is required. ifics designed to generate
feasible solutions as close to optimal as possiale been developed. Heuristic
techniques have very different solution approacBesh heuristic approaches
include: greedy randomized adaptive search proeeaiuGRASP (Feo et al. 1994),
genetic algorithms (Chaudhry, 2006), LaGrangiaaxation (Murray & Church,
1997b; Ribeiro & Lorena, 2008a; 2008b), tabu se@ra@mamoto, Camara, &
Lorena, 2002), Bee Colony Optimization meta-heigsstDimitrijevi¢ et al. 2012),

and evolutionary algorithms (Wei & Murray, 2014).the next chapter the Anti-
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Covering Location Problem (ACLP) formulation is peated, followed by several
refinements published in the literature. A discosselated to each formulated

model and subsequent method of mathematical repgezbswiill be provided.
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lll.  Mathematical representation of “Anti-Covering”

This chapter presents several mathematical modalshwepresent the Anti-
Covering Location Problem (ACLP). The chapter cotgaeveral sub-sections. The
first section presents and discusses the classid®AGodel formulation developed
by Moon and Chaudhry (1984). Subsequently, seweratepts in constraint
modeling are presented. They deal with: the conaepéighborhoods and their
refinement, cliqgue constraints, the concept of aréC constraint set, and hybrid
approaches of the previous forms. Two completely representations are also
provided in this section: the concept of “Core &viedge” cliques, as well as the use
of location set covering (LSC) constraints in ardver modeling.

A brief discussion related to these new constraiethods and why and how one
should implement them is also provided. In the rotepter, solution times and
results related to each formulation are preseniddawdiscussion on the strengths
and weaknesses of each approach. This chaptengeseh formulation and
provides a brief description of how the constramtsk, why the approach was

developed, and some information related to easeloing.

A. The classic Moon and Chaudhry (1984) Anti-Coveri  ng model

formulation

As noted in the previous chapter, the anti-covenmoglel was first proposed in
Moon and Chaudhry (1984). The model that Moon ahdu@hry formulate is

designed to solve the Anti-Covering Location Prabl&CLP), also known as tire
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Sep or radius of separation problem. The Anti-Cioggkocation Problem (ACLP)
involves maximizing the number of facilities packeithin a bounded region such
that each facility meets a minimum separation stethcbften times a distance
measure such asfrom its closest located facility. In this sectidetails in
formulating the anti-cover location model (ACLM)psesented.

The anti-covering location model (ACLM1) develogedMoon and Chaudhry
(1984) representing the discrete case is givenlbsifs:

Notation:

i, areindices of potential facility locations
is the minimum distance standard, or radius o&sson

r

S s the set of potential facility site locations

Q Q =1{jeSl|d; <r where j=ij,defined for eachie S

M is a very large number.€. a bigM value), at least equal tp wheren is the
number of sites o|tq

d. shortest distance from facilityto facility j

x - 1, if facility issitedat |
0,otherwise

ACLM1:

MaximizeZ=>"x, (1)
jeS

s.t.

M@L-x)> > x, forallie S (2)

ieQ
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X; € {01} forall je S (3)

The formulation presented here is a zero-one lipeagramming problem comprised
of Hbinary variables an#ﬂ constraints. The objective of the ACLM1 (1) inveds

maximizing the number of sites selected to locdecdity. Constraints (2) ensure
that if a given site is selected for a facility, no other sites clad@anr-distance of
sitei may be used. In effect,xf = 1, then the left hand side of the inequality tres
zero in value. When the left hand side of this t@mnst is zero, the right hand side
must also be zero. Essentially, this means thahwine right hand side is forced to
be zero, all facility sites within the s8t are unable to be selected as a facility.
Constraints of type (3) represent the binary integstrictions for the facility site
selection variables. The total number of constsaithtose that define the model, in
this case are constraints of type (2). The binatgger restrictions (3) are not
considered model constraints per-se; they repreésenmestrictions on the values a
decision variable can take and are not a parteottmstraint matrix. Hence, the total

number of constraints found in the ACLML1 is equaht most the number of facility
sites (S{ or < n constraints). The number of constraints couldelse because some

facilities may not be withim-distance of another facility, and thus a constrafnt
type (2) would not need to be written.
Yoshimoto and Brodie (1994) formulated a model aonhg a similar constraint

of type (2) above that was implemented for a foyestljacency restriction problem,
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with an important difference. Yoshimoto and Brodieognized that an arbitrarily
large “bigM” is not required when you know how many neighlkames withinr of a
facility. Specifically, theM in each constraint of type (2) can be replacethbysize
of the setQ. Note thai is not a member of its neighborhood set, so tH1me\/af|Q,|
equals the number of neighboring sites toisiMoving from a largeM value to a

much smaller value such 4@,| can greatly reduce the computational time required

to solve a given problem to optimality becauss & tighter constraint. Consider, for

example, the following equatiorx, + X, + X; < n,x. If n; represents a large value,

then variablex,, X,, and x, can be 1 in value when the valuexfis a small

fraction. This type of property means that constsa(2) can be easily violated when

M is large andx; is fractional. Often such constraints are not 6ecéd” without

resolving fractional variable values with a brasmcitl bound algorithm. I|Q,|is

considerably smaller thavl, then constraints (2) will be tighter and oftequiee
less effort in solving with branch and bound. Tharsy way to reduce the size Mf
in these types of constraints will generally redagerall computation time
necessary to solve a problem.

Murray and Church (1995) discuss how a W ‘tan be further reduced by
replacingM with the valuen; where:

n; = the largest number of sites which can be simabasly selected

within the setQ; while maintaining a distance separationrof

between each pair of facilities (nate<n).
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Murray and Church (1995) show that even though edmg@n; requires solving a
small vertex packing problem for each gtit has been shown that this can help to
lower overall computational time. It is importaotriote that vertex packing
problems are of the class of NP-Hard, so that largelems are challenges in
themselves to solve. Where the Murray and Chur@BX)Lapproach makes sense is
when each sd); is relatively small.

A second model form, the Anti-Covering Location Mb@ (ACLM2), first
proposed by Erkut et al. (1996) and Murray and Cingt996) uses a constraint
structure originally proposed by Thompson et é@.7@) that has been used to solve

the ACLP. Using the previously defined notatiore thodel can be formulated as:

ACLM2

MaximizeZ = > x (4)
jeS

s.t

X +Xx; <1 for eachi, j e Swherei # jandd; <r (5)

x; € {01} foralljeS (6)

This second formulation of the ACLP has the sanjeative value (4) as that of the
ACLM1, but uses what are called pairwise adjacarmstraints (5). For each
facility site pair,i andj wherei # j, that are withirr distance of each other, a

constraint of type (5) is written. This constrgaévents more than one facility in the
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pair from being selected. Either facilitpr facility j can be selected, or neither one
when the model is solved. Constraints of type (6)the binary integer restrictions
for the facility site selection variabi¢e Whereas the ACLM1 is compact (having at
mostn constraints), the ACLM2 is not; this is due to garwise constraints of type
(5). The number of constraints in the ACLM2 modetquivalent to the number of
unique site pairs that are strictly withirdistance of each other, potentially a
significant number. Murray and Church recognizeat this constraint form can be
reduced using higher ordered clique constraints. Adxt section discusses the

concept of cliques in further detalil.

B. Cliques

The Anti-Covering Location Model 2 (ACLM2) usingipaise constraints, see
constraints (5) in previous section, can be reducedimber and tightened through
the use of higher ordered cliqgues. To understaaddpresentation of a higher
ordered clique, let us consider three facilitysitel, andv which are withirr-
distance of each other. The ACLM2 model formulatiayuld contain the following

pairwise constraintsx, + x, < ,1x, + X, <landx, + X, < 1 These three
constraints can be represented, or reduced, ion@guality termx, + X, + X, < 1

a clique constraint of 3 members. The model carebeced by replacing these three
pairwise constraints by this clique constraintqGé constraints can be written when

a set of sites are all mutually adjacent or withdistance of each other.

31



It makes great sense to combine pairwise conssraihenever possible into
higher ordered clique sets as this reduces theedemaimber of constraints and

produces a tighter relaxed problem (Meneghin, Kigyones, 1988). In general a

cligue constraint can be written ag x; <1 wherek is an index of clique set€’,
jeCy

andCy is the set of members of cliquiesvhere each member of the clique is within
r-distance of all other members of the sites withafii. Murray and Church (1996)
describe a method to determine the minimum numbelique sets that represent all
pairwise constraints of a given problem. The Antiv€r Location Problem (ACLP)
as represented using ACLM2 with higher ordereduggjwould use the following

constraint;

>x <1 for eadhe K (7)
j<Ci
instead of constraints of type (5). Through the afsdiques, the number of
constraints found in pairwise formulations suclA&@.M2 can be substantially
reduced resulting in a more compact model thateasolved much faster. Cliques
can also be implemented in several special ways.SDoh way is through the

concept of a “Core” clique constraint set, discdssethe next section.

3K represents the set of all cliques
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C. “Core” Cligue Constraint Set Representation

“Core” sites are those sites that can be thoughsdfeing so close to a particular
facility, within > that if a facility is located at any of the faids within the core,

no other facility can be placed. This property Isdiok problems defined on a
Euclidean plane or problems in which the triangkequality holds. Erkut et al.
(1996) first described this type of constraintwghin a model they call “Model 1V”.
A version of Erkut et al.’s model using the prestyudefined notation, formulated

as the Anti-Covering Location Model — Core CliquenGtraints (ACLM-CCC) here,

is as follows.
ACLM-CCC
MaximizeZ=»_x, (8)
jeS
S.t.
nx+ > X <n for each facility € S 9)
jeK;

X+ > x <1 for each facility e S (10)
j<cQ

x; € {01} forall jeS (11)

WhereCQ ={j e S|d, SLZ,i # j}, defined for eaclie S and
WhereK, ={j € S|12< dj <r,i# j}, defined for eache S
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The objective of the ACLM-CCC (8) and the binarteiger restrictions on the
facility site selection variables (11) is the samseall of the other models formulated
to this point. The significance of this model ighe implementation of constraints
(9) and (10). Constraint (9) represents the forrooofstraint developed by
Yoshimoto and Brodie (1994), which was previousgcdssed in relation to the

ACLM1 model. As earlier noted represents the number of sites witlin
However, in this case), can be reduced to represent the number of elemathiis
K,. Conceptually, constraint (9) specifies that f&eility at sitei is selected, none of

the other facilities strictly withim of sitei can be selected. This represents the
neighborhood constraint of facility If a facility at sitel is not selected, than those
facilities withinr of sitei remain candidates for selection. Constraint ($@he
“Core” constraint and can be thought of as a cligi&cilities centered around

facility i that are at least halfaway.

Constraint (10) represents a core area W|%5||d|stance of facility site. If

facility site locationg are strictly Wlthlnz of facility sitei, any specific facility sites

J within the core set af CQ,, is also withirr distance of all the othgfacilities in
the setCQ.. This constraint is particularly tight as it recgs that at most only one of

the sites within the core can be selected at ang.tAs Erkut et al. (1996) note, even

though constraint (9) sufficiently represents asilele region, and that constraint (10)
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is redundant from a pure modeling point of viewnstoaint (10) tightens the
problem considerably.

This is an important observation as the “Core” t@ists represent a particularly
tight neighborhood constraint about a facility whreduces the necessary
computation time to solve the problem. Erkut efather note that the “Core”
constraint set represents only a quarter of tred &oea withirr-radius of site, and
that there could several potential facility locasmot included within this type of
clique constraint. However, constraint (10) is efmsgompute and implement when
building the location model. In fact, Erkut et allso suggested an algorithmic way of
further tightening the neighborhood constraintelminating members from the
“core” set from the neighborhood set. However, ¢hsra better method of
generating constraints incorporating “Core” corutis than that suggested by Erkut
et al. Murray and Church (1997a) proposed a “hydadn of a “Core” type clique

constraint, called a Maximal Clique.

D. Hybrid Clique Constraint Representation

Murray and Church (1997a) describe how to generdgbrid Anti-Covering
Location Model (ACLM) through the use of a maxirchtjue set. The Anti-
Covering Location Model — Core Constraints (ACLM-C@escribed in the previous
section, is in a certain way similar to the modelttMurray and Church (1997a)
describe. Murray and Church recognized that a elimpnstraint does not necessarily
have to be centered on the location of facilitityurthermore, they demonstrated that

neighbors of facility sité can be grouped into a maximal set of neighborsateall
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within r distance of one another, or a maximal clique. draceptualize this, think of
a small circle of radius halflocated within a circle of radius You can move the
circle of radius half anywhere within the circle of radiuso long as you group the
maximum number of potential facility locations wiitthe halfr circle. Note, that
sitei will always be a member of such a set. A maxintigue is conceptually

similar to this example. A maximal clique can_beated anywhere withinof sitei

such that each of the other sites withwof i are also withinm of each other Figure 4

contains a hypothetical set of sites withidistance of sit& sitesj, k, |, m, n, o, p, q,
r, s, andt. These facilities can be grouped into cliquesgiampleCy, C,, Cp, and
Cs. Co, the circle symbolized by the dash-dot patterpregents the “Core” clique

described by Erkut et al. (1996), discussed preshlouvhich contains all facility
sitesS% of sitei. The “Core” clique constraint sély, has 5 members: sited, m,

0, andg. The maximal cliqueC, symbolized by the orange top-right circle, corgain
the greatest set of neighbors withiof each other; 7 in this case. The sites within
the maximal clique are; j, k, I, m, n, ando. While the maximal clique s€k has

been represented as a circle for demonstrativeopas) it need not necessarily be a
circle. This is because maximal cliques are byrian determined through their
mutual connections; that is, the maximal cliquéacflity sitei and facility sites
within r of i must also be within of each other. Murray and Church (1997a) show
that a constrained node packing problem can be tessompute maximal clique sets

for use in solving the ACLP. This is done through tse of an undirected graph
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Figure 4. Example of clique set€,, Ci, C,, and Csz. The dashed circle with dot
fill, Co, represents the “Core” constraint clique of Erkut, ReVelle, &
Ulkusal (r/2). C,, the orange top right circle, represents the Maxiral
Clique for facility site i.

(network). Vertices (nodes) represent facility siéed the edges (arcs) represent
pairs of sites that arer<

To show how this looks in graphical form, let ususe the example presented in
Figure 4. Figure 5 shows this example graph. Thalldniue edges (arcs) represent

theoretical connections to vertices (nodes) thanat within the-neighborhood of
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sitei. The edges (arcs) connecting to the other nogesent those nodes that are
also withinr-distance of one another. For example cli@uesitesi, s, andt, are
represented on the graph as the orange edgesi(aths)top left of Figure 5. Clique
C, is represented as the brown arcs (top right),cligde C; is represented by the
blue arcs (bottom left). The maximal cliq®, is determined by “packing” the
number of nodes that are simultaneously conneoggether. However, as Murray
and Church (1997a) have shown, maximal cliquesierfacility site, say, could

be a subset of another maximal clique, say ofj sité¢hen a maximal clique for one
facility site () is a subset of a maximal clique for another fgcdite () it is said to
be dominated.

Murray and Church (1997a) thus suggest that th@lsgximal non-dominated
cliques should be used when formulating an ACLMtimately, solving for non-
dominated clique constraints is easily accompligheaugh industrial optimization
packages or using the “back-tracking” method describy Nishizeki and Chiba
(1988). Using maximal non-dominated cliques resuli& compact formulation,
consisting of tight clique constraints, which ghgaéduce the necessary
computation time to solve the ACLP to optimalityuivey and Church defined the
following additional notation for the model usingarimal non-dominated cliques,

indexed byk.

<>

={jeQ |i& j &C, foranyotherk € K }

>

i = Coefficient necessary to impose node packingictisins for the se‘l(li
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A

N, represents a reduced neighborhood set associéteditei, andh represents

the coefficient necessary to impose node packisigictons for the setl\Ali .

Essentially, all pairwise conditions handled inligue constraint are removed from
appropriate neighborhood sets. The maximal cligmesomputed by solving a
vertex packing problem for each candidate sitetionaThis reduction allows for

tighter (lower) values ofi, to be used. The maximal non-dominated clique mofiel

Figure 5. Cliques as a network representation.
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Murray and Church, called the Anti-Cover Locationdél-Hybrid Clique

Constraints (ACLM-HCC) here, is provided below.

ACLM-HCC
MaximizeZ = > x (12)
jeS
s.t.
Aix + D x <A for each, where N, =@ (13)
jeN,
>x <1 for eack e K (14)
i<,
x, € {01} forall jeS (15)

The objective function (12) and the binary integastrictions (15) are the same
as used in previously described models. Const(aB)trepresents those facility sites
within r radius of facility site that are not members of a non-dominated maximal
clique; this represents a neighborhood constraipturing all facility sites withim
of i that are not members of a maximal non-dominategie! This constraint is
structured the same way as a general clique camstndheny; is 1, no other
facilities withinr of sitei may be sited within that set.)fis 0, the other facility
sites are still candidate sites. Constraint (1gyesents maximal non-dominated
cliques. At most one facility within each non-domtied clique may be located. This

represents a very tight constraint while signifibaneducing the overall size of the
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model. Such constraints significantly reduce therall computation time necessary
to solve the ACLP. However, the overall computatiome may be greatly increased
if one is using a dataset that contains a densaf petints due to the necessity of
solving one vertex packing problem associated &hesite in identifying the
maximal clique set. Though this hybrid formulatisrvery efficient and significantly
reduces required computation time, there is an@pproach that reduces the overall
computation time even more than Murray and Churbklerid approach. This
approach is termed the “Core & Wedge” clique caistrapproach, which was

developed as a part of this dissertation researdhsadiscussed in the next section.

E. “Core and Wedge” Clique Constraint Representatio n

The “Core and Wedge” clique constraint represematises the concept of the
core clique constraint representation first desctiby Erkut et al. (1996) and the
idea of off-center cliques (Maximal Cliques) fimisited by Murray and Church
(1997a). While Erkut et al. recognized a very sinphy to easily create tight clique
constraints, it still requires the relatively loassghborhood constraint set. They
failed to recognize that their method could be exieal further.

While Murray and Church recognized that one coutnig the set of facilities
that are all withir of each other into a tight maximal clique constraet, they
failed to recognize that one could actually empdeyeral sets of less dense clique
sets. While their approach is effective at creating very tight constraint for each
site, which is particularly efficient for sparseaaets, it still requires the

implementation of loose neighborhood constraintstifermore, their formulation
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approach requires numerous node-packing-problerns smlved just to identify the
maximal non-dominated clique sets. That is to gaygn be computationally
intensive to derive the maximal clique sets reqlicesolve the ACLP-HCC model
itself, particularly when the data set containssgegroups of points. The concept of
“Core and Wedge” clique constraints is a very semgie. Every facility site
locationi has, at most, seven clique sets that capturamiise conditions within

its neighborhood! A graphic conceptualization ob¥€ and Wedge” constraints is
presented in Figure 6, 6, and 7.

The “Core and Wedge” diagram in Figure 6 is thelltesf a geometric analysis
of the core circle and the larger region of pomisside of the core, but inside the
larger circle of radius. Figure 6 depicts a siteits core and the large circle of radius
r. In addition, there is a wedge depicted whichlheen drawn with an angle of 60
degrees. If one thinks of the region outside thre,dout inside of the larger circle as
a tire, then a wedge is a region of that tire (tell@e of a wagon wheel). If a wedge
is defined to be equal to or less than 60 degtkes,all points within a wedge are
within r/2 of each other. This can be proven by geometmsituction and is
depicted in Figure 7. This same wedge is shown avitircle ofr/2 centered within
the wedge itself. If a wedge has an angle of didimithat exceeds 60 degrees then a
circle of radiug/2 cannot be drawn that is centered within the weghich covers
all points within the wedge. Thus, any wedge (tlo&) that is defined that is less
than 60 degrees contains a set of points thatlase enough together, that they

represent a core-like set. Consider then the fatigyroperty:
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Figure 6. Example of Core and Wedge areas associdtwith site i

Corollary: A set of points that fall within a 60 degree wedtgfined about point
i along with poini form a clique set.

Proof: All points within the wedge set are withirdistance of each other, so that
the points within the wedge region about poifdrm a clique set. Since poinis

also strictly withinr distance of all points within the wedge, then poitan be
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added to the clique set. Thus, the points in thegeeset along with poiii form a

clique. QED

Figure 7. Example of a Core and Felloe region of a 60 degrangle

One can now define:

Wedge clique set is the set of points that falhiita 60 degree or less wedge
pointi along with point.

Since a circle is comprised of 360 degrees, thieeerggion withinr distance
about a given site can be represented bwedge sets and a core d&@gure8
depicts this construction. Note that the constauctan be made where the fi

wedge drawn from poiri within the circle of radius can be oriented at any ang
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Figure 8. Example of felloe region withr/2 circle overlay

In Figure 6 the first wedge has been defined where one efidie sector coincide
with the vertical or-axis. Now consider the following theore

Core and Wedge theorelAll pairwise restrictions associated with a givée i,
can be represented with at most six wedge cligndsaaore cliqut

Proof. Each wedge set defines a clique set which cag pointi, thus it
represents all pairwise conditions associated paihti that fall within the wedge
Since all points strictly withirr distance of poinitwill fall within at most 6 no-
overlapping wedge sets or within its core set andesall of tle pairwise restriction

within each of these sets can be represented byatbsociated clique set constrait
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all pairwise restrictions associated with sitan be represented by at most 7 clique
constraints. QED.

In Figure 8 the core constraint of Erkut et al.98Pis shown as the red circle
with radius% . Any facility site strictly Within% of facility i is a member of the core

clique constraint. In addition to the “core” cliquex additional “wedge” clique
constraints can also be constructed. In Figureeéelare labeled in yellow print
“Wedge 17, “27, “3”, “4”, “5”, and “6”. Consider tle following notation:

W = Set of facility sites contained within wedgeof sitei.

wi

The wedge index ranges from one to six to accaumgdch wedge. Computing,,

is relatively easy and can be computed using ahbtfarward set of logical tests to
determine which wedge set neighpavithin r of i should be assigned. When
computing the “Core and Wedge” constraints forlfigci, one need only work with

the setQ to determine which core or wedge set facility pgould be included,
given that the Cartesian coordinates of sile;, y; ) , and for sitg, (xj : yj) are

known. Figure 9 shows the logic structure usedtoute core and wedge clique

sets membership. This process is based upon tmeefjecal arrangement of wedges
depicted in Figure 8. Function fi, represents the line separating Wedge 1 & 2 as
well as Wedge 4 & 5. Function &, represents the line separating Wedge 2 & 3 as

well as Wedge 5 & 6. By using the logic structuntlioed in Figure 9, members
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within ther-neighborhood of can be quickly and easily assigned to a clique set
either the core set or one of the wedge sets.

For example, the first test determines whetherj sgé@ member of the “core”
clique constraints or whether it should be assignetlwedge. If sitgebelongs to the
“core” clique constraints, it is assigned to theecdique constraint and the logic
process is terminated. If it is not a member obi@ clique, the second logic decision
point determines whether it belongs in Wedge Clqli¢hrough 3 if the x-
coordinate of sitg¢is greater than or equal to theoordinate of site, or 4 through
6 if the x-coordinate of siteis less than the-coordinate of sité.

If site ] is determined to be a potential member of Wediggies 1 through 3 a

Figure 9. Logic used to determine members of the @@ and Wedge clique sets
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further set of logical tests is performed. Thetfiest determines if sijels a member
of Wedge Clique 1 by checking to see if $isey-coordinate is greater than or equal
to that of the corresponding y-coordinate offthiene. If it is, it is a member of
Wedge Clique 1. If it isn’'t, then the algorithm cks to see if it is a member of
Wedge Clique 2 by determining if the y-coordinatsitej is less than the
corresponding y-coordinate of thdine andgreater than or equal to the
corresponding y-coordinate of thdine. If these conditions are met, it is assigned
membership to Wedge Clique 2. If it is not, the lagical check point is reached
and the y-coordinate of sifes checked to see if it is less than the corregdpayy-
coordinate of th& line. A similar set of logical tests is conducteddetermine
whether or not sitgis a member of Wedge Cliques 4 through 6 on therdbgic
branch. Once the logic operations have determined¢are and wedge clique
members, the following formulation model, the AGtvering Location Model —

Core and Wedge Clique Constraints (ACLM-CWCC) cardéfined.

ACLM-CWCC
MaximizeZ=)_x, (16)
jeS
s.t.
X+ Y X<l V ieS (17)
j<cq
X+ Y x <1l V ieSandforw= 1,2,345&6 (18)

€W
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x; € {01} vV ieS (19)

The ACLM-CWCC is notably different from all previsly formulated models in
that there is no neighborhood constraint and tiseagpredetermined limited number
of clique constraints. This is because the ACLM-C@ViGrmulation accounts for all
pairwise constraints withindistance of facility sitéin a core or wedge clique. As
in previous models the objective (16) and binatgger decision variables
restrictions (19) remain the same. Similarly, tbescconstraint (17) developed by
Erkut et al. (1996), which is the same constrdi@) ©f the ACLM-CCC, has been
utilized. Constraints (18) represent the completely wedge constraints.
Additionally, if any core or wedge has no membéedoes not need to be written out.
This further reduces the overall number of constsaiequired to solve this problem.
Formulating the ACLM-CWCC requires at mastonstraints. The inclusion of the
wedge constraints and the elimination of the laomghborhood constraint can
significantly tighten the formulation. Furthermooanducting the logic tests
necessary to formulate the core and wedge contdrigimuch more computationally
tractable than solving node-packing problems temeine maximal clique
membership as in Murray and Church (1997a).

In addition to the previously described logic agmio, one could include a
simple test to determine if a wedge defined farisis a sub-set clique of a core
clique for sitg. If it is, then only the core clique constraintsitej need be written

and the wedge clique constraint for sitan be eliminated as site pairwise
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restrictions will be in a wedge clique of sjtdn this way the needed number of
constraints can be further reduced. This cliqualsttrmination is similar to that
proposed by Murray and Church (1997a).

There is also an opportunity to reduce the numbaeeded wedges. This
approach involves determining the minimum numbestlegree wedges that one
could use to represent all of the facilities withém andr of facility i. A core clique
would only be required if facilities were within &f facility i. Using this approach
could create tight constraints that substantiatjuce the total number of constraints
necessary to represent the ACLP.

In conclusion, the ACLM-CWCC model utilizes a smalimber of cliques
without the need to solve vertex packing probleassn Murray and Church (1997a)
for Euclidean point datasets. In addition, the AGKOWCC contains at mosn7
tight constraints and does not require a neighbmitomnstraint as in Erkut et al.
(1996). However, the advantage of generating tiggdtge and core constraints may
not be readily apparent when the number of fagdlitiepresented in such constraints
is sparse; in that case, the Erkut et al. (1996h@bation (8)-(11) is likely to have
the advantage. Results of direct comparison wilptesented and discussed in the
next chapter. In addition, the geometry relied ufmrgenerating core and wedge
cliques has theoretical implication for all of geviously described formulations

that use neighborhood constraints.
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F. Theoretical implications of Core and Wedge relat ed to

Neighborhood Constraints

In addition to the geometry that informed constiurcbf the ACLM-CWC
formulation given above, the geometry has imporiamiications related to the
neighborhood constraints of all the previous modejsconstraints of type (2), (9),
and (13). Specifically, model ACLM-CWC needs no mthran seven clique
constraints for each potential site. Each cliquest@int represents one of seven
zones in the region surrounding a given s{& core and 6 wedges). The seven zones
are depicted in Figure 10. The fact that all paewonditions can be represented by
7 cligue conditions means that if sitis not chosen as a site, these seven clique
constraints will allow at most one site in eaclgué constraint to be chosen. Given
this observation, one can now prove the followingperty:

Corollary: a classic neighborhood constraint can be writteh an n, value no

greater than 7 without loss of generality for Edelin based anti-covering location
problems.

Proof. given that all pairwise conditions for a givetesiare represented by 7
clique constraints, and given that these cliqualitams will allow at most one site
in each clique to be selected, then in total, noentloan 7 sites in the neighborhood
around siteé can be selected. This means that the upper liithimthe

neighborhood is at most 7 and thmtcan be set to a value of 7. QED.
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Figure 10. Figure showing the 6 wedges and co

Therefore the maximum number of nearest neighbn;, for a neighborhoo
constraint about sitieis 7. This represents a valid up-bound for all sucl
neighborhood constraints. The proof of the abovel@y is based upon the not
that there can be at most 7 sites chosen withingighborhood of a given site. Tt
is because each clique coint will prevent no more than one site chosen
constraint. But, the fact is there are other retstms represented in any gi\

problem that will limit the number of selected fams.
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First, one should observe that sites that fallhendircle that is of radiusabout
sitei are all possible candidates to be selected whenisiselected, as each site on

that circle meets the separation requirements siigh. It is notable to observe that

Figure 11. Regions uniquely within ¥ of each other and withinr of facility site
i. Example wedge clique is shown in green.
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at this distance of exactty no more than six sites on the circle can be ahose
without violating arr-distance constraint among them. Thus, at a distafig it is
impossible to have more than 6 neighboring selestiwhen sité is selected. This is
an alternate way of viewing the proof of the abowmllary. The wedge-based
clique constraints in themselves, include onlyssgictly within the circle of
distance of sité and fall on or within a given wedge felloe or taection.

By construction, one can draw a circle of radiabout any sitgin the wedge
felloe ofi and observe that all sites in the core thfat are also within the confines of
the lines defining that same wedge are strictlyinit distance of sitg This means
that if any sitg in a wedge felloe of siteis chosen for a facility, then, restrictions
associated with the choice of gjiteill prevent any site chosen within the core det o
i that falls within the same lines drawn to define wedge of containing. Given
this property, one can now prove the following tteso.

Theorema classic neighborhood constraint can be writtgh an n, value no

greater than 6 without loss of generality for Ede&in based anti-covering location
problems.

Proof. If selecting a sitg¢in a wedge felloe of siteprevents the selection of any
sites within the portion of the core ioflefined by the lines that were used to define
the wedge, then selecting a site in each of thevetges will prevent any site being
selected in the whole core of sitélhus, no more than six sites within the

neighborhood of sitecan be chosen simultaneously. QED.
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However, the above proof applies only to thoselsitationsj, that areexactlyr

distance away from siie One then must ask about the upper-boundfor the case

where site locationsare less thandistance away from siie What might be the
maximum number of located neighbors in this casdfis instance, one can show
graphically that the maximum number of neighboed ttould be simultaneously
located withinr of site location is 5. Figure 12 shows this. If one were to locate
these in a symmetric configuration, as in Figureekh facility would be located at
equal intervals of 72 degrees from one anotheresiiiis geometric configuration,
one can now prove the following theorem.

Theorema classic neighborhood constraint can be writtgh an n. value no

greater than 5 without loss of generality for Edelin based anti-covering location
problems.

Proof. If any sitgj that is less thandistance away fromis selected, it will
preclude sité from being selected. If siids not selected, then there are
opportunities for othgrneighbors of to be selected and still remain at least
distance away from each other. Given the previsosfshowing that six sites may
be located distance away from and the fact that a facility may not be located a
it is possible to locate at most 5 siteighin r of sitei that may have a facility located
such that each of the 5 located facilities are eaftistance from each other. In this
case, one may locate 5 sites greater than or ém0a850650808distance of site

at equal intervals of 72 degrees aboutiditegenerate a symmetrical configuration.
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Figure 12. Graphical proof that n; can be at most 5 with amr separation

standard
0 Degrees
288Degrees 72 Degrees
216Degrees 144 Degrees
Q Circle of radius r O Circle of radius r/2

Thus, no more than five sites within the neighborhof sitei can be chosen

simultaneously. QED.
Therefore the theorem shows that thevalue of a neighborhood constraint can

be limited to no more than 5 when using a modehtdation using neighborhood

constraints. However, when there are fewer fagditvithin the neighborhood set,
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that is|Ni| <95, thenn. should be set equal tbli| . When generating a model that

utilizes neighborhood constraints a simple testhsasn, = Minimun(5,|Ni|), can be

implemented to make the neighborhood constraintiglasas possible.
For example, if one has a neighborhood constraiitten as:

90X, + X, + X5 + X, +...+ X5 < 90is mathematically not as tight as a constrainttemit
as:5x, + X, + X3 + X, +...+ Xgo < 5 Incorporating this simple property into the

previous formulations representing the ACLP whisk neighborhood constraints is
likely to reduce overall computation time. In faitte model most likely to
experience an improvement when using this partiquiaperty is the ACLM-CC
formulation first described by Erkut et al. (19%@&cause it is extremely easy to
generate the core clique and determine the rentameighboring facilities for the

reduced neighborhood constraint.

G. Location Set Covering Constraints

In addition to the completely new representatiof\Gire and Wedge”
constraints, another constraint form can be usddrtber tighten existing
formulations for the Anti-Covering Location Probleirhis involves the use of a
location set covering constraint, initially implenmted in the Location Set Covering
Problem described by Toregas and ReVelle (19723).Ttation Set Covering
Problem is a problem where one seeks to identéymimimum number of facilities
required to cover a set of demands. Rather thaersaya set of demand locations,

think of our selection of sites as covering otlaamility sites. It seems strange at first
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to think of wanting to cover facility sites in antacover location problem, but in
reality it is a property at optimality. That is,@itimality it is impossible to have an
unused site that is not withindistance of all selected sites. For if such aestisted
it could be selected without violating theseparation constraints, and thereby
demonstrate that it wasn’t optimal. Thus, set ciogeconstraints can be thought of
as stipulating that any unselected site must bereavby a selected site, a prospect
that must be true at optimality for the ACLP. Ingorating this condition does not
restrict an optimal solution from being found, Butce set covering constraints are
thought to be integer friendly, they may furthghtien a problem formulation.
Before the location set covering constraint is enésd, some additional notation
must be given. In this case one must define thghheirhood of potential facility
locationsjj, that are withinr of sitei; that is the neighborhood of sites about facility

locationi or SG. More formally:

Additional Notation:

SC ={jeS|d, <rjforalliinS
Thus, the location set covering constraint is fdiyndefined as follows:

D> x =1 vV ieS (20)

jesq

Constraints of type (20) are similar to those @f tieighborhood constraints e.g.

constraints of type (2), (9), and (13).
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The neighborhood constraints restrict all of theeptial facility locations within
the neighborhood afto be less than or equal to one in value, thétasonly one of
the facility sites within the neighborhoodiahay have a located facility. The
location set covering constraint maintains thdéast one facility site within
distance of sité must be selected. Though this constraint is siratly redundant, it
aids in generating an efficient cut to the polytopeach formulation. Incorporating
location set covering constraints into the previtmmulations is likely to result in
modest to significant performance advances. Thistraint is easily added to all of

the models and should reduce solution times.

H. Concluding Remarks

This chapter has focused on presenting severatredmtsstructures that can be
used to represent the Anti-Covering Location Pnobl€he chapter described the
initial big M constraint formulation presented by Moon and Chay1984), as
well as cligue constraint modeling approaches dasdiby both Erkut et al. (1996)
and Murray and Church (1996), maximal clique sktsr(ay & Church, 1997a), and
the completely new Core and Wedge clique constraodel and the Location Set
Covering facet.

Erkut et al. (1996) describe a method incorpora@oge cliques and the
associated neighborhood constraint. Murray and €h(ir997a) extended their
constraint structuring approach using maximal @gj(Murray & Church, 1996) to
generate a maximal clique set. Using maximal cgegjuires solving numerous

node packing problems, but can reduce the neeaufmerous pairwise constraints
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This reduced constraint represents all sites witldistance of each other and within
r distance of sité The two new constraint structures presentedignctmapter, Core
and Wedge cligues and the Location Set Coveringtcaint approaches, have
important implications for all formulations currgnin the ACLP literature.

The Core and Wedge clique formulation extends timeept of the core clique
developed by Erkut et al. (1996) and Murray andrciis (1997a) idea of tight
“maximal” cliques. The main difference here is thnstead of identifying a singular
maximal clique for each potential site locatipgeveral small yet dense cliques can
be used to represent all pairwise conditions fgivan facility sitei without the need
for a loose neighborhood constraint. An added bantisat no a-priori optimization
is required to generate the cliques as in the Muaral Church (1997a) method; only
simple geometric tests are required to determilggielmembership. Furthermore,
the geometric proof supporting the Wedge and Cammadilation approach can be
further extended to show that the upper bound@hitbonstant in neighborhood
constraints can be set at no larger than 5 witlomst of generality and can be further
reduced if the size of the neighborhood set istlegs 5, which will further tighten
the neighborhood constraint.

The Location Set-Covering constraint can also j@emented in each of the
formulations presented here. The addition of atlonaset covering constraint is an
efficient way to generate a cut facet to the basatrix of a problem. This cut is
likely to reduce solution times. Chapter 5 focuseghe implementation of each

formulation presented here.
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In conclusion, this chapter has:

e Reviewed previous formulations representing tha-@avering Location
Problem,

e Presented two completely new constraint representgtand

e Provided an important proof with significant img@teons related to the
neighborhood constraints used in previous formontesti

In the next chapter, two new forms of the Anti-Cang Location Problem will

be developed. Computational testing of these twdeisoalong with the work

presented in this chapter will be presented in whdpve.
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IV. New Anti-Covering Models

This chapter outlines two new models related toathté covering location
problem and discusses the important elementshibaetmodels capture that
previous formulations do not. As was discussethénimtroduction, minimum
separation standards have often been used indocatbdeling. Using a standards
based approach, as in the Anti-Covering Locatiabm (ACLP), facilities must
be kept at leastdistance from their nearest neighboring facilitg.address this
problem, all previous anti-covering location modglapproaches have been made
with two basic implied assumptions. The first asptian involves the objective of
the problem. The second assumption involves thexlfseparation distance. Both of
these assumptions have affected the way in whgedsion modeling using
separation metrics has been conducted and applied.

For example, the first assumption involving theeative function assumes that
one wishes to maximize the number of located taesliamong a set of potential
facility sites or within some bounded region. Savenodels have been developed to
locate the greatest number of facilities separbjesome standard, for locating:
military defense positions (Chaudhry et al. 19&8}imating the potential impacts of
policies on sex offender residence locations (Gsith& Murray, 2008; Grubesic et
al. 2008); designing optimal cut patterns for fabmaterials (Wong & Leung, 2009);
placing labels on maps (Ribeiro & Lorena, 2008a}igning biological reserves
(Williams, 2008); and determining habitat carrysapacity (Downs et al. 2008).

The objective of maximizing the number of locatdjeots makes a great deal of
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sense, particularly for problems involving economiaximization, such as the cut
pattern application.

However, many of these problems should also consiideconfiguration case
where the minimum number of facilities is locatedtsthat each is separated by a
standard. Problems that are likely very sensitivihis nuance, which haven’'t been
considered before, are all of the forms that doimatlve an explicit economic
objective. For example one should know the mininmumber of facilities/objects
that are located such as: reserve sites, the mmipapulation carrying capacity for
an area, the minimum number of map labels to pdaca map, etc. Thus the first
assumption about maximizing the number of objdetsl{ties) to locate has some
implications that have not been previously discds3#&is particular issue is
addressed in the Disruptive Anti-Covering Locatifmoblem section of this chapter
and for which the problem is defined and a locatradel is presented.

In addition to the first assumption, there is asuasption of a fixed separation
standard. If one is locating a series of franchkisees there is a general assumption
that the separation standard is constant. Howexhet if there is a case where one is
considering multiple types of facilities that havearying separation standard? What
is the maximum and minimum packing configurationtfos case? What if one
wishes to relax the separation standard to alleertain number of “violations”, that
is, where there are a certain number of faciliied may be closer tha? These
issues are addressed in the Modeling Variable &8parStandards section of this

chapter.
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These two assumptions have un-intended or prewiausbccounted for
modeling consequences that have not been addresgedanti-covering location
problem literature to date. The rest of this chajgtelevoted to addressing these
modeling shortcomings to improve dispersion modgliithin the context of
separation standards. Each section will provideszuption of the problem and

formulations representing the problem.

A. The Disruptive Anti-Covering Location Problem

The anti-covering (or-separation) location problem (ACLP) involves
maximizing the set of located sites, such thatwmlbcated sites are closer than a
specified distance, time, or other standard of edlhr. This problem can be defined
on a bounded continuous region or a discrete sated. When defined on a
bounded continuous domain it is generally assumatall facilities must be located
within the region and be further thasistance from the boundary andlistance
from each other. The solution to this problem isebmes referred to as a packed
arrangement.

There may be many configurations to a problem me&an which all facilities
are at least the prescribedlistance apart from each other. Those arrangements
which involve the maximum number of located fabtare optimal ACLP
solutions. Those solutions that use fewer thamtagimum possible number of
located facilities fall into two cases: 1) sitessexvhere it is possible to locate
additional facilities and still maintain tlmeseparation constraints; and, 2) all

remaining unused sites are too close to an exifdicitity or boundary so that no
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further sites can be added to the solution witlmilaiting ther-separation
constraints. This chapter section deals with teeoad type of solution.

If one is considering the case where all facilitimsst be separated by at least r
such that no other facility may be packed in, adalggquestion to ask is the
following: “What is the smallest number of facidit needed and their placement
such that no remaining sites can be used withalattng one or more-separation
constraints?” The basic element to this probleto fnd the smallest configuration
that blocks to the greatest extent possible a maiqpacking. This problem case can
be described as the Disruptive Anti-Covering LamatProblem (DACLP).

The formulated model to address this problem nuesttify solutions that
prohibit a maximally packed configuration; suchusians can be thought of as being
disruptive to a maximally packed solution. The imtpoce of this problem is both
theoretical and practical. From either perspectygimal solutions to the DACLP
define a lower bound on the number of facilitiestttan be placed without violating
ther-separation constraints as well as pre-empt aniiadal facilities from being
feasibly added. This is an important considerafpanticularly in problems where a
lower-bound packing arrangement should be congidere

Most of the applications of the anti-covering lacatproblem (ACLP) entail the
use of one of the models described in chapterd&pective sites are identified in
advance as “discrete” locations, representing cemteraster cells (Church, 2013),
commercial parcels (Grubesic et al. 2012), or nadesnetwork. Murray and

Church (1997a) have shown that the discrete antecproblem is an equivalent
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problem to the vertex packing problem on a netwarthe maximal independent set
problem on a graph, and therefore is NP hard.

Optimal solutions to the anti-covering problem esant the largest number of
facilities that can be simultaneously located whi#eping each of them at least a
minimum distancey;,, from each other. Unfortunately, there can beuoirstances in
which a maximum packing is disrupted; that is, oygimally packed. They may be
disrupted by earlier residential choices, alreagtgldished crane nests and
territories, or by poor choices in already locdtraachisee establishments. Whether
maximal packing arrangements are disrupted by antithappenstance or by intent,
such disruption and the potential impact of dispshould be of interest when
using this type of model. Additionally, given thrainy problems have used the
ACLP to find maximal packing configurations, and Véed Murray (2012) have
shown that spatial uncertainty plays a role in aeieing various packed
configurations, one should also consider the Idveemd or maximally disruptive
case as well within the context of spatial uncattai

Understanding the configuration and number of ghiascan be located is
particularly useful for applications related to habnest/den site modeling,
modeling feasible residence locations for sex-aféea, modeling franchise store
location, or any other application for which the IA&has been used. In the next
section a basic way in which to represent the Pigve Anti-Covering Location
Problem (DACLP), formulated as an integer prograngmgroblem called the

Disruptive Anti-Covering Location Model (DACLM), described. Following this, a
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brief discussion on packing solutions using the DAMCand ACLM and some other

important modeling details related to the DACLM.

1. Formulating a model for the disruptive anti-covering location problem

(DACLP)

A feasible solution to an anti-covering locatiomlplem must have all facilities
placed at leastdistance apart. If a feasible solution to an antiering location
problem also has the property that no additionteksian be chosen without violating
one or more separation constraints, then one ttaltssolution gropersolution. An
optimal solution to an ACLP is@roper solution which involves locating the largest
number of facilities possible. The disruptive astivering location problem has the
opposite goal as that of the anti-covering locatrwdel. It can be formally defined

as.

What is the minimum number of facilities and tle@nangement such that each
facility is separated by at least r-distance frolhagher facilities and no remaining
sites exist in which another facility can be adeethout violating one or more of

the separation conditions

Thus, it involves finding @roper solutionwhich involves the location of the

smallest possible number of facilities. If one de8:
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P.ax = the number of facilities deployed in an optimati-@overing solution,
and

P.i, = the number of facilities deployed in an optimardptive anti-covering
solution,

then all proper solutions to a given problem instawill deploy a number of

facilities that can be bounded as follows:

P., < numberof facilitiesusedin apropersolution< P, . (21)
Figure 13 contains three parts showing: the mininseparation distanceand
how packing circles of radiussare related, a proper ACLP solution considerimgeh
potential facility locations, and a proper DACLRwimn considering the same three
potential facility locations. Figure 13A shows htive minimum separation standard
r is related to packing circles of radisjsvheres =r/2. Figure 13B depicts the case
where there are three site locations representschall squares. If the left most site
and the right most site are selected for facilittesn one can see that their disks of
radiuss touch, but do not overlap. Thus, this solutiofemsible. Further, the middle
site is too close to the other two sites as itk disuld overlap with the others. Thus,

this solution is an optimal ACLP solution. FigurgC.depicts a different solution
where the middle site has been chosen for a facillie choice of this middle site
would preclude the choice of any additional siteddacility because the remaining

two sites are too close. Thus, this solution is gi®per. This solution is an optimal

disruptive anti-covering solution.
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Figure 13. A) Example of r separation standard angbacking circle of radius s.
B) A proper optimal solution to the ACLP. C) A proper optimal
solution to the DACLP for the same sites in B.

A)

C) /)\
\/

The objective of this section is to define a maaleich can be used to solve the

disruptive anti-cover problem and thereby calcuRite Using the notation that has

already been introduced, one can formulate theipliste anti-cover model

following the form used by Moon and Chaudhry (1984 ollows:
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DACLM

Minimize Z=)"x, (22)
jeS
S.t.
nX + > X <n forallieS (23)
ieQ
X+ > % 21 forallieS (24)
iQ
x; € {01} forall jeS (25)

The objective (22) involves minimizing the numbésites selected for facility
placement. Constraints (23) ensure that each lddatdity is separated by at least
r-distance from all other located facilities. Coasits (24) basically require that the
resulting solution is a feasible proper packingisoh. Constraints (24) require that
each unused or unselected site is lessitltastance away from a located facility. In
essence, constraints (24) force the model to lcaabdeigh facilities that each unused
site is close enough to a located facility thathsice as a facility site would violate
a separation standard. This means that const(@dhestablish that the solution
must be proper; that is no feasible site existhiwithe located configuration that is
r-distance or further from all other selected sites.

One should recognize that constraint (24) is theation Set Covering constraint
first described by Toregas and ReVelle (1972) whiels previously discussed in

Chapter 3; see constraints (20). Constraints (24plg ensure that at least one site is
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chosen nearby to sitéstrictly withinr distance) or siteitself is chosen for a
facility. Constraints (25) are the binary integestrictions for the facility site
location variables. Altogether, the model involfiesling a feasible, proper anti-
covering solution that uses the smallest numbéaalities.

The above model can also be formulated with paey&sg and higher ordered
clique constraints (7) instead of constraints (283)discussed in Chapter 4. This
includes any of the other forms discussed in Chiapseich as: core cliques,
maximal cliques, and core and wedge cliques. Inyncgncumstances a hybrid model
using both types of constraints may prove to bebtet when using off-the-shelf
commercial solvers. The model as formulated abswamiinteger programming
problem. Because it is a combined form of the wept&cking problem and the set
covering problem, it is functionally related to ttlass of NP-hard problems. The
fact that it is related to two complex problemduaitly ensures that the above model
will not always be solvable to provable optimalifys the number of sites increases,
it appears that the difficulty of the problem wéhd to increase, and for large
problems, one may have to resort to heuristic agugdres. This will be discussed in
Chapter 5. In the following sub-section, the subfjecuses on the solution of
disruptive anti-cover location problems using thedel described above. In the next
sub-section, details associated with the applinatfcthe ACLP and DACLP models

applied to two different data sets are presented.
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2. A comparison of DACLP and ACLP solutions

In this section example of solutions associateti wativing the DACLP are
provided. The presentation here is not meant texbaustive, but more illustrative
of what can be learned from solving the DACLP awmared to the ACLP. Both
ACLP and DACLP problems were solved using two défe spatial problems over
a range of separation distances. The first daiaiseé well-known Swain (1971)
data set of 55 nodes. Each node represents a ipbfantlity location for a postal
delivery zone. The second set is a 372 node ddtasetRuggles and Church
(1996). This dataset contains several known Aztezsc villages, and hamlets and
other settlement locations that are believed t@lexsted prior to the arrival of the
Spanish conquistador Hernan Cortés in 1519. ThedAdataset in particular is
particularly interesting because of the potentigblications related to central place
theory with regard to packing, service access,ragibnal centers. This research in
particular could support the previous work reld@dptimal dispersion and central
places conducted by Curtin and Church (2007).

The ACLP model was formulated and solved usingaihje form (1) and
constraints of type (3) and (9). The DACLP was folated and solved using
objective form (22) and constraint types (9), (28d (25). These two formulations
involve a “neighborhood” or nodal style of separatconstraints (i.e. (2) and (9)).
The approach of Yoshimoto and Broadie (1994) isl tsalefine the main
coefficient for such constraints in this case. lferapt to test other formulations,

especially a hybrid form involving clique-based a&tion constraints, was
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conducted here as this was not the central therttéso€hapter. The Xpress
modeling language was used to set up each probidrthan solved using the Mosel
64-bit solver version 3.4.3. Xpress and Mosel acelpcts of FICO, or the Fair Isaac
COrporation. A 2.4 GHz Intel Xeon workstation witB gigabytes of memory
running the Windows 7 operating system was usetlice the DACLP and ACLP
using the two spatial datasets.

Table 1 presents the results obtained when sobvsgjected set ofvalues of
anti-covering and disruptive anti-covering problespgplied to the 55 node data set
of Swain (1971). Solution times are not includedlhbut one problem were solved
in less than the smallest time increment of theesahnd were reported by the solver
as 0.00 seconds. The ACLP problem with7 required 0.01 seconds. Sites that
were closer than-.00001 distance units were considered to be tosechnd were
prevented from being simultaneously used in a smlutSolutions were obtained by
setting specific-separation distances, ranging from a low of 4.8 kagh of 60.0.

For each specific separation distance, the numidacibities located by the anti-
cover model and the disruptive anti-cover modeliated.

For example, for a separation distance of 10.@&titecover model packed 17
facilities across the 55 sites and kept all faesitseparated by at least 10 distance
units. For that same distance, the disruptive @wer solution involved placing 9
facilities. That is, it is possible to locate 9ifdies in such a manner as to keep all of
the facilities separated by at least 10 distands where all other sites are too close

to chosen sites to allow additional sites to bectel. The level of disruption for this
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case is quite substantial, a 47% reduction. tisdrtant to observe that the

difference between what can be located in the pgotase (anti-cover) vs. the

disruptive case (disruptive anti-cover) is quiteafirfor relatively small distances as
well as for relatively large distances. In the madige of distance values, there is a

considerable difference between what each modsilesto locate, a difference that

ranges from 30% to a high of 75%. This is a sulistbdifference and is of critical

importance.

Table 1. Results associated with solving the ACLPhd DACLP on the Swain
Data set. Note that the “:” indicates an incrementd number of
facilities; e.g. 1:4 is equivalent to 1, 2, 3, 4.

Separation | ACLP | Sites selected | DACLP | Sites selected (I)BA)eE\)/\I/ZcesrnenA%eLP
Distancefy | Obj by ACLP Obj by DACLP & DACLP
3,5:7,10, 12, 7:12, 14:28,
4.0 45 | 14:28, 30, 32, 41 30, 35:41, 8.89%
33, 35:55 43:46, 48:55
5, 8, 10, 12,
5,8, 10, 12, 14:18, 20,
14:19, 21:23, 24:29, 32,
>0 38 | 26:28, 30, 30| 33 36,37, 21.05%
35:55 39, 40, 42,
43, 49:54
4,8, 10, 12, 13,6, 12,
. 14, 16, 17,
14:19, 21, 20. 24
6.0 33 | 26:28, 33, 23 Pt 30.30%
35:41, 44:52, 26:29, 32,
54 55 36, 37, 39,
' 40, 46, 51:54
4,10, 12, 14, 8,9, 14, 16,
15, 21:23, 17, 20,
7.0 25 | 25:28, 31, 34, 17 24:26, 31, 32.00%
35, 37:40, 46, 37, 40, 43,
47, 49:52 51:54
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6, 8, 12, 14,

20, 23, 25:27, gélgélgéZL
8.0 21 |31, 33,35, 13 » 28, 33, 38.10%
! 35, 40, 43,
37-40, 46, 47, S
5052 52,
3.6, 12.14, 18, 3.0 14 21
20, 23, 24. 27, 26, 28. 33, .
9.0 18 133 3740 48| M |48 50 54 38.89%
51, 52 55
1hﬂ%zg% 26 4,17, 20, 27,
10.0 17 | 1416,23,26, 1 o |44 495 55 47.06%
30, 35, 39, 40, oy oo
43, 49 5153 !
2 10, 12, 18,
24, 27. 33, 39, 5 16, 20, 23, .
11.0 14 |50 08 a0 O A 50.00%
51:53
4 14 18, 24,
12.0 13 |25, 28,33, 40,| 7 gélgézgézs, 46.15%
43, 51:54 52,
13 14, 24, 28,
13.0 11 |33 37.40.41.| 6 252g522'36’ 45.45%
51. 52 54 !
14 15 24 28,
14.0 11 |33 37.40.44.| 5 22'22'49’ 54.55%
49, 52. 54 !
14. 26, 28, 33,
15.0 10 |37 39 42 46.| 5 ig,gg,zz, 50.00%
49, 52 !
8 27. 28, 35, 0
20.0 N D) 3 |12 41, 46 57.14%
25.0 5 22’35'39'51’ 2 |414 60.00%
30.0 4 | 14 26 51, 52 1 75.00%
40.0 3 | 14, 35,52 1 18 66.67%
50.0 2 | 14 51 1 28 50.00%
60.0 1 28] 1 28| 0.00%
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Figure 14 and Figure 15 depict opposing solutiong, for the ACLP and one for
the DACLP when using the separation distance di.1Roth figures display all 55
potential facility sites as black dots. Selectedllity sites are shown as red squares
with the separation distance of radiyg this case 12.0, represented as a black
circle with gray fill drawn around each selectedility site. Note that in each figure
all unused sites are within the minimum separatiistance of 12.0 from one or
more located facilities. From Table 1, it can beerlved for the separation distance
of 12.0 that the ACLP solution involves the locatimf 13 facilities. Figure 14
depicts this ACLP solution. In Figure 14 observat tach selected site is outside all
circles except for the one representing that $idés means that the pattern meets all
separation requirements. Figure 15 presents thtetetisruptive solution that
involves the placement of only 7 facilities, whish6 facilities fewer, a 46.15%
reduction, than what could be located in the optianméi-cover solution. These two
solutions capture the range in which proper sohgtiexist for the separation distance

of 12.0.
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Figure 15. An optimal disruptive anti-cover solution associated with the
separation distance of 12.0 involving the locatioaf 7 facilities.

In addition to the solving the ACLP and DACLP maleh the 55 node dataset
(Swain, 1971), the models were also applied tdatger dataset of 372 nodes
(Ruggles & Church, 1996). Table 2 presents theltestithese problems using
separation distances that ranged from 2.0 to Fa0the distance of 2.0, the anti-
cover model involved locating 110 facilities, otes#ing more than 1 out of 4 sites

for a facility on the average. For that same distathe disruptive model was able to
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find a proper solution which located only 68 faais, a 38.18% reduction, or less
than 2 out of 10 sites for a facility on averaggefQthe range of distance values, the
disruptive case often differs considerably from plaeked case in terms of the
number of facilities that were located ranging fr8&18% to 63.64%. Though the
focus of this chapter is not on solution timesusoh times for both problem types
are given in the table as well. This is includeghow that the computational effort
required to solve the DACLP is much less. Thisxisreplified using this larger data
set; it can be seen that the disruptive case cawollied in considerably less time
than the original anti-cover problem.

In most cases the disruptive model was solvedss tlean a tenth of the time
needed for the packing (ACLP) model. Although itynh& possible to reduce
computational times below what is reported heredigg a selected set of clique
constraints or a hybrid of cliques and neighborhomakstraints, it is likely that the
disruptive model is easier to solve in generalaspmared to the classic anti-covering
problem. It should also be mentioned that moddlmguages also exact a cost in
terms of set-up and execution time when using makeaiiques or a hybrid
approach; however, this cost is often outweighethbyalue in increased
computational efficiency. Greater discussion reldtewhy the DACLP solves faster
than the ACLP and a comparison of solution apprescising modeling languages

and alternative methods is presented in greateil detChapter 5.
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Table 2: Results associated with solving the ACLPral DACLP on the 372
Node dataset of Ruggles and Church (1996)

. ACLF.) DACI.‘P % Difference

Separation | ACLP Solution DACLP | Solution
) I o . N Between ACLP &
Distancey | Objective | Time in Objective | Time in DACLP

seconds seconds

2.0 110 0.15 68 0.00 38.18%

3.0 68 0.25 35 0.15 48.53%

4.0 45 0.80 22 0.10 51.11%

5.0 32 2.50 16 0.20 50.00%

6.0 26 1.30 11 0.20 57.69%

7.0 21 1.90 9 0.20 57.14%

8.0 17 3.20 7 0.20 58.82%

9.0 14 2.40 6 0.20 57.14%

10.0 11 2.40 4 0.30 63.64%

11.0 10 2.40 4 0.30 60.00%

12.0 9 3.10 4 0.30 55.56%

13.0 8 4.10 4 0.30 50.00%

14.0 8 5.10 3 0.40 62.50%

15.0 6 6.80 3 0.40 50.00%

3. Searching for stable levels of possible disruption

A proper solution to the anti-cover problem mainsaa minimum separation of
distance between any pair of facilities and wheraaditional facilities may be
located without violating a separation constraftg.described in the previous
section, the range of proper solutions will invodvaumber of facilities which fall

within the range:

P..< numberf facilitiesusedin a propersolution<P,

min — max
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Where P, ,,and P, can be generated by solving the ACLP and DACLP

respectively. What is not known is whether solutitm a specific problem exist
within the range or whether solutions exist onlyhet upper and lower bounds. In
addition, it is unknown from the outset for a giy@oblem whether multiple proper
patterns exist at the bounds or within the rangee €an define for any value pf
within the range for which one or more proper doh# exist, a stable level. It

makes sense to identify where stable levels eristden the upper and lower

bounds,P,,.and P, ... One approach to identifying whether a stablellexsts is by

appending the following constraint to the modelotégd by conditions (22)-(26):
ij >p VijeS (26)
J
Constraint (26) maintains that at lepdacilities are to be deployed. The value of

p can range fronP,, to P, ... If an optimal solution to this problem deploysaetty
p facilities, therp represents a stable level of disruption. If ne¢ntthe solution
deploys some number of facilitigs > p. This means that all values pétrictly
betweenp andp, includingp itself, are not stable levels for the problemanse.
Thus, in solving for the existence of stable leyilakes sense to first solve with
the bound o= p,,, +1. After solving that problem, each subsequent bk
defined by settingo=p +1 until p = P, Or P = P,..—1. This strategy can be

used to efficiently solve for the stable levelgofThis strategy is used to solve
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several example problems that were presented iprtheous section. Essentially a
constraint was added to the problem and solvedgnence, based upon the value of

p specified in constraint (26) for the previousatesn.

Table 3: Results associated with solving for stablevels of the DACLP on the
Swain data set.

Percent
, Stable values gf found Difference
[S)iesnggitéon gﬁi lc_tFi)ve between strict ACLP and g(b:'IEch)tive Between
f J strict DACLP J ACLP &
DACLP
5.0 30 31,32,33,34,35,36,37 38 21.05%
10.0 9 10,11,12,13,14,15,16,17 17 47.06%
15.0 5 6,7,8,9 10 50.00%
20.0 3 45,6 7 57.14%
25.0 2 34 5 60.00%
30.0 1 2,3 4 75.00%

Table 3 presents the results for the search fotestavels for disruptive anti-
covering when solving for selected separation dista on the Swain data set.
Several problems were solved for stable disrupggeels for 6 different separation
distances ranging from 5.0 to 30.0 with incremefts.0. Each of these problems
solved in less than 0.00 seconds. Altogether, stadisiuptive solutions for all 26
possible cases were identified. At first this seémse somewhat counterintuitive,
however, after the fact it seems entirely reasa)asd one should be able to make

just the needed amount of adjustment to a disregattern so that exactly one more
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facility can be added, bringing it to the next &dkvel. Of course this will not hold
for all problems, but it is likely that this woulle commonplace rather than the

exception.

4. A note on aiding disruption

Together, the DACLP and ACLP models can be usegterate the range of
proper solutions to a given problem instance. Ast@mned version of the DACLP
model can then be used to generate stable leviigine range of feasible, proper
values ofp. As stated before, disruption can be accidentdyral, or intentional. For
example, the ACLP can be used to generate an &mastg that maximizes the
number of Sandhill cranes that can be supportadidounded area of suitable
habitat, where crane nests are separated by a ommistance of (Downs et al.,
2008). But current nest patterns may not be optandltogether they may thwart the
existence of a larger number of nests being supg@oithe same can be said for a
problem of locating liquor stores (Grubesic et212). If liquor stores are to be
located at leastdistance apart from each other and at least aioatistance from
special areas, like schools, then an existing §tateern may “disrupt” the location
of new entrants. It also may be possible for a aattant to locate in such a manner
as to prevent others from locating nearby and g¥fely increase their neighborhood
market size (Church and Bell, 1990). Such a cir¢ante leads to two types of
location questions: 1) what is the best locatiat thnew entrant can make within

the separation constraints and effectively devétedargest “hegemony” against
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others in possible encroachment? and; 2) how meiljties are needed and what
are their locations that will aid resulting disnapt the most?

Both problems are of considerable interest. Thst &if which can be solved by a
site search, looking for the site which effectivebntrols the greatest amount of
surrounding area. The second problem is of corsldiggreater complexity and can
be formulated as a bi-level integer programmindfem. The model representing

this bi-level structure can be formulated as fodow

Minimize G (27)
s.L

>y~ n @9

i

M@A-y)> >y, foralli e N (29)

jeQ

y, {01} forall j e N (30)

G = Maximize) (31)
i

s.L.

M@-%-y)= > x foralli e N (32)

j<Q
x; € {04} forall j e N (33)

where the additional notation is as defined a®¥ad!:
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G = the maximal number of facilities that can be pthatter the selection oy
preemptive sites
p = the number of facilities being placed in whichmaximally disrupt an anti-

cover solution

_ |1 if site ] isselectedor asa preemptivedisruptivesite
10, if not

The above bi-level optimization model involves ader and a follower. The
leader makes the decision to locgidacilities as maximally disruptive sites. The

portion of the model that is the leader consistsarfstraints (28) through (30).
These constraints should be recognized as beintasim those implemented in the

formulation representing the disruptive anti-colmation problem (DACLP). The
follower solves for the optimal anti-cover soluti@iven thatg facilities have

already been placed. The follower portion cons$tonstraints (32) and (33); these
constraints are similar to those defined in thenidiation representing the ACLP. A
description of the technical workings of the coastis of this leader and follower bi-
level optimization model is as follows.

Whatever the leader selects, the follower respavittsthe best anti-cover
pattern that can occur given what the leader hastsel. The leader minimizes the

resulting level of facility placemef@, formulated as (27) & (31), while making the
location decisions foig facilities (28). The siting decision, , must be binary in

value, constraints (30), and they must satisfysttpgaration requirements (29). The

value ofG is defined by a modified anti-covering model. Goaisits (32) ensure that
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selected sites by the leader and the follower rnestt least-distance apart from
each other. The fact that the right hand side alillays be greater than or equal to

zero will ensure that the same site will not bestld by both the leader and the
follower (i.e. it is impossible for a given sitefor X =1 and y, =1at the same time).
Finally, constraints (33) restrict the site seleas to be binary for the follower.

The solution to this model (27)-(33) will identifyset of g sites which disrupt

the completed anti-covering solution the most. Heevesolving bi-level models can
be a complex task that often involves significasnputational effort, even for small
to moderately sized problems (Scaparra and Cha@fg). Thus, solutions to this
formulation are not discussed in Chapter 5. Needeis, the model is formulated

here as an important branch that future researchendd explore.

B. Other forms of r-Separation

All prior formulations of the ACLP have focused mraximizing the packed
configuration such that all facilities are sepadldig at least some standardOnly
the paper by Murray and Church (1997b) even consitine issue of site benefit in
a formulation they provided. Yet, they did not daetme if any change in site benefit
had an impact on the overall packing configuratamsthat was not the objective of
their paper. However, what if the quality of a sgquires a separation standard that
is smaller or larger than another site? What idipular site or configuration allows
for a certain number of violations of the separastandard? These are two

guestions that have not been fully addressed ifitdrature and are of concern when
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modeling phenomena. The rest of this section defseeeral ways that a minimum
separation standard: can be relaxed as a percesitages located near a site; or
where the separation standard varies by site leméis section describes a few
additional formulations that either relax the packiestrictions or consider

separation standards as a function of site benefit.

1. The generalized or “almost” r-Separation ACLP

The Generalized or AlmostSep Problem is a problem in which the distance
constraints are relaxed for a percentage of patesites within radius. In other
words, some locations will be allowed to violate #xplicitr separation criterion.
This is an interesting problem in that it represertlity in that territories of nearby
territorial speciesq.g.fox, California Spotted owl, and fishers) ofteredap
modestly. However, one again must ask which loaatmne would allow to violate
ther-Sep rule; are they random locations across a tapeg® Are they in an area that
has a high density of habitat/customer support?sQhnere a strategic decision that
has been made to allow for incursions into teryitsay for a family group that
allows siblings to locate near them or for a rath#in that locates two of their stores
close together, such as Target, or coffee housdgsamiStarbucks? These are all
guestions that would need to be explored to proaidefinitive answer. | believe,
however, that a general model such as the onemegsbelow could be effective in
comparing outcomes based upon: random dispergialitj@al landscape support,

or strategic influences.
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If one allows for some facilities to be a bit cloffean the desiredseparation
constraint, then it may be possible to select auk pnore facilities into a given
region. It may also allow for one to locate atsiehich are preferred over others but
would not ordinarily be chosen because they ariétadoclose. In addition, one
should limit such “incursion” as separation staddaare often suggested for solid
reasons. Consider then the following problem dedini

Generalized-Separation problemMVaximize the weighted benefit of sites
selected for a configuration of facilities, whemnegeneral each site must be at least
ar distance from each other and where for each &iglity, at most one of their
neighboring facilities can be closer thadistance.

This problem is called the generalizedeparation or the generalized ACLP. The
value ofa is to be some value less than or equal to 1. Boeeageneralized problem
represents the classic ACLP whers equal to 1 and all site values are equivalent.
This new problem definition allows for the fact tlwaly one neighboring facility of
a given located facility can be somewhat closen tha standard separation
distance. As the value afwould probably be on the order of say 0.90, ehen t
closest neighboring facility to a given facility lnbe forced to be close to the
standard-separation distance. What this problem allowsd@ modest flexibility
in applying the separation standard as well asw@ages the selection of those sites
which are weighted more than others.

The following formulation uses the notation thas ln@en previously defined as

well as:
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bi is the benefit of locating at location
The Generalized-Separation or “almost™-Separation model can be thus

formulated as follows:

Maximized b, , (34)
j
s.t.
(n-1)x, + k;‘xk <n,whereN, ={j |site j is within r of k| (35)
nx, + k;“xk <n,whereN, = {j [site j is within ar of k} (36)
ZN:XJ- >1 foreachk, whereN; = {k [sitekis withinr of j} (37)
N,
x, {01} foreach ] (38)

The objective (34) is to maximize the number ofiaacfacilities with the
greatest benefit. Constraints of type (35) enfdineeseparation of facilities. In this
case at most one facility may be allowed to loc#teer thamr distance of a located
facility. Constraints (36) work in conjunction wittonstraints (35); this constraint
limits any selected facility to be closer thaof r distance to any other located
facility. Constraints of type (37) require that gagility i within the r neighborhood
of facility sitej must have at least one facility located withinmigsghborhood.

Though these constraints are technically redun@asntientioned in Chapter 3, they
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aid in generating a tighter relaxed linear prograngnsolution. Constraints (38)
restrict the location site decision variables tdbary integers.

This model is likely to be helpful particularly foabitat modeling and franchise
store modeling where good habitat or market areasqe enough support for the
den/franchise store. Figure 16 shows an optimaitieol obtained using the above
formulation with a separation distanceequal to 12¢ equal to 0.8 and where alll
benefit values were set equal to one. For this,da&&cilities have been located at
sites: 1, 10, 12, 14, 15, 26, 27, 29, 33, 35, 89438, 49, 51, 52, and 53. The solution
differs from that of Figure 14, where 13 facilitieave been located. The optimal
solution to the Generalized ACLP has 7 sites inroom with the optimal solution to
the ACLP; sites 14, 33, 40, 43, 51, 52, and 53. &l@wx, allowing for a 20%
relaxation of separation distance for only the etdseighboring facility, four
additional facilities can be placed using the alimeSeparation formulation. This is
apparent in Figure 14 as there are subtle shifighiere a facility is located in the
Generalized ACLP vs. the ACLP. In addition, one obgerve that no facility is
closer tharw*r (9.6) of a site and if a site has an existinglityoivithin ar, all other
sites are no closer thar{12) units away.

If one wished to examine the lower bound, as iNDAELP, one would have to
solve the DACLP problem first, as this would pravithe optimal minimally packed
configuration. Then one would simply have to usedhove formulation as well as a
constraint that specifies that no more tpeacilities are deployed to ensure that a

proper but maximal valued configuration would berfd.
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Figure 16. Generalized ACLP model optimal solutiorfor a separation distance
of 12 with & equal to 0.8 and all site benefits equal to 0 agpt to the
Swain dataset with 17 located facilities

2. The Site Sensitive r-Separation ACLP & DACLP

To illustrate the importance of using site-sensitminimum separation
standards, consider the following examples. Fdaimse, one may be interested in
modeling a territorial species that must sustaelfitoy defending an area centered
about its nest/den. Let us also consider the hahitahich the animal resides; it

should contain a source of water, food, and shtirenable it to survive and
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thrive. One must recognize that areas distributent space vary in habitat quality.
For example an area might have a river that fetdsa lake with several species of
fish in varying quantities as well as tree/shrubcsgs that provide nesting material
and/or food, while another area is centered owsrsé creeks. The lake and river
habitat has a greater capacity to provide fishdf@nd nesting sites/material
(trees/shrubs) than the area with many creeks. &wtilsuitable habitat locations, for
example an osprey, but require two different teryitsizes to maintain the same
level of access to resources such as food anchgestterial.

Another example of the importance of location ediatio territory could be a
competitive retail chain. A competitive retail chamay locate stores with varying
market sizes (varying-Separations) based upon the underlying thresHaitboket
support required to maintain the viability of arstoSo then, if one is to estimate the
number and distribution of a territorial speciegioan area or the location of
competitive retail stores, should one not also icEmghe suitability of each site and
its influence on the size of the separation staigfaWWhat would these distributions
and capacities be? Before addressing these qugstiowever, the problem must be
restated in a general form.

The Variable r-Separation Anti-Covering Problegiven several locations that
vary in quality with constant threshold requirensenthat would be the optimal
arrangement of the nest/den/facility sites?

The required separation between neighboring negfatglity locations is a

function of the threshold requirement at a potésiia of location; for the territorial
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species it could be the quality of the underlyiagdscape, or the size and level of
access to a customer base for a store. In theblariseparation Anti-Covering
model, the separation distanctr very high quality locations will be smallerati
ther distance required in lower quality locations.

This assumption is supported in the territorialcsge literature, of which a nice
review can be found in the paper by Joni DownsMadk Horner (2008), which
specifically looked at the effects of point pateeand the shape of home range
estimates using spatial statistical methods. Jifgtilams (2008) also considered
reserve site selection with distance requiremegitsirch and Bell (1990) looked at
the variations in business site location and tegact on Central Place Theory,
particularly with hybrick-levels in their paper. Varying radii in the Varial-Sep
ACLP capture these differences and could lead ¢b auandscape identified by
Church and Bell. Thus, this is an important elenzértispersion modeling that is
missing and should be developed.

Carrying capacity estimates of habitat using thinaptic view (“Rosy View”)
of the ACLP have been generated; most notably ecehtly by Downs, Gates, and
Murray (2008). However, their paper does not cagrsitesting site quality, and its
impact on the value af The Variabler Anti-Covering Location Problem PACLP)
considers each site and the underlying qualityhaf site and maximizes the number
of facilities located. The notation is the saméas been previously defined,

including the following:
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r, is the radius of separation criterion for locajon

Using this notation, the MACLP can be formulated thusly as:

Maximized x, (39)
i
st.
nx, + 3 % <n,whereN, ={] |site j is within r, of k| (40)
keNy
X, {01} foreach ] (41)

The objective in this formulation (39) maximizeg thumber of facilities placed.

The site location suitability measure is capturethe separation standard criterion,

r;, and is adjusted accordingly for each git€onstraints (40) prevent sites that are
closer tharr; distance from sitgfrom being used when sités selected.

Constraints (41) restrict the facility site selentvariables to binary integer values.

The Variabler Anti-Covering Location Problem can be re-formuthte consider
the minimum number of facilities that can be lodat&e lower bound, as in the
DACLP as well. The formulation of that problem, Nariabler Disruptive Anti-
Covering Location Problem (DACLP) is defined with the following additional
notation:

N, ={j |site j iswithinr, of i}
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®, =j|sitei is withinr, of j

VIDACLP:
Minimize )" x, (42)
j
s.L
nx + Y % <n for each (43)
keN;
>'x,>1 foreachi (44)
j€®;
x, {01} foreach j (45)

The objective function (42) minimizes the numbefadility/nest centers to be
placed, while considering site suitability. The staints (43) and (45) have the
same function as those previously discussed foVtA&€LP. Because this form is
designed to find the optimally “disruptive” packingnfiguration, following the
DACLP, this necessitates the inclusion of constsaffi4). One issue that needs to be
addressed with this formulation is that, while thedel will locate the minimum
number of facility sites such that no site is ctaban the specified standard and that
there are no other sites that may be packed, tliemoll also lead to solutions that
are “biased”. This “bias” is towards sites locatedbwer quality habitat/territories

because the radius of separation is larger andsitability is lower.
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This means that a greater area can be covereduey,flower quality,
nest/den/facility sites with greater separatiotiasises when in reality there is likely
to be a mix of high and low quality sites. A teorill species, and a business, will
certainly tend to select higher quality sites. Depierg on how great the variation
between the optimistic and pessimistic views, iyfna necessary to account for
variations that lie between the “pessimistic” analsy” outlooks by attempting to
generate solutions in between the two bounds. ddutd easily be done by adding
constraints (26). Constraints (26) specify thdeastp-facilities be located between
the pmin (ACLP) andpmax (DACLP) solution configurations. In this way vang
configurations could be generated. Using this gamgtwill assist in providing a

range of configurations of possible outcomes.

C. Conclusions

The classic ACLP involves maximizing the numbefadilities being placed
while keeping them at leastistance apart from each other. The ACLP has been
used in a number of different application areadluiting reserve design, defense,
forest operations models, DNA sequencing, analypwigies impacting potential
sex offender residence location as well as poteigizor store patterns, among
several others. This chapter has presented sengraftant extensions of the Anti-
Covering Location Problem (ACLP).

Section A introduced a new problem called The Cusue Anti-Covering
Location Problem, which discussed the importanat@Disruptive Anti-Covering

Location Problem (DACLP) in policy analysis. Themiptive anti-cover problem
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(DACLP) involves finding a solution which minimizéise number of facilities being
placed, ensuring that all facilities are separ#tech each other by a minimum
separation distance, and where no further sites can be selected withiolating a
separation condition. An integer-linear formulatimodel for the disruptive anti-
covering problem has been developed, example sokiprovided, and a discussion
of how this model can be used to identify stablele of disruption was included.

In particular, this section demonstrates the ingaré of the disruptive form of
anti-covering. In fact, when policies are analymethg the anti-cover location model
(e.g sex offender residences or carrying capacitymdulation of Sandhill cranes),
it makes sense to solve the disruptive form of pnablem as well in order to capture
the range of possible outcomes. When the problazorepasses a number of
independent decision making entities, sex offen¢arbirds) in selecting housing
(or nest sites), it is likely that an optimal pattevill not be generated. Thus,
solutions to the DACLP are important and informatwithin the context of policy
analysis and decision making.

A bi-level “leader and follower” model is also paged for identifying
placement strategies to thwart or disrupt optinagifigurations to the greatest extent
possible with limited resources. This bi-level miogtas only formulated; this model
is a research avenue that should be explored atagrdetail and is left for future
work.

Section B. “Other Forms of r-Separation” focusamparily on how one could

consider variations in the way separation standarelsmposed. All previous
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formulations in the literature are based on themggion that there is a fixed
separation standard. However, there are cases whelestrict standards are not as
representative as one would like. This is espagcialle where explicit standards of
separation are not appropriate for certain modeplications, as in models
representing habitat carrying capacity for teriébspecies or where certain
franchise stores or retail outlets share a poxiomarket area. The generalized
ACLP model allows modest violations of separationgtraints in selecting a
configuration and encourages the use of highereghsites.

In addition to the Generalized ACLP, another probtalled the Variable ACLP
was proposed. This problem is based on the assoimiptat the separation standards
could be site specific. One example of an applcatf this type of problem
involves the analysis of carrying capacity. Forsiaéocations where resources are
plentiful, separations between one individual atieers is likely not as important as
those locations that provide fewer benefits. Sik lower benefit are likely to
force an individual to maintain a larger territdoymaintain a similar level of
resource availability than a site with greater fien€he Variable r-Separation
ACLP was formulated as an integer linear prograngnpiroblem and this should be
the subject of future research.

Overall this chapter presents two new major con@dphodels related to the
ACLP have been developed. The first section poiotgdhat the ACLP is often
“rosy” when used to determine optimal solutionshi® ACLP and a related problem,

the Disruptive ACLP, was discussed and formulatealddress this issue. The
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subsequent sections discussed how separation sfaritieamselves can be relaxed or
specified individually. Each of these points ar@artant to the various applications
for which the ACLP has been employed. The next draplComputational Results”
presents the results of the computational expegiémsolving ACLP and DACLP

models.

In conclusion, this chapter has focused on:
e Describing and formulating the Disruptive Anti-Cowg Location
Problem
e Defined proper solutions and discussed the impoetar intermediate
anti-covering solutions that range from the upp@LR bound and
DACLP lower bound
e Presented a bi-level leader and follower formutafar disruption

e Covered two ways of implementing a separation stechd
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V.  Computational Results

As discussed in chapter Il and 1V, the Anti-CowgriLocation Problem (ACLP)
and the Disruptive Anti-Covering Location ProbleDACLP) are Non-deterministic
Polynomial-time Hard, or NP-Hard, problems. Thisamethat large instances of
these problems may be difficult to solve to proeatyptimality, even if given
significant computing resources and time. For teason several sophisticated
constraint representations have been developedHkgt & Neuman, 1991;
Yoshimoto & Brodie, 1994; Erkut, ReVelle, & Ulkusal996; Murray & Church,
1996; Murray & Church, 1997a) in addition to seVéeuristic approaches. This
chapter is composed of two primary sections thesgmt and compare computational
tests of competing model formulations using off-telf commercial solvers and a
section that introduces a new heuristic approach.

The first section discusses the computational eepee of solving the ACLP
and DACLP to optimality using an industrial solvBeveral of the modeling
constraint structures discussed in chapter thre@sed to represent the ACLP and
DACLP and are solved to optimality. By using indigdtoff-the-shelf software
where each constraint structure is formulated,maparison of each structure can be
conducted and discussed. The second section certdinef overview of existing
heuristic solution approaches to solving the ACkRvall as a new heuristic
approach called the Marching Army heuristic. Fumth@re, a discussion on heuristic

approaches to solve the DACLP is provided.
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A. Solving the ACLP and DACLP to Optimality

Solving the ACLP and DACLP using most of the mddeins presented in
chapters 3 & 4 to optimality on small datasets lbamlone with ease. For example,
many of the conceptual figures used in the prevahapters were solved to
optimality in less than a tenth of a second udiregSwain (1971) dataset. However,
as the size of problems increase computation tiite® encreases as well. This
chapter section utilizes the larger dataset of Ragggnd Church (1996) to compare
the various model formulations representing the RG@ind DACLP.

The Ruggles and Church (1996) dataset represautteation of Aztec
settlements. The settlements range in size fronldtano cities and are dispersed
over a large region of approximately 900%im total there are 372 point locations
in the dataset. Each point represents the cemfdite town center. Figure 17 shows
the histogram of the distance matrix representiegiuclidean settlement-to-
settlement distances of the 372 Aztec settlem@iis.average settlement-to-
settlement distance is 15 kilometers, with the loilthe settlement distances
between 5 and 25 kilometers. This is importanenmis of thinking about separation
standards. If the distance of separation standaislsmall and there are few
neighbors, the neighborhood constraints and cligukse sparsely populated. As
the value of increases, the neighborhood constraints will iaseen their
membership and thus size. As constraint memberbaif,clique or neighborhood

constraint, population size and complexity typigaticrease as well. Thus, the
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Ruggles and Church (1996) dataset is particuladl suited to testing separation

standards.

Figure 17. Histogram of the settlement-to-settlemerdistances of the 372 point
Aztec dataset of Ruggles and Church (1996)
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The Ruggles and Church dataset was used as iigey ldnan the Swain (1971)
dataset and is large enough and contains enouglalsganplexity that computation
times will measurably vary. This is important besathe optimizer must be stressed
by enough problem complexity to compare solutiomes. In order to solve each of
the represented formulations, the Fair Isaac Catpor's (FICO) Xpress solver

version 25.01.05 was used. FICO’s Xpress-IVE dgwalent environment including
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the Mosel modeling language version 3.4.3 was tsedt up each problem which
was then solved using the Xpress solver. Moselugasd as it is very easy to
formulate a model and check it, and Xpress is dastrial solver just as capable as
CPLEX. Only the Core and Wedge and Maximal Cliquenulations used
specialized code. In this case the model forms wenerated using a program
developed in Microsoft’s Visual Basic .Net enviroemb. These models were then
solved to optimality by means of the same XprebgesoThe primary reason for
doing this was to take advantage of GIS functiapédir the Core and Wedge
geometry calculations, and to take advantage ofrihiéi-thread capabilities in the
computation of the vertex packing problems thatraqgiired in the maximal clique
formulation of Murray and Church (1997a). Threenary computers were used to
run the software.

The three different computers used to run the nsodelte: 1) Super-Chief, a 2.8
GHz quad-core hyper-threadg@® total threads) Intel i7 CPU desktop computehwi
12GB of PC3-10700 (1333 MHz) memory running the tléws 7 operating system
(0S); 2) Jupiter, a 4.1GHz quad-core (4 total tisga@®AMD A-10 6800K CPU
desktop computer with 8GB of PC3-17000 (2133 MHe)wory running the
Windows 7 OS; and 3) 10, a 2.5GHz variable speelilmguad-core (4 total
threads) AMD A-10 5750M CPU laptop computer withBB& PC3-12800 (1600

MHz) memory running the Windows 8.1 OS. Super-Chaighe computer for which

* A hyper-threaded CPU means that there is a “ireare associated with an
individual physical core. For example a dual-coypdr-threaded processor has 4
threads to which computation may be distributece Fireads of a CPU are where
computation is conducted for a process.
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the results of several model formulations wereusing a range of separation
distances.

A side interest in running the various models aséhconfigurations was to
determine if the hyper-threading capability of thieel processor was of benefit
when running the models using the Xpress solvee. dther computers were used as
their CPU configurations represent a broad randgeadware from which
performance can be compared. Super-Chief has trefibef multiple threads per
core, albeit at a reduced CPU clock frequency, edeedupiter has the advantage of
a higher clock speed but the disadvantage of hdewwgr threads. 10 is used to
compare a more efficient mobile CPU to the deski®Js. The next two sub-
sections report the results of the computationpeernce for the various
formulations for the ACLP and DACLP problems enyinein on SuperChief.

Following that, a comparison is made across ahefcomputer configurations.

1. Computational Experience of Various Constraint Forms Representing

the Anti-Covering Location Problem

This sub-section presents the computational expegiéor the various constraint
representations of the ACLP. All of the resultshis section were generated using
Super-Chief, a computer with a 2.8 GHz quad-cot@*lJ and DDR3 memory
described previously. Before the results are desdria brief review of the varying
constraint structures are characterized usingat@aing notation:

i,] areindices of potential facility locations
r is the minimum distance standard, or radius o&ssn
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S s the set of potential facility site locations
Q =1{jeS|d, <r where j=if, defined for eaclie S

is the largest number of sites which can be simeltasly selected within the
setQ; while maintaining a distance separatiom between each pair of
facilities

d. shortest distance from facilityto facility j

if facility issitedat |
X; decision variable wher » y J
0,otherwise

Using this notation, the following generic neighih@od constraint represents the
restrictions on siting facilities by ensuring tlifatite i is chosen for a facility, then
all other sites that are within thestandard (distance) of locatiomust be left

unused. The generic neighborhood constraint camritien as:

nX + > X <n, forall ieS (46)
jeQ

This is the neighborhood constraint first propolsgd oshimoto and Brodie

(1994), though they halQ| including sitel instead ofn, . Murray and Church

(1995) recognized th4£Dl| could be further reduced to the formmft

Representations using are an improvement in that they are much moreiefit

than that of the bityl value€ implemented by Moon and Chaudhry (1984). In

addition to the neighborhood constraint form, tHeL® can be represented as a set

> A very large integer number, such as 999,999.
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of pairwise constraints, as well as a hybrid foomposed of a neighborhood
constraint and clique constraint.

A pairwise constraint can be viewed in the follogvimay. For example, consider
three facility siteg, u, andv which are withirr-distance of each other. In pairwise

form they are represented ag:+ x, < , &, +X, <1, andx, + X, < 1 These three
constraints can be reduced into one inequality te¢m X, + X, <1. This reduced

representation is called a clique. As stated irctligies section of chapter three, it is
sensible to combine pairwise constraints whenewessiple into higher ordered
clique sets. This reduces the needed number ofreamts and produces a tighter

relaxed problem. In general a clique constraintlmamritten as:

X+ X <1 (47)

jeC

WhereC is the set of members of the neighborhood cliduadlity sitei. The

ACLP can be represented as: 1) using neighborhoosti@ints of type (46) such as:
the Big-M andn, forms — the total number of neighbors withiaf facility sitei; 2)

A combination of neighborhood and clique constsaofttypes similar to (46) &

(47) such as: Core Cliques, Maximal Cliques, andi#se forms; or 3) Entirely by

cliques of similar form to type (47) such as Cor&\&dgé.

® In chapter three of this dissertation all of thesestraint forms are discussed in
detail. BigM is the classic Moon and Chaudhry (1984) formufatig is the tighter
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Table 4 contains the computational experience iwhidating and solving each
of the constraint representations for the Anti-GowgLocation Problem (ACLP).
This table excludes the use of Location Set Cogdfiroblem (LSCP) facet
enhancing constraints, which will be discusseditie liater in this sub-section. Table
4 presents each modeled form by row. The tableokdn into two sections; the top
half represents separation standards of 1-10 in increments ohg. Bottom half
represents separation standards of 11-15 in increments ofdl2®, 25, 30, 35, &
40. The columns represent each of the separatmalatds used to run each
constraint form. The top rows of each section darttze separation distances used
for each modeled constraint form. The second rdvesioh section contain the
optimal ACLP objective value that was obtaineddach distance standard,The
rows associated with a particular model form canthe following: setup time,
solution time, and total time. All times are regarin seconds. Results related to
each formulation will be discussed independentst,fiand then compared and
contrasted as a whole.

The Big-M approach (Moon & Chaudhry, 1984) is reyered by a set of
neighborhood constraints similar to constraints/pé (46), as previously discussed.
Observe in Table 4, that the Biymodel form for a distance of separation of 5
required .02 seconds to set up and 2.7 seconasvis, sesulting in a total time of

2.72 seconds. When the model is solved to optiynaddrticularly for smalt, it is

form proposed by Yoshimoto and Brodie (1994) andrispiand Church (1995),
Core-Cliques by Erkut et al. (1996), pairwise comsts and maximal cliques
described by Murray and Church (1997a; 1997b),thecdcompletely new all clique
constraint representation, Core and Wedge, alsaied in chapter three.
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solved in less than a second. This is because whalnes are small the total
number of neighborhood members is quite small whashilts in a fairly compact
constraint that is easily solved. As thstandard increases the members of each
neighborhood steadily increase. As these neighloarszes increase the
computational effort required to solve the problecreases. When thestandard is
less than or equal to half of the average settl¢twegettlement distance (15km), the
number of sites with overlapping neighborhoods i€immore manageable and
results in an easier to solve problem.

Once the average settlement-to-settlement distareeeeded by the
separation standard the number of sites that anebmies of overlapping
neighborhoods greatly increases. This resultsvuersé constraints with very large
neighborhood membership that also overlaps, wincreases the complexity of a
given problem. This is reflected in the total smlottime for a given problem as
problem size increases. For example, it takes 6s@¢@nds to solve for a standard of
15km. For a standard of 20km, the total requirddt&m time takes over a minute
(74.135 seconds). However, there is a way to futighten a formulation with using
only neighborhood constraints.

This brings us to the Yoshimoto and Brodie (199)straint representation.
Instead of “BigM”, this form utiIizes|Qi| in each neighborhood constraint. The

performance of the Yoshimoto and Brodie constraptesentation is very similar to

the BigM representation (see Table 4: Yoshimoto & Brodie)nany instances this

108



formulation is solved in almost the same, or igldly less, time than the Bilgt

representation.

Table 4: Computational results associated with soiig 6 ACLP model
formulations applied to the 372 node Aztec data sefll times are in
seconds and-Sep in kilometers

r-Sep 1 2 3 4 5 6 7 ] 9 10

Objective 212 110 68 45 32 26 21 17 14 11

s Setup Time 0.017 0.014 0.019 0.019 0.020 0.019 0.020 0.021 0.023 0.023

2 Solution Time 0.035 0.069 0.212 0.882 2.700 1.453 1.904 2.949 2.266 2.284

Total Time 0.052 0.083 0.231 0.901 2.720 1.472 1.924 2.970 2.289 2.307

‘g % Setup Time 0.016 0.018 0.017 0.018 0.018 0.019 0.020 0.021 0.022 0.023

E nea Solution Time 0.034 0.069 0.214 0.823 2.901 1.320 1.825 2.897 2.259 2.270

2 2@ |otal Time 0.050 0.087 0.231 0.841 2.919 1.339 1.845 2.918 2.281 2.293

2 Setup Time 0.022 0.024 0.025 0.026 0.028 0.031 0.031 0.034 0.037 0.039

E Solution Time 0.037 0.075 0.124 0.273 0.827 0.521 0.784 1.325 1.211 3.880

& Total Time 0.059 0.099 0.149 0.299 0.855 0.552 0.815 1.359 1.248 3.919

o g |SetupTime 0.027 0.028 0.028 0.028 0.030 0.031 0.032 0.033 0.034 0.036

g é— Solution Time 0.038 0.079 0.247 0.706 3.383 1.279 3.155 3.971 2.105 4.457

O |Total Time 0.065 0.107 0.275 0.734 3.413 1.310 3.187 4.004 2.139 4.493

T Setup Time 0.030 0.030 0.070 0.030 0.030 0.030 0.040 0.040 0.040 0.040

g © &|Solution Time 0.000 0.000 0.000 0.100 1.400 0.300 1.000 1.100 0.500 0.800

©O=205 Total Time 0.030 0.030 0.070 0.130 1.430 0.330 1.040 1.140 0.540 0.840

f_g ¢ [Setup Time 19.210 19.010 18.710 18520 19.600 18.880  19.860  19.410  20.260  23.410

= é— Solution Time 0.000 0.000 0.100 0.200 1.200 0.700 1.400 2.600 1.100 2.200

= © [Total Time 19.210 19.010  18.810  18.720  20.800  19.580 21.260  22.010  21.360  25.610

r-Sep 11 12 13 14 15 b} 25 30 35 40

Objective 10 9 8 8 6 4 3 P P 1

s Setup Time 0.024 0.024 0.026 0.027 0.029 0.035 0.036 0.038 0.042 0.038

= Solution Time 2.688 2.924 3.765 4.688 6.048 74100 79.900 88.200  78.800  84.400

- Total Time 2.712 2.948 3.791 4.715 6.077 74135 79.936  88.238  78.842  84.438

% v |Setup Time 0.024 0.025 0.026 0.027 0.028 0.032 0.035 0.039 0.038 0.037

E B Solution Time 2.636 3.006 3.793 4.723 6.255 73.100 79.800 88.220  78.500  84.690
- o

2 % |fotal Time 2.660 3.031 3.819 4.750 6.283 73.132  79.835  88.259  78.538  84.727

2 Setup Time 0.041 0.053 0.046 0.051 0.053 0.065 0.075 0.080 0.082 0.080

E Solution Time 3.522 4.940 4.619 5.261 6.401  12.300 52.300 138.000 36.000 111.000|

& Total Time 3.563 4.993 4.665 5.312 6.454  12.365 52.375 138.080  36.082 111.080

o g |SetupTime 0.038 0.038 0.040 0.042 0.043 0.052 0.055 0.057 0.058 0.057

é é— Solution Time 1.520 0.526 1.553 0.943 0.983 1.538 4.243  18.800 35300  25.100

O |Total Time 1.558 0.564 1.593 0.985 1.026 1.590 4.298  18.857  35.358  25.157

& 9 g Setup Time 0.040 0.040 0.040 0.050 0.050 0.060 0.060 0.060 0.070 0.060

g 3 f_} Solution Time 0.800 1.000 1.400 1.600 1.900 3.200 6.400 24.100 40.500  48.800

©33 Total Time 0.840 1.040 1.440 1.650 1.950 3.260 6.460 24.160  40.570  48.860

f_EU ¢ [Setup Time 28.850 39.160 40.260 50.560  58.820  52.540  39.490 19.650  19.350  19.250

= é— Solution Time 1.900 1.400 0.300 0.400 0.700 0.600 0.600 0.100 0.000 0.000

= © [Total Time 30.750  40.560  40.560  50.960  59.520  53.140 40.090  19.750  19.350  19.250

Since this approach is functionally similar to Big-M approach, it is not

surprising that the performance is similar, tolslig better. One of the reasons why
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this approach is a slight improvement over thaigiM is because the number of
members in the neighborhood set is still quitedarging Yoshimoto and Brodie’s
approach.

Because of this, the model still suffers from thme problem as that of the Big-
M approach. As the number of members of a neighlborihcrease and as
neighborhood overlap increases, the computatidfat eequired to solve the
problem increases as well. This, again, is esgg@pparent when separation
standards exceed the average settlement-to-setilelis¢ances. For example when
ther standard is 15km it takes 6.283 seconds to saldendenr is 20, it requires
73.132 seconds to solve.

Given that total solution times only varied slightir subtly improved using

Yoshimoto and Brodie’s approach, one might wonaev the proof than, is no

larger than five would affect performance. The Weedgd Core approach, described

in chapter three, led to the proof that the value aneed be no larger than 5. Thus,
from the theoretical results of chapter 3, onesmm, to five whenever the

neighborhood size is larger than 5. Figure 18 gcatlly shows the total solution
times for each neighborhood model form using aegf separation standards.
Figure 18 shows that even though the neighborhoadtraints can be tightened,
using a maximum value of 5 as compared to theNBigrd Yoshimoto and Brodie
the models perform similarly. Where the separasiamdard is less than the average
settlement-to-settlement distance, the modelsisallehavior is almost

indistinguishable. Where there is a greater diffeesin solution times is when the
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separation standard exceeds the settlement-terseitt average distance. In this
case, the tightened neighborhood constraint fohgvwihe Wedge and Core proof
generally leads to significant reductions in comagion time required to solve a

model.

Figure 18. Graphical example of neighborhood consint representation total
solution times
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The Pairwise constraint representation requireg Mtle computation time when
the separation standard is small and the numbsteofocations within the

separation standard of a given site are few in rainfkince there are fewer sites

within the separation standard of a given site overall size of the problem remains

small. In addition, these constraints are consdi&rée tight. This leads to low

111



computation times when the separation standanehadl sin fact, the Pairwise
formulation when solved for small separation stadslas quite fast; whenis less
than 9 km total solution times were computed i kbsn 1.5 seconds (see Table 4:
Pairwise). However, as the separation standareéasers and the number of sites
within the separation standard of a given sitedase, the size of the problem — that
is the total number of constraints, dramaticallyré@ases which requires the solver to
work harder in resolving fractional solutions. Thasspecially true when solving for
large values of. In fact, the largest required solution time irblEa4 is associated
with the pairwise formulatiorr = 30). Since several pairwise constraints may be
represented as a single clique constraint, the@paence of the clique-based models
is reported next.

The first clique based formulation to be reportethat of Erkut et al. (1996)
who describe a Core Clique that represents alssigerestrictions within half of the
separation standard and a neighborhood consthahtépresents those pairwise
conditions restrictions for distances greater thalfir distance to strictly withim
distance away. The solution times of this approslcbn the separation standards are
small,r <5, total solution times are less than 0.75 sesd@see Table 4: Core
Cliques). This is because the problem size isrsiifitively small and membership in
neighborhoods and cliques is relatively low in nem&Vherr is larger, the
membership of the core cliques and neighborhoools targer, and so does needed
computational times. Overall, total solution tinaee relatively low in comparison to

other approaches.
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When the separation standard is larger (11 to 1%&ta) solution times are
much less, ranging from approximately 0.5 to 1¢oses than for distances of 5 to
10. When the separation standard exceeds the aveetitement-to-settlement
distance, computation time increases, though ndtasatically as in the previous
approaches. At very large separation standard s&R@40km), computation times
range from approximatelyl.5 to 35.5 seconds. Thseae for the relatively lower
computation times at larger separation standartteishe core cliqgue membership
becomes larger and represents spatially a largepige of pairwise restrictions.
This happens even as the neighborhood membershgine relatively constant.
This makes for a fairly tight and compact problevhjch is reflected in the
computation times, particularly for larger sepanatstandards.

The Core and Wedge approach is based on the tcnhACLP model in
Euclidean space could be built entirely of at mbsliques per site. In this case, 7
clique constraints need to be written for a po#driicility location unless a given
clique for sitel contains only siteas a member. Because cliques are very tight
problem representations, models that use themearerglly very efficiently solved.
The problem size is much larger than that of a lerolusing a single neighborhood
constraint setg.g Yoshimoto and Brodie, 1994) and can take longeotopute a
solution unless the separation distances are &rgagh to create neighborhood sets
of relatively large size.

When separation standards are small (<5km) totatiso times for the Core &

Wedge model are less than 0.1 seconds. When sepastandards are in the
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intermediate range (5 to 10km), total solution snaee a little longer; they range

from approximately 0.3 to 1.40 seconds. Howevermseparation standards are
larger than 10 and less than 25 the approach yseféicient. Total solution times at
larger separation standards range from approxign@tg¥ seconds to 49 seconds.

The Maximal Clique model of Murray and Church cesaa single very tight
clique constraint for each location site and a Imletgghood set that represents the
remaining site locations not in the clique. Thiprgach requires several vertex
packing problems to be solved for each site neigidmmd in order to generate the
appropriate maximal clique to represent the problEne process of generating each
maximal clique was multithreaded, that is splibiseveral sub-problems and run on
all available CPU threads, to reduce problem sdim@s. However, even when the
setup process is multi-threaded the process ovakads a great deal of time.

In Table 4, notice that the set up times for MaXi@ligques are large (always
greater than 18 seconds). Using this approachtsaswery small solution times for
the model, as solution times range from less thentbousandth of a second to a
maximum of 2.2 seconds. This is because the fortioul#s very tight and easy to
solve. However, the approach results in an ovestdl solution time that is very
long; total solution times range from 18.720 secotwd59.520 seconds.
Unfortunately, solving the required vertex packprgblems to set up the problem
takes time. Thus, while the formulation problemresy efficient to solve to

optimality, the setup process is not.
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Figure 19. Total solution times of the various congint representations of the
Anti-Covering Location Problem
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Given each of these formulation types, one may womdich formulation
approach may be best geared toward solving an@anering Location Problem
(ACLP). Figure 19 presents the total solution tirfeeseach approach over the range
of separation distances. The Core & Wedge formutadind the core formulation
have robust performance when compared to the @thmulations. Both solve
relatively quickly and often outperform many of thier formulations, particularly
for large separation standards. The Core and Wiedlgeilation outperforms the
core model formulation when the separation stanaofl small to intermediate size.
This is because several tight cliques result iaidyftight overall problem, whereas

the Erkut et al. (1996) formulation does not.
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When distances are very large and few facilitieslwa placed among the sites
without violating a distance standard, the core ehod Erkut et al. (1996) has the
advantage over the core & wedge model. This istdulee fact that the core &
wedge has 3.5 times more constraints. This is lseckw each site the core
constraint overlaps with many of the other faciities. This results in a relatively
compact model where the core constraint acts likegmal clique constraint and
solves efficiently. Thus, the Core and Wedge and ocaodeling approaches are
likely to be the most robust in terms of overalusion time; Core and Wedge
performs the best for small to intermediate separatandards while the Core
performs the best for intermediate to large separatandards. There is, however an
additional constraint, the Location Set Coveringldfem constraint, which may be
added to all of these formulations with the potart reduce solution times. This is

discussed in the next subsection.

2. Computational Experience of Anti-Covering Location Problems with
added Location Set Covering Constraints
The Location Set Covering Problem (Toregas & Red/ellb72), or LSCP,
constraint could be added as a constraint to ebitte @reviously described
formulations. The LSCP constraint can be addechiateempt to create an efficient
cut for the problem matrix. In other words, thisistraint was proposed as a possible

method to create facets which yield integer sohgiwith greater frequency than
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otherwise would occur. The LSCP constraint, using added notation

N, = {j € S|d; < r} for alli in S has the following general form:
>x 21 V ieS (48)

For each ACLP model formulation an LSCP constreg@ttwas added and solved for
each problem instance to optimality.

Table 5 presents the computational experiencetsefauwleach formulation with
the appended LSCP constraints. In many cases \lieegeparation standard was
small the addition of the LSCP constraints resuiited total solution time that was
the same or slightly worse. This makes sense aadtied constraint set increases
problem size for problems that are already geneeasily solved by the optimizer.
However, where the LSCP constraints generally imgitbe total solution time
performance is when the separation standard isidhgn the average settlement-to-
settlement distance. This is because there are mampbers of cliques or
neighborhood constraints, and the addition of tS€PR constraint often results in a
tight cut to the problem matrix.

Figure 20 shows this graphically. Results of thaltsolution time with and
without the LSCP constraints for each formulatiom presented. It is clear that when
separation standards are small, the computatimcrieased through their addition.
However, for large separation standards, theregenaral reduction in solution time

for the pairwise and core models. Solution timesadso differentially affected
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Table 5: Computational Experience of Formulations wth added LSCP

constraint
r-Sep 1 2 3 4 5 6 7 ] 9 10
Objective 212 110 68 45 32 26 21 17 14 11
s Setup Time 0.026 0.026 0.027 0.027 0.041 0.029 0.034 0.037 0.033 0.033
_D%o Solution Time 0.044 0.093 0.305 1.624 3.724 2.038 1.808 4,510 3.431 4.229
Total Time 0.070 0.119 0.332 1.651 3.765 2.067 1.842 4,547 3.464 4.262
% % Setup Time 0.026 0.032 0.027 0.027 0.029 0.036 0.030 0.032 0.034 0.035
'J% g Solution Time 0.044 0.096 0.307 1.631 3.883 2.215 1.639 4,519 3.447 4.095
2 o Total Time 0.070 0.128 0.334 1.658 3.912 2.251 1.669 4,551 3.481 4.130
3 Setup Time 0.039 0.032 0.046 0.035 0.040 0.068 0.045 0.050 0.048 0.050
E Solution Time 0.059 0.085 0.169 0.396 1.720 1.520 1.414 2.467 1.560 5.541
& Total Time 0.098 0.117 0.215 0.431 1.760 1.588 1.459 2.517 1.608 5.591
v 8 Setup Time 0.047 0.048 0.036 0.038 0.039 0.040 0.061 0.044 0.055 0.048
é §— Solution Time 0.049 0.197 0.262 1.216 5.162 2.019 1.579 5.971 2.135 6.869
©  |Total Time 0.096 0.245 0.298 1.254 5.201 2.059 1.640 6.015 2.190 6.917
T Setup Time 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.040 0.040 0.040
g k] E_’y Solution Time 0.100 0.000 0.100 0.100 2.600 0.400 0.400 1.800 0.700 1.700
©=30 Total Time 0.130 0.030 0.130 0.130 2.630 0.430 0.430 1.840 0.740 1.740
‘_g § Setup Time 19.210 19.010 18.710 18.520 19.600 18.880 19.860 19.410 20.260 23.410
% g Solution Time 0.000 0.000 0.100 1.100 4.600 0.600 0.500 2.600 1.000 4.000
= Total Time 19.210 19.010 18.810 19.620 24.200 19.480 20.360 22.010 21.260 27.410
r-Sep 11 12 13 14 15 20 25 30 35 40
Objective 10 9 8 8 6 4 3 2 2 1
s [setupTime 0.035 0037 0039 0040 0041 0048 0054 0054 0054  0.057
= [Solution Time 4799 4522 5628 8644 11540 17.600 28.100 30.000  82.000  91.200
Total Time 4834 4559 5667 8684 11581 17.648 28.154 30.054 82.054  91.257
Setup Time 0.038 0056 0038 0043 004 0049 0052 0055 0055  0.056

Solution Time 4.825 4.849 5.633 8.675 11500 17.200  27.400  30.100  82.300  92.500

Yoshimoto &
Brodie

Total Time 4.863 4.905 5.671 8.718  11.542 17.249  27.452  30.155  82.355  92.556
@ Setup Time 0.057 0.082 0.071 0.064 0.085 0.084 0.091 0.097 0.102 0.096
E Solution Time 5.777  10.700 9.712 7.672 11100  24.100 60.550  70.700  39.670  69.200

©
- Total Time 5.834 10.782 9.783 7736 11185 24.184 60.641  70.797  39.772  69.296
v 3 Setup Time 0.049 0.055 0.053 0.059 0.058 0.065 0.071 0.075 0.074 0.075
é é— Solution Time 2.437 1.077 1.071 1.556 1.685 1.995 4.787 15,530  22.800  13.200
“ Total Time 2.486 1.132 1.124 1.615 1.743 2.060 4.858 15.605 22.874  13.275
ST Setup Time 0.040 0.040 0.050 0.050 0.050 0.060 0.060 0.060 0.060 0.060
g T &|Solution Time 1.200 1.600 2.600 2.300 2.400 4.300 8.100  25.500  37.900  47.200
©=3 Total Time 1.240 1.640 2.650 2.350 0.030 4.360 8.160  25.560 37.960  47.260
Setup Time 28.850 39.160 40.260 50.560  58.820  52.540  39.490 19.650  19.350  19.250

Solution Time 1.500 0.900 0.700 0.500 0.900 1.000 1.800 0.200 0.100 0.000

Maximal
Cliques

Total Time 30.350  40.060  40.960  51.060  59.720  53.540  41.290  19.850  19.450  19.250

depending on the formulation type. For example tote solution times of
pairwise constraints for large separation standaregreatly reduced, as are the

Yoshimoto and Brodie and Big formulations. The formulations that appear to
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receive less of a benefit when used in conjunactith LSCP constraints appear to
be models based upon clique constraints, howeweicdre formulation appears to
receive the greatest benefit when used with LSGRtcaints.

Thus, it appears that LSCP constraints are usilgh only when there are
larger separation standards. In conclusion, tHissaction has presented and
discussed the results of several constraint fortimna representing the ACLP. It
appears that the Core and Wedge formulation arelroodels are quite efficient as
compared to the other approaches. The core & wetngke| outperforms the core
model when used to solve small problems using stmatitermediate separation
standards. However, the core & wedge model is siefficient as the core model
when very large separation standards are usedrdpa@ dew facilities can be
located. The next section discusses the computdtexperience of solving the

Disruptive Anti-Covering Location Problem.
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Figure 20. Graphical comparison of solution timesdr formulations with and
without the addition of Location Set Covering Probém Constraints
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3. Computational Experience of Various Constraint Forms Representing

the Disruptive Anti-Covering Location Problem

This section describes the computational experiefselving the Disruptive
Anti-Covering Location Problem. The disruptive acdvering location problem is
presented in detail in chapter four. Essentiallis problem may be modeled using
any of the ACLP formulations by adding LSCP constsaand changing the
maximization objective to a minimization objectividhus, if one develops an ACLP
formulation with LSCP constraints one simply netswitch the objective function
and one has a working DACLP formulation and vicesaeThis is due to the fact
that the LSCP constraints along with the separatamstraints ensure that each
solution is proper. Table 6 presents the resultt@DACLP formulations
computational experience.

The results of Table 6 are very similar to the tssof the ACLP formulations in
terms of the conclusions made about constraint nreeship and problem size for
each formulation type. Whét different about these results, however, is tHatfal
the formulations representing the DACLP are sokeedptimality significantly
faster than their ACLP counterparts with and witho®CP constraints. There is a
reason for this.

That reason is simply how cuts can be made torblelgm matrix and how the
solver works to solve each of these problems. Asishactually a conditioned LSCP
problem, it is likely that this form is easier tol\g. In this case, the LSCP

constraints represent particularly tight cuts feg DACLP problem.
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Table 6: Computational experience of formulations epresenting the Disruptive
Anti-Covering Location Problem

r-Sep 1 b 3 4 5 6 7 9 10

Objective 170 68 35 22 16 11 9 7 6 4

s Setup Time 0.025 0.026 0.026 0.027 0.035 0.030 0.050 0.031 0.033 0.034

o Solution Time  0.046 0.061 0.164 0.101 0.213 0.143 0.484 0.246 0.317 0.278

Total Time 0.071 0.087 0.190 0.128 0.248 0.173 0.534 0.277 0.350 0.312

% % Setup Time 0.025 0.026 0.045 0.027 0.034 0.029 0.031 0.033 0.032 0.034

é cg Solution Time  0.040 0.065 0.184 0.099 0.228 0.145 0.365 0.261 0.330 0.275

2 3 |1otal Time 0.065 0.091 0.229 0.126 0.262 0.174 0.396 0.294 0.362 0.309

v Setup Time 0.031 0.032 0.035 0.036 0.037 0.039 0.041 0.049 0.047 0.050

E SolutionTime  0.044 0.100 0.211 0.222 0.361 0.439 0.670 1.048 1.394 1.512

& Total Time 0.075 0.132 0.246 0.258 0.398 0.478 0.711 1.097 1.441 1.562

v 8 Setup Time 0.045 0.046 0.046 0.059 0.050 0.052 0.054 0.062 0.058 0.060

é é— Solution Time  0.048 0.075 0.174 0.202 0.389 0.207 0.480 0.408 0.445 0.481

©  |Total Time 0.093 0.121 0.220 0.261 0.439 0.259 0.534 0.470 0.503 0.541

ST Setup Time 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.040 0.040 0.040

g B 5— SolutionTime  0.000 0.000 0.100 0.300 0.200 0.200 0.400 0.500 1.300 0.900

© =03 Total Time 0.030 0.030 0.130 0.330 0.230 0.230 0.430 0.540 1.340 0.940

TE“ P Setup Time 19.210 19.010 18.710 18.520 19.600 18.880 19.860 19.410 20.260 23.410

= é— Solution Time  0.000 0.000 0.100 0.100 0.200 0.000 0.200 0.200 0.200 0.200

= © [|Total Time 19.210 19.010 18.810 18.620 19.800 18.880 20.060 19.610 20.460 23.610

r-Sep

Objective

s Setup Time 0.036 0.038 0.039 0.040 0.041 0.048 0.052 0.054 0.054 0.080

o Solution Time  0.307 0.320 0.353 0.390 0.389 0.522 0.659 0.609 0.593 0.682

Total Time 0.343 0.358 0.392 0.430 0.430 0.570 0.711 0.663 0.647 0.762

% % Setup Time 0.039 0.043 0.038 0.039 0.045 0.047 0.058 0.054 0.055 0.055

é r:% SolutionTime  0.317 0.336 0.346 0.376 0.384 0.520 0.717 0.629 0.607 0.619

2 B |1otal Time 0.356 0.379 0.384 0.415 0.429 0.567 0.775 0.683 0.662 0.674

2 Setup Time 0.052 0.055 0.058 0.066 0.074 0.080 0.091 0.100 0.100 0.097

E Solution Time  1.848 2.810 2.394 2.840 3.366 4.981 7.336 8.917 9.409 9.539

& Total Time 1.900 2.865 2.452 2.906 3.440 5.061 7.427 9.017 9.509 9.636

o § |SetupTime 0.081 0.066 0.071 0.072 0.077 0.086 0.095 0.100 0.102 0.103

é §- Solution Time  0.627 0.610 0.739 0.889 1.020 1.786 2.838 3.208 3.490 2.590

O |Total Time 0.708 0.676 0.810 0.961 1.097 1.872 2.933 3.308 3.592 2.693

ST Setup Time 0.040 0.040 0.050 0.050 0.050 0.060 0.060 0.060 0.060 0.060

g ki 8— Solution Time 1.200 1.500 1.800 2.200 2.400 4.200 7.900 26.300 39.000 46.900

O =20 Total Time 1.240 1.540 1.850 2.250 0.030 4.260 7.960 26.360 39.060 46.960

TE“ ¢ |Setup Time 28.850 39.160 40.260 50.560 58.820 52.540 39.490 19.650 19.350 19.250

'% é— SolutionTime  0.300 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.000

= © |Total Time 29.150 39.160 40.260 50.960 58.820 52.540 39.490 19.650 19.350 19.250
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This means that the solver has to run fewer it@natio generate cuts, branches, and
bounds, and thus yields a solution in less timgufa 21 shows this graphically.
When looking at the figure, one can see this eaigly. There are also some
important notes that should be made related to faotulation.

The Wedge and Core constraint formulation doegpadbrm well for large
separation standards when used to represent thd. BAThe reason for this is that
with the exception of the pairwise model, the ckneedge model is, in general,
larger than the other models. Those formulatioas tise a combination of
neighborhood and clique constraints generally xecaibenefit in that the overall
problem representation is small. For example onty ¢constraints need be written
for each facility site for the Bi¢d and Yoshimoto and Brodie formulations, and at
most three for the Erkut et al. (1996) constraamirfs. This results in fairly compact,
tight formulations that are easily solved. Givea tomputational experience of the
ACLP and DACLP constraint formulations, it is likghat if one needs to solve for
both forms of the ACLP and DACLP the constraintetypo use would be that of
Erkut et al. (1996). This is because the overdiltgan time when using both forms
is fairly efficient in terms of solution time. Wittegard to the Maximal Clique
constraint representation, it again performs tbevest due to the computation time

necessary to develop the maximal clique sets.
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Figure 21. Total solution times of the various congint representations of the
Disruptive Anti-Covering Location Problem
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However if one were to implement the Maximal Cliquedel for both the
ACLP and DACLP, they would technically only needstilve the series of vertex
packing problems once for each distance. Unforipagéven if one were to do that
for a dense point set the total solution time waiill exceed the time of all the
other approaches, except for the Core and Wedgeagpwhen the separation

standard is very large. This brings us to an ingrdgrpoint. When the number of

points is large, the likelihood that one will bdeato solve a problem to optimality in

a reasonable amount of time, say in the time itld/¢ake to get a cup of coffee, isn’'t

high. Figure 20 and Figure 21 support this conolusis times even for the modest

sized 372 node dataset of Ruggles and Church (kY.
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4. Computational Experience on Varying CPU Hardware Types

The types and power of computing hardware havelgrespanded in the last
decade. Computers are now able to use 64-bit irdexgel it is nearly standard for
central processing units (CPUs) to have multiptecgessing cores, or threads, built
into the chip itself as well as containing at |686GB of memory as a standard. There
are two main CPU manufacturers in the x86 computiagket. They are Intel
Corporation and Advanced Micro Devices (AMD). Bottmpanies have taken
different approaches to sell their processors.

Intel has designed multi-core chips with the apiid run two “virtual” threads
on a single physical CPU thread. This technologiesaise of instruction sets
generated from the two virtual threads that are tiended to the physical thread.
The two virtual threads are designed to utilizedimgle physical hardware thread
when there is “downtime” between instructions dhei virtual thread. The
advantage of this approach is that one is ableh@ae maximal performance from
a physical thread. The downside is that if two psses are running long-term and
are numerically intensive on each thread, it caw glerformance. Since Intel chips
are designed to use hyper-threading, which gersesigeificant amounts of heat and
stress to the CPU core when running at full cagattieir chips are clocked at
slightly lower speeds but generally contain a greatimber of computational
threads. AMD, on the other hand, has focused orldping lower cost processors
that use only physical threads that run at highmskcfrequencies to achieve a

similar level of performance.
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Given this increase in computational power, marngrapons research solvers
have greatly expanded their computational abilityey do this by taking advantage
of the ability to address more memory and to takeaatage of parallel processing
techniques provided by the ability to take advaatafya multiple thread CPU. This
section seeks to describe the computational expegief running several of the
ACLP formulations using three separation standtrdsstress the Xpress solver. In
particular, separation standards of 15, 7.5, anére chosen.

Table 7 lists the computational experience of rngrthe BigM, Yoshimoto &
Brodie, Pairwise, Core Cliques, Wedge & Core, arakivhal Cliques formulations
of the ACLP on the three computers. The separatiandard used in these models is
15km. The computers used have the following CPOssla laptop PC with an
AMD A10 5750M 2.5GHz variable-speed mobile quadec@ total threads) CPU,;
Jupiter is a desktop PC with an AMD A10 6800K 4.XGitiad-core (4 total threads)
CPU; SuperChief is a desktop PC with an Intel 8@z quad-core hyper-threaded
(8 total threads) CPU.

In this case, Jupiter, the quad-core high CPU ctpeed computer beat the other
machines in all formulations except the Maximalg@is representation. This is not
surprising as these are fairly small problems forch a faster clocked CPU is likely
to iterate through faster, particularly given tloenputational intensity. SuperChief,
the computer with more available threads, is tlséeft computer when used to solve
the several vertex packing problems required topstte Maximal Clique

formulation. This is primarily due to the fact tt@&iperChief is able to break the
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setup problem into several smaller chunks thattlean be solved. 10, with its
mobile CPU, performed the slowest of all three cataps. This isn’t surprising as
this CPU is designed to sip power and balance ctatipn. Though it is slower, it is
competitive with the other CPUs, often trailinglegs than two seconds of

computation time.

Table 7: Computational experience on three differencomputers for the various
ACLP formulations wherer =15

Machine |IO |Jupiter* |SuperChief Original  |Pre-Solve
#Const& [#Const&
) Setup Time 0.040 0.030 0.029|Variables |Variables [Objective:
BigM Solution Time 7.325 5.490 6.048 372 371 6
Total Time 7.365 5.520 6.077 372 371
#Const& [#Const&
Yoshimoto and |Setup Time 0.037 0.035 0.028|Variables [Variables |Objective:
Brodi Solution Time 7.338 5.474 6.255 372 371 6
Total Time 7.375 5.509 6.283 372 371
#Const & |#Const &
Pairwise Setup Time 0.066 0.056 0.053|Variables [Variables |Objective:
Solution Time 8.213 5.750 6.401 69888 4766 6
Total Time 8.279 5.806 6.454 372 372
#Const & |#Const &
. Setup Time 0.060 0.045 0.043|Variables [Variables |Objective:
Core Cliques . )
Solution Time 1.102 0.787 0.983 744 568 6
Total Time 1.162 0.832 1.026 372 371
#Const& [#Const&
Setup Time 0.070 0.070 0.050|Variables |Variables [Objective:
Core & Wedge . .
Solution Time 1.700 1.400 1.900 2119 827 6
Total Time 1.770 1.470 1.950 372 368
#Const& [#Const&
. ) Setup Time 98.150  84.020 58.820|Variables |Variables |Objective:
Maximal Cliques . .
Solution Time 0.700 0.600 0.700 745 745 6
Total Time 98.850 84.620 59.520 372 372
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Table 8: Computational experience on three differencomputers for the various
ACLP formulations wherer = 7.5

Machine |IO |Jupiter* |SuperChief Original  |Pre-Solve
#Const& [#Const&
BigM Setup Time 0.031 0.021 0.021|Variables [Variables |Objective:
Solution Time 3.797 3.006 2.745 372 361 18
Total Time 3.828 3.027 2.766 372 362
#Const& [#Const&
Yoshimoto and |Setup Time 0.031 0.023 0.022|Variables [Variables |Objective:
Brodi Solution Time 3.781 2.954 2.747 372 361 18
Total Time 3.812 2.977 2.769 372 362
#Const & |#Const &
Pairwise Setup Time 0.031 0.031 0.032|Variables [Variables |Objective:
Solution Time 1.391 1.044 1.153 12332 643 18
Total Time 1.422 1.075 1.185 372 361
#Const & |#Const &
. Setup Time 0.047 0.043 0.032|Variables [Variables |Objective:
Core Cliques . .
Solution Time 4.407 3.446 3.601 744 567 18
Total Time 4.454 3.489 3.633 372 367
#Const& [#Const&
Setup Time 0.050 0.050 0.050|Variables [Variables |Objective:
Core & Wedge . .
Solution Time 1.300 1.100 1.100 2271 642 18
Total Time 1.350 1.150 1.150 372 361
#Const & |#Const &
. ) Setup Time 47.790  48.470 19.690|Variables |Variables |Objective:
Maximal Cliques . .
Solution Time 1.900 1.500 1.500 745 18
Total Time 49.690  49.970 21.190 372

Table 8 shows similar results to those in Tablié@ugh a separation distance of
7.5km is used here. Again, where the size of thelpm is small, Jupiter typically is
the winner. Where problem sizes are larger Supef@hinds to be the winner. The
exception, once again, is the Maximal Clique foraioh that heavily favors
SuperChief in its ability to parallelize the verteacking problems. Table 9 shows
similar results as Table 7 & Table 8, except thatgroblems involve a separation

distance of 5 km.
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Table 9: Computational experience on three differencomputers for the various
ACLP formulations where r =5

Machine |IO |Jupiter* |SuperChief Original  |Pre-Solve
#Const& [#Const&
) Setup Time 0.016 0.024 0.020|Variables |Variables [Objective:
BigM SolutionTime = 3.265  2.617 2.700 372 341 32
Total Time 3.281 2.641 2.720 372 342
#Const & |#Const &
Yoshimoto and [Setup Time 0.015 0.022 0.018|Variables [Variables |Objective:
Brodi Solution Time 3.219 2.594 2.901 372 341 32
Total Time 3.234 2.616 2.919 372 342
#Const & |#Const &
Pairwise Setup Time 0.032 0.027 0.028|Variables [Variables |Objective:
Solution Time 1.062 0.791 0.827 12332 401 32
Total Time 1.094 0.818 0.855 372 341
#Const & |#Const &
. Setup Time 0.046 0.037 0.030|Variables [Variables |Objective:
Core Cliques
Solution Time 3.735 2.996 3.383 744 527 32
Total Time 3.781 3.033 3.413 372 353
#Const& [#Const&
Setup Time 0.040 0.030 0.040|Variables |Variables [Objective:
Core & Wedge . .
Solution Time 1.800 1.400 1.400 2214 432 32
Total Time 1.840 1.430 1.440 372 341
#Const& [#Const&
. ) Setup Time 46.690  47.390 19.600|Variables |Variables |Objective:
Maximal Cliques . .
Solution Time 1.500 1.100 1.200 739 739 32
Total Time 48.190 48.490 20.800 372 372

These results suggest that if one is solving spralblems, a higher clocked CPU
with several cores is likely to be faster than aJG#th hyper-threading capability
running at a lower clock speed. However, when mobtomplexity is great and
problems are large and parallelizable, a compuiir nwltiple threads at a lower
clock speed is likely to solve a problem much faskais is especially true for

problems such as the Maximal Cliques formulation.
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5. Concluding comments about solving the ACLP and DACLP

When working with datasets containing a large nunatb@oints with large
separation standards, solving to optimality ma tsignificant computational effort
and may or may not result in finding an optimalusioin. This is especially true for
large environmental datasets that are often irrdstm. For example, the ACLP
model can be used to analyze useful habitat ansiljesarrying capacity. In one
problem involving the analysis of spotted owl hahiChurch (2013) found that the
problem was too large to solve for optimal ACLPusioins. So, in conclusion, for
smaller discrete sets of points, the Core and &déedge models should be used.
If one is unable to solve the ACLP or DACLP wheplgd to large datasets of
discrete points or a raster, they will have to mtyheuristic approaches to generate a
solution. This next section discusses a heurisat has been developed as a part of

this dissertation.
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B. Heuristic approaches to generating solutions to the ACLP

The previous sections presented the computatioqpedreence in solving the
ACLP and DACLP to optimality. This computationalpexience demonstrates that
as separation standards increase, the numberilitfyfpairwise site restrictions
increase as well as the time required to comp@®fitimal solution. This is
problematic, especially in the context of usingadats that have a large number of
point locations. This is especially true if oneigng a raster dataset containing a
significant number of pixels at a fine resolutionrépresent an area. This all but
prohibits one for determining a solution quicklgt &lone an optimal one. In many
cases a modeler or analyst simply wishes to bui&hsible solution to their problem
that is hopefully near optimal. Because of thisgesal heuristic approaches have
been developed to solve the ACLP.

Heuristics have been developed to solve a variespatial location problems.
For example the greedy heuristic method has besmusked at length in the
literature. Chvatal used the greedy approach teedhle Set Covering Location
Problem (Chvatal, 1979), upon which Feo and Resandmved (Feo & Resende,
1989) and subsequently expanded their approachSmiith to a greedy randomized
adaptive search (Feo et al. 1994). Chaudhry, Mc@szrand Moon (1986) used the
Greedy approach to solve the original Anti-Covelingation Problem.

In addition to the greedy approach other methods baen developed to solve
the Anti-Covering Location Problem. Such exampledude: greedy randomized

adaptive search procedure or GRASP (Feo et al.)1§64etic algorithms

131



(Chaudhry, 2006), La Grangian relaxation (Murrag&urch, 1997b; Ribeiro &
Lorena, 2008a; 2008b), tabu search (Yamamoto, Gar@arorena, 2002), Bee
Colony Optimization meta-heuristics (Dimitrijévet al. 2012), and evolutionary
algorithms (Wei & Murray, 2014). All of these appahes are useful for trying to
determine near optimal solutions for problems agupto a set of discrete points.
There are a few heuristic approaches that have designed to solve the ACLP
geared toward environmental problems that userrdatasets.

Church (2013) developed two heuristic approachethin ACLP used to identify
and map core habitat. The first heuristic he dgyadas called the “Random
Maximum Scatter Routine.” This routine systematicatlects raster cells that may
be used to serve as territorial centers. Eacheot#is may not have an overlapping
territory as represented as a circular separataordard. The routine selects at
random a starting cell from a set of potential tathtions that have not already been
selected as a territory center. Once a cell has belected, all of the other cells
within the range of the separation standard ok#iected cell are removed from the
candidate territory center list. Once all nearbysdeave been removed, the
algorithm checks to see if any remaining canditieetory centers exist. If they do
the process repeats until no candidate territonyers are left.

The second heuristic approach Church (2013) deedlggmore sophisticated.
This heuristic is described as the Maximal Packiegristic in the book chapter, but
will subsequently be referred to as Packer. Thé&&aapproach involves first

populating a list of sites to keep track of thosesscontained in a raster that have
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been calculated as being feasible territory cen@nge this has been done, a site is
selected at random from the list. Once this sitelie®en selected, all sites within the
separation standard of the initially selected aiteeliminated from the list.

Then the heuristic determines which site on thadighe closest site to the
previously chosen site. It then picks the closista if there are ties in which site is
the closest, it picks at random one of these cateld This site is selected as a
territory center and all of the sites within theaetion standard of this selected site
are removed from the candidate site pool. The titalthat is chosen is the site on
the candidate list that is the closest to the fikst chosen centers. Each time a
candidate is chosen, the list is updated. Aftefdlieth site is chosen, all subsequent
sites are chosen based upon their combined distarbe first four sites. This
process is repeated until no sites are left ircmidate site pool. In this way a
packed solution can be computed relatively quidkhjarge raster datasets. To date,
these two heuristic approaches described in ChH@@h3) are the only heuristics
designed to generate a packed solution using Emgeonmental raster datasets.
Both of these approaches, particularly this lafgsroach, could be used to generate
ACLP solutions. Both processes are designed tefeated a large number of times.
However, these two approaches have a few drawlzaakbecause of this a new

heuristic strategy was developed and describeldeméxt sub-section.

1. The Marching Army Heuristic

The Marching Army heuristic is designed to quicgbnerate a packed solution

to an ACLP when applied to a large raster datasetset of discrete points. This
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presentation will focus on its use on a rasterriwt gf points, where either cells or
points are selected one at a time for an ACLP mwluThe Marching Army’s
solution approach can be thought of as an armytlinen The objective is to select as
many sites along the frontline for facility locatiavhile meeting the minimum
separation criteria, and then advance the frogurei 22 illustrates the heuristic
approach over an example raster grid. The simgjie lof a Marching Army is
provided in Figure 23, and is conceptually relatedweep algorithms, such as that
used by Nievergelt and Preparata (1982). To demateghe logic as it applies to the
sample dataset, consider starting the algorithtneaNW corner of a raster and that
the front line runs north to south and advances wesast. The algorithm will check
each feasible facility site location along the trarorking its way down the frontline
from north to south. If a site along the frontlisdeasible and meets all of the
separation requirements associated with previaedgcted sites, it selects that site
for a facility/territory and then moves on. Whemaaches and after it considers the
last feasible site on the current frontline, thanfrline is advanced by a march-step,
say equal to one cell move eastward, and the psasespeated until all feasible
sites along each subsequent frontline advance It considered and the frontline
has reached the other side of the region.

The process can be applied easily and should leategh using frontlines that
run vertically and horizontally (cardinal directs)ras well as for non-cardinal

directions that could be computed using a lineaiaéqgn of the formy =mx+Db.

The basic premise is that this heuristic will gexteitightly packed arrangements,
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configurations that meet the type of propertieqntbin optimal solutions. B
generating hundreds if not thousands of solutithresjdea is that the best soluti
generated from this process shabe close to if not optimaStarting locations coul
potentially be altered to start in the middle af time or for several starting a
ending locations along the frontli, but that would be an extension to this cur
work. TheMarching Army heuristi¢ as conceptualized here, uses raster data be

the problem of interest was defined on a .

Figure 22 Conceptual example of how the Marching Army heustic works
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This approach could also be used to generate AGLLRons on vector datas

in the following three way. If it was applied to polygon datasets, the hewrisould
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have to use a point-in-polygon test to determinevifas inside a polygon defined as
a feasible center. If a point dataset is to be used could first convert the point
dataset to a raster such that each point locatamumiquely represented as a pixel
that the above heuristic could then be appliecerAklitively one could have the
heuristic use a buffered line with a very smallfbutlistance as a front. A series of
point in polygon tests on the front could then bedito determine the set of points
located on the “frontline”. These points could thenselected and packed. These, of
course, would be possible extensions in future work

The Marching Army heuristic has the potential teagly reduce the solution
time required to solve an Anti-Covering problem lange raster datasets as
compared to using an integer linear programmin@)linodel. In addition, the
Marching Army heuristic has the potential to quycklentify optimal or near
optimal solutions that current competing heurisis not necessarily able to find.
The heuristic could also be modified to handlegbeeralized or “almost’-
Separation ACLP, as well as the Site Sensitive A@tdposed in chapter six.

The marching army has been tested on the samestlatashich the two
heuristics described in Church (2013) have beefheahhe Kings River Protection
Area (KRPA) in Sierra National Forest, Californiawas developed by Ross
Gerrard to identify possible nesting patterns @ €alifornia Spotted OwBtrix
occidentalis occidentaljswho frequently use locations of dense canopyecaov
mature to old-growth forest. This dataset was usedipport US Forest Service

planning for fire-fuels removal activities and footential forest disturbances such as
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fire, so that such impacts to nesting site carrgiagacity of the California Spotted
Owl population could be inferred. The KRPA rastataget, representing average
canopy about an area of ~2.4%mwas generated using a focal mean of ~879 m from
US Forest Service vegetation data following thehoétof Gerrard et al. (2001).

The KRPA dataset consists of ~1,000,000 pixels (aa af ~900 krf), of which
~75,000 pixels represent potential nesting locatiéwerage separation distances of
spotted owl nest sites is ~1.8km, which means tieafdcal mean likely captures the
required canopy densities for those areas suifableesting. Classification of the
KRPA canopy cover focal mean raster into high (609), medium (50-59%) and
low (0-49%), represent varying levels of habitadtagility. Those locations of high
canopy cover are locations deemed suitable foimgedf one were to attempt to
solve this using an ACLP model, it would not becassful as the number of suitable
nesting site variables would overwhelm existingyed. However, one may use a
random subset of potential locations in an atteimplerive a solution. Even if one
uses a small percentage of the suitable sites/%ayhe model requires 14.5 hours
to derive a solution of 63 sites. Thus, one majobeed to rely on a heuristic
approach to obtain solutions to such large datasetseasonable amount of time.
Furthermore, solving a problem on a sample of sitdher than the whole dataset, is
itself a heuristic.

When one uses a heuristic, it should be run setierak with varying starting
parameters in order to locate a good solution.gdrameters that one should adjust

when utilizing the marching army heuristic are shagpe of the front line, direction
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Figure 23. The Marching Army heuristic logic flowchart
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of travel and the starting point on the frontlifrethe results presented
subsequently, the ends of the frontline were rariga@mosen as the starting

locations. Any point on the frontline could be ramdy selected as a starting point if
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one desired, though this was not done here. Tineoeept point should be
determined by the heuristic so as to start thetfliae at a particular poing(g.top
or bottom right, or top or bottom left of the stualya extent).

Figure 24 shows an example of the solution genegfayehe Marching Army
Heuristic. The figure shows the best packed satutientified by the Marching
Army heuristic, consisting of 62 sites. Both thela (Church 2013) and Marching
Army heuristics found a solution which deployedr&ating sites/territories potential
facility sites when run 1000 times taking approxieiy2.8 hours for Packer and 2.4
hours for the Marching Army heuristics. Figure 2ows the frequency of objective
values obtained by the Packer and Marching Armyibktcs. Packer found a
configuration of 62 sites 21 times whereas Marciingy found it only 3 times.
However, when one examines the histogram presémfeigure 25, it is clear that
the Marching Army heuristic on the average findigdseconfigurations. The least
packed configuration found by Marching Army is 5és as compared to 54 for
Packer. In addition, Packer found a configuratibb®sites on average, while
Marching Army found 59. Thus, the spread of sohgics much larger using the
Packer heuristic than the Marching Army heuristid does not do as well on the
average. Thus, the Marching Army is a competitigarfstic approach that can
identify a solution within 1 site (1.6%) of the b&own configuration of 63 sites.

In conclusion, utilizing heuristics to develop dadas to packing problems is

necessary for problems where the number of potdatation sites is very high. A
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Figure 24. This figure shows the Kings River Protemn Area in Sierra National
Forest, California. The areas represent classificains of the results of
a ~879m focal mean average raster of canopy covéihe areas in
blue represent dense canopy, a requirement of spetl owl nesting
sites. The 62 sites located by the Marching Armyeuristic are shown
as the red circles.
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new heuristic that is fast and produces solutionglwvare at least near optimality,
the Marching Army heuristic, has been proposeddmwtloped. The next section
outlines an area of future work that could proveeauseful when developing a

heuristic to solve the DACLP.

Figure 25. Histogram showing the frequency of objdive values found by the
Packer and Marching Army (MA) heuristics.
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2. Future Work: Solving the Disruptive Anti-Covering Problem
Heuristically
The DACLP is a new location construct. Up to thiaénp, no heuristic has been
developed for this problem. The DACLP representsrairely new way of thinking
with respect to the anti-covering location probl&mce the DACLP is geared

toward finding the maximally disruptive solutiorew approaches should be
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explored. One approach to solving the DACLP heiga#lyy would be to borrow
from heuristic approaches used to solve the Looaiet Covering Problem. For
example, one could think of trying to “cover” abipts withinS— 0.001 while
keeping all facilities at leaS distance apart. Thus, this is an area of futunkwtat

should be investigated.

C. Concluding Remarks

This chapter has described the computational exapesiof solving several
existing ACLP formulations and an entirely new foitation, Core & Wedge. The
performance of Core and Wedge was tested and cechpaexisting approaches.

Further, it was shown that a neighborhood condtainstantn, need be no greater

than 5. The implementation of this condition suliproves performance for
certain separation standards and problem sizesldition to testing this new
property, LSCP constraints were tested as posfibéts to help improve each
formulation. The use of LSCP constraints was taceccomputation times for large
problems that have numerous overlapping neighbaihiobhis reduction is due to
the fact that LSCP constraints, although redundzamt,provide valuable cuts to the
polytope. A comparison between the varieties oflalke computing hardware
configurations with regard to multi-threaded praogsais also given.

This chapter has also described a new heuristitisnlapproach to the ACLP.
This approach works very efficiently and obtainkisons for large raster datasets in

less than a second. Furthermore, the solutionstatis for such large datasets are
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close to, if not optimal. Future research dired¢tedard development of a heuristic to
solve the DACLP has also been proposed.
In conclusion, this chapter has:
e Described the computational experience of:
o Solving the Core & Wedge formulation for the ACLRda
DACLP
0 Solving existing formulations for the ACLP and DAEL
0 Testing constraints using the updated neighborlvoodtraint

proof derived from the logic of Core & Wedge thaow's thatn,

is at most 5
o Testing the efficacy of adding LSCP constrainta fmoblem to
redundant, but strong facets.
o0 Testing the performance of hardware configurat@in®ulti-core
and threaded CPUs and the use of the Xpress solver
e Introduced a completely new heuristic — Marchingmr
e Suggested an approach that may be useful for gptiien DACLP

heuristically
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VI. A Review of What Has Been Covered

This dissertation has focused on facility locafwablems that involve a
separation standard. The dissertation contains:réyiew of the literature related to
dispersion problems; 2) Provides several statdwefart advancements in modeling
approaches related to the Anti-Covering Locatiaoblem (ACLP); 3) Proposes a
new location problem related to the ACLP, the Di$iee Anti-Covering Location
Problem (DACLP); 4) Provides the computational eigee of solving alternative
modeling approaches; 5) Demonstrates a complegsWapproach to solving the
ACLP heuristically; and, 6) provides insights iqotential future research
directions. The following is a brief synopsis otkahapter and some of the
important highlights or points contained within kabapter.

Chapter one sets the stage for this dissertatiaiisdusses the importance of
dispersive strategies in location theory. It furtfteeuses on what dispersion is and
provides several examples of dispersive behavitadility location. One direct
example that is readily observed on the earth'&saris the location of center pivot
irrigation systems, as well as several other appbas including territorial species
carrying capacity modeling (Downs et al. 2008).

Chapter two focuses on the two main conceptuatinatof dispersion in location
modeling. The first is a distance based approadhita second is a standards based
approach. In the distance based approach, thendestzetween a located facility and
all other facilities, the distance between a facéind a set of demands, or both, is

maximized. Modeling approaches that use this retasion of dispersion are tpe
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Maxian (Church & Garfinkel, 1978) anEDispersion (Shier, 1977; Erkut &
Neuman, 1991; Lei & Church, 2013) models. The sé@pproach is that of using
an explicit standard of separation between faedlitit is this standards approach,
implemented in the Anti-Covering Location Problegafided by Moon and
Chaudhry (1984) that this dissertation explores.

Chapter three describes the various ways that thie@overing Location
Problem can be represented mathematically. Thesesentations include: Bilgh
(Moon & Chaudhry, 1984), refinements to the neighbod constraints following
Yoshimoto and Brodie (1994) and Murray and Chudd@96), pairwise formulations
(Murray & Church, 1997a), core cliques (Erkut etl®896), and maximal cliques
(Murray & Church, 1997a). An all-new Core & Wedgedl is presented. The Core
& Wedge formulation is significant as this provhattan ACLP or DACLP defined
in Euclidean space may be represented entirelygfir¢he use of at most 7 tight
clique constraints. In addition to the Core & Wedgenulation, a proof is provided
that shows that a neighborhood constraint usedl of the other formulations
excluding the pairwise representation has a maximifive neighbors that can be
located within the separation standard of a given $his is important as this helps
create a tighter neighborhood constraint whichsisduin virtually all ACLP models.
Furthermore, the chapter discusses an additiomationt that may be written
which enables efficient cuts to be made to the lpralpolytope. These are desirable

as they generally improve optimization solver perfance.
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Chapter four presents a new anti-covering locagpiailem, called the
Disruptive Anti-Covering Location Problem (DACLPJhe DACLP is described
and a model formulation is developed. This new |@wohis particularly important to
environmental ecology problems where anti-covenmagleling has been used to
represent territorial space, location decisions dfffect franchise store location,
planning policy €.g.regulations related to liquor store location ot sfender
residency zones), or any other application for Wiaanaximally packed
configuration is not necessarily a realistic outeom

The DACLP involves finding the minimally “packedbrfiguration, or the
“lower bound” for packing solutions. DACLP configiions thwart denser packing
arrangements. An approach is proposed to ideritdthier solutions exist between
the densest packing and the least dense packiriiga@tions. In addition to the
DACLP, generalized or “almost-Separation standards are described and a model is
proposed for such a case as well as when therdomaige specific separation
standards.

Chapter five describes the computational experiealeged to solving the
formulations and concepts described in chapteestand four. Solution times
required to setup and solve existing representaidthe ACLP and the new Core &
Wedge representation are provided. In additionctrestraints implementing the
tighter neighborhood constraint are tested as agethe additional LSCP constraint
used to provide efficient cuts to the problem pabg. Furthermore, the experience

of solving the DACLP is provided. The computatioaaperience related to solving
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the various formulations show that solving the Erdual. (1996) representation is
likely to be the most robust when solving the AGUDACLP models.

Chapter five also examined the usefulness of neolte CPUs and hyper-
threading. Depending on the type of problem orsoiging, a CPU with fewer
threads running at a higher clock speed may ouiperé hyper-threaded CPU
running at a slightly lower clock speed. This i®8Bgly related to the overall size of
the problem one is solving and the ability to brepksuch problems.

A new heuristic approach to solving the ACLP igisoposed. This heuristic
was developed to use raster data to compute an AGIufion and is based upon the
concept of a moving frontline, like a marching armifgis heuristic can generate a
near optimal solution in less than a second fadbkarBx 30km raster dataset with a
resolution of 30m and separation standard of apprately 1.5km. No other ACLP
heuristic is capable of generating a solution whsailarge problem this quickly. A
future research section related to generating sigesito solve the DACLP is also
provided.

In conclusion, this dissertation has explored thcept of dispersion. It has
reviewed modeling approaches using separation atdsdlt has improved the way
existing formulations may be formulated by impraythe neighborhood constraint
representation. In addition, an entirely new foratioin of the ACLP has been
defined that consists entirely of very tight cliquanstraints called Core & Wedge.
Furthermore, an entirely new anti-location probless been defined that describes

the problem of finding a minimally packed configiwa. This represents a lower
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bound, or least dense packing configuration thparsicularly important when the
ACLP is used for planning and policy purposes oemwhpplied to ecological
modeling.

This is a crucial point, as the ACLP has been Hyoapiplied to several different
types of spatial problems. A model formulation|soagiven that enables one to
explore less dense packing configurations that &etsveen what may be deployed
with the ACLP and the DACLP models. Moreover, arigtic approach is given that
enables large scale ACLP solutions to be obtainsehwsing spatially extensive
datasets containing hundreds of thousands of catedidcations. Thus, this
dissertation has broad applicability to problematesl to dispersion and anti-
covering location modeling, furthering the capdig$ of using this problem

construct in geographical analysis.
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