
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
3-dimensional topological field theory and Harrison homology

Permalink
https://escholarship.org/uc/item/3f43m91x

Author
Cooper, Benjamin

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3f43m91x
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

3-Dimensional Topological Field Theory and Harrison Homology

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Benjamin Cooper

Committee in charge:

Professor Justin Roberts, Chair
Professor Benjamin Grinstein
Professor Ken Intriligator
Professor James Lin
Professor Daniel Rogalski

2009



Copyright

Benjamin Cooper, 2009

All rights reserved.



The dissertation of Benjamin Cooper is approved,

and it is acceptable in quality and form for publi-

cation on microfilm:

Chair

University of California, San Diego

2009

iii



DEDICATION

To my mother Yvonne who fought and overcame challenges to her

health during my time in graduate school, my father David for his

love and support, and to my brother Samuel for his persistent and

infectious enthusiasm.

iv



EPIGRAPH

“I am not the man from Nantucket!”

—A Man From Nantucket

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Field Theory With Simple Manifolds . . . . . . . . . . . . . . . . . . 3
1.4 Organization of Document . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Differential Graded Categories . . . . . . . . . . . . . . . . . . . . 8
2.1 Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Differential Graded Categories . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Modules Over Differential Graded Categories . . . . . . . . . . . . . . 11

3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Operadics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Operads and Cooperads . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Cyclic Operads . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Relation to Differential Graded Algebra . . . . . . . . . . . . . . . . . 26
4.3 Bar and Cobar Operators on Operads . . . . . . . . . . . . . . . . . . 31

5 Cobordism Categories . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 3-dimensional Cobordism Categories . . . . . . . . . . . . . . . . . . 39
5.2 Open, Closed and Open-Closed Subcategories . . . . . . . . . . . . . 41

vi



6 Homotopy Equivalence Groups . . . . . . . . . . . . . . . . . . . . 44
6.1 A Theorem of Hatcher Vogtmann and Wahl . . . . . . . . . . . . . . 46

6.1.1 Reduction of the Open Category . . . . . . . . . . . . . . . . 50
6.1.2 The Open-Closed Category as a Module . . . . . . . . . . . . 51

7 Triangulated spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Cellular Stratifications . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Open Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . 54

8 Outer Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.1 Open Outer Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Reduction To Spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Cellular Stratification by Cubes . . . . . . . . . . . . . . . . . . . . . 61
8.4 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.4.1 From Operads to Graph Complexes . . . . . . . . . . . . . . . 64
8.4.2 Cubical Chains Compute A Double Dual . . . . . . . . . . . . 65

8.5 Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 The Open Category . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10 Extension and Torus . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.1 The Boundary Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.2 The Complex Associated with Extension . . . . . . . . . . . . . . . . 75
10.3 Flatness and Exactness . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.4 Deligne’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.5 Harrison Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



ACKNOWLEDGEMENTS

Nothing would have been possible without the inspiring conversations and relent-

less optimism of my advisor Justin Roberts.

Other professors who influenced me, Nitu Kitchloo, Mark Gross, Nolan Wallach.

Others, John Franco, Jentai Ding, Allen Hatcher and Jim Conant. Other graduate

students with whom I have studied or otherwise mathematically interacted. Amanda

Beeson, Maia Avarett, David Clark, Yu Li, Michael Gurvich, Gregg Musiker, Oded

Yacobi, Tom Fleming, Kevin Costello, Jiri Lebl, Kevin McGown, Dan Budreau, Mike

Slawinski, and many others.

I would like to thank my family and friends for all of their patience and encour-

agement. My father and mother, David and Yvonne Cooper for taking up yoga. My

brother and sister-in-law Sam and Anne Cooper for making it official. Alan Calpe

and John Orth for demonstrating quiche. Ramon Osa teaching me how play the

violin with a beard. Shimon Rura for feigning intent for the kvetch and periodically

winning in Scrabble.

This work is heavily indebted to previous work by Maxim Kontsevich, Yan Soibel-

mann, Kevin Costello, Ezra Getzler, Mikhail Kapranov, Victor Ginzburg and Karen

Vogtmann, Allen Hatcher, Marc Culler, Nathalie Wahl, Jim Conant and many oth-

ers. I am grateful for the helpful correspondence with Nathalie Wahl.

viii



VITA

2003 B. S. in Mathematics magna cum laude, Cornell Univer-
sity

2003-2009 Graduate Teaching Assistant, University of California,
San Diego

2009 Ph. D. in Mathematics, University of California, San
Diego

ix



ABSTRACT OF THE DISSERTATION

3-Dimensional Topological Field Theory and Harrison Homology

by

Benjamin Cooper

Doctor of Philosophy in Mathematics

University of California San Diego, 2009

Professor Justin Roberts, Chair

In the following I show that each homotopy commutative algebra yields a certain kind

of 3-dimensional topological field theory in a functorial way and that this implies the

existence of an action of certain 3-manifold cobordisms on the Harrison homology of

the algebra.
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1 Introduction

1.1 Summary

Below I outline my work on Topological Field Theory (TFT) in three dimensions,

explaining how each homotopy commutative algebra (C∞ algebra) yields a certain

kind of 3-dimensional TFT in a functorial way, how this implies the existence of

an action of certain 3-manifold cobordisms on Harrison homology, and how this

development leads to new perspectives and a number of interesting questions and

conjectures.

1.2 Motivation

In a mathematical context Conformal Field Theory (CFT) is defined as a smooth

functor from a categoryM2, whose objects are parametrized 1-manifolds and whose

morphisms are Riemann surfaces with fixed boundary circles labelled by the objects,

to the category of Hilbert spaces [Seg04]. Inspired by the potential for interesting

global structure and the need for a framework in which to understand Gromov-

Witten theory a simplification of CFT, Topological Conformal Field Theory (TCFT),

was defined and explored independently by Segal and Getzler [Get94, Seg]. Since

HomM2(A,B) is a topological space, we can define a category C2 with the same

objects asM2 such that

HomC2(A,B) = C∗(HomM2(A,B); Q)

1
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where C∗(−; Q) is singular chains with rational coefficients. A TCFT is a differ-

ential graded functor from C2 to the category of chain complexes. Algebraically this

functor can be viewed as a C2-module, if C2 is thought of as an algebra with mul-

tiple objects. Topologically the reduction made by passing to chain complexes up

to quasi-isomorphism is a passage to a derived category or stable rational homotopy

category of spaces.

In what follows we will exchange the spaces HomM2(A,B) of conformal structures

on topological surfaces with the classifying spaces of mapping class groups,

BΓ(Σ, ∂) = Bπ0 Diff(Σ, ∂)

of the associated surfaces, because rationally they are the same. This is because

the space of conformal structures on a surface is contractible, the quotient by the

action of Diff(Σ) is a rational model for BDiff(Σ), and because the connected compo-

nents of Diff(Σ) are themselves contractible BΓ(Σ) ' BDiff(Σ). In low dimensions

then the categories can be thought of as purely of topological origin and so we will

just say Topological Field Theory or TFT instead of TCFT throughout.

An important recent theorem about TFT by Costello illustrates the relationship

between homotopy associative algebras (A∞ algebras1) and the moduli of Riemann

surfaces. It is an exciting addition to a story which has developed since Deligne

conjectured that the action of the homology of the little disks operad (associated

to the Gerstenhaber structure) on the Hochschild homology of a Frobenius algebra,

HH∗(A,A), comes from an action defined at the chain level. That is, an action

of chains on the little disks operad acting on a chain complex which computes the

Hochschild homology. Deligne’s conjecture was shown to be true if the little disks

operad is replaced with the framed little disks operad (see [MSS02]), but thinking of

framed little disks as genus 0 Riemann surfaces leads to a more general theorem of

which it is only one consequence [KS]. The following is Kevin Costello’s statement

[Cos07]:

1Ordinary associative algebras are examples of A∞.
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Theorem 1. The category of A∞ algebras with a choice of inner product is equivalent

to the category of modules over the category O2 of chains on Riemann surfaces with

open boundary (intervals).

Theorem 2. There exists a differential graded category OC2 of Riemann surfaces

with open boundary and closed boundary (intervals and circles). Such that

1. j : O2 ↪→ OC2 is a subcategory.

2. i : C2 ↪→ OC2 is a subcategory.

And the following statements are true,

1. OC2 is free as an OC2 −O2 bimodule

2. For any A∞ algebra M ,

H∗(i
∗(j∗(M))(S1)) ∼= H∗(i

∗(OC2 ⊗O2 M)(S1)) ∼= HH∗(M,M)

That is, a complex which computes Hochschild homology is associated to the

circle object of the category OC2 by extension of coefficients.

Corollary 1. For any A∞ algebra M with inner product the Hochschild homology

HH∗(M,M) is acted on by the homology of the cobordism category H∗(C2).

The development and the success of TFT in mathematics leads one to ask.

Problem. What happens in three dimensions?

1.3 Field Theory With Simple Manifolds

In this thesis I work with relatively simple kinds of 3-manifolds; Those which

come from connected sums and punctures of S1×S2. While this may at first appear

to be a limitation which will only allow for uninteresting results, we will see in the
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results to follow that the structure of the differential graded cobordism category has

a rich structure that can be leveraged to prove interesting theorems.

When working on a new theory it is natural to ask whether there are any struc-

tural similarities to the known theory. Costello’s structure theorem outlined above

states that the operad A∞ plays a central role in 2-dimensions. My results suggest

that in 3-dimensions the C∞ operad acts in its place.

Theorem 3. The category of C∞ algebras with a choice of inner product is equivalent

to the category of modules over the category O of chains on the 3-manifolds below

with boundary S2.

The objects of the category O are disjoint unions of labelled 2-spheres and

HomO(−,−) = (
∐
g≥0

C∗(Bπ0 Diff(#g(S1 × S2)#i+jD3, ∂); Q)

The composition in this category is induced from gluing along boundary spheres.

The spaces above first appear in the work of Hatcher and Vogtmann on homological

stability [HV04]. For applications of this theorem to the literature see the next

section.

There is a different category, C, defined by using tori in place of spheres in the

definition of O. Using this we can state an analogue of the second theorem above.

Theorem 4. There exists a differential graded category OC of 3-manifolds with

boundary S2 and T 2. Such that

1. j : O ↪→ OC is a subcategory.

2. i : C ↪→ OC is a subcategory.

And the following statements are true,

1. OC is free as an OC −O bimodule
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2. For any C∞ algebra M ,

H∗(i
∗(j∗(M))(T 2)) ∼= H∗(i

∗(OC ⊗O M)(T 2)) ∼= Harr∗(M,M)

Thus a complex that computes Harrison homology is associated to the torus

object of the category OC upon extension of coefficients.

In order to construct OC we poke toroidal holes in O. The objects of OC are

pairs, (X,Y ), in which the X are labelled 2-spheres and the Y are labelled 2-tori.

The morphisms are defined by,

HomOC(−,−) =
∐
g≥0

C∗(Bπ0 Diff(#g(S1 × S2)#i+jD3#n+m(S1 ×D2), ∂); Q)

The composition in this category is induced from the gluing of manifolds. The

spaces above are used to stabilize mapping class groups of 3-manifolds in the recent

work of Hatcher and Wahl [HW05].

The corollary then follows.

Corollary 2. For any C∞ algebra M with inner product the Chevalley-Eilenberg

homology Harr∗(M,M) is acted on by the homology of the cobordism category H∗(C).

1.4 Organization of Document

The thesis is split into ten sections including the introduction. What follows is a

brief description of the contents of the material contained in each section.

Differential Graded Categories

We begin with the basic definitions developed by Keller, Getzler, Costello and

others [Kel94, Cos07]. This is the language of differential graded categories, their

representations and homotopy theory. All of the objects in this paper will be ei-

ther differential graded categories (cobordism categories) or modules over differential

graded categories (topological field theories).
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Graphs

Graphs will be essential in everything that comes after this section. Basic defini-

tions are given and common terminology articulated. The definitions are in common

use throughout literature see Ch.8 [Igu02].

Operadics

The definition of operad and its many variations variations of definitions of oper-

ads developed by many authors are recalled. The operads essential to this paper are

then defined in terms of trees and their compositions using the free operad. Operads

and their algebras are then shown to be equivalent to functorially defined differential

graded categories and their modules. Finally we review the Cobar and Bar functors

on cyclic operads and cooperads.

Cobordism Categories

The differential graded cobordism categories of open, closed and open-closed

cobordisms will be rigorously defined in terms of the cobordism category and map-

ping class groups of 3-manifolds.

Homotopy Equivalence Groups

This section contains the definition of a family of groups of self-homotopy equiva-

lences of graphs and the relation to the mapping class groups defined in the previous

section as found in the work of Hatcher, Vogtmann and Wahl.

Triangulated Spaces

We review the basic definitions of spaces, open simplicial complexes, simplicial

complexes and orbi-cellular stratifications used in the next section.
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Outer Spaces

The moduli space of graphs satisfying a particular homotopy type is shown to

be a rational classifying space for groups of homotopy equivalences of graphs and

thus for the mapping class groups used in the construction of the open, closed and

open-closed categories. These moduli spaces are then simplified and stratified by

orbi-cells given by graphs paired with contractible subgraphs called forests.

The Open Category

For the theorems outlined above to be true the composition of the open category

defined by classifying spaces of mapping class groups of cobordisms must be reducible

to a composition which is orbi-cellular. This is proven here. The equivalence between

C∞ algebras with invariant inner product and open topological field theories then

follows from this and the reduction of the previous section.

Extension and Torus

Finally we show that the open closed category is quasi-isomorphic as a module to

a flat module over O. Given a C∞ algebra A together with invariant inner product

and thus a homologically split functor M : O → Chk or open topological field

theory, it is shown that the extension OC ⊗O M defines an open closed topological

field theory. After a short discussion of the definition of Harrison homology. It is

then shown that the chain complex associated to the torus object, (OC ⊗O M)(T 2)

by this theory computes the Harrison homology Harr∗(A,A).



2 Differential Graded Categories

The underlying field k = Q in all constructions will be fixed to be the rational

numbers. We denote by Top the category of topological spaces, by Orbi the category

of orbifolds, by Group the category of groups, by Vectk the category of vector spaces

over k and by Chk the category of chain complexes of vector spaces over k.

2.1 Monoidal Categories

A category C is symmetric monoidal if it is equipped with a bifunctor

−⊗− : C × C → C

an object 1 and isomorphisms,

1. (a⊗ b)⊗ c ∼= a⊗ (b⊗ c)

2. 1⊗ a ∼= a ∼= a⊗ 1

3. a⊗ b ∼= b⊗ a

satisfying various coherence conditions see [ML98]. Note that the commutativity

isomorphisms are not necessarily identity. There are monoidal structures on Top,

Group, Vectk and Chk given by disjoint union, product and tensor product in the

usual way.

A monoidal functor F : C → D between symmetric monoidal categories equipped

with maps, not necessarily isomorphisms, F (a)⊗ F (b)→ F (a⊗ b) that satisfy,

8
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1. Associativity,

F (a)⊗ F (a′)⊗ F (a′′) - F (a⊗ a′)⊗ F (a′′)

F (a)⊗ F (a′ ⊗ a′′)
?

- F (a⊗ a′ ⊗ a′′)
?

2. Commutativity,

F (a)⊗ F (a′) - F (a⊗ a′)

F (a′)⊗ F (a)
?

- F (a′ ⊗ a)
?

Every symmetric monoidal category C has a subcategory Ob(C) with the same

objects and morphisms generated by identity maps, permutations of tensors a⊗a′ ∼=
a′ ⊗ a and their tensor products.

2.2 Differential Graded Categories

All of the categories in this paper will have extra structure in a sense that can

be captured by the idea of enrichment. A category C is enriched over a category D
if for all objects X, Y ∈ Ob(C),

HomC(X,Y ) ∈ Ob(D)

For instance, the sets HomTop(X, Y ) may be endowed with the compact open

topology showing that Top is enriched over Top. Such a category will be called

topological. A linear category is a category enriched over Vectk. Chk is a linear

category.

A differential graded or dg category is a category enriched over Chk. A differ-

ential graded symmetric monoidal or dgsm category is a monoidal category which is
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differential graded. Most of the categories in this paper will be dgsm categories. The

category Chk is an example of a dgsm category; the morphisms being chain maps

form chain complexes.

Enrichments of categories can be transferred by functors. If X/D is the category

whose objects are categories C enriched over D: a morphism is functor F : C/D →
B/D that satisfies,

F : HomC(a, b)→ HomB(F (a), F (b)) ∈ HomD(HomC(a, b),HomB(F (a), F (b)))

Any monoidal functor F : D → E defines the pushforward, a functor F∗ : X/D →
X/E such that HomF∗(C)(x, y) = F (HomC(x, y)).

For example the functor B : Group→ Top given by taking the geometric realiza-

tion of a simplicial complex (or set) called the nerve of a group. The functor B sat-

isfies B(G×H) = BG×BH so it is monoidal. It induces B∗ : X/Group→ X/Top.

See [Seg68].

The most important example is C∗(−; k), the singular chains on X. It induces a

functor X/Top→ X/Chk that is if C is a topological category then there is a dgsm

category C∗(C; k) in which,

Ob(C∗(C; k)) = Ob(C)

HomC∗(C;k)(A,B) = C∗(HomD(A,B); k)

That the functor C∗ is monoidal up to quasi-isomorphism follows from the Eilenberg-

Zilber theorem; see [EZ53].

In the same spirit given a dgsm category D, there is a linear category H∗(D; k)

defined by Ob(H∗(D; k)) = Ob(D) and HomH∗(D;k)(A,B) = H∗(HomD(A,B); k).

There is also a category H0(D); if C is a topological category and D = C∗(C) then

H0(D) is the category of connected components of C.
The category of dgsm categories is the subcategory of the category C/Chk of

categories enriched over Chk which possess a monoidal structure and have monoidal
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morphisms as described in 2.1. Specifically, a morphism of dgsm categories F : A →
B is a functor of categories enriched over Chk, a monoidal functor which respects the

differential graded structure as described above.

Categories enriched over Chk have extra structure that can be used to define

a homotopy theoretic notation of equivalence. Every such category C contains a

subcategory Q(C) with the same objects as C and morphisms HomQ(C)(a, b) called

quasi-isomorphisms. An element ϕ : a → b ∈ HomQ(C)(a, b) is a quasi-isomorphism

if for all objects c ∈ Ob(C) the morphism

ϕ̄ : Hom(c, a)→ Hom(c, b)

induces an isomorphism on homology,

ϕ̄∗ : H∗(Hom(c, a); k)→ H∗(Hom(c, b); k)

The composition of two quasi-isomorphisms is a quasi-isomorphism and as defined

HomQ(C)(a, b) includes any isomorphisms a→ b in C (such as 1 : a→ a) so that Q(C)
is a subcategory of C.

A dgsm functor F : C → D is exact if it preserves the class Q(C) of quasi-

isomorphisms, F (Q(C)) ⊂ Q(D). In words, for every quasi-isomorphism ϕ : a → b

in C we have a quasi-isomorphism F (ϕ) : F (a)→ F (b) in D.

Two functors F,G : C → D are quasi-isomorphic, F ' G, if there are natural

transformations ϕ : F → G such that ϕ(c) is a quasi-isomorphism for all c ∈ Ob(C).
Two dgsm categories C and D are isomorphic or quasi-equivalent, C ∼= D if there

are dgsm functors F : C → D and G : D → C such that FG ' 1D and GF ' 1C.

2.3 Modules Over Differential Graded Categories

If A is a dgsm category then a left A-module is a dgsm functor A → Chk. A

right A-module is a dgsm functor Aop → Chk.

As functors modules must respect the differential graded structure,
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HomA(a, b) - HomB(F (a), F (b))

HomA(a, b)

d

?
- HomB(F (a), F (b))

d

?

Morphisms between modules M and N are natural transformations φ : M → N

of the underlying functors that satisfy,

1. All φ(a) ∈ HomB(M(a), N(a)) are chain maps.

2. φ respects the monoidal structure,

M(a)⊗M(a′) - N(a)⊗N(a′)

M(a⊗ a′)
?

- N(a⊗ a′)
?

The category of left (right) modules over A will be denoted by A-mod (mod-A).

This is not a differential graded category.

For a functor to be monoidal we only require the existence of a map

F (a)⊗ F (b)→ F (a⊗ b)

satisfying the axioms described in section 2.1. It is often the case that these

structure maps satisfy stronger conditions. A module is split if the monoidal struc-

ture maps F (a) ⊗ F (b) → F (a ⊗ b) are isomorphisms and h-split or homologically

split if they are quasi-isomorphisms.

If two categories are isomorphic then the pullback maps induced by the isomor-

phisms between categories of modules will compose to identity.

Theorem 5. If C and D are dgsm categories then C ∼= D ⇒ C -mod ∼= D -mod.

The usual product of categories extends to one which respects the dgsm structure.

If A and B are categories then there is a category A⊗ B defined by
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Ob(A⊗ B) = Ob(A)×Ob(B)

HomA⊗B(a× c, b× d) = HomA(a, c)⊗k HomB(b, d)

If A,B are differential graded then A ⊗ B is differential graded using the usual

tensor product of chain complexes. If A,B are monoidal then A ⊗ B is monoidal

using (a× c)⊗ (b× d) = (a⊗ b)× (c⊗ d).
If A and B are dgsm categories then an B −A bimodule is a dgsm functor from

the category B⊗Aop to Chk. If M is a B−A bimodule and N is a left A -mod then

there exists a left B -mod, M ⊗A N , defined so that for b ∈ Ob(B),

(M ⊗A N)(b) = ⊕a∈Ob(A)M(b, a)⊗k N(a)

modulo relations which allow the diagram below to commute.

M(b, a)⊗k HomA(a′, a)⊗k N(a′) - M(b, a)⊗k N(a)

M(b, a′)⊗k N(a′)
?

- (M ⊗A N)(b)
?

Every dgsm category C yields a C − C bimodule, C ⊗ Cop → Chk given by

C(x× y) = HomC(y, x)

If X ,Y ⊂ C are subcategories then the action of C ⊗ Cop on C pulls back to an

action of X ⊗ Yop.

A module M is flat if the functor −⊗M is exact. Since most of the constructions

to follow will involve considering dgsm categories and their modules up to quasi-

isomorphism, strictly speaking, we should be working in a derived category. As such

the tensor product M ⊗N of a B−A bimodule M and a left A-module N as above

should be defined by M ⊗L
A N = M ⊗A F.N where F.N is an acyclic resolution of

N . This can be done so that the tensor product exists and satisfies the appropriate

universal properties [Cos07].



3 Graphs

By a graph G we mean a finite set G with two partitions.

1. Into pairs e = {a, b} called edges.

G =
∐

e

{a, b}

2. Into sets H(v) = {h1, h2, . . . , hn} called vertices.

G =
∐

v

H(v)

Denote the set of vertices of G by V (G) and the set of edges of G by E(G). A

graph in the sense above can be specified by giving a collection of vertices, edges and

specifying the vertices to be found at each end of each edge.

The elements of G will be called half edges. Two half edges a, b ∈ G meet if

a, b ∈ H(v) for some vertex v. Given an edge e ∈ E(G) the set e = {x, y} is the set

of half edges associated to e in G and for every vertex v ∈ V (G) the set H(v) is the

set of half edges associated to v in G. The valence val(v) of v ∈ V (G) is the number

of half edges #H(v). All graphs G in this document are required to have vertices v

of valence val(v) = 1 or val(v) ≥ 3 unless otherwise noted.

A subgraph H of G is the set of all vertices of G together with some subset of the

set of edges of G. A cycle of G based at a half edge h ∈ H(v) is a subgraph Cv ⊂ G,

is an ordered sequence of edges Cv = (e1, e2, . . . , en), ek ∈ E(G) that form a cycle

which starts at v, e1 = {h, x1}, e2 = {x1, x2}, . . . , en−1 = {xn−2, xn−1}, en = {xn, h}.

14
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The boundary ∂(G) of a graph G is the collection of edges that contain a vertex

having valence one. An internal edge is an edge not in the boundary while an external

edge is not internal.

Let [n] be the set {1, . . . , n}. A graph G is boundary labelled if there is a choice of

partition ∂(G) = In(G)∪Out(G) of the boundary into a set of incoming and outgoing

edges together with bijections iG : [# In(G)] → In(G) and oG : [# Out(G)] →
Out(G).

A geometric graph is a 1-dimensional CW complex. Every graph G in the sense

given above has an associated geometric graph |G| such that

1. The 0-skeleton |G|0 = V (G).

2. There is a 1-cell of |G| for each edge e ∈ E(G) and its boundary is glued to

the two vertices containing the half edges e = {a, b} of e.

We may refer to graphs a combinatorial as opposed to geometric graphs if it is

necessary to draw a distinction between the two.

A graph G is connected if H0(|G|) ∼= Z. A graph G has genus g if H1(|G|) ∼= Zg.

A forest is a graph of genus 0. A tree is a connected forest. A rooted tree is a

tree together with a choice of outgoing edge the rest of the boundary edges being

incoming. A tree with a single vertex will be called a corolla. An n-Tree is a tree

with n incoming edges.

A tree T is planar if for all v ∈ V (T ) there is a fixed ordering of H(v) this is

equivalent to specifying an immersion of the tree in the plane up to isotopy.

Given an edge e ∈ E(G), e = {x, y} we can form a new graph G/e by removing

e and replacing H(x) and H(y) with H(x) ∪ H(y) − {x, y}. This operation called

edge collapse is a homotopy equivalence of |G| if x and y are not contained in the

same H(v). If F is a subgraph of G isomorphic to a forest then all of its edges can

be collapsed forming a graph G/F called the forest collapse.

Two graphs G and H are isomorphic if there is a bijective set map between half

edges ϕ : H → G that respects the two partitions. Specifically, if e = {a, b} is an
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edge in H then ϕ{a, b} = {ϕ(a), ϕ(b)} is an edge in G and if v = {h1, . . . , hn} is a

vertex in H then ϕ(v) is a vertex in G.



4 Operadics

One can think of operads as an axiomatization of basic operations on spaces or

linearizations of spaces. Formally this is reducible to the more standard approach

of algebras and their representations (or actions and modules). But operads also

provide a powerful well-developed framework for discussing the case in which the

algebras are parametrized by trees. We will use the language from this perspective

and make explicit its relation to the differential graded algebra developed in Chapter

2 in 4.3.

4.1 Operads

This section has two parts. We first define operads and their duals (axiomatically

opposite objects) cooperads from the perspective of rooted trees. In the second half

we discuss the extension of these ideas to unrooted trees in this case the objects are

called cyclic operads and cyclic cooperads.

4.1.1 Operads and Cooperads

Basic Definitions

A differential graded (dg-) operad O is a collection of objects {O(n)}∞n=0 in Chk

with,

1. A composition,

γ : O(k)⊗O(n1)⊗ · · · ⊗ O(nk)→ O(n1 + · · ·+ nk)

17
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x x xk n1 nk

k

n1 nk

2. An action of the symmetric group Σn on O(n).

3. A unit 1 ∈ O(1).

These satisfy axioms,

1. The composition is associative. Using the vector notation,

O(n̂m) = O(n1)⊗ · · · ⊗ O(nm)

We have,

O(m)⊗O(n̂m)⊗O(k̂1
n1

)⊗ · · · ⊗ O(k̂nm
nm

) - O(
m∑

i=1

ni)⊗O(k̂1
n1

)⊗ · · ·

O(m)⊗O(
∑

j

k1
j )⊗ · · · ⊗ O(

∑
j

knm
j )

?

- O
(∑

i,j

ki
j

)?

2. Using Σm × Σn1 × · · · × Σnm → Σn1+···nm ,

(σ, τ1, . . . , τn) 7→ (τσ(1), . . . , τσ(n))

The composition O(k)⊗O(a1)⊗ · · ·⊗O(ak)→ O(a1 + · · ·+ ak) is equivariant

with respect to the action of Σm×Σn1×· · ·×Σnm on O(k)⊗O(a1)⊗· · ·⊗O(ak)

and Σn1+···nm on O(a1 + · · ·+ ak).
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3. The unit is a unit behaves like a unit.

In all of the cases to follow O(1) = k. Good references for detailed information

regarding operads are [May97, MSS02, Vor05].

There is a dual notion, cooperads P are given by a family of Σn modules {P(n)}
together with (co)compositions,

γ : P(
k∑

j=1

nj)→ P(k)⊗ P(n1)⊗ · · · ⊗ P(nk)

Which satisfy the opposite operad axioms or those obtained by reversing the

arrows of all of the above in direct analogy with the relationship between algebras

and coalgebras.

Given a chain complex X define the endomorphism operad, EX , by

EX(n) = HomChk
(X⊗n, X)

This is an operad with f ∈ EX(n), gi ∈ EX(mi),

γ(f, g1, . . . , gn) = f(g1, . . . , gn)

The action of Σn is given by permuting the arguments of f ∈ EX(n). A morphism

ϕ : O → O′ of operads is given by a collection {ϕn} of chain maps

ϕn ∈ HomC(O(n),O′(n))

That satisfy,

1. The ϕn commute with operadic composition,

O(m)⊗O(n1)⊗ · · · ⊗ O(nm) - O
( m∑

i=1

ni

)

O′(m)⊗O′(n1)⊗ · · · ⊗ O′(nm)

ϕm ⊗ ϕn1 · · · ⊗ ϕnm

?
- O′

( m∑
i=1

ni

)
ϕP

i ni

?
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2. The ϕn are morphisms of Σn modules.

3. ϕ takes units to units.

There is a natural notion of quasi-isomorphism between differential graded oper-

ads. Two operads O1,O2 are quasi-isomorphic if there is a morphism ϕ : O1 → O2,

ϕ = {ϕn} such that the induced maps on homology (ϕn)∗ are isomorphisms for all

n.

(ϕn)∗ : H∗(O1(n); k)→ H∗(O2(n); k)

A chain complex X is an algebra over an operad O if there is a morphism of

operads O → EX . If we view the object O(n) as a space of n-fold operations then

an algebra structure on X means maps,

O(n)⊗X⊗n → X

Every dg cooperad P gives rise to a dg operad O and vice versa by taking the

linear dual. P(n) 7→ O(n) where

O(n)i = P(n)∗i

Free Operads

Operads can and usually should be described by trees because O(n) is to be

thought of as a moduli space parameterizing some collection of n-fold operations.

Finite dimensional dg operad operations are always, though not uniquely, represented

by families of trees modulo relations.

Given an operad O an ideal I ⊂ O is a collection of Σn equivariant subspaces

I(n) ⊂ O(n) for each n. If γ is the operad composition map then I satisfies,

a ∈ I ⇒ γ(. . . , a, . . .) ∈ I
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If I ⊂ O is an ideal define the quotient operad O/I to be {O(n)/I(n)} for n ≥ 1

with structure maps induced from O.

If we let GrSet be the category of graded sets {S(n)}∞n=1 and set maps that

preserve the grading n. There is a forgetful functor Forget : Operad → GrSet that

takes any operad O = {O(n)} in Vectk to a collection of sets O(n) in GrSet. The

free operad on {S(n)}, Free({S(n)}) is adjoint to the forgetful functor,

HomOperad(Free({S(n)},P) = HomGrSet({S(n)},Forget(P))

Given a graded collection of sets {S(n)} for n ≥ 1 the free operad is given

explicitly by,

Free(S)(n) =
⊕

n−Tree T

k · HomV (V (T ), S)

which is the sum over all rooted planar trees with [n]-labelled leaves assigning to

each vertex v an element of S(m) if m is the valence val(v).

a

c

a b

0 1 2 3 4 5

An element of Free(S)(5) if S(2) = {a, b} and S(3) = {c}

The composition of trees is given by grafting boundary edges. The symmetric

group Σn acts on the [n]-labelling and there is a trivial tree consisting of a vertex

which acts as identity.
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Essential Operads

The key examples of operads to follow are now defined using the material of the

previous section. Let S(2) be a set with one element and #S(n) = 0 if n 6= 2. If R

be the ideal of Free({S(n)}) generated by the Σn orbits of the following relations,

1 2 12

=

1 2 1 2

=

3 3

From the first we obtain the commutative (C) and from the second the associative

(A) operads. The Jacobi (IHX) and anti-symmetry relations,

1 2 12

=

3 3 1 23

+

1 2

=

2 1

-

give the Lie operad. An algebra over C is an associative commutative algebra,

over A is an associative algebra and an algebra over L is a Lie algebra.

In what follows we will need operations on chain complexes generated by dif-

ferential graded operads. The most important examples of these operads are the

homotopy versions of the operads above.

If S(n) = {mn} for n ≥ 1 then,

A∞ = Free({S(n)})

Where the degree of the corolla labelled by mn is set in n − 2. We specify the

boundary as follows,
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∂mn(1, . . . , n) =
∑

i+j=n+1
i,j≥2

n−j∑
s=0

(−1)j+s(j+1)mi(1, . . . ,mj(s+h+1, . . . , s+h+j+1), . . . , n)

This can be visualized as a signed sum over all ways to compose two generators

of lower order. It is the cellular boundary of a Stasheff associahedron Kn [MSS02].

If we view A as an operad of chain complexes situated in degree 0 then there is

a morphism of operads α : A∞ → A, given by α(m2) = m2 and α(mj) = 0 if j 6= 2

which is a quasi-equivalence. Every operad has an associated homotopy version which

can be determined by building minimal model for the operad in question [Mar04].

The L∞ operad is the free operad on antisymmetric corolla. If S(n) = {ln} for

n ≥ 1 then,

L∞ = Free({S(n)})/I

Where the degree of ln is n−2 and I = {ln(. . . , i, i+1, . . .) = −ln(. . . , i+1, i, . . .)}
is the antisymmetry relation.

A (p, q) shuffle σ ∈ Sh(p, q) is a permutation σ ∈ Σp+q which satisfies,

σ(1) < σ(2) < . . . < σ(p) σ(p+ 1) < σ(p+ 2) < . . . < σ(p+ q)

We specify the boundary as follows,

∂ln(1, . . . , n) =
∑

i+j=n+1
i,j≥2

∑
σ∈Sh(i,j)

sgn(σ)(−1)j(i−1)li(lj(σ(1), . . . , σ(j)), σ(j+1), . . . , σ(n))

If g is a semi-simple Lie algebra, setting ∂ = 0, l2 = [−,−] and ln = 0 for all

n ≥ 2 an example of an L∞ algebra. The Quillen algebra associated to a manifold,

π∗(X)⊗Q is an L∞ algebra with bracket the Whitehead product and higher products

related to higher Whitehead products.

The homotopy commutative associative or C∞ operad is given by a quotient of

the A∞ operad by relations generated by shuffles.
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If we denote by mn(1, . . . , n) the corolla mn labelled by [n] then we add the

relations,

∑
σ∈Sh(i,n−i)

sgn(σ)mn(σ(1), . . . , σ(n))

for all 1 < i < n where sgn(σ) is the sign of a permutation. For instance when

k = 2 the relation becomes,

0 = m2(a, a
′)−m2(a

′, a)

The operad C∞ is the kernel of the natural map A∞ → L∞ obtained by extending

the map ϕ : A→ L defined by [a, b] = ab− ba to the map,

ln(1, 2, . . . , n) =
∑
σ∈Σn

sgn(σ)mn(σ(1), . . . , σ(n))

The operads introduced above fit together into an exact sequence,

0→ C∞ → A∞ → L∞ → 0

Given a manifold the differential commutative algebra given by the de Rham

complex Ω∗(M) is an example of a C∞ algebra with trivial mn for n ≥ 3.

4.1.2 Cyclic Operads

Cyclic operads are to unrooted trees what operads are to rooted trees. A differ-

ential graded cyclic operad O is a dg-operad O as above together with an extension

of the action of Σn on O(n) to an action of Σn+1 on O(n). This must satisfy the

condition that if τn+1 ∈ Σn+1 is the cycle (0, 1, 2, . . . , n) then,

τm+n−1(p(1, . . . , 1, q)) = (−1)|p||q|(τnq)(τm(p), 1, . . . , 1)

Pictorially this means we can turn operadic operations about in the plane,
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p

q

p

q p

q

The definition of free operad found in 4.1.1 extends to use labelled n trees which

are not rooted so that the extension of the Σn action is given by permuting all

boundary edges. In the same manner all important examples of operads described in

terms of trees have straightforward interpretations as cyclic operads. The extension

of the Σn action for the free operad is compatible with the relations used to define

the commutative, associative and Lie operads.

There is an analogue of the endomorphism operad EX in the context of cyclic

operads. Given a chain complex X choose a non-degenerate inner product 〈−,−〉
on X and use this to identify Hom(X⊗n, X) with Hom(X⊗(n+1), k). The symmetric

group Σn+1 then acts by permuting the tensors of X⊗(n+1).

If O is a cyclic operad and X is an algebra over the underlying operad then an

inner product

〈−,−〉 : X ⊗X → k

is invariant if the maps 〈−〉n : O(n)⊗X⊗(n+1) → k given by,

〈p⊗ x0 ⊗ · · · ⊗ xn〉n = (−1)|x0||p|〈x0, p(x1 ⊗ · · · ⊗ xn)〉

are invariant under the diagonal action of Σn+1 on O(n)⊗A⊗(n+1). For example

in the case of L above the inner product 〈−,−〉 is invariant if 〈[a, b], c〉 = 〈a, [b, c]〉
assuming the elements a, b, c are in degree 0. For C∞ and A∞ algebras,

〈mn(x0, . . . ,mn−1), xn〉 = (−1)(n+1)|x0|
Pn−1

i=1 |xi|〈mn(x1, . . . ,mn), x0〉
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A morphism of cyclic operads is the same as a morphism of the underlying operads

whose Σn module maps respect the extension to Σn+1. There is an analogous notion

of quasi-isomorphism of differential graded cyclic operads. An algebra X over a cyclic

operad O is an algebra over O together with a choice of invariant inner product.

For more information concerning cyclic operads and the analogous notion for

cyclic cooperads see [GK95, MSS02].

4.2 Relation to Differential Graded Algebra

As previously mentioned the language of differential graded operads is contained

in the language of differential graded categories and their representations or modules.

We would like then to define a dgsm category O[ so that the category of h-split O[

modules is quasi-equivalent to the category of O algebras. This could be considered

the dgsm “enveloping category” for the operad O.

Given an operad O in Chk with generators {S(n)} and relations R as in 4.1. We

can define a dgsm category O[ generated by one object X and morphisms generated

by the symbols,

s ∈ HomO[(X⊗n, X) for all s ∈ S(n)

subject to the relations of R and possessing a differential structure the same as

that of O.

An element of HomO[(X⊗11, X⊗2)
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By construction the category O[ includes factorization isomorphisms,

θn,m = HomO[(X⊗n, X⊗m) ∼=
m⊗

i=1

HomO[(X⊗ni , X) such that
∑

i

ni = n

This construction is functorial. Any morphism ϕ : O1 → O2 of dg operads

induces a functor ϕ[ : O[
1 → O[

2. Given ϕ : O1 → O2 we have ϕ = {ϕn} that is chain

maps ϕn : O1(n) → O2(n) so define ϕ[(X) = X and given c ∈ HomO1(X
⊗n, X),

ϕ[(c) = ϕn(c). Our ϕ[ then uniquely extends to a functor via θn,m.

Since different presentations yield isomorphic operads our construction is observ-

ably independent of presentation.

Observation. The quasi-equivalence class of O[ as a differential graded symmetric

monoidal category in the category of differential graded symmetric monoidal cate-

gories is independent of the choice of presentation.

It then follows from the observation together with Theorem 1 in Chapter 2 that

the category of h-split modules of O[ is a well defined notion.

Lemma 1. The category of O-algebras is equivalent to the category of split left O[-

modules.

Proof. Any functor F : O[ → Chk identifies the object X with a chain complex F (X)

and by split monoidality identifies the objectX⊗m with F (X)⊗m. Consider the action

of O[ on F (X). Using θn,m, ϕ = ϕ1 ⊗ · · · ⊗ ϕm such that ϕi ∈ HomO[(X⊗ni , X) and∑m
i=1 ni = n. Each ϕi is also an element of O(ni) and this identification,

HomO[(X⊗n, X)⊗ F (X)⊗n - F (X)

O(n)⊗X⊗n
?

- X
?

commutes with the composition in the category O[ and the operadic composition

O respectively.
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Later in the paper a certain category of topological field theories will be shown

to be quasi-equivalent to the category of h-split left O[ modules. In order to use the

above theorem we require,

Lemma 2. There is an equivalence of categories between the category of h-split left

O[-modules and the category of split left O[-modules.

Proof. The equivalence will come form a functor η from h-split to split modules. If

F is an h-split O[-module define a split module η(F ) by,

η(F )(X⊗n) = F (X)⊗n

Note that since F is h-split there are quasi-isomorphisms

ϕXj : η(F )(X⊗j)→ F (X⊗j)

By definition η(F ) is split we need to show that it can be extended to a functor.

Each mj ∈ O(j) induces a map,

(mj)∗ : F (X)⊗j → F (X)

These are natural with respect to the ϕXj and given any f ∈ HomO[(X⊗m, X⊗n)

using θn,m isomorphisms f = θ−1
n,m(mn1 ⊗ · · · ⊗ mnk

). So the action of O can be

extended to an action of O[ giving a unique split O[ module η(F ) quasi-equivalent

to the h-split O[ module F via {ϕ}.

In order to reduce some rather complicated complexes to simpler ones later we

will need,

Lemma 3. If O1 and O2 are quasi-isomorphic operads then the enveloping categories

O[
1 and O[

2 are quasi-equivalent.

O[
1
∼= O[

2
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Proof. If ϕ : O1 → O2, ϕ = {ϕn} is a quasi-isomorphism then ϕ induces a quasi-

isomorphism in the sense previously considered between the dgsm categories since

the induced maps on chain complexes of morphisms,

HomO[
1
(X⊗n, X⊗m)

ϕ∗ - HomO[
2
(X⊗n, X⊗m)

⊕
i

HomO[
1
(X⊗ni , X)

?
ϕn1 ⊗ · · · ⊗ ϕnk-

⊕
i

HomO[
2
(X⊗ni , X)

?

⊕
i

O[
1(ni)

∼=
?

ϕn1 ⊗ · · · ⊗ ϕnk -
⊕

i

O[
2(ni)

∼=
?

induce isomorphisms on homology.

It follows from Theorem 1 of Chapter 2 that the categories of modules of quasi-

equivalent operads are quasi-equivalent.

Constructions For Cyclic Operads

Cyclic operads O in Chk given by generators {S(n)} and relations R as above

also yield dgsm categories O[ with one object X and morphisms generated by the

symbols,

s ∈ HomO[(X⊗n, X) for all s ∈ S(n)

together with cap and cup morphisms corresponding to an invariant inner product

and its dual,

〈−,−〉 ∈ HomO[(X ⊗X, k) and 〈−,−〉∗ ∈ HomO[(k,X ⊗X)

Or pictorially,
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subject to the relations generated by R and relations involving the caps and cups.

=

and possessing a differential structure the same as that of O. Notice that the ad-

dition of a cap and a cup gives us much larger morphism spaces. HomO[(X⊗n, X⊗m)

is now the space of graphs labelled by the generators in S.

Theorem 6. The category of O algebras with invariant inner product is equivalent

to the category of split left O[-modules.

The proof of this is essentially the same as the one for operads the inner product

and its dual satisfy the graphical relations above. (If the operad O is the cobar

construction on a differential graded cooperad P then the morphisms of the category

O[ are those of the Feynmann transformation or graph complex G(P∗) – see later).

It follows from the theorem that,

Observation. If O1 and O2 are isomorphic operads then the category of modules

over enveloping categories O[
1 and O[

2 are isomorphic,

O[
1 -mod ∼= O[

2 -mod
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4.3 Bar and Cobar Operators on Operads

Following Kontsevich’s seminal work [Kon94], Ginzburg and Kapranov developed

a duality theory for operads [GK94, Gin]. This was later extended to cyclic operads

by Getzler and Kapranov and reduced to a generalization of the Bar and Cobar

construction for algebras first defined by Eilenberg and MacLane by Getzler and

Jones [GK95, GJ]. As above we wont give a complete exposition of their theory, but

only mention what is necessary for later. The reader is warned that the functors Bar

and Cobar are formulated in slightly different ways in different places. What comes

later here will be consistent with the definitions given below.

The Bar construction is a functor which takes a dg operad P to a dg cooperad

Bar(P) while the Cobar construction is a functor taking a dg cooperad O to a dg

operad Cobar(O).

When we defined the free operad Free(S) on a system of sets S = {S(n)} above

each vertex of valence k the tree was labelled by a set element x ∈ S(k). However,

if one is careful then beginning with a cyclic dg operad or cyclic dg cooperad in-

stead of S one can again produce a cyclic dg cooperad or cyclic dg operad. These

(co)operads will be free on a set of corolla with vertices labelled by (co)operad ele-

ments. Geometrically this simple idea can be interpreted as an instance of Verdier

duality [GK94, LV08].

Orientations and Preliminaries

If V∗ is a graded vector space then the we define a different graded vector space,

the j-fold (de)suspension V [j]∗ by,

V [j]i = Vi+j

An orientation of a graded vector space W of dimension n = dim(W ) is a non-

zero vector in the alternating algebra
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det(W ) = Λn(W )[−n]

We also define the inverse,

det(W )∗ = Λn(W )[n]

If S is a set then we orient S using det(S) = det(k〈S〉). Two orientations are

equivalent if they are positive scalar multiples of each other. An orientation of a

graph G is defined as follows,

det(G) = det(E(G))⊗ det(kO)⊗ det(H0(G))⊗ det(H1(G))∗[O − χ]

where,

1. E(G) are the internal edges of G. Those edges which are not part of the

incoming or outgoing boundary ∂G.

2. O is the number of outgoing boundary edges.

3. χ = χ(G) is the Euler characteristic of G.

This amounts to an ordering of the internal and outgoing boundary edges together

with an ordering of the connected components of G and the cycles. Everything is

packaged together and then placed in the degree #E(G).

Observation. A short exact sequence of vector spaces,

0→ A→ B → C → 0

yields a canonical isomorphism of orientations,

det(B) ∼= det(A)⊗ det(C)



33

Given two graphs G0 and G1 then grafting one of the incoming edges of G1 to an

outgoing edge of G0 forming G0#G1 there is an isomorphism,

det(G0)⊗ det(G1)→ det(G0#G1)

This is given by splitting the Mayer-Vietoris sequence below into short exact

sequences any applying the observation above together with the additivity of the set

of internal plus outgoing boundary edges under grafting.

0→ H1(G1)⊗H1(G0)→ H1(G0#G1)→ H0(G0 ∩G1)→

H0(G1)⊗H0(G0)→ H0(G0#G1)→ 0

This definition also behaves well under disjoint union of graphs,

det(G0

∐
G1) ∼= det(G0)⊗ det(G1)

This orientation convention for graphs agrees with the standard graph complex

definitions when restricted to connected graphs without boundary. It differs slightly

from the differential graded dual construction of Ginzburg and Kapranov inasmuch

as trees in the dg dual have oriented internal and incoming edges and in our case

trees have oriented internal and outgoing edges.

This orientation convention is equivalent one obtained by ordering the connected

components, ordering the vertices of the graph and ordering the half-edges of each

edge. This later condition can be thought of as placing an arrow on each edge so

that reversing the direction of any arrow changes the sign of the orientation.

Given a set S and a cyclic dg (co)operad O then we can define a labelling of S

by O using the coinvariants trick,

O(S) = (O(n)× Bij([n], S))Σn+1

where Bij([n], S) is the set of bijections from S to [n] = {0, 1, . . . , n} and Σn+1

acts diagonally.
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If T is a tree then we can define a labelling of T by O assigning each vertex v an

element of O(H(v)),

O(T ) =
⊗

v∈V (T )

O(H(v))

An example of a tree with two quadrivalent vertices and one trivalent vertex

labelled by a choice of a⊗ b⊗ c ∈ O(4)⊗2 ⊗O(3) is pictured below,

c

b

a

Every edge contraction c : T → T/e induces a map of labellings. If we denote

by e the vertex obtained by the edge collapse and by v and w the two identified end

points then there is an operad map,

O(val(v))⊗O(val(w))→ O(val(e))

and a cooperad map,

P(val(e))→ P(val(v))⊗ P(val(w))

these can be extended to maps c∗ : O(T )→ O(T/e) and c∗ : P(T/e)→ P(T ) by

tensoring the above with the identity map.
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The Bar and Cobar constructions

The Bar construction Bar(O) of a cyclic differential graded operad O is the dg

cooperad which in degree n is a given by the complex of labelled unrooted n-trees

with contracting differential.

Bar(O)(n) =
⊕

n−Tree T

O(T )⊗ det(T )

Where the degree of a labelled tree is determined by the orientation convention

given above. Concretely this means,

Bar(O)(n) =
⊕

n−Tree T
|T |=1

O(T )⊗ det(T )← · · · ←
⊕

n−Tree T
|T |=n−1

O(T )⊗ det(T )

The Cobar construction Cobar(P) of a cyclic differential graded cooperad P is

the dg operad which in degree n is a given by the complex of labelled unrooted

n-trees with expanding differential.

Cobar(O)(n) =
⊕

n−Tree T

P(T )⊗ det(T )

Where the degree of a labelled tree is determined by the orientation convention

given above. Concretely,

Cobar(P)(n) =
⊕

n−Tree T
|T |=1

P(T )⊗ det(T )→ · · · →
⊕

n−Tree T
|T |=n−1

P(T )⊗ det(T )

In the formulas above |T | is the number of internal vertices of T and the complex

is graded so that the term spanned by trees with 1 internal vertex is situated in

degree 0.

The differential δ in either case can be described by its matrix elements,

(δ)T,T ′ : O(T )⊗ det(T )→ O(T ′)⊗ det(T ′)
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(δ)T ′,T : P(T ′)⊗ det(T ′)→ P(T )⊗ det(T )

If T ′ is not isomorphic to T/e for some edge e ∈ T then we define (δ)T ′,T = 0.

Otherwise let c : T → T ′ ∼= T/e so that if c∗ : O(T )→ O(T ′) or c∗ : P(T ′)→ P(T )

are the induced maps, δ is given by

(δ)T ′,T = c∗ ⊗ pe

(δ)T,T ′ = c∗ ⊗ pe

If collapsing the edge e then the map of orientations pe : det(T ′)→

pe(y0 ∧ · · · ∧ e ∧ · · · yn) = y0 ∧ · · · ∧ ê ∧ · · · ∧ yn

and orientation pe for the expanding differential is defined analogously.

In either case if the operad O or cooperad P has a non-trivial differential then

the total differential is the sum of the differential defined above together with the

original internal differential.

The cocomposition for the cooperad Bar(O) is given by cutting a given O labelled

tree apart into compositions of O labelled trees. The composition for the operad

Cobar(P) is given by grafting the incoming boundary edge of an P labelled tree to

to an outgoing boundary edge of an P labelled tree and eliminating the resulting

bivalent vertex. If the (co)composition is defined in this manner the differential

defined above satisfies the (co)Leibniz rule. Notice that Cobar(P) is generated by

P-labelled corolla.

If we denote by Operad(Chk) the category of differential graded operads and by

Cooperad(Chk) the category of differential graded cooperads

HomCooperad(Chk)(Bar(O),P) ∼= HomOperad(Chk)(O,Cobar(P))
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See Chapter 3 [GK94]. The maps given by the inclusions O → Bar(Cobar(O))

and P → Cobar(Bar(P)) are quasi-isomorphisms of cooperads and operads respec-

tively.

Ginzburg and Kapranov originally defined the differential graded dual D(O) of

a dg operad O as D(O) = Bar(O)∗. They proved that it is an exact endofunctor

on the category Operad(Chk) and that D(D(O)) ' O which is equivalent to the

adjunctions above.

Observation.

Bar(C)∗ = L∞

Since the commutative operad C has a unique n-fold composition for each n

vertices of trees are labelled uniquely. So that the chain complexes that make up

Bar(C)∗ are spanned by trees that are compositions of n-corolla which satisfy the

antisymmetry relation due to the orientation convention of the Bar construction. As

noted before and explained in Chapter 8 our convention agrees with orienting by an

ordering of the edges of the trees. It is easy then to see that changing the order of

adjacent edges changes the sign by minus one.

Observation.

Cobar(Bar(C)) ' Cobar(L∗)

This follows from the previous observation because L∞ ' L by construction.

Observation. C∞ ' Bar(L)∗

This follows from the first observation by dualizing and using the adjunction.

Cobar and Enveloping Categories

It will be useful to transform enveloping categories by quasi-isomorphisms later.

This can be done sometimes,

Lemma 4. If P and Q are quasi-isomorphic cooperads then Cobar(P)[ ∼= Cobar(Q)[.
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Proof. The morphisms of Cobar(P)[ and Cobar(Q)[ are graph complexes so this

follows from the usual argument. Filter the cone complex of the induced map by the

number of edges. The E1 page of the spectral sequence associated to the filtration

is the induced map which was a quasi-isomorphism by assumption showing that the

cone complex is contractible and thus that the induced map is a quasi-isomorphism.

See [GK98, LV08].

The same argument works for the C∞ operad.

Corollary 3.

C[
∞
∼= Cobar(Bar(C))[



5 Cobordism Categories

Let M be a smooth manifold with boundary and Diff(M) the group of orientation

preserving diffeomorphisms of M . Let Diff(M,∂) ⊂ Diff(M) be the subgroup of

diffeomorphisms which fix a regular neighborhood of the boundary ∂M . The mapping

class group Γ(M,∂) of M is π0 Diff(M,∂), that is the group of connected components

of Diff(M,∂).

5.1 3-dimensional Cobordism Categories

In this section we will define a dgsm category M called the differential graded

cobordism category or dg cobordism category.

We begin with the definition of a symmetric monoidal category with objects

disjoint unions of orientable labelled surfaces called the cobordism category which

will be denoted N . A morphism M ′ ∈ HomN (X,Y ) is a triple M ′ = (M, i, j) where

M is a diffeomorphism class (rel ∂) of smooth oriented 3-manifold whose boundary

∂M = I
∐
J splits into disjoint union of incoming I and outgoing J surfaces the

orientation of which is induced by that of M and i : X → I and j : Y → J are

choices of orientation preserving and orientation reversing embeddings from objects

X, Y ∈ Ob(N ) into M which restrict to diffeomorphisms on I, J respectively. Given

A′ = (A, i, j) ∈ Hom(X, Y ) and B′ = (B, l,m) ∈ Hom(Y, Z) define C ′ = B′ ◦ A′ ∈
Hom(X,Z) as follows, if A#B = A

∐
B/ ∼ where x ∼ y if j(y) = l(y) for y ∈ N(Y ),

a regular neighborhood of Y in A or B, then C ′ = (A#B, i,m). Associativity follows

from the local nature of the gluing composition.

39
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A#B

A

-

B

�

X

i

-

N(Y ) ∼= Y × (0, 1)

l ×
1

-
�

j ×
1

Z

�

m

We would like to defineM as the category with objects and morphisms given by,

Ob(M) = Ob(N )

HomM(X, Y ) = C∗(BΓ(HomN (X, Y ), ∂); k)

The category of singular chains on the classifying space of the mapping class

groups of N .

We apply these functors to the triplets above in the most straightforward way

that is, if M ′ = (M, i, j) is a morphism in N then Γ(M ′, ∂) = (Γ(M,∂), i, j) and

gluing of triples in N as defined above induces a composition. Specifically, if A′ =

(A, i, j) ∈ HomN (X, Y ), B′ = (B, l,m) ∈ HomN (Y, Z) then given (φ, i, j) ∈ Γ(A′, ∂)

and (ψ, l,m) ∈ Γ(B, ∂), by requiring that group elements fix a neighborhood of

the boundary it follows that there exists a map ψ#φ : A#B → A#B induced by

(ψ, φ) : A
∐
B → A

∐
B so that (ψ#φ, i,m) is a morphism in HomΓ(N ,∂)(X,Z).

The local nature of the gluing in this construction also implies associativity of the

composition in the category.

Let Γ(M ′, ∂) ∈ HomΓ(N ,∂)(X, Y ) then we say that g ∈ Γ(M ′, ∂) = (Γ(M,∂), i, j)

if g ∈ Γ(M,∂). Such elements form a group so that the functor B can be applied to

HomΓ(N ,∂)(X, Y ). We then apply C∗(−; k) to these classifying spaces. As discussed

in section 2.2 both B and C∗(−; k) are monoidal.

Notice that N = H0(M; k), so that we may think ofM as a choice of chain level

representative for N .
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Definition. A 3-dimensional topological field theory or TFT is a h-split left M-

module.

The category M will be explored in the future. This paper will illustrate the

relationship between several subcategories of M: the open category O, the closed

category C, and the open-closed category OC related to homotopy algebras and their

homology.

5.2 Open, Closed and Open-Closed Subcategories

A subcategory 〈S〉 of M is generated by a collection S of compact orientable 3-

manifolds with boundary if 〈S〉 is the subcategory ofM with the objects only those

surfaces found as boundaries in S and morphisms equal to C∗(BΓ(X, ∂); k) where X

is any possible composition of manifolds from S in N .

The categories below will use doubled handle bodies with sphere and torus bound-

ary as generating manifolds. Let,

M(g,e,t) = #gS1 × S2#eD3#tS1 ×D2

be the connected sum of g copies of S1×S2, e copies of D3 and t copies of S1×D2.

Notice that each D3 summand introduces a boundary 2-sphere and each S1 × D2

introduces a boundary torus. The boundary of M(g,e,t) consists of e 2-sphere and t

tori. This is the same as starting with a doubled handle body of genus g, #gS1×S2

then removing e solid three balls and t solid tori.

The open-closed category OC is the subcategory of M that has morphisms con-

sisting of S = {M(g,e,t)}. Such that there is always incoming and outgoing boundary.

If t = 0 then e ≥ 2 and if e = 0 then t ≥ 2. In particular, there is no morphism from

the empty set to a sphere or torus.

The set S is closed under composition. If we write M(g,e,t) = M(g,i+j,n+m) for a

manifold M ∈ S of genus g with i incoming spheres, n incoming tori, j outgoing

spheres and m outgoing tori. Then
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M(g,i+j,n+m)#M(g′,j+l,m+r) = M(g+g′+j−1+m,i+l,n+r)

Since gluing the j spheres together adds j − 1 factors of S1 × S2 and gluing the

m tori together adds an additional m factors of S1 × S2.

The objects of OC are spheres A,A′ and tori B,B′. The morphisms,

HomOC(A
∐

B,A′
∐

B′) ⊂ HomM(A
∐

B,A′
∐

B′)

are generated by the manifolds,

∐
g≥0

i=#A,j=#A′

n=#B,m=#B′

M(g,i+j,n+m)

For instance,

M(2,2,1)

The open category O is defined to be the subcategory of OC whose objects are

spheres and whose morphisms are generated by the spaces M(g,i+j,0). Similarly the

closed category C is the subcategory of OC whose objects are tori and whose mor-

phisms are generated by the spaces M(g,0,n+m).

In each case, the composition is induced from gluing along boundary and identity

morphisms are added as above.

Definition. In this paper an open-closed topological field theory is a h-split left

OC-module. An open topological field theory is a h-split left O-module. A closed

topological field theory is a h-split left C-module.
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Units

The unit in the open category is represented by S2 × I. The classifying space of

the mapping class group of this manifold relative to the boundary is a 0-cell which

can be glued onto the ends of boundary labelled graphs in the obvious way.

Note also that by construction we have forbidden the morphism from the empty

manifold to the 2-sphere and from the 2-sphere to the empty manifold.



6 Homotopy Equivalence Groups

Recall from Chapter 3 that by a geometric graph G we mean a 1-dimensional

CW complex consisting of vertices V (G) and edges E(G).

Define a boundary torus or balloon to be the graph formed from two edges with

both ends of one edge glued to one end of the other. If g, e, t ∈ Z+ then define a

spaghetti to be the graph G(g,e,t) consisting of a wedge of g circles with e edges and

t tori glued to the one base vertex along the end of their free edge.

t

1

1 g

1

e

The base vertex v of G(g,e,t) is the 0-cell on which the first edge is attached. Let

Htpy(G(g,e,t), ∂) be the space self-homotopy equivalences of G(g,e,t) that,

1. Fix the e edges

2. Fix the t loops of the boundary tori pointwise.

3. Does not identify the base vertices of any two boundary tori.

The compatibility between condition 3 and the Cobar construction will become

apparent in the last chapter.

44



45

This is given the compact open topology. Let H(g,e,t) = π0 Htpy(G(g,e,t), ∂) be

the group of path components of the space of self-homotopy equivalences described

above. This is a group see Proposition 0.19 [Hat02].

When we write G(g,e,t) as G(g,i+o,a+b) we mean that the number of entering and

exiting edges i = # In(G), o = # Out(G) and i+ o = e. The number of entering and

exiting tori is a = # Tin(G), b = # Tout(G) and a+ b = t.

A graph G(g,i+o,a+b) can be labelled as above. If [n] is the set {1, . . . , n} then a

boundary labelling is a choice of homeomorphisms, iH : [# In(G)] × I → In(G) and

oH : [# Out(G)] × I → Out(G). So that the i × [0, 1] is mapped homeomorphically

onto the ith incoming or outgoing edge with 0 sent to the boundary vertex. For the

balloons we use

aH : [# Tin(G)]× S1 → Tin(G) and bH : [# Tout(G)]× S1 → Tout(G)

If S1 = [0, 2π) we require that the aH(i, 0) and bH(i, 0) are the base vertices of

the boundary torus.

Since the homotopy equivalences are required to fix the edges and boundary tori

they are compatible with our definition of labelling and we can build a symmetric

monoidal category H enriched over Group. The objects Ob(H) of H are generated

by two objects e and t the object e representing the labelled edges and the object

t representing the boundary tori. The morphisms self-homotopy equivalences of

boundary labelled graphs fixing boundary elements,

HomH(e⊗i ⊗ t⊗j, e⊗k ⊗ t⊗l) =
∐

g

H(g,i+k,j+l)

There are no morphisms between empty objects of any kind. The composi-

tion in H can be described as follows. Given ϕ ∈ HomH(e⊗i ⊗ t⊗j, e⊗k ⊗ t⊗l) and

ψ ∈ HomH(e⊗k ⊗ t⊗l, e⊗r ⊗ t⊗n) we’ve ϕ ∈ H(g,i+k,j+l) and ψ ∈ H(g′,k+r,l+n). Mak-

ing a choice of equivalence classes we have maps ϕ : G(g,i+k,j+l) → G(g,i+k,j+l) and

ψ : G(g′,k+r,l+n) → G(g′,k+r,l+n) which preserve the boundary labelling. Gluing the
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outgoing edges and tori of G(g,i+k,j+l) to the incoming edges and tori of G(g′,k+r,l+n)

gives the graph G(g+g′+k−1+l,i+r,j+n) and our homotopy equivalences can be glued to

give an equivalence ϕ#ψ : G(g+g′+k−1+l,i+r,j+n) → G(g+g′+k−1+l,i+r,j+n).

With any continuous variation of ϕ or ψ within their respective path compo-

nents the graph ϕ#ψ varies continuously within the corresponding path component

of Htpy(G(g+g′+k−1+l,i+r,j+n), ∂). So that (ϕ, ψ) 7→ ϕ#ψ yields a well-defined compo-

sition law,

H(g,i+k,j+l) ×H(g′,k+r,l+n) → H(g+g′+k−1+l,i+r,j+n)

Allowing the genus to vary these maps define the composition law for H,

HomH(e⊗i⊗t⊗j, e⊗k⊗t⊗l)×HomH(e⊗k⊗t⊗l, e⊗r⊗t⊗n)→ HomH(e⊗i⊗t⊗j, e⊗r⊗t⊗n)

It follows that there is a monoidal category BH enriched over Top with the same

objects and morphism spaces equal to classifying spaces of the groups defined above.

HomBH(e⊗i ⊗ t⊗j, e⊗k ⊗ t⊗l) =
∐

g

BH(g,i+k,j+l)

6.1 A Theorem of Hatcher Vogtmann and Wahl

The theorem below appears in the papers of Hatcher, Vogtmann and Wahl stem-

ming from Hatcher’s work on the homotopy type of the diffeomorphism group of

S1 × S2 and Vogtmann’s study of Outer Space [CV86]. The synthesis of these ideas

has recently led to homological stability results for 3-manifolds [HV04, HW05]. It

can be seen as a generalization earlier work by Laudenbach [Lau74].

The mapping class groups in our construction will differ from those considered

in the references above by requiring that group elements fix a regular neighborhood

of the boundary as in the construction of the cobordism categories of Chapter 5.

As such they will be subgroups Γ(M(g,e,t), ∂) ⊂ Γ(M(g,e,t)) generated by the same
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generators given by Wahl and Jensen minus those which contain Dehn twists of the

boundary torus [JW04]. Differences will be noted along the way.

Define the group,

Γ(g,e,t) = Γ(M(g,e,t), ∂)

to be the mapping class group of the space M(g,e,t) considered in 5.2.

Since π1(SO(3)) ∼= Z/2, the inclusion SO(3) ↪→ Diff(S2) yields a 1-parameter

family of diffeomorphisms ϕ : S2 × I → S2 such that composition along the second

parameter yields a homotopically trivial map. A Dehn twist along a 2-sphere in a 3-

manifold is obtained by deleting the sphere and gluing the two boundary components

back together along a copy of S2 × I using ϕ. This amounts to twisting one of the

boundary spheres formed by the deletion by a full revolution.

Up to isotopy we fix a standard embedding i : G(g,e,t) ↪→M(g,e,t) by mapping the

end of each boundary edge e to a boundary sphere, each boundary torus or balloon

of the graph must map to the loop on the longitude of boundary torus of M(g,e,t)

and each of the g loops is sent to the S1 component of a corresponding S1 × S2

summand. The inclusion i induces an isomorphism on fundamental groups. Let

r : M(g,e,t) → G(g,e,t) be the retraction onto i(G(g,e,t)). These maps are canonical up

to isotopy with respect to the decomposition of M(g,e,t) into punctured handle bodies.
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G(2,2,1) ↪→M(2,2,1)

There is a map from h : Γ(g,e,t) → H(g,e,t) defined as follows. If l : M(g,e,t) →M(g,e,t)

is a diffeomorphism then we obtain a homotopy equivalence h(l) = r ◦ l ◦ i.

Theorem 7. (Hatcher-Vogtmann-Wahl) The map h : Γ(g,e,t) → H(g,e,t) is an epimor-

phism. Its kernel is isomorphic to a finite direct sum of Z2 generated by Dehn twists

along spheres.

1 -
⊕

k

Z2
- Γ(g,e,t)

h
- H(g,e,t)

- 1

Proof. In their work Hatcher Vogtmann and Wahl allow the mapping class groups

above to move the boundary while we do not. In our discussion of the difference we

will simply matters slightly only discussing the tori since fixing a neighborhood of

the spherical boundary components prevents only Dehn twists which are not relevant

in what follows.

If the number of edges e = 0 then the full group of graph automorphisms associ-

ated to this is generated by,
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1. Pi,j exchanges xi and xj

2. Ii exchanges xi and x−1
i

3. (xi;xj) xi → xixj

4. (xi; yj) xi → xiyj

5. (x−1
i ; yj) xi → y−1

j xi

6. (y±i ;xj) yi → x−1
j yixj

7. (y±i ; yj) yi → y−1
j yiyj

Where the xi represent generators of π1(G(g,0,t)) associated to factors of S1 × S2

and yi represent generators of π1(G(g,0,t)) associated to factors of S1 ×D2.

If we view our 3-manifold as the boundary of a punctured handle body then

generators 3-7 above can be represented by handle slides along the curves xi and yj.

Handle slides are associated to generators of the automorphism group as follows,

3. The handle xi slides over xj.

4. The handle xi slides over yj.

5. The handle x−1
i slides over yj.

6. The torus yi slides over the handle xj.

7. The torus yi slides over the torus yj.

In order to slide a handle or a torus (thought of as a connected sum of S1×D2) over

a torus a Dehn twist must be performed fixing the boundary then kills generators 4,

5 and 7. Since our homotopy groups are defined to completely fix the loop contained

in the torus the correspondence is preserved.

Corollary 4. The spaces BΓ(g,e,t) and BH(g,e,t) are k-equivalent.

Proof. This follows from BZ/2 ' RP∞ 'Q S∞. S∞ is contractible. So that in the

k-homotopy category of spaces Bh is an equivalence.
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6.1.1 Reduction of the Open Category

Observation. The epimorphism h as defined above is compatible with gluing the

spherical boundary components,

Γ(g,i+k,0) × Γ(g′,k+r,0)

#
- Γ(g+g′+k−1,i+r,0)

H(g,i+k,0) ×H(g′,k+r,0)

h

? #
- H(g+g′+k−1,i+r,0)

h

?

Proof. This follows from the definition of h above. Given two diffeomorphisms ϕ ∈
Diff(M(g,i+k,0), ∂) and ψ ∈ Diff(M(g′,k+r,0), ∂), the action of ϕ#ψ on

i(G(g,i+k,0))#i(G(g′,k+r,0)) ⊂ M(g+g′+k−1,i+r,0) = M(g,i+k,0)#M(g′,k+r,0) is the same as

the action of ϕ on i(G(g,i+k,0)) glued to the incoming edges of ψ on i(G(g′,k+r,0)) as ϕ

and ψ are required to fix a regular neighborhood of the boundary.

The same observation holds with groups involving torus boundary as long as

either no gluing is performed or a factor of #S1 × S2 is introduced by the gluing of

the underlying 3-manifolds.

Let OH be the subcategory of the category of homotopy equivalences of graphs

H that consists of only equivalences of graphs with open edges. Then we have,

Theorem 8. In the category of dgsm categories the open category O is isomorphic

to,

O′ = C∗(BOH; k)

Proof. The maps h induce a functor O → O′. One can choose sections of i of h,

i : H(g,e,t) → Γ(g,e,t). So that there is a functor i : O′ → O. We have hi = 1 and

ih 'k 1.
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6.1.2 The Open-Closed Category as a Module

As discussed in Chapter 2, the category OC defines an Ob(OC)−O bimodule or

a functor

OC : Ob(OC)⊗Oop → Chk

in a natural way. If (e⊗n ⊗ t⊗m)⊗ o⊗k ∈ Ob(Ob(OC)⊗Oop) then

OC((e⊗n ⊗ t⊗m)⊗ o⊗k) = HomOC(o
⊗k, e⊗n ⊗ t⊗m)

The morphisms of category Ob(OC) consisting of permutations of tensors act

on the left and the open morphisms c ∈ HomO(o⊗i, o⊗j) acts on the right by post-

composition.

The category OC ′ = C∗(BH; k) is also an Ob(OC ′) − O′op bimodule. Since

Ob(OC ′) = Ob(OC) and by the previous theorem O′ ∼= O, OC ′ is quasi-equivalent

to an Ob(OC)−Oop bimodule. It follows from the corollary that,

Theorem 9. As an Ob(OC)−Oop bimodules the categories OC and OC ′ are quasi-

equivalent.



7 Triangulated spaces

Here we review the definitions of triangulated spaces and spaces k-homotopy

equivalent to triangulated spaces.

7.1 Simplicial Complexes

A simplicial complex A is a collection of sets such that if σ ∈ A and τ ⊂ σ then

τ ∈ A. An n-simplex σ of a simplicial complex A is an element σ ∈ A that satisfies

#σ = n + 1. The set of n-simplices of A will be denoted by An. A vertex is a 0

simplex. A collection of vertices {v0, . . . , vk}, vi ∈ A, are said to span a simplex in

A if {v0, . . . , vk} ∈ Ak.

A map of simplicial complexes f : A → B is a function which satisfies the

property,

{f(v0), . . . , f(vk)} spans a simplex if {v0, . . . , vk} spans a simplex

We will denote the category of simplicial complexes by SC.

A simplicial subset X of a simplicial complex Y is an inclusion X ↪→ Y .

For every simplicial complex A there is a category F (A) with objects the elements

of X and morphism sets generated by HomF (A)(σ
k, ρk−1) a unique non-trivial arrow

if ρ is a face of σ. A morphism of simplicial complex A → B induces a functor of

categories F (A)→ F (B).

The geometric simplices are defined by,

52
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∆n = {(t0, . . . , tn) ∈ [0, 1]n|
∑

k

tk = 1} ⊂ Rn+1

and these combine to give a functor | · | : SC→ Top called geometric realization.

If X is a simplicial complex then there is a functor F : F (A) → Top defined by,

F (σ) = ∆|σ|. The geometric realization |A| of A is given as the colimit of the functor

F .

|A| = colimF =
∐
n

An ×∆n/ ∼

If f : A → B is a simplicial map then there is an induced map |f | : |A| → |B|
taking simplices to simplices.

7.2 Cellular Stratifications

A cellular stratification of a space X is a choice of CW structure.

X =
⋃
j

Xj

Where Xj is obtained from Xj−1 by attaching j dimensional disks Dj along their

boundary spheres, ∂Dj → Xj−1.

A cellular map ϕ : X → Y between cellularly stratified spaces X and Y is a

continuous map which is cellular with respect to the chosen stratifications on X and

Y . A cellular map f : A→ B is cellular on the nose if for every k cell σk of A there

is a k cell τ k of B and f(σ) is homeomorphic to τ .

If X and Y are cellularly stratified simplicial complexes then |X| × |Y | inherits a

cellular stratification using the product of the CW complexes associated to |X| and

|Y |.
A space X is said to possess a k-cellular stratification or orbi-stratification if

there exists a cellularly stratified space Y together with a discrete group G so that

G acts cellularly, properly discontinuously with finite stabilizers on Y , and X is
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homeomorphic to Y/G. For such a space X there is a filtration {FkX} induced

from the filtration by skeleta of Y so that the k-skeleton is obtained from the k − 1

skeleton by attaching a family of orbi-cells.

Xk = Xk−1 ∪
∐

σ⊂Y k

σ/ StabG(σ)

and there is a k-homotopy equivalence between the associated graded and a wedge

of spheres.

Xn/Xn−1 'k

m∨
j=0

Sn

7.3 Open Simplicial Complexes

An open simplicial set is a simplicial complex X together with a simplicial subset

X̄ ⊂ X. Morphisms between open simplicial complexes ϕ : (X, X̄)→ (Y, Ȳ ) satisfy

ϕ−1(Ȳ ) ⊂ X̄. The geometric realization of (X, X̄) is the topological space |X|− |X̄|.

Lemma 5. If X is an open simplicial complex there exists a homotopy equivalent

simplicial complex NX. That is,

|X| ' |NX|

Proof. Analogous to the category F (A) associated to any simplicial complex A (sec-

tion 7.1) define the category X with objects x ∈ Ob(X ) if x ∈ Xk and x 6∈ X̄k and

morphisms generated by identity and ∂j : x → x′ if x′ = ∂jx in X. Let NX = NX
be the nerve of X . The simplicial complex whose n simplices are given by n-fold

compositions,

(NX )n = {{x0, x1, . . . , xn}|x0 → x1 → x2 → · · · → xn exists in X}

For τ, σ ∈ NX , τ ⊂ σ if τ is obtained by composing one or more of the arrows

in σ. The geometric realization of the nerve is called the spine.
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There is a canonical inclusion of the space i : |X| ↪→ |NX| defined by observing

that |NX| is precisely the subset of the barycentric subdivision of |X| which excludes

the simplices of X̄.

On each simplex of s ⊂ |X|, s ∼= ∆k there is a retraction onto the image of

i defined as follows. Let b ⊂ s be the portion of s contained in |X̄|. If s[ is the

barycentric subdivision of s and y ⊂ s[ are the simplices disjoint from b then y is the

image of |NX| in s ∩ |X| and there is a collapse map rs : s→ y.

These maps can be chosen to agree on the faces of the simplices of |X| and so

glue together to a map r : |X| → |NX|. We have r ◦ i = 1 and i ◦ r ' 1 can be

obtained by collapsing the complementary simplices continuously.

This construction gives a functor from the category of open simplicial com-

plexes to simplicial complexes. If ϕ : (X, X̄) → (Y, Ȳ ) is a map of open simplicial

complexes then there is a map of simplicial complexes Nϕ : NX → NY where

(Nϕ)k : (NX)k → (NY )k is defined by,

{x0 → x1 → x2 → · · · → xn} 7→ {ϕ(x0)→ ϕ(x1)→ ϕ(x2)→ · · · → ϕ(xn)}

The continuous maps between realizations |ϕ| : |X| → |Y | and |Nϕ| : |NX| →
|NY | are homotopic.



8 Outer Spaces

The goal of this and the next section is to construct a combinatorial model for a

complex which computes the homology H∗(BH(g,e,t); k). We begin by constructing

an open simplicial complex L(g,e,t) whose geometric realization is a space equipped

with a properly discontinuous action of H(g,e,t) that has finite stabilizers. After taking

the nerve we obtain a simplicial complex that has simplices which can be grouped

into cells yielding a k-cellular stratification of the space BH(g,e,t).

8.1 Open Outer Space

In what follows all graphs will be boundary labelled in sense defined above. How-

ever we will consistently write L(g,e,t) instead of L(g,i+o,a+b) because it is simpler.

We begin with a definition of an open simplicial complex L(g,e,t) or a pair of

simplicial complexes (L(g,e,t), L̄(g,e,t)) with L̄(g,e,t) ⊂ L(g,e,t).

A graph G is labelled when paired with a map ϕ : G(g,e,t) → G that satisfies

1. The function ϕ preserves the e incoming and outgoing edges and identifies the

ends of each of the t boundary tori of G(g,e,t) with circles having t distinct base

vertices in G. By circle we mean cycles with one edge and one vertex.

2. If v is the vertex of G(g,e,t). The induced map,

ϕ∗ : π1(G(g,e,t), v)→ π1(G,ϕ(v))

is an isomorphism.
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Two labelled graphs (G,ϕ) and (G′, ψ) are equivalent if there is a graph isomor-

phism ρ : G→ G′ so that the diagram below commutes,

π1(G,ϕ(v)) - π1(G
′, ψ(v))

π1(G(g,e,t), v)

-
�

Definition. Let L(g,e,t) denote the set of equivalence classes (G,ϕ) of labelled graphs

G that have a labelling ϕ : G(g′,e,t) → G such that g′ ≤ g. The k simplices of the

simplicial complex L(g,e,t) are given by graphs with k + 1 edges.

If (G,ϕ) ∈ L(g,e,t) is a k simplex then (H,ψ) ⊂ (G,ϕ) if H is obtained from G by

collapsing edges and ψ = ϕ̄ is the labelling induced on H by ϕ and the quotient.

While some edge collapses preserve the homotopy type of the underlying graph

some do not. The additional data necessary to define the spaces in which we are

interested L̄(g,e,t) ⊂ L(g,e,t) is given by the collection of simplices obtained by an edge

collapse which isn’t an isomorphism on fundamental groups or an edge collapse that

identifies the base vertices of two distinct tori. If t = 0 then,

(L̄(g,e,t))k = {(G,ϕ) ∈ (L(g,e,t))k | ϕ : G(g′,e,t) → G and G(g′,e,t) 6' G(g,e,t)}

then L(g,e,t) is an open simplicial complex.

Definition. The geometric realization of L(g,e,t) will be denoted by Y(g,e,t) and its

quotient by X(g,e,t) = Y(g,e,t)/H(g,e,t).

If t = 0 and e = 0 this is called Outer space since the construction is a model

for the classifying space of the group Out(Fn) see [CV86]. If t = 0 and e = 1 this is

known as “Auter space.” Other generalizations not involving diffeomorphisms that
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fix the boundary can be found in [HV04, JW04, HW05]. These recent results were

used to prove a stabilization theorem for the homology of free groups analogous to

previous results for mapping class groups of surfaces.

Theorem 10. There is an action of the group H(g,e,t) = π0 Htpy(G(g,e,t), ∂) on the

open simplicial complex L(g,e,t). The action is properly discontinuous. The stabilizer

of any given simplex is a finite group.

Proof. The group H(g,e,t) acts on the simplicial complex L(g,e,t) by changing the la-

belling. That is, if (G,ϕ) so that ϕ : G(g,e,t) → G is a simplex and f ∈ H(g,e,t)

then f(G,ϕ) = (G,ϕ ◦ f). By changing the labelling the action of H(g,e,t) pre-

serves the genus g of the graphs so that if f ∈ H(g,e,t), f : L(g,e,t) → L(g,e,t) then

f−1(L̄(g,e,t)) ⊂ L̄(g,e,t) implies that H(g,e,t) acts on (L(g,e,t), L̄(g,e,t)) in the category of

open simplicial complexes defined above.

This action is almost free. If (G,ϕ) is a simplex and f ∈ H(g,e,t) then f(G,ϕ) =

(G, f ◦ ϕ) = (G,ϕ) if and only if f is an isomorphism as above of the graph G.

Since each graph isomorphism is determined by the manner in which it permutes the

edges, the size of the group of graph isomorphisms is bounded above by set of all

permutations on edges. So Stab(G) = Aut(G) and # Aut(G) ≤ #E(G)!.

That the space Y(g,e,t) is contractible is a standard fact about this aspect of

the theory. The proof of contractibility of Y(g,e,t) is essentially equivalent to the

proof which appears in Wahl and Jensen’s article. Their definition differs from

ours by disallowing separating edges of graphs and allowing the boundary cycles

to move throughout the graph. Collapsing separating edges in our construction is a

homotopy equivalence. Removing the generators from the groups associated to the

boundary is a special case of the contractibility argument given by Wahl and Jensen

be contractible [JW04].

Corollary 5. The quotient space X(g,e,t) = Y(g,e,t)/H(g,e,t) is a k-homotopy model for

the space BH(g,e,t). In particular,

C∗(BH(g,e,t); k) ' C∗(X(g,e,t); k)
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There is a geometric interpretation of X(g,e,t). A metric graph is a graph together

with a fixed length l(e) ∈ R+ assigned to each edge e ∈ E(G). A metric graph is

balanced if
∑

e∈E(G) l(e) = 1.

The space X(g,e,t) is homeomorphic to the space of balanced metric graphs homo-

topy equivalent to the graph G(g,e,t). For any balanced metric graph G let, e0, . . . , ek,

be the edges of G then G is uniquely represented by the point given by the barycen-

tric coordinates (l(e0), . . . , l(ek)) of a k simplex ∆ associated to the topological type

of G. If we allow the lengths of the edges of G to vary they approach a codimension 1

face of ∆ which has either been removed or not depending upon whether the homo-

topy type of the graph obtained by collapsing the edge changes or is preserved. So

that for each topological type of graph G there is an open simplex in the construc-

tion above and quotienting by the automorphism group gives the space of balanced

metric graphs. The colimit over all appropriate topological types of graphs is the

space X(g,e,t).

When the genus is zero and there are no tori there are no automorphisms and

quotient is the space of metric trees which is in itself contractible. These spaces were

explored in [BHV01] and used to establish a sheaf theoretic interpretation operadic

algebra [GK94].

The t boundary tori are represented by balloons attached to the graphs repre-

senting points in the moduli space X(g,e,t). The length of the edge at the end of each

balloon is fixed. The length of the edge along which the ballon is attached to the rest

of the graph is allowed to vary. As this edge length approaches zero, in the space of

metric graphs, we approach either an open face or a face depending upon whether

collapsing the edge identifies two base vertices or not respectively.

We metrize the graphs in this way because the edge of the balloon correspond-

ing to a torus in a manifold M(g,e,t) is completely fixed by the action of any b ∈
Γ(M(g,e,t), ∂). The edge about the torus of the balloon in the graph G(g,e,t) thought of

as embedded in M(g,e,t) does not vary with respect to the action of the mapping class

group. The edge that is used to attach the balloon to the rest of the graph is allowed

to vary since b may move the boundary torus about inside of M(g,e,t) as discussed in
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Chapter 6. Since there are disjoint regular neighborhoods of the boundary tori in

the construction of the cobordism category we can ask for the base vertices of the

balloons representing them not to touch.

In contrast, the open edges are given fixed length or equivalently not given length

in the moduli space. If taken to have a fixed positive length then when represented

as a graph within M(g,e,t) this length reflects the disjointness of the regular neigh-

borhoods of 2-spheres in the construction of the cobordism category. Allowing these

lengths to vary is not necessary and would not add anything interesting to what

follows, but if we did then it would be necessary for us to consider the scenario in

which the collapse of an edge represented a boundary collision as we have done with

the tori above.

8.2 Reduction To Spine

As described in 7.3 the open simplicial complex L(g,e,t) gives rise to an honest sim-

plicial complex L′(g,e,t) = NL(g,e,t) in a functorial manner. The geometric realization

of L′(g,e,t) satisfies |L′(g,e,t)| ' |L(g,e,t)|.
An n-simplex in L′(g,e,t) is given by a sequence

(G0, ϕ0) ⊂ (G1, ϕ1) ⊂ · · · ⊂ (Gn, ϕn)

where (Gi, ϕi) is obtained from (Gi+1, ϕi+1) by collapsing one or more edges while

preserving the homotopy type.

An equivalent way to specify simplices of the space L′(g,e,t) is to fix a forest F0 ⊂ G

and a nested sequence of subforests Fn ⊂ Fn−1 ⊂ · · · ⊂ F0 ⊂ G. This gives the

simplex,

(G/F0, ϕ̄) ⊂ (G/F1, ϕ̄1) ⊂ · · · ⊂ (Gn/Fn, ϕ)

if ϕ is a labelling of G = Gn.

In what follows we will require all forests F ⊂ G of graphs G to
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1. Include all of the internal vertices of G.

2. Include none of the incoming or outgoing open boundary edges.

3. Include no two of the base vertices of the tori.

By functoriality the space L′(g,e,t) inherits an action of H(g,e,t). If f ∈ H(g,e,t) then

f : L(g,e,t) → L(g,e,t) is defined by f(G,ϕ) = (G,ϕ ◦ f) so that Nf : L′(g,e,t) → L′(g,e,t)

acts by

(G/F0, ϕ0) ⊂ (G/F1, ϕ1) ⊂ · · · ⊂ (G/Fn, ϕn)

7→(G/F0, ϕ0 ◦ f) ⊂ (G/F1, ϕ1 ◦ f) ⊂ · · · ⊂ (G/Fn, ϕn ◦ f)

It follows from the definition and discussion in the previous section that the

stabilizer of an n simplex is the subgroup of the automorphism group Aut(G) given

by those automorphisms which preserve the forest F0 and its associated filtration

and that the quotient is a k-homotopy model for BH(g,e,t).

Definition. We will denote by L′(g,e,t) the spine or the simplicial complex obtained

from the nerve construction applied to the open simplicial complex L(g,e,t) defined in

the previous section. The geometric realization of L′(g,e,t) will be denoted by Y ′
(g,e,t)

and X ′
(g,e,t) = Y ′

(g,e,t)/H(g,e,t) the quotient by the action of H(g,e,t).

8.3 Cellular Stratification by Cubes

Applying the functor N gives us compact spaces X ′
(g,e,t) and while the given sim-

plicial structure gives a k-cellular stratification of X ′
(g,e,t) this triangulation is too fine

for our purposes. Following Hatcher-Vogtmann, Kontsevich, Conant-Vogtmann and

others to compute the homology we group together simplices that can be obtained

from the same forest into a single cell [HV98, Kon94, CV03]. The cells and orbi-cells

obtained form this construction will be called cubes.
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Fix a graph and a labelling (G,ϕ) defining an open simplex σ ⊂ Y(g,e,t). The

portion of the subdivision that lies in Y ′
(g,e,t), that is, the portion not involving any

simplices contained in Ȳ(g,e,t) is parameterized by the paths from the barycenter σ to

a labelled graph isomorphic to G(g,e,t). Each of these paths gives rise to a simplex, a

sequence of edge collapses or, as discussed above, to a forest F ⊂ G together with a

filtration 0 = Fn ⊂ Fn−1 ⊂ · · · ⊂ F0 ⊂ G.

A cube [G,F, ϕ] ⊂ Y ′
(g,e,t) is obtained by gluing together all the simplices arising

from different filtrations of the same choice of forest F ⊂ G for a given open simplex

σ = (G,ϕ) ⊂ Y(g,e,t).

[G,F, ϕ] =
∐

F0⊂···⊂Fm⊂F

(G/F0 ⊂ · · · ⊂ G/Fm−1 ⊂ G/Fm)×∆m

Or in fancy language, applying the forgetful functor on a simplicial (cellular) space

indexed by labelled graphs with filtrations of forests to a cellular space indexed by

labelled graphs with forests yields a coarser stratification. This is called the forested

graph stratification.

Each cube [G,F, ϕ] in Y ′
(g,e,t) can be homeomorphically identified with a k-ball

[0, 1]k, where k = #E(F ), by a map defined by assigning to each edge an axis. If

B = star(G/F, ϕ̄) ∩ (G,ϕ) is the portion of the star of G/F contained in the open

simplex associated to (G,ϕ) then [G,F, ϕ] = B ∩ (G/(G− F ), ϕ̂).

(G,{e})(G/e,{e}/e) (G,{e}-e)

e

The codimension 1 faces of a cube [G,F, ϕ] are given by two operations on graphs

1. Removing an edge from the forest. [G,F, ϕ] 7→ [G,F − e, ϕ] for some edge

e ∈ E(F ).
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2. Collapsing an edge e ∈ F . [G,F, ϕ] 7→ [G/e, F/e, ϕ̄] for some edge e ∈ E(F ).

The group H(g,e,t) now acts cellularly. The stabilizer of the cube [G,F, ϕ] under

the action of H(g,e,t) is the subgroup of H(g,e,t) consisting of automorphisms of G that

send the forest F ⊂ G to itself.

Each cube [G,F, ϕ] in Y ′
(g,e,t) then descends to a cube [G,F ] in the quotientX ′

(g,e,t).

This cube is not necessarily a cell but an orbi-cell. This follows from identifying the

cube in Y ′
(g,e,t) with a cube C = [0, 1]k where each edge of F contributes to an axis

as above and the graph G/F is situated at the origin. The portion of the cube that

descends to X ′
(g,e,t) is the quotient of C by the stabilizer Aut(G,F, ϕ). The action of

Aut(G,F, ϕ) on C fixes the origin and permutes the axes so that C/Aut(G,F, ϕ) is

a cone on the quotient of the boundary ∂C.

Lemma 6. The quotient of an n-sphere by a finite linear group G ⊂ GLn(R) is

k-homotopic to either a n-sphere or a n-ball. The latter case holds only when the

action includes reflections.

For proof and discussion see [HV98]. So those cubes which have symmetries that

do not include reflections survive the quotient.

In X ′ the tori are represented by trees containing the base vertex of the balloon.

Forests representing tori with one and two outgoing boundaries. Cells of

dimensions zero and one respectively.
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8.4 Homology

In this section we complete the program of describing the homology of the map-

ping class groups of the manifolds which determine the morphism spaces of OC and

O. We begin by defining for each (g, e, t), a generalized Cobar construction, an exact

functor G(g,e,t) from the category of differential graded cooperads to chain complexes.

The complexes G will be those that generate the morphism spaces of the enveloping

functor Cobar(O)[ defined in Chapter 4. In the second subsection we show that this

corresponds to the chain complex obtained from the stratification of X ′
(g,e,t) by cubes

defined in the previous section.

8.4.1 From Operads to Graph Complexes

Fix a differential graded cooperad P . Let S(g,e,t) be the set of boundary labelled

combinatorial graphs of genus g+ t with e boundary edges and containing t marked

vertices. Special subgraphs isomorphic to a corolla with two edges identified we will

call bonnets,

n

Using the orientation convention described in 4.3 we define a chain complex

G(g,e,t)(P) by,

G(g,e,t)(P) =
⊕

G∈S(g,e,t)

P(G)⊗ det(G)
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The graphs are labelled by P and oriented using vertices and half edges as de-

scribed in section 4.3. The differential is the sum of the differential on P together

with the expanding differential on graphs the definition of which is identical to the

one for trees found in 4.3. By construction we have

G(0,e,0)(P) = Cobar(P)(e)

and,

HomCobar(P)[(x⊗n, x⊗m) =
⊕

g

G(g,n+m,0)(P)

8.4.2 Cubical Chains Compute A Double Dual

Recall from 8.4 that the complex of cubical chains on X ′
(g,e,t) is spanned by cubes

[G,F ] where G is a boundary labelled graph with t cycles representing boundary

tori and F ⊂ G is a forest containing all of the internal vertices of G, none of the

boundary edges and no two vertices of the boundary tori.

The cubes are oriented by an ordering of the edges of F . Lemma 6 in the same

section implies that the antisymmetry relation [G,−F ] = −[G,F ] holds.

The differential is given by the sum over ways to remove an edge from a forest

together with the sum over ways to contract an edge contained in the forest. In

either case the cube is oriented by the induced orientation.

∂[G,F ] =
∑
e∈F

[G/e, F/e] +
∑
e∈F

[G,F − e]

The cooperad Bar(C) is the free cooperad on n-corolla satisfying the antisym-

metry relation. The trees are edge oriented with contracting differential. The co-

composition is given by degrafting trees. This is dual to the L∞ operad described in

Chapter 4.

Since Cobar(Bar(C)) is a double complex while Ccell
∗ (X ′) is merely a complex

we must collapse the double grading of barbar to make sense of the equivalence to
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follow. Let,

Cobar(Bar(C))(n)
′

i =
⊕

j

Cobar(Bar(C))(n)j,i

The differential d remains the sum of the internal differential contracting the

edges of Bar(C) and the external differential expanding the compositions in Cobar.

Theorem 11. The k-homology of the mapping class groups can be computed by the

generalized Cobar functor G,

Ccell
∗ (X ′

(g,e,t); k) = G(g,e,t)(Bar(C))

Proof. We first begin by assuming that t = 0 that is that there are no tori. It suffices

to show that the operad Cobar(Bar(C)) is quasi-equivalent to the operad O with

O(n) = Ccell
∗ (X ′

(0,n+1,0); k). This forms an operad because the cellular composition

defined in Chapter 9 exists independently of the identification here. We will see that

as complexes the two are plainly isomorphic. That is,

Cobar(Bar(C))(n)′ = Ccell
∗ (X ′

(0,n+1,0); k)

In degree j the complex Ccell
j (X ′

(0,n+1,0); k) is spanned by forested trees (T, F )

where the forest F contains j edges and a connected component associated to each

internal vertex of T . The cell (T, F ) is oriented by an ordering of the edges in F .

In bidegree (j, i) the complex Cobar(Bar(C))(n)j,i is spanned by unrooted n trees

T containing j = |T | internal vertices each of which is in turn labelled by a tree Fl ∈
Bar(C)(H(v)). The bidegree (j, i) = (|T |,

∑|T |
m=1(|Fm| − 1)); the second coordinate

being the total number of internal edges. The labelled tree T ⊗ F1 ⊗ · · · ⊗ Fj is

oriented by the convention described in 4.3 and discussed below.

Thus for the flattened complex T ⊗ F1⊗ · · · ⊗ Fj ∈ Cobar(Bar(C))(n)
′
i if T is an

unrooted n tree labelled by trees Fl whose internal edges total to i.

Our isomorphism associates to a forested tree (T, F ) with F = F1 ∪ · · · ∪ Fj the

tree T/F with internal vertices labelled by the Fl. The inverse map is obtained by

doing the opposite.
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The two differentials in either complex are the same. Removing an edge from a

tree creates two separate trees which corresponds to a labelling of a vertex by a tree

expanding into a labelling of two vertices by two trees which is the Cobar differential.

Collapsing the edge of a tree corresponds to collapsing an edge within the labelling

of a vertex which is the differential of Bar(C).

The orientations agree. Recall that the convention for the generalized Cobar

functor G is the same as that described in 4.3. A graph G is oriented by,

det(G) = det(E(G))⊗ det(kO)⊗ det(H0(G))⊗ det(H1(G))∗[O − χ]

where,

1. E(G) are the internal edges of G. Those edges which are not part of the

incoming or outgoing boundary ∂G.

2. O is the number of outgoing boundary edges.

3. χ = χ(G) is the Euler characteristic of G.

If the graph G is a tree T then this amounts to,

det(T ) = det(E(T ))⊗ det(kOT )[OT ]

That is an ordering of the internal edge and outgoing edges of T situated in degree

#E(T ) the number of internal edges of T . A tree T colored by a j component forest

F1 ⊗ · · · ⊗ Fj is oriented by,

det(T ⊗ F1 ⊗ · · · ⊗ Fj) = det(E(T ))⊗ det(kOT )

j⊗
i=1

det(E(Fi))⊗ det(kOFi )

In our case the number of outgoing edges of T is one. The incoming edges of T

are not oriented. The internal edges of T join the labellings of two separate vertices

by forest components Fi. One end of each edge of T is an incoming edge of some

forest component and the other end is an outgoing edge of some forest component.
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The outgoing components of each forest must correspond to internal edges of T

except for the one outgoing edge corresponding to the outgoing edge of T . Thus

there is a bijection between the set E(T )
∐

Out(T ) and
∐

i Out(Fi). Taking graded

determinants yields the isomorphism,

det(E(T )) ∼= det(E(T ))⊗ k ∼=
j⊗

i=1

det(kOFi )

The ordering of the internal edges of T cancels with the orientations of the out-

going edges of the components of the forest and,

det(T ⊗ F1 ⊗ · · · ⊗ Fj) ∼=
j⊗

i=1

det(E(Fi)) ∼= det(G,F )

In X ′ the cells associated to the boundary tori are the trees contain the base

vertex of the balloon about the torus.

We represent these graphically by a loop resembling a bonnet attached to the

vertex of an n corolla which has been labelled by a tree. This is the extension of G
described above.
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8.5 Corollaries

The following reduction is computed using a spectral sequence argument [Kon94,

CV03]. Since Bar(C)∗ = L∞ ' L,

Corollary 6. (Kontsevich and Conant-Vogtmann) The k-homology of the mapping

class groups can be computed by the generalized Cobar functor G,

C∗(X
′
(g,e,t); k) ' G(g,e,t)(L

∗)

The morphisms of the open category and open closed category coming directly

from k-chains on the spaces X ′
(g,e,t) can be identified with a slightly smaller operad,

because C∞ ' Cobar(Bar(C)),

Corollary 7.

HomO(e⊗i, e⊗j) ' HomC[
∞

(e⊗i, e⊗j)

we also have,

Corollary 8. The Ob(OC)−O bimodule OC is quasi-isomorphic to the Ob(OC)−O
bimodule defined by,

(e⊗n ⊗ t⊗m)⊗ o⊗k 7→
∐

g

G(g,n+k,m)(L
∗)

Proof. Recall that,

OC((e⊗n ⊗ t⊗m)⊗ o⊗k) = HomOC(e
⊗n ⊗ t⊗m, o⊗k)

Theorem 9 stated that as bimodules OC was quasi-isomorphic to OC ′,

OC ′((e⊗n ⊗ t⊗m)⊗ o⊗k) =
∐

g

C∗(BH(g,n+k,m); k)

The corollary follows from the identification,∐
g

C∗(BH(g,n+k,m); k) '
∐

g

C∗(X
′
(g,n+k,m); k) '

∐
g

G(g,n+k,m)(L
∗)



9 The Open Category

We concluded the last section with an equivalence relating the chain complexes

that compromise the morphisms of the categories we are most interested in: OC and

its subcategories. These chain complexes are quasi-isomorphic to ones defined in an

essentially combinatorial way by graphs labelled with the L operad.

Unfortunately, this is not an equivalence of categories in all cases. While the

complexes that make up the morphisms of the categories can be reduced to combi-

natorics the gluing maps that define the composition at the level of mapping class

groups discussed in section 7 do not descend to a cellular map.

The composition along boundary spheres (or boundary edges) does descend to a

cellular map. Given two boundary labelled compossible forested graphs (G,F ) and

(G′, F ′). Form the graph G#G′ by gluing the relevant ends together and eliminating

the resulting bivalent vertices. The forests F and F ′ together form a forest F ∪ F ′

of G#G′ because forests are not permitted to contain boundary edges. This can be

pictured by,

(G',F')(G,F) (G',F')(G,F)x

The composition map is defined by first observing that there is an equivariant

composition on the total spaces Y(g,e,0) that is cellular on the nose. In the sense that

a composition of cells is precisely a product of cells. This then descends to a com-

position on the k-cellularly stratified orbi-spaces X ′
(g,e,0) from which our complexes
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were defined. Lastly we observe that the composition above agrees with both the

composition in 6.1.1 necessitated by k-equivalence in the Hatcher-Vogtmann-Wahl

theorem and the composition used by the Cobar construction in 4.3 and so in the

dgsm categories of 4.2.

Theorem 12. The quasi-isomorphisms of 8.6,

HomO′(e
⊗i, e⊗j)⊗ HomO′(e

⊗j, e⊗k)
◦

- HomO′(e
⊗i, e⊗k)

HomCobar(Bar(C))[(e⊗i, e⊗j)⊗ HomCobar(Bar(C))[(e⊗j, e⊗k)

ϕij ⊗ ϕjk

? ◦
- HomCobar(Bar(C))[(e⊗i, e⊗k)

ϕik

?

respect the composition on the nose.

Proof. We show that the gluing conducted for composition is orbi-cellular with re-

spect to the cube decomposition of the classifying spaces. The composition on O′,

HomO′(e
⊗i, e⊗j)⊗ HomO′(e

⊗j, e⊗k)
◦

- HomO′(e
⊗i, e⊗k)

∐
g

C∗(BH(g,i+j,0); k)⊗
∐

g

C∗(BH(g′,j+k,0); k)

∼=
? ◦

-
∐

g

C∗(BH(g,i+k,0); k)

∼=
?

is constructed using maps,

◦ : C∗(BH(g,i+j,0); k)⊗ C∗(BH(g′,j+k,0); k)→ C∗(BH(g+g′+j−1,i+k,0); k)

which are in turn induced by maps

◦ : BH(g,i+j,0) ×BH(g′,j+k,0) → BH(g+g′+j−1,i+k,0)

There are k-homotopy equivalences
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BH(g,i+j,0) ×BH(g′,j+k,0)

◦
- BH(g+g′+j−1,i+k,0)

X ′
(g,i+j,0) ×X ′

(g′,j+k,0)

∼=

? ◦
- X ′

(g+g′+j−1,i+k,0)

∼=

?

from the space BH(g,i+j,0) to X ′
(g,i+j,0). The spaces X ′

(g,i+j,0) are stratified by orbi-

cells [G,F ] indexed by forested graphs (G,F ) having dimension determined by the

number of edges in F .

Residing above each orbi-cell is a collection of cells [G,F, ϕ] in Y ′
(g,i+j,0) indexed

in the orbit of the action of H(g,e,t) by their labellings ϕ. There is a group action,

H(g,i+j,0)
- Y ′

(g,i+j,0)

X ′
(g,i+j,0)

?

Given a cell [G,F, ϕ] of dimension n in Y ′
(g,i+j,0) and a cell [G′, F ′, ϕ′] of dimension

m in Y ′
(g′,j+k,0) there is a composite [G#G′, F ∪ F ′, ϕ#ϕ′] of dimension n+m and a

homeomorphism,

[G,F, ϕ]× [G′, F ′, ϕ′]→ [G#G′, F ∪ F ′, ϕ#ϕ′]

defined by identifying each cell with a cube in R#E(F ) as described in 8.4. These

homeomorphisms together produce the composition,

◦ : Y ′
(g,i+j,0) × Y ′

(g′,j+k,0) → Y ′
(g+g′+j−1,i+k,0)

this is equivariant with respect to the action of H(g,i+j,0) ×H(g′,j+k,0) on the left

and H(g+g′+j−1,i+k,0) on the right using the map

◦′ : H(g,i+j,0) ×H(g′,j+k,0) → H(g+g′+j−1,i+k,0)
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described in 6.1.1. That is, if a ∈ H(g,i+j,0), b ∈ H(g′,j+k,0) and a◦′b ∈ H(g+g′+j−1,i+k,0)

then,

[G,F, ϕ]× [G′, F ′, ϕ′]
◦

- [G#G′, F ∪ F ′, ϕ#ϕ′]

[G,F, ϕ ◦ a]× [G′, F ′, ϕ′ ◦ b]

a× b

? ◦
- [G#G′, F ∪ F ′, ϕ#ϕ′ ◦ (a ◦′ b)]

a ◦′ b

?

and so defines the desired composition on the quotient. For two cubes (G,F )

and (G′, F ′) choose honest cells [G,F, ϕ] and [G′, F ′, ϕ′] in the fiber above each in

the total space. Then the composition ◦ is orbi-”on the nose,”

[G,F, ϕ]× [G′, F ′, ϕ′]
∼=- [G#G′, F ∪ F ′, ϕ#ϕ′]

(G,F )× (G′, F ′)
?

- (G#G′, F ∪ F ′)
?

since the vertical arrows below are k-homotopy equivalences. Taking chains and

repeating the construction above to obtain the reduced complex it can be seen that

the differential obtained acts as a derivation with respect to this composition law.

Given the above following holds,

Corollary 9. The category of h-split O-modules is equivalent to the category of

Cobar(Bar(C)) algebras with a choice of invariant inner product.

Given the above and the discussion in 4.3,

Corollary 10. The category of h-split O modules is equivalent to the category of C∞

algebras with a choice of invariant inner product.



10 Extension and Torus

Recall that every dgsm category C yields a C −C bimodule, C ⊗Cop → Chk given

by

C(x× y) = HomC(y, x)

If X ,Y ⊂ C are subcategories then the action of C ⊗ Cop on C pulls back to an

action of X ⊗ Yop. The categories Ob(OC) and O are both subcategories of OC. In

this section we will study the open-closed category OC as a Ob(OC)−O bimodule.

We will see that it is flat and that given an O-module it determines the complex

associated to the torus object,

(OC ⊗O A)(t)

by the extension OC ⊗O − : O -mod → OC -mod. We will give an explicit

description of this complex.

10.1 The Boundary Torus

As noted in 8.4 the boundary tori in the forested graph stratification of the space

X ′
(g,e,t) are represented by trees containing the base vertex in addition to other parts

of the cycle representing the boundary torus. This was illustrated in 8.5.2. Using

the identification Theorem of 8.5,

C∗(X
′
(g,e,t); k) = G(g,e,t)(Bar(C)) ' G(g,e,t)(L

∗)
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We can think of the complex computing the relevant homology as trivalent graphs

containing forests, the trees of which satisfy the Jacobi (or IHX) relation - that is

graphs labelled by L(n)∗ or C∞ graphs, which by abuse of notation, will be denoted

G(g,e,t)(C∞). We will represent the boundary tori with subgraphs which for better or

worse we will call bonnets. The bonnet with n incoming legs will be denoted T (n).

Pedantically, the graph is an n+2 corolla with 2 edges sewn together labelled by the

generator mn+2.

n

The boundary of the trivial bonnet, T (0) is zero. While the boundary of the cell

associated to the tori derives from the differential in the Cobar construction of 4.3,

the sum over all edge expansions, which at the cellular level was shown to be the

same as the sum over all edge deletions in 8.5.2. With C∞ labellings this amounts

to all possible ways to expand a collection of k incoming edges into a product.

We will see in a moment that these generate OC as a Ob(OC)−O bimodule.

10.2 The Complex Associated with Extension

Theorem 13. The category OC when considered as an Ob(OC) − O bimodule is

freely generated by the bonnets T (n).

Proof. It follows from Corollary 5 in 8.6 that,

OC((e⊗n ⊗ t⊗m)⊗ o⊗k) =
∐

g

G(g,n+k,m)(C∞)

If G ∈ G(g,n+k,m)(C∞) is a basis element then G is a C∞ labelled graph from k

open edges to i open edges and j bonnets. We can inductively absorb any of the
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graph G that doesn’t involve the bonnets into an orbit of a torus under the action

of O.

We need only consider HomOC(o
⊗k, o⊗i ⊗ t⊗j) with i = 0 and j = 1. This is

because we can change incoming edges into outgoing edges and vice versa using the

inner product contained in the O action and multiple bonnets must be composites

of tori with respect to the open composition provided by the Cobar construction.

We now show that excluding the torus T (n) the remainder of the graph can be

absorbed into the action of O. In what follows the labellings of the graphs are drawn

on tiny disks taken to be small enough not to interfere.

Choose an embedding of G into R3 so that

1. The bonnet lies in the plane

R2 = {(x, y, 0)|(x, y) ∈ R2} ⊂ R3

2. The outgoing edges end in some fixed vertical translate R2 + (0, 0, n) with

n ∈ Z+.

3. Every internal vertex v ∈ G is at a distinct height h(v) ∈ Z, i.e. is the only

vertex contained in the plane R2 + (0, 0, h(v)).

After choosing an embedding that satisfies the first two conditions, the third

can be obtained by perturbing the graph if any two vertices are aligned and then

stretching the graph that results (there is no metric structure on the diagram) gives

three.

Then if n = 0 there are no vertices besides those contained in T (n). If n > 0

then the portion of the graph contained in the region

R2 × [n− 3/2, n] ⊂ R3

is a subgraph of G that can be identified as a composition of a single corolla with

one or more inner product operations. The rest follows by induction.
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Given a C∞ algebra A together with invariant inner product we know that A

defines uniquely an h-split O module which, by abuse of notation, we will also call

A. For each A the extension given by the tensor product allows us to define a functor

OC → Chk.

The two theorems above tell us that A defines an open-closed topological field

theory that is an h-splitOC module: i∗(A). While the open category as a subcategory

in OC must act according to the C[
∞ module structure determined by the operad

structure the chain complex associated to the torus t ∈ Ob(OC) is new structure

that is functorially determined by the geometry underlying this construction.

In what follows we unwind the definitions in order to determine the complex

associated to the torus object.

Observation. Let A be a homotopy commutative algebra with invariant inner prod-

uct then the complex i∗(A) associated to the boundary torus,

i∗(A)(T ) = (OC ⊗O A)(T )

is isomorphic to the complex Torus(A) defined below.

Recall that,

(OC ⊗O A)(t) =
⊕

j

OC(t, e⊗j)⊗k A(e⊗j) =
⊕

j

HomOC(e
⊗j, t)⊗k A

⊗j

Modulo the action of O given by the diagram,

OC(t, e⊗k)⊗O(e⊗j, e⊗k)⊗ A(e⊗j) - OC(t, e⊗j)⊗ A(e⊗j)

OC(t, e⊗k)⊗ A(e⊗k)
?

- (OC ⊗O A)(t)
?

As a left O -mod each f ∈ HomO(e⊗j, e⊗k) induces a map f∗ : A⊗j → A⊗k and as

a right O -mod each such f induces a map,
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f ∗ : HomOC(e
⊗k, t)→ HomOC(e

⊗j, t)

given by post-composition. If g⊗ e⊗k ∈ HomOC(e
⊗k, t)⊗A⊗k, the diagram above

amounts to the relation,

f ∗(g)⊗ e⊗k ∼ g ⊗ f∗(e⊗k)

Now each complex HomOC(e
⊗j, t) is quasi-isomorphic to a chain complex of graphs,

HomOC(e
⊗j, t) ' ⊕gG(g,e,t)(C∞)

containing one boundary torus and j outgoing edges which, by Theorem 13,

under the action of O is generated by the bonnets T (n). So each equivalence class

of (OC ⊗O A)(t) under the relation ∼ has a unique representative of the form,

k〈T (n)〉 ⊗k A
⊗n

The differential is determined by the internal differential δ of A and the sum of

all possible ways to add an edge to a collection of incoming edges at a vertex of the

boundary torus. The latter amounts to the sum over pictures,

ni k

ni - k + 1

The orientation of the graphs on the right hand side is taken to be the one

induced by the left hand side as described in the Cobar construction of section 4.3.

In algebraic form, let
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pTorus(A) =
∞⊕

j=1

A⊗j

Because the C∞ operad’s generators mn vanish on shuffle products and we’ve

labelled the bonnets by elements of it we must quotient pTorus(A) by the shuffle

relations. Define the shuffle product of tensors by,

(a1 ⊗ · · · ⊗ ai) ∗ (ai+1 ⊗ · · · ⊗ an) =
∑

σ∈Sh(i,n−1)

±aσ(1) ⊗ · · · ⊗ aσ(n)

and let I be the ideal of pTorus(A) generated by the images of the shuffle products

and define,

Torus(A) = Torus(A)/I

Then given the A∞ relation

d(a1⊗· · ·⊗an) =
∑

i+j=n+1
i,j≥2

n−j∑
s=0

(−1)j+s(j+1)a1⊗· · ·⊗mj(as+h+1⊗· · ·⊗as+h+j+1)⊗· · ·⊗an

An internal differential from A,

δ(a1 ⊗ · · · ⊗ an) =
n∑

i=1

a1 ⊗ · · · ⊗ ∂(ai)⊗ · · · ⊗ an

The differential on Torus(A) is given by the sum of the two above.

10.3 Flatness and Exactness

Given a homologically split O module or a C∞ algebra with invariant inner prod-

uct the inclusion i : O ↪→ OC induces an extension,

i∗(A) = OC ⊗L
O A
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In order for the extension to be an open-closed field theory in the sense discussed

in section 5.2 we must show that i∗(A) is h-split and in order to describe the complex

i∗(A)(t) a dramatic simplification can be made,

OC ⊗L
O A ' OC ⊗O A

by observing that as an Ob(OC) − O bimodule the category OC is flat. The

following theorems set out to accomplish the latter and the former.

In both cases the theorem follows because there is a natural filtration given on

the bimodule OC given by the degree of the bonnets. A bonnet with vertex labelled

by mn ultimately must come from a cell of underlying dimension n− 2. For instance

the bonnet in degree 0 represented by a trivalent graph must come from the trivial

forest (or zero dimensional cube) covering only the base point of the relevant cycle.

Define a filtration F of OC then so that F0OC contains the identity elements

of the open category OC(e⊗i, e⊗i) for all i and the associated graded GrnOC is

precisely the nth bonnet T (n). Since dT (n) is a sum of bonnets of lower degree this

is a filtration of complexes. This induces a filtration F on OC ⊗O A such that,

Grn(OC ⊗O A)(e⊗i ⊗ t⊗j)

consists of placing the identity factors on the i edges and labelling the j bonnets

by elements of A⊗n. Showing that this is true is a computation nearly identical to

that of the previous section.

We will exploit the following familiar lemma,

Lemma 7. If ϕ : A → A′ is a map of filtered complexes such that ϕ0 : F0A →
F0A′ is a quasi-isomorphism and ϕ∗ : GrnA→ GrnA′ is a quasi-isomorphism then

ϕn : FnA → FnA′ is a quasi-isomorphism for all n. In particular ϕ is a quasi-

isomorphism.

Theorem 14. If A is an h-split O-module then OC ⊗O A is an h-split Ob(OC)-
module.
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Proof. We must check that the maps,

(OC ⊗O A)(x)⊗ (OC ⊗O A)(y)→ (OC ⊗O A)(x⊗ y)

Are quasi-isomorphisms. Since this is true in filtration degree 0 it follows by

induction if it holds for the associated graded. A collection of i bonnets labelled

by A tensored with a collection of j bonnets labelled by A is quasi-isomorphic to a

collection of i+ j bonnets labelled by A.

Theorem 15. As an Ob(OC) − O bimodule OC is O flat. That is, the functor

i∗ : O -mod→ Ob(OC) -mod given by

i∗(A) = OC ⊗O A

is exact.

Proof. Given a quasi-isomorphism of C∞ algebras ϕ : A→ A′. We must check that

the induced map,

OC ⊗O A→ OC ⊗O A′

Is a quasi-isomorphism. Since this is true in filtration degree 0 it follows by

induction if it holds for the associated graded.

Grn(OC ⊗O A)→ Grn(OC ⊗O A′)

Is the map between bonnets labelled by tensor powers of A and A′ induced by ϕ

and so a quasi-isomorphism.

10.4 Deligne’s Conjecture

Corollary 11. There is an action of the category C on the complex Torus(A) specif-

ically,
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HomC(t
⊗i, t⊗j)⊗ Torus∗(A)⊗i → Torus∗(A)⊗i

Proof. Notice if we consider A as a O -mod and OC as an OC − O bimodule then

we can define an OC module associated to A by OC ⊗O A. Given the inclusion

i : C ↪→ OC then i∗(OC ⊗O A) is a C -mod. If X = i∗(OC ⊗O A)(t) is the chain

complex associated to the torus there is an action,

HomC(t
⊗i, t⊗j)⊗X⊗i → X⊗j

which gives rise to the homology action,

H∗(HomC(t
⊗i, t⊗j))⊗H∗(X)⊗i → H∗(X)⊗j

Earlier we considered OC as an Ob(OC)−O bimodule and saw that Torus(A) =

j∗(OC⊗OA). On the other hand the complex associated to the torus is independent

of the choice of Ob(OC) verses OC in considering OC as a bimodule. In either case

the definition is the same,

j∗(OC⊗OA)(t) =
⊕

k

HomOC(e
⊗k, t)⊗A(e⊗k) =

⊕
k

(⊕
g

G(g,k+0,1)(C∞)

)
⊗A(e⊗k)

So X is the same as Torus(A).

10.5 Harrison Homology

The operad C∞ being quasi-isomorphic to the operad C implies that the cate-

gories of differential graded homotopy commutative algebras and differential graded

commutative algebras are equivalent. In what follows we define the Harrison complex

for a dg commutative algebra.
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Barr defined the Harrison complex of an associative commutative algebra to be

the subcomplex CH∗(A,A) ⊂ C∗(A,A) of the Hochschild complex spanned by the

cokernel of the shuffle product on the free tensor algebra of A [Bar68].

Given the Barr complex of a differential graded associative algebra,

C∗(A,A) =
⊕
n=0

A⊗n+1

and its differential

d(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

±a0 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ an

±m2(a0, an)⊗ a1 ⊗ · · · ⊗ an−1

+
n−2∑
i=0

±a0 ⊗ · · · ⊗m2(ai, ai+1)⊗ · · · ⊗ an−1

The subcomplex of shuffle products is spanned by the set,

Sh∗(A,A) = {(a1 ⊗ · · · ⊗ ai) ∗ (ai+1 ⊗ · · · ⊗ an)|1 < i < n}

Then the Harrison complex is defined to be the quotient of the Barr complex by

the subcomplex of shuffles.

CH∗(A,A) = C∗(A,A)/ Sh∗(A,A)

Observation. Given an associative commutative algebra A. The Harrison complex

of A can be identified with the chain complex associated to the torus: Torus(A).

The observation is supported by the agreement between the internal differential

in both cases. For a differential graded commutative algebra mn = 0 for n > 2 and

the second differential involving higher A∞ terms becomes the second part of the

sum above.
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