
UCLA
UCLA Previously Published Works

Title

HIV-1 Epitope Variability Is Associated with T Cell Receptor Repertoire Instability and 
Breadth

Permalink

https://escholarship.org/uc/item/3f49107m

Journal

Journal of Virology, 91(16)

ISSN

0022-538X

Authors

Balamurugan, Arumugam
Claiborne, Deon
Ng, Hwee L
et al.

Publication Date

2017-08-15

DOI

10.1128/jvi.00771-17
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3f49107m
https://escholarship.org/uc/item/3f49107m#author
https://escholarship.org
http://www.cdlib.org/


HIV-1 Epitope Variability Is Associated
with T Cell Receptor Repertoire
Instability and Breadth

Arumugam Balamurugan,a Deon Claiborne,b Hwee L. Ng,a Otto O. Yanga,c,d,e

Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, California, USAa; Medical Anthropology, Michigan State University, East
Lansing, Michigan, USAb; Department of Microbiology, Immunology and Molecular Genetics, David Geffen
School of Medicine, University of California Los Angeles, Los Angeles, California, USAc; UCLA AIDS Institute,
University of California Los Angeles, Los Angeles, California, USAd; AIDS Healthcare Foundation, Los Angeles,
California, USAe

ABSTRACT Mutational escape of HIV-1 from HIV-1-specific CD8� T lymphocytes
(CTLs) is a major barrier for effective immune control. Each epitope typically is tar-
geted by multiple clones with distinct T cell receptors (TCRs). While the clonal reper-
toire may be important for containing epitope variation, determinants of its compo-
sition are poorly understood. We investigate the clonal repertoire of 29 CTL
responses against 23 HIV-1 epitopes longitudinally in nine chronically infected un-
treated subjects with plasma viremia of �3,000 RNA copies/ml over 17 to 179
weeks. The composition of TCRs targeting each epitope varied considerably in stabil-
ity over time, although clonal stability (Sorensen index) was not significantly time
dependent within this interval. However, TCR stability inversely correlated with
epitope variability in the Los Alamos HIV-1 Sequence Database, consistent with TCR
evolution being driven by epitope variation. Finally, a robust inverse correlation of
TCR breadth against each epitope versus epitope variability further suggested that
this variability drives TCR repertoire diversification. In the context of studies demon-
strating rapidly shifting HIV-1 sequences in vivo, our findings support a variably dy-
namic process of shifting CTL clonality lagging in tandem with viral evolution and
suggest that preventing escape of HIV-1 may require coordinated direction of the
CTL clonal repertoire to simultaneously block escape pathways.

IMPORTANCE Mutational escape of HIV-1 from HIV-1-specific CD8� T lymphocytes
(CTLs) is a major barrier to effective immune control. The number of distinct CTL
clones targeting each epitope is proposed to be an important factor, but the deter-
minants are poorly understood. Here, we demonstrate that the clonal stability and
number of clones for the CTL response against an epitope are inversely associated
with the general variability of the epitope. These results show that CTLs constantly
lag epitope mutation, suggesting that preventing HIV-1 escape may require coordi-
nated direction of the CTL clonal repertoire to simultaneously block escape path-
ways.

KEYWORDS cytotoxic T lymphocytes, human immunodeficiency virus

The major histocompatibility class I (MHC-I)-restricted CD8� T lymphocyte (CTL)
response is a critical arm of immunity for clearance or chronic control of many viral

infections. The central protective role of human immunodeficiency virus type 1 (HIV-
1)-specific CTLs in the pathogenesis of HIV-1 infection is clear from studies such as in
vivo CD8 depletion in the simian immunodeficiency virus (SIV)-macaque model (1–3)
and the consistent observation that the MHC-I locus is the strongest correlate to
immune control of HIV-1 infection in multiple genetic screening studies (4–6). However,
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the CTL response fails to contain infection in the vast majority of infected persons, who
eventually progress to severe immunodeficiency and death without treatment. The
high mutation rate and genetic plasticity of HIV-1 likely are major contributors to this
failure; viral adaptation to CTL responses is the major driver of viral sequence evolution
in infected persons (7–9).

The CTL response against any given epitope is typically polyclonal, comprised of
CTLs with distinct T cell receptors (TCRs). While these CTL clones have expanded in
response to the same epitope, different TCRs may differ significantly in their recogni-
tion of different epitope sequence variants (10). Moreover, an epitope variant that
escapes recognition by a CTL response can be recognized by a de novo variant-specific
response that does not recognize the original epitope sequence (11). Clonal breadth
has therefore been raised as a potentially important parameter for CTL containment of
HIV-1 infection through broader coverage of epitope variation (12, 13). Although prior
studies have suggested clonal stability (14) or shifting clonotypes (15) of HIV-1-
specific CTL responses, the determinants of the clonal repertoire of CTL responses
are poorly understood. Here, we examine the TCR repertoire over time for several
HIV-1 epitopes in persons with chronic untreated infection who all maintained
plasma viremia of �3,000 RNA copies/ml.

RESULTS
Quantitative spectratyping defines CTL clonal composition and breadth

against HIV-1 epitopes longitudinally in persons with chronic HIV-1 infection.
Quantitative spectratyping was utilized to assess the longitudinal clonal composition
and breadth of 29 CTL responses against 23 epitopes in 9 chronically HIV-1-infected
subjects, all of whom spontaneously maintained plasma viremia of �3,000 RNA cop-
ies/ml without receiving antiretroviral therapy during observation (Table 1). The time
intervals of follow-up ranged from 17 to 179 weeks. Peripheral blood mononuclear cells
(PBMCs) were cultured in the presence and absence of the epitopes of interest,
followed by quantitative spectratyping as previously described (16) to identify epitope-
specific clonal peak expansions within beta variable (BV) gene families (Fig. 1).

Clonal stability of CTL responses against HIV-1 epitopes varied independently
of time over the period of observation. Examination of epitope-specific TCRs showed
generally stable breadth over time (Fig. 2A). There was little variation in the number of
clones targeting each epitope over time, and breadth and stability were similar
between epitopes restricted by MHC-I A and B versus C types (Fig. 2B to D) or from
different viral proteins (Fig. 2E to I). However, there were varying patterns of clonal
dominance ranging from highly stable to shifting profiles. In some instances, the TCR
clones targeting an epitope showed shifts in composition (Fig. 3A), whereas other
responses showed stability (Fig. 3B) within the same person. To assess whether the
varying degree of clonal stability between epitopes was due to variation in the duration
of longitudinal observation, clonal similarity was compared to the duration between
time points (Fig. 4A). This analysis showed that there was no significant relationship
between the time elapsed and TCR clonal similarity between time points for the period
of observation ranging from 17 to 176 weeks, suggesting that time was not a significant
factor in the degree of clonal variation over the duration of observation.

TCR clonal stability inversely correlates with epitope variability. Because CTL
persistence is driven by antigen recognition, epitope variability was compared to TCR
clonal stability. Global epitope sequence diversity across all subtype B sequences in the
Los Alamos HIV Sequence Database was calculated as a surrogate marker for epitope
variability, given that most of the subjects had viremia below the limits of detection.
This revealed a modest but statistically significant inverse correlation of TCR clonal
stability and epitope variability (Fig. 4B). Of note, epitopes restricted by B*57, which is
associated with superior immune containment of HIV-1 infection in some persons,
spanned the range of epitope diversity and stability. Also, clonal stabilities were similar
between epitopes restricted by MHC-I A and B versus C types and epitopes from
different viral proteins (Fig. 5). Overall, these data suggested that the least variable
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epitopes were associated with greater TCR clonal stability and that this process is MHC-I
independent.

TCR clonal breadth inversely correlates with epitope variability. Epitope vari-
ability, again reflected by the surrogate marker of epitope sequence diversity, was
compared to TCR clonal breadth to investigate whether greater variability in epitope
sequences might drive more clonal responses. Comparison of epitope diversity to TCR
clonal breadth against each epitope revealed a robust inverse correlation (Fig. 6). Again,
epitopes restricted by MHC-I B*57 spanned the spectrum of epitope diversity and clonal
breadth and did not appear distinct from other epitope responses. These data in the
context of the above-mentioned findings are consistent with a bidirectional interrela-
tionship between epitope variability and the clonal composition of CTL responses
against HIV-1 infection.

DISCUSSION

As adaptive immunity, CTL responses arise and are maintained by the presence of
the epitopes that they recognize. As occurs physiologically when a viral infection is
cleared and effector CTLs are no longer needed, HIV-1-specific CTL frequencies decay

TABLE 1 HIV-1-infected participants and CTL responses evaluated longitudinallya

Participant

MHC class I

Duration of
infection

Epitope

A B C Sequence (abbreviated)
MHC- I
type Location Diversity

Sampling
interval (wk) Similarity

Mean
breadth

S00009 03 15 03 �14 yr GLNKIVRMY (GY9) B*15 Gag 269–277 0.06 114 0.73 7.0
26 38 12 ALVEICTEMEK (AK11) A*03 Pol 188–198 0.48 114 0.32 1.5

AIFQSSMTK (AK9) A*03 Pol 313–321 0.57 114 0.00 2.5
IKLEPVHGVY (IY10) B*15 Pol 464–473 0.44 114 0.72 4.5

S00016 03 18 02 �4 mo KIRLRPGGK (KK9) A*03 Gag 18–26 0.40 179 0.14 4.5
32 40 07 RLRPGGKKKY (RY10-G) A*03 Gag 20–29 0.60 179 0.35 2.5

KELYPLASL (KL9-G) B*40 Gag 481–489 0.83 179 0.39 4.0
LEKHGAITS (LS9) B*40 Nef 37–45 0.86 179 0.00 2.5
KEKGGLEGL (KL9-N) B*40 Nef 92–100 0.51 179 0.05 2.5
RRQDILDLWIY (RY11) C*07 Nef 105–115 0.83 179 0.47 4.5

S00024 02 13 06 �13 yr RLRPGGKKKY (RY10-G) B*15 Gag 20–29 0.60 76 0.25 1.5
15 07 SLYNTVATL (SL9) A*02 Gag 77–85 0.86 76 0.26 3.0

GLNKIVRMY (GY9) B*15 Gag 269–277 0.06 76 0.57 7.0
RQANFLGKI (RI9) B*13 Gag 429–437 0.24 76 0.22 4.5
GQGQWTYQI (GI9) B*13 Pol 488–496 0.74 76 0.17 1.5

S00031 02 13 03 �8 yr RLRDLLLIV (RV9) A*02 Env 770–778 0.69 132 0.00 3.0
15 06

S00036 02 39 06 �12 yr SLYNTVATL (SL9) A*02 Gag 77–85 0.86 111 0.00 1.0
11 57 07 ISPRTLNAW (IW9-G) B*57 Gag 147–155 0.47 176 0.52 3.7

KAFSPEVIPMF (KF11) B*57 Gag 162–172 0.14 64 0.43 3.5
IVLPEKDSW (IW9-P) B*57 Pol 399–407 0.73 176 0.00 0.7
VLEWRFDSR (VR9) A*02 Nef 180–188 0.91 111 0.00 2.0

S00039 31 13 04 �3 mo RQANFLGKI (RI9) B*13 Gag 429–437 0.24 43 0.55 6.0
32 35 06 GQGQWTYQI (GI9) B*13 Pol 488–496 0.74 43 0.00 1.0

S00052 01 18 06 �14 yr KAFSPEVIPMF (KF11) B*57 Gag 162–172 0.14 107 0.63 4.0
25 57 12 AVRHFPRIW (AW9) B*57 Vpr 30–38 0.86 161 0.68 2.0

RTVRLIKLLY (RY10-R) B*57 Rev 14–23 0.98 30 0.52 1.0

S00085 02 57 08 �15 yr ILKEPVHGV (IV9) A*02 Pol 464–472 0.43 17 0.91 2.5
33 65 18

S00096 01 08 07 �9 yr YRLDQQLLGIWGC (YC13) C*07 Env 586–598 0.70 20 0.56 1.0
32 51 14 RRGWEALKY (RY9) A*01 Env 787–796 0.81 20 0.61 1.0

aAll the participants were men who did not receive antiretroviral therapy during the study duration. The MHC-I types, duration of infection at study onset, epitope
sequence and restriction, epitope diversity across all HIV-1 subtype B sequences in the Los Alamos HIV Sequence Database, time intervals analyzed, Sorenson
similarity index between time points, and mean clonal breadth as determined by spectratyping across time points are indicated.
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to low resting memory levels after virus replication is suppressed by antiretroviral drug
treatment (17, 18). At the level of CTLs recognizing a single epitope, the same process
occurs if a targeted epitope mutates to become a completely unrecognized variant (19,
20), indicating that the composition of the CTL response is driven by viral epitope
sequence evolution. Conversely, however, the CTL response applies selective pressure
that drives viral epitope evolution (7–9), individual clones within the response can
select for different epitope escape variants (10), and HIV-1 tends to revert epitope
mutations when a prior CTL response is absent (21).

FIG 1 Delineation of the clonal profile of CTL responses targeting HIV-1 epitopes. An example of quantitative spectratyping is shown. PBMCs were cultured in
the presence or absence of the epitope of interest, followed by spectratyping of 24 BV gene families within isolated CD8� T lymphocytes, using quantitative
PCR to determine the copy numbers of each family. The relative concentration of each BV family was calculated as the ratio of its copy number to the median
copy number across all families. The relative magnitude of each spectratype peak was calculated as the fraction of the peak area within the summed area of
all peaks in its family multiplied by the relative concentration of the family. The last 10 of the 24 analyzed families are shown as representative examples,
because they contained a mixture of families with and without epitope-specific responses. (A) Results are shown for unstimulated and peptide-stimulated peak
profiles, demonstrating some families with epitope-specific expansions (BV11, BV18, and BV19). (B) The magnitude of change of each peak in response to
epitope stimulation was calculated by subtracting the relative magnitude of unstimulated spectratypes from that of epitope-stimulated spectratypes. Results
for the same 10 BV families are shown, quantifying the epitope-specific expansions (defined as increases of �2 units) in families BV11, BV18, and BV19 from
panel A. (C) Results for the magnitude changes of each peak in response to epitope stimulation for the same 10 BV families for two different time points.
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Our data support the concept of a dynamic bidirectional interaction between the
CTL response and HIV-1 sequence variation in vivo, and our prior observation of “partial
escape” was demonstrated as persistence of viral epitopes with reduced fitness under
CTL pressure in vivo (22). It has been demonstrated that the HIV-1 quasispecies in vivo
has ongoing shifts in the frequency of individual CTL epitope mutants (23, 24). In the
context of CTL expansion and contraction being driven by epitope recognition and
nonrecognition, respectively, and differential recognition of epitope variants by differ-
ent CTL clones recognizing the same epitope, the observed variation in CTL clonal
frequencies over time is consistent with different clones expanding and contracting
according to varying epitope variants within the quasispecies. In turn, the differential
recognition of epitope variants that drives variation between frequencies of individual
CTL clones also exerts differential antiviral pressure between different epitope variants,
driving viral evolution. This process is analogous to the genetic coevolution of broadly
neutralizing antibodies and HIV-1 Env in vivo (25), in which the neutralizing antibody
response continuously lags behind viral evolution (26). This lag prevents the efficacy of
antibodies in the infected persons in whom they arise, yet administration of a broadly
neutralizing antibody to another person in whom HIV-1 has not coevolved can yield a
potent antiviral effect (27–30), presumably by blocking escape pathways in advance of
their evolution.

FIG 2 Generally stable clonal breadth of HIV-1 epitope-specific CTL responses over time. The clonal breadths of responses to the HIV-1 epitopes in Table 1 (as
delineated in Fig. 1) are plotted over time for all epitopes (A), epitopes divided according to MHC-I restriction (B to D), and epitopes divided according to viral
protein source (E to I). In panel C, the dashed lines indicate B*57-restricted responses. In panel I, the dashed line indicates a Rev epitope, while the solid line
indicates a Vpr epitope.
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Our results provide a likely explanation for varying prior observations of TCR
clonotype stability (14) versus variability (15) in HIV-1-infected persons. HIV-1 CTL
epitopes vary markedly in their sequence constraint, and thus in the breadth of their
mutation landscape. Therefore, HIV-1 has more options for epitope variation in some
epitopes than others, which consequently drives more options to escape CTL re-
sponses. The inverse correlation between CTL clonal stability and epitope diversity
supports a scenario where greater epitope variability allows more dynamic shifting in

FIG 3 Varying clonal stability of CTL responses over time. An example of a CTL response exhibiting
changing clonal composition over time is shown (A). The response to AK9 in subject S00009 was
comprised of clonal expansions in BV7 (within peak 3) and BV11 (peak 4) at the baseline evaluation, but
then clonal expansions in BV6a (peak 6), BV10 (peak 5), and BV28 (peak 5) 114 weeks later. (B) In contrast,
another response (against the GY9 epitope) in the same person showed a relatively stable clonal
composition over the same span of time.

FIG 4 Correlates of clonal stability of CTL responses against HIV-1 epitopes. The clonal similarity of the
CTL responses in Table 1 over time is plotted against time (A) and epitope variability (B) as approximated
by sequence diversity among all subtype B sequences in the Los Alamos HIV Sequence Database.
B*57-restricted epitopes are highlighted as filled circles. For reference, the examples in Fig. 3 are
indicated by open (AK9 epitope) and solid (GY9 epitope) arrows. Correlations were evaluated using
Spearman’s rank test.
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the population of epitope variants, followed by greater shifting in the CTL clones
responding to the variants.

Finally, the robust inverse correlation between CTL clonal breadth and epitope
diversity is novel evidence for an important determinant of the CTL response against
HIV-1; we previously demonstrated that clonal breadth is not correlated with MHC-I
restriction or the frequency of the response (16). Again, this is consistent with a
bidirectional interaction of viral sequence evolution and the CTL response at the clonal
level, in which greater epitope variability allows exposure of the CTL response to more
epitope variants, driving greater CTL clonal breadth. This finding also suggests an
explanation for the observation that “public TCR” clonotypes shared between multiple
persons with a common MHC-I allele have mostly been observed for highly conserved
epitopes, such as the B*57-restricted KF11 epitope in Gag (13, 31, 32). Additionally, it
supports the rationale for using mixtures of sequences in vaccines to encompass
diversity that drives greater recognition of epitope variation by CTL responses, such as
the “mosaic” strategy (33, 34).

Although not a focus of this report, it is interesting that the “protective” MHC-I type
B*57 presents epitopes that span the observed range of variability in sequence diver-
sity, stability of CTL responses, and clonal breadth of CTL responses. Although indirectly
relevant, this finding is less consistent with the proposed mechanism of B*57 protection
via thymic selection of more promiscuous TCRs (35) versus the concept that the
protective contribution of CTL responses is epitope specific (36).

FIG 5 Clonal stability of CTL responses subdivided by MHC-I restriction and targeted HIV-1 proteins. The longitu-
dinal similarity measurements plotted in Fig. 4 were divided according to MHC-I restriction (A) or targeted viral
protein (B). (A) Triangles represent B*57, and squares represent B*13. (B) Triangles represent Env, circles represent
Rev, and the square represents Vpr.

FIG 6 Inverse correlation of epitope variability and CTL clonal breadth. The average clonal breadth of
each HIV-1 epitope-specific CTL response (shown in Fig. 2) is plotted against epitope variability as
approximated by sequence diversity among all subtype B sequences in the Los Alamos HIV Sequence
Database. B*57-restricted epitopes are highlighted as filled circles. Correlations were evaluated using
Spearman’s rank test.
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There are inherent limitations to our findings. Epitope sequence diversity in the Los
Alamos HIV Sequence Database is an indirect approximation of the mutational space
available for epitope variation in a given person, which may be context dependent in
terms of the strain of HIV-1 and host factors. Moreover, there are two major reasons for
using this parameter as opposed to diversity within the participants’ endogenous HIV-1
epitope sequences. First, the low levels of viremia in these persons is a significant
technical barrier to ensuring acquisition of enough clonal sequences for accurate
assessment of epitope diversity in their viral quasispecies. Second, and more important,
the interaction of epitope sequences and CTLs is bidirectional. While the key parameter
of interest is epitope plasticity, i.e., options for mutation, the observed diversity in each
individual is the net outcome of the interaction, i.e., the options remaining after CTL
targeting. Moreover, CTL responses against different epitopes likely vary significantly in
their antiviral activity (37, 38), and thus, the selective pressure driving epitope diversity
and resulting TCR diversity may not be uniform. Thus, while imperfect, sequence
diversity in the Los Alamos HIV Sequence Database is a less biased indicator of epitope
plasticity, reflecting the general variability of the epitope across all persons, most of
whom do not have the CTL response studied here.

Finally, our methodology for defining epitope-specific TCRs depends on the capacity
of CTLs to proliferate in response to an epitope, which could be biased by varying
proliferative capacity or the use of a fixed epitope sequence, both factors that could
underestimate clonal breadth. Because all our subjects were persons with stable
controlled viremia off antiretroviral therapy, CTL functionality should have been rela-
tively intact and similar between individuals.

In conclusion, we observed inverse correlations between epitope variability and CTL
clonal stability over time and between epitope variability and CTL clonal breadth in
persons with chronic stable untreated HIV-1 infection and plasma viremia of �3,000
RNA copies/ml. These findings provide evidence for a bidirectional interaction of the
CTL response and HIV-1 sequence evolution where immunity lags virus sequence
evolution. This suggests the potential of coordinating the CTL response in vaccine or
immunotherapeutic approaches to block escape pathways in advance of viral evolu-
tion.

MATERIALS AND METHODS
Participants and peripheral blood mononuclear cells. The participants (Table 1) were persons with

chronic HIV-1 infection who were not receiving antiretroviral treatment during the study period. All the
participants were spontaneous “controllers” of infection with persistent maintenance of viremia at
�3,000 HIV-1 RNA copies/ml plasma during observation. MHC-I typing was performed by the clinical
immunogenetics laboratory at UCLA Medical Center. All participants provided informed consent under
a UCLA Institutional Review Board-approved protocol. PBMCs were isolated by Ficoll-Hypaque gradient
and viably cryopreserved until use.

Detection of HIV-1-specific CTL responses by IFN-� ELISpot assay. CTL responses were identified
by gamma interferon (IFN-�) enzyme-linked immunosorbent spot (ELISpot) assay using polyclonally
expanded CD8� T lymphocytes, as previously described (39–41). Screening was performed using
previously described minimal epitopes for the MHC-I types of the individuals (42).

Delineation of the HIV-1 epitope-specific CTL clonal repertoires. For confirmed CTL responses
against minimal epitopes, the clonal breadth of CTL clones recognizing selected HIV-1 epitopes was
assessed by a quantitative spectratyping assay as previously described (16). In brief, PBMCs were cultured
with the epitope to enrich the CTLs recognizing that epitope, with a parallel control cultured without the
epitope. CD8� T lymphocytes were then purified for TCR analysis of cDNA using real-time PCR for each
of 24 BV gene families. The relative concentration of each family was calculated as the ratio of its mean
number of copies to the median number of copies across all families (relative units). For each family,
capillary electrophoresis was performed on the real-time PCR product to resolve the size distributions of
TCRs, and the concentration of each size population within a family was calculated using its percent
contribution to the whole BV family. Epitope-specific TCRs were identified by comparing epitope-
stimulated to control unstimulated spectratype profiles for peaks expanded by more than 2 relative units
by epitope stimulation (an arbitrary cutoff based on control data showing that most nonspecific peak
variations with this method are �1 unit).

TCR repertoire analyses. Comparison of epitope-specific TCR similarities between time points
was performed using the abundance-based Sorensen Index (43): similarity � 2UV/U � V, where UV
represents the summed magnitudes of shared spectratype peak expansions between time points
and U and V represent the summed magnitudes of all expansions at each time point (thus, a value
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of 1 indicates all identical expansions of the same magnitudes, whereas a value of 0 indicates no
shared expansions).

Epitope sequence variability analyses. The variability of epitopes was assessed by calculating the
Simpson diversity (Ds) index (44) using the set of all clade B sequences (excluding unresolved amino acids
or deletions) returned by the QuickAlign tool at the Los Alamos National Laboratory HIV Sequence
Database (http://www.hiv.lanl.gov) for each epitope, and diversity was calculated as follows: Ds � 1 �
�i�1

c ni�ni � 1� ⁄ N�N � 1�, where, N is the total number of sequences included for the analysis, n is the
frequency of the ith epitope variant sequence, and c is the total number of epitope variants (thus, a value
of 1 indicates an infinite number of different sequences, whereas a value of 0 indicates that all sequences
are identical).

Statistical tests. For evaluation of correlations between two variables (Fig. 4 and 6), Spearman’s
rank test was utilized. For evaluation of differences between groups, the Mann-Whitney test was
utilized (Fig. 5).
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