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Abstract: Densities of liquid oxide melts with melting temperatures above 2000 ◦C are required
to establish mixing models in the liquid state for thermodynamic modeling and advanced addi-
tive manufacturing and laser welding of ceramics. Accurate measurements of molten rare earth
oxide density were recently reported from experiments with an electrostatic levitator on board the
International Space Station. In this work, we present an approach to terrestrial measurements of
density and thermal expansion of liquid oxides from high-speed videography using an aero-acoustic
levitator with laser heating and machine vision algorithms. The following density values for liquid
oxides at melting temperature were obtained: Y2O3 4.6 ± 0.15; Yb2O3 8.4 ± 0.2; Zr0.9Y0.1O1.95

4.7 ± 0.2; Zr0.95Y0.05O1.975 4.9 ± 0.2; HfO2 8.2 ± 0.3 g/cm3. The accuracy of density and thermal
expansion measurements can be improved by employing backlight illumination, spectropyrometry
and a multi-emitter acoustic levitator.

Keywords: levitation; rare earth oxides; zirconia; hafnia; melting; thermodynamics

1. Introduction

Most metal alloys are produced by melt processing, and thermodynamic and ther-
mophysical properties of metallic melts have been systematically investigated for over a
century. The developed ab initio and Calphad-based computational tools show spectacular
results for the prediction of crystallization pathways and equilibrium phases for metal
alloys [1]. Refractory oxide ceramics are usually produced by sintering, and application-
driven incentives to study high temperature oxide melts have been largely limited to
metallurgical slugs and glasses. The situation has changed with the application of additive
manufacturing techniques to ceramic materials [2–7]. These techniques often involve laser
melting, and their advance is hampered by a lack of data on oxide melts.

A plethora of techniques is available for high temperature study of metal alloys. The
“exploding wire” technique [8,9] has been in development for more than 300 years and
has also been adapted for electrically conductive carbides and nitrides [10–13]. In this
method, pulse discharge through a metallic wire or conducting ceramic coating provides
instantaneous heating and excludes any contamination from the container.

Electromagnetic [14] and electrostatic [15] levitation have been successfully used for
contactless high temperature studies on metal alloys for decades [16–22]. Electromagnetic
levitation was also applied to semiconductors after preheating; liquid silicon was studied
extensively with this technique [20,23]. Image-based density measurements using levitation
have been reported since the 1960s [24], and have been further refined using modern
machine vision algorithms and applying Legendre polynomial fitting to the results of
edge detection routines for volume calculation [23,25–28]. Modulated laser calorimetry on
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electromagnetically levitated melts was developed by Fukuyama et al. in 2007 [29]. Data
on excess volume from image processing combined with data on excess heat capacities of
mixing [30] provide a thermodynamic foundation for constructing realistic solution models
for metallic alloys.

However, many refractory oxides are dielectrics and cannot be studied using explod-
ing wire or electromagnetic levitation. Electrostatic levitation can be applied to dielectric
materials, but it relies on surface charges and is challenging in terrestrial conditions. Most
of the work on the application of electrostatic levitation to oxides was accomplished by the
group at Tsukuba Space Center in Japan [31–34]. It culminated in the design of an electro-
static levitation furnace (ELF), which is currently in operation at the International Space
Station [35]. The first results on the density of liquid Er2O3 and Gd2O3 were published in
2020 [36,37].

Aerodynamic levitation in a conical nozzle (CNL) [38–41] has been used extensively
for oxide melts; however, it has limitations of limited sample visibility and large thermal
gradient. The development of an aero-acoustic levitator (AAL) was funded by NSF and
NASA and built by Intersonics Inc. in 1990 [42]. In this method, the sample is stabilized
above the gas jet by acoustic forces that allow unimpeded access for multi-beam laser
heating, pyrometer aiming and video recording.

Only two AAL instruments were commercially produced [43]: the first one with
analog controls [44], which was operated in Japan [45–47]. The second one, used in this
work, was built for RWTH Aachen University [48]. It enabled the first direct observation of
liquid immiscibility between zirconia and silica-rich melts in the ZrO2-SiO2 system [49].
To the authors’ knowledge, this is the only instrument of its kind in operation to date.
However, it will not be for long. Marzo et al. [50] made openly accessible a new acoustic
levitator design using mass-produced acoustic transducers. This drastically reduces the
cost of the development of new generation AAL. We anticipate that this innovation will
result in a wider application of this technique to study oxide melts. In this work, we present
measurements of the density of Y2O3, Yb2O3, YSZ, and HfO2 melts with an aero-acoustic
levitator using machine vision algorithms developed for metal alloys.

2. Materials and Methods

2.1. Sample Synthesis

HfO2, Y2O3, and Yb2O3 oxide spheroids 2–3 mm in diameter were prepared by the
melting of oxide powders obtained from Alfa Aesar (Ward Hill, MA, USA) with metals
purity 99.98% or higher. The powders were sintered at 1500 ◦C in air for 5 h, then placed
into a copper hearth and melted with a 400 W CO2 laser beam into irregularly shaped
pieces surrounded by an unmelted powder bed. The resulting solid pieces were remelted
in a conical nozzle aerodynamic levitator in Ar flow. Experiments were also performed
on laser melted Y0.05Zr0.95O1.975 and Y0.1Zr0.9O1.95 samples prepared and characterized
earlier for neutron diffraction experiments [51].

2.2. Measurement Procedure

The design of the aero-acoustic levitator used in this work (Figure 1) was described in
detail by Nordine et al. [48]. The sample for levitation was positioned above the alumina
tube heated to 550 ◦C, which serves as a gas jet. The levitation of the sample above the jet is
stabilized by six acoustic transducers controlled with levitator software using a positioning
system with three low power 808 nm solid state lasers. Experiments with Y2O3 were
performed using N2 or Ar gas jets; due to high density of HfO2 and Yb2O3 samples their
levitation was only possible using an Ar gas jet.
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Figure 1. Operation of the aero-acoustic levitator at RWTH Aachen. J.N. is positioning the bead using
an air pick above the gas jet for levitation. Inset: the sample bead heated with the dual laser beam,
A1–A6 are frequency matched 22.2 kHz acoustic transducers controlled with input from positioning
lasers and cameras (labeled PL and PLC, respectively).

After levitation was established, the sample was heated to its melting temperature with
two antiparallel 240 W CO2 laser beams (Synrad, WA, USA). The video was recorded using
a Phantom V9.1 camera from Vision Resarch, Inc. (Wayne, NJ, USA) with an acquisition
interval of 0.5–1 ms and exposure time of 20–200 µs. The temperature was recorded with a
narrow band 650 nm Exactus pyrometer from BASF Corporation (Florham Park, NJ, USA).
The pyrometer was operated with a 1-ms acquisition interval; the measurement spot size
was set to 0.8 mm, and emissivity was set to 1. It was possible to record videos and cooling
traces for the crystallization of Y2O3, Zr0.95Y0.05O1.975, and Zr0.9Y0.1O1.95 samples. This
allowed correlation of the spike in density trace with recalescence peaks on crystallization,
obtaining density values at melting temperature, and evaluating volume thermal expansion
of the liquids. Levitated HfO2 and Yb2O3 melts became unstable after turning off the lasers
and fell out of the field of view before recalescence peaks were captured with a pyrometer.
This is attributed to their higher density. Levitation stability in AAL is discussed in detail
by Nordine et al. [48].

2.3. Video Processing

Volume was calculated using a modification of the algorithm developed by Bradshaw
et al. [25] as implemented by Bendert et al. [52]. As the videos were not filtered, the large
temperature range and surface features of the molten samples made shape determination
using edge detection routines difficult, so the video contrast was post-processed using
open source software [53] to provide better definition. The numerical routines were used to
calculate volume assumed symmetry about the vertical axis. This is not necessarily the case
with aero-acoustically levitated droplets, which may be slightly asymmetric and experience
a slight precession, introducing some additional uncertainty into the measurement. The
implementation of multi-emitter acoustic levitator design [50] may reduce this uncertainty.

Camera calibration was performed by imaging commercially obtained machined
Al2O3 spheres 3.27 mm in diameter levitated without laser heating. The video was pro-
cessed using the same procedure as for the laser-heated molten oxides. The variation in
calculated volume from the machine vision algorithm did not exceed 1%. The main con-
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tribution to calibration uncertainty comes from measurements of diameter and sphericity
of the Al2O3 sphere (taken as ±0.025 mm). The total uncertainty in volume from camera
calibration was estimated as ±3%, from ±2.3% uncertainty in volume of the calibration
standard and ±0.3% variation in volume from video edge detection procedure.

Correlation of the pyrometer trace with the video recording and density curve obtained
from video analysis was performed manually. The moment of turning off the lasers is
clearly observed from the disappearance of the bright spot on the molten sample. The onset
of crystallization was evident from the video from a sudden increase in sample brightness—
sample “flash” or recalescence, caused by reheating the sample on crystallization by
released heat of fusion.

3. Results and Discussion

In experiments performed on Y2O3, Zr0.95Y0.05O1.975, and Zr0.9Y0.1O1.95, it was possi-
ble to record recalescence on cooling traces and videos. This allowed accurate temperature
correlation of density values and evaluation of thermal expansion of the liquid. Stable
levitation of HfO2 and Yb2O3 through recalescence was challenging, and we did not
succeed in recording videos of recalescence. However, considering 3% uncertainty from
calibration, we attribute the measured values for HfO2 and Yb2O3 to the melting tempera-
tures. Matched temperature–density profiles are shown in Figures 2 and 3. The obtained
density and thermal expansion data are summarized in Table 1, together with relevant
reference values.
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phase transformation from high temperature hexagonal to cubic bixbyite phase. The brightness of 

Figure 2. Cooling trace of a 59-mg Y2O3 sample (~2.5 mm in diameter) melted in an Ar jet in an aero-
acoustic levitator with overlayed density measurements and video frames (lateral view): (1)—molten
droplet heated laterally with two laser beams which are visible as bright spots; (2)—undercooled
liquid before crystallization; (3)—recalescence or “flash” on crystallization; (4)—phase transformation
from high temperature hexagonal to cubic bixbyite phase. The brightness of images (2–4) was
adjusted by the same degree for visibility. A video fragment is provided in Supplementary Materials
(Video S1).
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Figure 3. Cooling traces with overlayed density measurements. (A) 119.5-mg Zr0.9Y0.1O1.95 sample
levitated in Ar; (B) a 32-mg Zr0.95Y0.05O1.975 sample levitated in nitrogen; (C) video frames for the
Zr0.9Y0.1O1.95 sample (~3.5 mm in diameter): (1)—before turning off the lasers (visible as bright spot);
(2–5)—113, 132, 135 and 151 ms after turning off the laser. The brightness was adjusted individually
for every frame. A video fragment is provided in Supplementary Materials (Video S2).

3.1. Measurements on Y2O3

The density profile overlayed with the cooling trace of the Y2O3 droplet is shown in
Figure 2. The ~300 ◦C temperature rise on recalescence gives the magnitude of the observed
undercooling of liquid Y2O3. Recalescence can be pinpointed as a flash on the video, and the
density profile shows a sharp decrease due to reheating of the sample. After crystallization
onset, the density calculations from the bead dimension are not meaningful since the
surface of the droplets crystallizes first, and cavities are formed on further crystallization
of core parts of the sample.

The first phase to crystallize from Y2O3 melt is known to be a hexagonal phase,
common to lanthanide oxides [54–57]. It is stable in a narrow ~100 ◦C temperature range
and undergoes a transition to cubic bixbyite, which is stable at room temperature. This
transition is clearly seen on the cooling trace as a second peak with a smaller ~100 ◦C
rise corresponding to undercooling on hexagonal (H-type) to cubic phase transformation
and a plateau at a temperature ~100 ◦C lower than the recalescence peak. Apart from the
“flash” of the bead due to temperature increase, crystallization of the H phase is not clearly
distinguished in videos, indicating its emissivity is similar to that of the liquid.
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Table 1. Density and volumetric thermal expansion coefficient (TEC) for liquid oxides at melting temperatures (Tm)
measured in this work compared with previously published data.

Composition Tm, ◦C
[Ref.]

Density
g/cm3

TEC
10−4 K−1 Method † Ref.

Y2O3 2431 [58]
4.6 ± 0.15 3 ± 1 AAL This work

4.42 1.9 CNL↓ Granier 1988 [59]
4.15 ‡ 4.5 AI MD Kapush 2017 [60]

HfO2 2800 [61]
8.2 ± 0.3

-
AAL This work

8.16 PDF Gallington 2017 [62]
8.7 * AI MD Hong 2018 [63]

Zr0.95Y0.05O1.975 2730 [64] 4.9 ± 0.2 2 ± 1 AAL This work

Zr0.9Y0.1O1.95 2750 [64] 4.7 ± 0.2 3 ± 1 AAL This work

ZrO2 2710 [61]
4.9 0.9 AI MD Hong 2018 [63]
5.05 1.8 CNL→ Kohara 2014 [65]

4.69 ± 0.23 0.9 CNL→ Kondo 2019 [66]

Yb2O3 2434 [67]
8.4 ± 0.2 - AAL This work

7.94 0.9 CNL↓ Granier 1988 [59]
8.75 4.5 AI MD Fyhrie 2019 [68]

Er2O3 2417 [67]
8.17 ± 0.16 1.0 ESL(ISS) Koyama 2020 [37]

7.60 0.4 CNL↓ Granier 1988 [59]

Gd2O3 2420 [67]
7.24 ± 0.14 0.7 ± 0.2 ESL(ISS) Ishikawa 2020 [36]

6.93 1.5 CNL↓ Granier 1988 [59]
† Methods abbreviation: AAL—aero-acoustic levitation; CNL ↓—conical nozzle aerodynamic levitation top view; CNL→—idem., side
view; PDF—refined from experimental pair distribution function; ESL(ISS)—electrostatic levitation at international space station; AI
MD—ab initio molecular dynamic computations. ‡ The density value from calculations at 2377 ◦C. * The density value from calculations at
2827 ◦C.

On turning off the laser, the density of liquid Y2O3 increases from 4.3 g/cm3 at
2650 ◦C to 5.1 g/cm3 at 2100 ◦C. The density of the liquid at the melting temperature is
estimated at 4.6 ± 0.15 g/cm3. For the experiment shown in Figure 2, observed fluctuation
in refined density is likely due to the non-symmetrical oscillation of the molten sample
in the acoustic field, which ceases after crystallization. In addition to the experiment
shown in Figure 2, density was refined from experiments on three more Y2O3 samples,
56–80 mg in weight, using Ar and N2 for levitation. The refined values varied from
4.3 to 4.7 g/cm3. In several experiments, the scatter in volume from video processing
was as low as ±0.01 g/cm3. We were not able to correlate other measurements with the
temperature trace on cooling; however, the observed variation is consistent with the density
value from Figure 2. Volume thermal expansion of liquid Y2O3 at melting temperature was
estimated as (3 ± 1) × 10−4 K−1.

3.2. Measurements on Zr0.9Y0.1O1.95 and Zr0.95Y0.05O1.975

The density profiles overlayed with cooling traces from Y-doped zirconia samples are
shown in Figure 3. Undercooling on the crystallization of Zr0.9Y0.1O1.95 and Zr0.95Y0.05O1.975
does not exceed 50 ◦C and 80 ◦C, respectively. The recalescence step is much more pro-
nounced for a smaller sample. In previous experiments on these compositions in an
aerodynamic levitator, no recalescence peaks were detected [51], likely due to the larger
sample gradient.

The video stills from the crystallization of Zr0.9Y0.1O1.95 (Figure 3C) have interesting
features. The Marangoni flows on the cooling of Zr0.9Y0.1O1.95 are more pronounced than
for Y2O3 but are not observed at the bottom of the sample. The Marangoni flows are
caused by temperature or composition-related gradients in surface tension. Calorimetry
experiments indicated the possibility of oxygen dissolution in liquid ZrO2 and HfO2 [63].
In our experiments, the melting of Zr0.9Y0.1O1.95 was accomplished in an air–argon mixture,
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with argon flow provided by an auxiliary gas jet. The lower oxygen fugacity at the bottom
of the sample impinged upon by the argon jet could be a plausible reason for this behavior.

In the case of congruent crystallization, one would expect that a solid phase would first
appear at the bottom surface of the sample due to additional cooling by the argon jet. This is
the case for the C–H transformation in Y2O3 (Figure 2). However, this is not what happens
in Zr0.9Y0.1O1.95, in which the bottom of the bead seems to crystallize last. This supports
the hypothesis of variable oxygen content in the melt. The densities of Zr0.95Y0.05O1.975 and
Zr0.9Y0.1O1.95 at melting temperatures were estimated at 4.9 and 4.7 g/cm3, respectively.
The difference between compositions is within the assigned experimental uncertainty of
±0.2 g/cm3.

3.3. Comparison with Previously Reported Density Values

In Table 1 the density and thermal expansion coefficient values for liquid oxides
measured in this work are listed together with four types of previously published density
data: (i) measurements in aerodynamic levitator by Granier and Heurnault’s [59], Kohara
et al. [65], and Kondo et al. [66]; (ii) measurements with the electrostatic levitator on
board of International Space Station [36,37]; (iii) refinement from pair distribution function
analysis (PDF) of synchrotron X-ray scattering [62]; (iv) ab initio molecular dynamic
computations [60,63].

Granier and Heurnault reported the density of liquid alumina, yttria, and several
lanthanide sesquioxides [59,69]. They performed the measurements on photographs of
laser-heated droplets levitated in a conical nozzle aerodynamic levitator (CNL). Their value
for Al2O3 density at melting temperature is about 10% lower than most of the previous
measurements [69]. Granier’s values for Y2O3 and for Yb2O3 are 4–5% lower than those
measured in this work.

Density measurements for Gd2O3 and Er2O3 were recently performed by a Japanese
group with an electrostatic levitator furnace (ELF) at the International Space Station
(ISS) [35–37]. The electrostatic levitation in microgravity conditions ensures the absence of
disturbances by acoustic waves or by gas flow, resulting in a perfectly spherical shape of
the levitating droplet. Notably, Granier’s values for Gd2O3 and Er2O3 from CNL are also
4–7% lower than measured in ELF at ISS (Table 1).

There is a simple explanation for this discrepancy if one considers how measurements
were performed in Granier’s and Heurnault’s study [59]. In the early version of the
aerodynamic levitator they used, the sample was completely surrounded by the nozzle.
The photographs were taken from the top, and density values were calculated assuming
spherical shape of the sample. However, the shape of the levitated droplet is not an
ideal sphere but an oblate spheroid. This can be clearly seen from the lateral view of
molten samples in an aero-acoustic levitator (Figure 2). Using top view and assumption
of spherical shape would overestimate the volume and underestimate the density. In
terrestrial measurements, the degree of oblateness of the spheroid depends on the surface
tension of the melt. Melting temperatures of Y2O3, Yb2O3, Gd2O3, and Er2O3 are ~400 ◦C
higher than Al2O3, and they are expected to have higher surface tension. For these oxides,
the bead of the same dimension will be closer to spherical shape than in the case of
Al2O3. This is consistent with better agreement of measurements for these oxides with
Granier’s values.

Kohara et al. [65] also used CNL for measurements of density for liquid ZrO2, however
they employed a very shallow nozzle which allowed the side view of the sample. Their
value for density and thermal expansion of ZrO2 (5.05 g/cm3 and 1.8 × 10−4 K−1) is the
same within uncertainty as our results for Zr0.95Y0.05O1.975 (4.9 ± 0.2 g/cm3 and (2 ± 1) ×
10−4 K−1). The value measured for liquid HfO2 density in this work (8.2 ± 0.3 g/cm3) is in
excellent agreement with the density reported by Gallington et al. [62] (8.16 g/cm3) from
refinement of total synchrotron X-ray scattering on liquid HfO2.

Liquid ZrO2 density from ab initio molecular dynamic (AI MD) calculations [63]
coincides with our value; however, the Y2O3 value from computations is 10% lower
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than measured, and for HfO2 and Yb2O3, it is 4–6% higher. The comparison of absolute
density values from computations with experiment is compromised by uncertainty in
absolute temperature in AI MD simulations and underlying assumptions such as choices
of exchange-correlation functionals and size of the simulation system.

3.4. Temperature Measurements

In this work, we correlated high-speed video recording with recalescence peak to
provide density and thermal expansion values in the proximity of melting temperature.
This approach assumes that peak temperature on recalescence is close to the melting point
and does not require knowledge of absolute values of the sample temperature. Thus,
our measurements did not require knowledge of emissivity, but relied on known melting
temperatures of measured oxides. The only assumption made about emissivity is that it
does not change substantially for measured liquid oxides around the melting temperature.
However, temperature calibration is a paramount issue for measurement of thermal expan-
sion above the melting temperature and for determination of unknown temperatures of
melting and phase transformations. Below we discuss methods of estimation of emissivity
values and effective emissivities calculated for measured samples.

Temperature measurements with a single-color pyrometer require knowledge of
spectral emissivity and its temperature dependence. These data for refractory oxides above
2000 ◦C are fragmentary [70]. For opaque materials, the sum of emissivity and reflectivity
at given wavelength must be equal to one. From careful measurements of reflectivities at
650 nm in a solar furnace, Yamada and Noguchi [71] obtained emissivities for Y2O3 and
ZrO2 at melting temperatures as 0.92 ± 0.005, and 0.89 ± 0.005. In an earlier study [72], the
same group reported 650 nm emissivity values for HfO2 and Al2O3 at freezing points as
0.91 and 0.96, but without estimation of the uncertainties.

Nordine et al. [48] suggested that reflectivity of opaque melts can be estimated from the
refraction index of the solid and emissivity can be calculated using the following relationship:

ε(λ) = 1− r(λ) = 1− (n− 1)2

(n + 1)2 (1)

where r is the reflectivity and n is the refractive index at the given wavelength λ This
approach neglects temperature dependence of emissivity and changes in emissivities
between solid and liquid phases. However, in the case of Al2O3 for which high temperature
data are available [73] these changes are small.

The videos indicate that the melt is opaque at visible wavelengths, and therefore the
transmittance can be neglected. Emissivity for different materials is calculated in Table 2
based on Equation (1). The differences from the available values reported by Noguchi [71]
from direct measurements for liquid oxides do not exceed 3%. Thus, this approach can be
used for future measurements.

Table 2. Calculated emissivity based on the reported values for the refractive index (n).

Composition T, ◦C n λ, nm εcalc Reference for (n) Value

Al2O3 25 1.78 632.8 0.92 Krishnan 1991 [73]
Y2O3 25 1.92 650 0.90 Nigara 1968 [74]
HfO2 25 2.08 600 0.88 Hu 2003 [75]
Yb2O3 25 1.94 643.8 0.90 Medenbach 2001 [76]

ZrO2 12 mol% Y2O3 25 2.15 650 0.87 Wood 1982 [77]

When the melting temperatures are known or independently measured, the common
approach is to estimate effective emissivity ελ at melting temperature using Wien’s approximation:

1
T

=
1

TA
+

λ

C2
ln(ελ) (2)
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where T is the melting temperature, TA is the apparent melting temperature (measured by
pyrometer), and C2 is Planck’s second radiation constant. The temperature dependence of
emissivity is usually neglected, and the obtained value for effective emissivity can be used
to correct the apparent temperature of the melt in the range of the measurements.

In dynamic measurements of phase transformations, metastability is common on
cooling but not on heating. Thermal arrests on melting cannot be unambiguously dis-
tinguished on heating with a continuous wave (CW) laser. On cooling of oxide melts,
crystallization onset is usually below equilibrium melting temperature. This undercooling
is more pronounced in levitated samples in the absence of any solid–liquid interfaces. The
crystallization of undercooled melt results in a peak in temperature-recalescence which
can be visually observed as a “flash”. If on recalescence the sample is reheated to the
equilibrium melting temperature, the true thermal arrest can be observed. Ideally, its
temperature should be used for emissivity calculation at the melting point.

In our experiments, we do not observe thermal arrest on recalescence. It is not
surprising for 2–3 mm beads with melting temperatures above 2400 ◦C. Due to the relatively
large surface to volume ratio and high temperatures, heat transfer by radiation does not
allow sample reheating to melting temperature by released heat of fusion.

Table 3 lists emissivity values calculated from Equation (2), taking the maximum
temperature of recalescence peak as the apparent melting temperature. The values calcu-
lated based on this method will always underestimate emissivity when the melting point
is not reached; therefore, they should be seen as a lower boundary. Measurements on a
curved surface will also underestimate emissivity; thus, these differences are expected.
While single-color pyrometry remains the fastest and most sensitive technique, it must
be noted that approaches which do not require knowledge of emissivity for temperature
measurements are well established, such as direct measurements of reflectivity [78] and
spectropyrometry [79–81].

Table 3. Emissivity values calculated from assumption that the recalescence peak reaches the melting
temperature (Tm).

Composition Tm
◦C [Ref.] εcalc (at Tm 650 nm) Ref.

Y2O3 2431 [58] 0.8 This work
Zr0.95Y0.05O1.975 2730 [64] 0.68 This work

Zr0.9Y0.1O1.95 2750 [64] 0.65 This work

4. Conclusions and Future Directions

This work demonstrates that reasonable values for density of liquid oxides can be
obtained from high-speed videography measurements with an aero-acoustic levitator.
Volume change on melting cannot be directly obtained from these experiments. While
videography can be used on solids, samples in this work were prepared by laser melting
and contained cavities formed on solidification. However, volume change on melting can
be derived by combining density data for liquids with thermal expansion data on solids
from X-ray diffraction [51,57,82].

The accuracy of the measurements can be significantly improved by back illumination
of the levitated samples, combined with appropriate filters on the camera [27,34], which is
known to aid edge detection in image processing. The multi-emitter single-axis acoustic
levitator introduced by Marzo et al. [50] allows levitation of non-spherical samples with
density up to 6.5 g/cm3. The adaptation of a new multi-emitter design for laser heating
and density measurements can simplify levitation, decrease the deformation of the liquid
sample by acoustic waves, and eliminate or drastically reduce the need for auxiliary
aerodynamic support of the sample.

The measurements of change in density with melt composition can be used to obtain
the excess volume of mixing in the liquid state for multicomponent systems and derive
realistic thermodynamic mixing models, as demonstrated by Fukuyama et al. [30] for metal
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alloy systems. Such measurements for key refractory oxide systems will be the subject of
future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/4/822/s1, Video S1: Crystallization of 58.79 mg Y2O3 sample (500 µs acquisition interval, 200
µs exposure, exported to AVI format at 50 frames per second), Video S2: Crystallization of 119.50 mg
Y2O3 sample (1000 µs acquisition interval, 40 µs exposure, exported to AVI at 50 frames per second)
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