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The evolution and emergence of pathogens is subject to a wide array of ecological and evo-

lutionary forces acting at multiple mechanistic scales. Theoretical work regarding pathogen

emergence has largely neglected the influence of selection acting at multiple scales, and

methodologies for analyzing cross-scale data are scarce. Chapter one presents a novel

cross-scale model of evolutionary emergence, considering selection the effect of selection

at within-host and between-host scales on the evolutionary emergence of novel pathogens.

The stochastic population genetic model demonstrates the complexities that arise when con-

sidering pathogen emergence at multiple scales: positive correlations between fitness can

unexpectedly hasten emergence, conflicts across scales can lead to evolutionary dead ends,

and evolution of the pathogen can be disproportionately influenced by neighboring geno-

types in the fitness landscape. Chapter two builds upon the foundation of the stochastic

modeling framework introduced in chapter one, and explores the application to drug resis-

tance. This analysis shows that varying selection regimes, arising from prophylactic drug

use and intermittent treatment compliance, interact with the fitness of the resistant geno-

type to create trade-offs between epidemic control and drug resistance outcomes. Chapter

three addresses the empirical domain of cross-scale analysis, and presents a framework for

jointly estimating within-host and between-host fitness using a Bayesian data augmentation

approach. Data at the within-host and between-host scales from influenza A transmission
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experiments in ferrets are used as a real-world case study to explore how fitness values at

the two scales are correlated, and to determine how these parameter estimates can aid in

predicting influenza transmissibility in humans. Despite small sample sizes, this approach

was validated using simulated data, demonstrating a promising methodology for analyzing

pathogen data at multiple scales. The body of work presented here introduces novel frame-

works for theoretical development, presents new methodologies for analyzing pathogen data,

and highlights the importance of considering multiple scales of selection acting on pathogen

evolution and emergence.
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CHAPTER 1

Multiple scales of selection influence the evolutionary

emergence of novel pathogens

Miran Park, Claude Loverdo, Sebastian J. Schreiber, James O. Lloyd-Smith

1.1 Abstract

When pathogens encounter a novel environment, such as a new host species or treatment

with an antimicrobial drug, their fitness may be reduced so that adaptation is necessary

to avoid extinction. Evolutionary emergence is the process by which new pathogen strains

arise in response to such selective pressures. Theoretical studies over the last decade have

clarified some determinants of emergence risk, but have neglected the influence of fitness on

evolutionary rates and have not accounted for the multiple scales at which pathogens must

compete successfully. We present a cross-scale theory for evolutionary emergence, which

embeds a mechanistic model of within-host selection into a stochastic model for emergence

at the population scale. We explore how fitness landscapes at within-host and between-host

scales can interact to influence the probability that a pathogen lineage will emerge success-

fully. Results show that positive correlations between fitnesses across scales can greatly

facilitate emergence, while cross-scale conflicts in selection can lead to evolutionary dead

ends. The local genotype space of the initial strain of a pathogen can have disproportionate

influence on emergence probability. Our cross-scale model represents a step toward integrat-

ing laboratory experiments with field surveillance data to create a rational framework to

assess emergence risk.
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1.2 Introduction

Emerging infectious diseases impose major health and economic burdens worldwide, and

arise through a range of ecological and evolutionary mechanisms [41, 30, 35]. A recurring

theme in many emergence events is that a pathogen lineage is exposed to a novel environ-

ment (e.g. a new host species or an antimicrobial drug) in which its fitness is reduced. When

the initial pathogen genotype has fitness below the replacement level, the pathogen lineage

will go extinct unless it adapts quickly enough to improve its fitness and successfully invade

this new environment (e.g. new host species) or escape a lethal selection pressure (e.g. drug

or vaccine) [27]. Adaptation can occur at several evolutionary stages and through different

mechanisms, and key mutations may occur in the reservoir or the novel environment [48].

Here we focus on evolution in the novel environment, and we call this process evolutionary

emergence. There is growing evidence that such adaptation has played an important role in

host jumps of viruses such as influenza and SARS-CoV [47, 48]. Studying the evolutionary

dynamics of this process, and linking theory to current empirical efforts that characterize

the basic determinants of viral fitness, is an important frontier in understanding conditions

that favour pathogen emergence. Developing theoretical tools allows us to assess possible

emergence threats and what ecological and evolutionary mechanisms facilitate emergence.

The acute need for such progress is evident from the recent controversy surrounding the

reports that just a few mutations are sufficient to enable airborne transmission of highly

pathogenic H5N1 avian influenza virus among mammals [26, 24, 15].

Empirical research on pathogen evolution is defining the dimensions of the problem of evo-

lutionary emergence. Notable steps have been taken toward mapping the fitness landscapes

associated with pathogen emergence events, by measuring the fitness (or a proxy for fitness)

of pathogen genotypes and effects of pertinent mutations [49]. Two studies have mapped

the fitness landscapes associated with development of drug resistance in E. coli and Plas-

modium falciparum genes, by phenotyping all intermediate genotypes bearing some subset

of the resistance mutations [59, 37]. Another recent study has extended this comprehen-
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sive approach to a viral host jump, studying capsid protein mutations in canine parvovirus

[57]. A related strategy, taken by the H5N1 influenza studies cited above [26, 24] and across

the literature for other emerging viruses such as SARS-CoV [48], is to characterize several

traits associated with fitness for a more limited set of genotypes that comprise a putative

pathway to emergence. A powerful complementary approach has tracked viral evolution in

vivo by measuring changes in genotype frequencies in the course of experimental infection

and transmission studies [26, 24, 25, 43, 44]. Ultimately, the aim is to connect these various

experimental approaches to genotype frequencies detected in field surveillance, either before

[53] or after [10] an emergence event occurs.

A conspicuous pattern arising from empirical studies is that measures of pathogen fit-

ness (or fitness components) can be taken at different biological scales. For instance, recent

studies of H5N1 influenza report cell receptor binding, viral titers in different tissues, in vivo

replication kinetics, airborne transmission efficiency, and time to host death for a range of

viral genotypes [26, 24]. These diverse empirical measures of fitness support the need to

distinguish within-host fitness, describing the pathogen’s ability to grow within infected in-

dividuals, from between-host fitness, or transmissibility. Given a set of pathogen genotypes,

we must define separate fitness landscapes corresponding to within-host and between-host

fitness, i.e. each genotype has a fitness at both scales. This aligns with current research

in other domains of infectious disease dynamics [26, 24, 44], and opens the possibility of

conflicts, correlations, or other interactions among selective forces acting at multiple scales,

which can profoundly influence evolutionary outcomes [60, 33, 45].

The fitnesses of particular pathogen genotypes at within-host and between-host scales

are not always positively correlated. Higher pathogen loads often lead to higher rates of

transmission [18, 51, 5], in which case there may be positive correlation between fitnesses

at the two scales. However, as explored in the extensive literature on virulence evolution,

various costs can cause total transmissibility to decline if the pathogen load gets too high

[19, 50]. Different pathogen life histories and tissue tropisms may also influence the relation-
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ship between fitnesses across scales. For bloodborne pathogens we would expect a positive

correlation between pathogen load and infectiousness; indeed this is observed for HIV-1

set-point viral load, although a concomitant effect on the duration of infection causes total

transmissibility to peak at intermediate viral load [18]. Thus the correlation between within-

host fitness (as reflected by viral load) and between-host fitness can be positive or negative.

Similarly, pathogens that infect numerous tissue types, or that involve intermediate hosts or

environmental stages in transmission, can exhibit complex relationships between fitnesses at

the two scales. A well-known and relevant example is the tissue tropism of influenza virus,

where higher binding affinity for different conformations of sialic acid on epithelial cells leads

viruses to target the upper or lower respiratory tract. A viral mutation that increases affinity

for the α-2,3 conformation might increase within-host replication while decreasing transmis-

sibility by moving the infection deeper into the lung [52]. Such tissue tropism is thought to

be a crucial determinant of host adaptation for influenza [26, 24], so it is possible that cross-

scale conflicts in selection play an important role in evolutionary emergence. We now know

that circulating strains of H5N1 avian influenza are within a few mutations of genotypes

that transmit much more efficiently among mammals [26, 53, 34]. Many mammals (human

and otherwise) have been infected with H5N1 influenza – why haven’t these transmissible

genotypes arisen, given that they certainly would confer a fitness benefit to the virus in

mammal populations? One possible explanation is that these transmissible genotypes (or

intermediate genotypes en route to them) are less fit at the within-host scale so they might

not rise to high enough frequencies within hosts to realize their transmission advantage.

Translating our growing empirical knowledge of pathogen phenotypes into an improved

understanding of emergence risks will require analytical methods to integrate the key mech-

anisms across scales. Theoretical study of pathogen emergence has previously focused on

evolutionary invasion at the host population scale: an introduced pathogen exhibits weak

transmission in the novel host environment, and must mutate to higher transmissibility

before the transmission chain dies out. Stochastic models such as multi-type branching pro-

cesses have been used to compute the probability of emergence for simple genotype spaces
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and corresponding (between-host) fitness landscapes [6, 27]. These studies have yielded

important insights, showing that even when initial transmissibility is too low to start an

epidemic, higher values of transmissibility (bringing the pathogen closer to the threshold for

sustained spread) lead to greatly increased probability of evolutionary emergence [6]. Sub-

sequent work has explored the influence of epidemiological complexities [62, 7, 1], but key

elements of the evolutionary dynamics have not yet been addressed. Crucially, the model

parameters describing evolutionary change of the pathogen have been assumed not to depend

on the fitnesses of the genotypes involved. Within-host fitness, and the consequent action

of within-host selection, has not been included. André & Day [4] contributed the valuable

extension of considering selective sweeps during the course of an individual’s infection, but

similarly to previous work the rate of fixation of new mutants was assumed not to depend on

the strength of selection within hosts. These omissions separate the current theory from the

empirical evidence, which largely focuses on within-host fitness [48], and overlook the fact

that selection acts most immediately within a host, as pathogen genotypes compete with

each other for target cells or other resources or to escape the immune system [3, 28, 42].

We present a theoretical framework to study how the evolutionary emergence of pathogens

is influenced by selection at within-host and between-host scales. Our aim is to create a

tractable cross-scale model from which analytical insights and biological intuition can be

derived. We represent the between-host scale using multi-type branching processes as in

previous models [6, 4]. However, instead of assuming equal rates of mutation between all

pairs of genotypes, we introduce a sub-model for within-host selection based on population

genetic theory. In particular, we follow the approach used in recent analyses of mutational

trajectories in empirical fitness landscapes [59, 37, 12] and apply the strong selection, weak

mutation (SSWM) limit to derive a compact representation of adaptive evolution [21]. Using

this framework, we analyze how fitness landscapes at within-host and between-host scales

can interact to influence the probability that a pathogen lineage will emerge. Here we focus

on the mechanisms involved in host jumps of pathogens, because our model describes inva-

sion of a pathogen into a large susceptible population; later we discuss how this model could
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be applied to other emergence situations such as developing resistance to an antimicrobial

drug. At the within-host scale, selection acts on relative fitnesses of adjacent genotypes,

with strong selection leading to rapid fixation of new beneficial mutants. At the between-

host scale, we consider a stochastic transmission framework that depends on the absolute

fitness of neighboring genotypes, where individuals are infected with a particular genotype.

We explore two scenarios of simple genotype spaces, illustrating basic principles of multi-

scale selection in this context, and exploring the potential for emergence to be prevented by

evolutionary conflicts across scales. We hope that this cross-scale mechanistic model begins

to bridge the gap between the growing body of empirical data from laboratory experiments

and pathogen sequencing studies, and large-scale public health questions about emergence

risk. We conclude by discussing necessary extensions and possible links to empirical studies.

1.3 A cross-scale model of evolutionary emergence

1.3.1 Defining the system

Studying the evolutionary dynamics of pathogen populations at multiple scales can lead

to substantial complexity, so it is necessary to make simplifying assumptions. Following

earlier work [6, 4], we assume that each infected host has a single pathogen genotype at any

point in time, and we characterize the host individual by this type. Parameters are marked

with a subscript or superscript i corresponding to the pathogen genotype in question. We an-

alyze evolutionary dynamics on a defined genotype space, which consists of a set of pathogen

genotypes and the pathways of mutation that connect them. A mutation is broadly defined

as a change at a specific locus in the genome giving rise to a new genotype; this can include

point mutations, insertions, deletions, or other mechanisms of genetic change. Each pathogen

genotype has two measures of fitness associated with it, corresponding to the within-host

and between-host scales; these define two fitness landscapes over the genotype space. At the

between-host scale, the fitness of the pathogen corresponds to its ability to transmit through

the population. At the within-host scale, the fitness of the pathogen describes how well it
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replicates within a host. For our analyses, we create case studies of fitness landscapes and

explore how they interact to drive pathogen evolution.

The between-host fitness of genotype i is given by the reproductive number, R
(i)
0 , which

is the average number of secondary infections caused by a type-i host in a completely sus-

ceptible population. For our evolutionary emergence problem, we consider a pathogen that

is initially maladapted to the novel environment, i.e. genotype 1 has R
(1)
0 < 1. Such a

pathogen causes short chains of transmission but goes extinct with certainty if it does not

evolve. Through mutation and selection, which we treat as within-host processes, new geno-

types can arise and fix in some host individuals. Eventually the pathogen lineage may reach

an ‘emergence genotype’ with R
(i)
0 > 1, which has a non-zero chance of successfully invading

the new host population.

For our numerical work we consider simple scenarios for which the initial and intermedi-

ate genotypes always have R
(i)
0 < 1 and there is only one emergence genotype. We calculate

the probability that the emergence genotype arises and successfully invades the host popu-

lation, P (emergence), using techniques described below. Calculating P (emergence) allows

us to compare interactions between different fitness landscapes, lending an understanding of

general trends that arise as selection acts across scales.

1.3.2 Between-host transmission dynamics

Building on existing literature in evolutionary emergence [4], we use a continuous-time

multitype branching process to model the stochastic dynamics of transmission, recovery, and

genotype change at the population scale. The model tracks the population dynamics of in-

fected individuals, which are classified according to the pathogen genotype of their infection.

We assume a well-mixed homogeneous population in which the number of susceptibles is

large enough that it is not significantly depleted by the limited number of cases that occur
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before pathogen emergence.

Each infected host of type i infects other host individuals at a constant rate bi, giving rise

to an additional infected host of the same type, and ceases to be infectious (through recovery

or death) at a rate di. The reproductive number for type i is R
(i)
0 = bi/di. Within-host evo-

lutionary processes cause the dominant genotype to change from type i to type j at a rate

mi,j during the course of an individual’s infection, where mi,j = 0 for a genotype j that is

more than one mutational step away from genotype i. During a small time interval of length

∆t, these events occur with approximate probabilities bi∆t, di∆t, and mi,j∆t, respectively.

1.3.3 Within-host evolutionary dynamics

Previous models of evolutionary emergence assume that substitution rates do not depend

on the fitnesses of the genotypes involved. Here, we replace this assumption with a mechanis-

tic model for within-host evolution, which we embed within the branching process framework

used for population-scale dynamics. To represent the key population genetic mechanisms in

a compact manner, we use the strong selection, weak mutation (SSWM) paradigm [21].

In the SSWM limit, strong selection means that only beneficial mutations are considered,

and mutation rates are sufficiently low that simultaneous mutation events can be neglected.

The simplicity of the SSWM limit arises because beneficial mutations go to fixation much

faster than new mutations arise, so at any point in time the population is essentially fixed

for some genotype. This fixed genotype can only be displaced by pathogen genotypes with

higher within-host fitness.

The SSWM assumption allows changes in the infectious genotype within the host to

be modelled as a continuous time Markov chain [21]. We begin by defining the absolute

within-host fitness of a particular genotype i as wi. The relationship between the absolute
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within-host fitness of genotype i and that of a different genotype j is wj = (1+si,j)wi, where

si,j is the selection coefficient of the genotype j invading a system with genotype i at its

equilibrium. If the current genotype within the host is type i and a substitution occurs, the

probability that type j fixes next is given by si,j/
∑
k∈Mi

si,k, where Mi is the set of genotypes

that are a single mutational step away from genotype i. The waiting time before the next

jump occurs is dependent on the size of the virus population, N , and the mutation rate, µ,

and is exponentially distributed with mean proportional to 1/(Nµ
∑
k∈Mi

si,k) [21]. Therefore

in the SSWM limit we can express the substitution rate for each genotype j:

mi,j ∝ Nµsi,j. (1.1)

The population size N and mutation rate are assumed to be constant; in the Appendix we

present a derivation of equation (1.1) from a model of within-host viral dynamics which leads

to an alternative interpretation of these quantities when SSWM is applied to viruses. From

this derivation we are able to make intuitive connections between our model and traditional

ideas in population genetics, broadly supporting the use of the SSWM framework for within-

host evolution. Calculating mi,j from equation (1.1) requires a constant of proportionality;

for our numerical calculations, we set this constant to 0.4 following the original assumption

by Gillespie (who interpreted it as a measure of the strength of selection) [21]. While this

choice is arbitrary, it does not affect the qualitative results, as it affects all substitution rates

equally and the timescales of these processes are otherwise arbitrary.

The SSWM model for within-host evolution means that a higher relative fitness of a

neighboring genotype leads to a faster rate of substitution, so in general each step through

genotype space has a different speed at which it occurs. The biological basis for this effect

derives from the probability of fixation of a new genotype when it first arises within a host.

A greater fitness advantage for the new genotype leads to a higher likelihood that it will fix

after it arises. Consequently, even if all neighboring genotypes arise at the same rate, the

rate of substitution is faster when the relative fitness difference is large.
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1.3.4 Calculating the probability of emergence

The branching process model gives us a framework to calculate the probability of emer-

gence P (emergence). For our models, there are two ways to compute the emergence prob-

abilities from the embedded discrete-time branching process: numerically using standard

methods [23] or using the exact solutions we derive in the Appendix. While both approaches

yield the same results, we only present results based on the exact solutions. To gain intu-

ition into the determinants of emergence, we also present a simple approximation for the

probability of emergence in the limit of low initial between-host fitness (low R
(1)
0 ) and low

mutation rates.

We first consider a simple, sequentially connected chain of genotypes, where for each

genotype, there exists only one “neighboring” genotype that is more fit. If the Lth genotype

is the emergence genotype with R
(L)
0 > 1, then we can derive an approximation for the

probability of emergence, combining elements of arguments from Iwasa et al. [27] and André

& Day [4], and using branching process theory:

P (emergence)seq. ≈
(

1

1−R(1)
0

)(
m1,2

m1,2+d1

)
· · ·
(

1

1−R(L−1)
0

)(
mL−1,L

mL−1,L+dL−1

)(
1− 1

R
(L)
0

)
. (1.2)

This expression breaks down into three biologically meaningful factors. Each factor of 1

1−R(i)
0

is the expected number of infections in a subcritical chain of transmission initiated by a

type-i individual in the absence of evolution. The factors
mi,j

mi,j+di
give the probability of the

fixed genotype changing from type i to type j before recovery or death of a host infected

with type i. The final factor, 1 − 1

R
(L)
0

, is the probability that the emergence genotype will

successfully invade the host population if it arises in a single host individual.

We can extend this approximation to the more general case of an arbitrary genotype

space. To estimate the probability of emergence starting with one infected individual of
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type 1, let L− 1 be the minimal number of mutational steps from the initial genotype to an

emergence genotype. The probability of emergence will be proportional to µL−1 as longer

paths to emergence add terms of order µL or higher (though note that factors of µ are implicit

in mi,j). Let P be the set of mutational pathways of length L, each spanning genotype i1 to

an emergence genotype iL. Then the probability of emergence can be approximated as:

P (emergence) ≈
∑

(i1,...,iL)εP

(
1− 1

R
(iL)
0

)
L−1∏
k=1

1

1−R(ik)
0

mik,ik+1

(mik,ik+1
+ dik)

. (1.3)

Each term within the summation corresponds to a particular mutational pathway, and

matches the approximation shown in equation (1.2). The low mutation rate assumption

allows us to neglect outcomes where more than one virus lineage reaches emergence. In the

analyses presented below, we illustrate that the approximation works well through most of

the parameter range considered.

1.4 Effects of cross-scale selection on pathogen emergence

We analyze two scenarios to explore the possible influence of multiple scales of selection

on evolutionary emergence. In the first scenario we consider a simple genotype space, and

a basic set of qualitatively distinct fitness landscapes, to understand the fundamentals of

how fitness landscapes at the two scales interact to produce evolutionary outcomes. In the

second scenario we extend these fitness landscapes to consider multiple competing pathways

of pathogen evolution, creating the potential for conflict across scales.

1.4.1 Scenario 1: Exploring interactions between scales of selection in a simple

genotype space

We consider a simple genotype space, with three genotypes sequentially connected in a

chain and explore how selection at different scales impacts disease emergence (Figure 1). To
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distinguish fitness landscapes in our scenarios from the general theoretical results presented

above, we refer to these particular genotypes by a capital letter and numerical subscript i,

e.g. genotype A1.

At the between-host scale we consider three fitness landscapes (Figure 1(a)). We explore

scenarios where the initial and emergence genotypes have fixed fitnesses, and explore the

landscapes arising from differing fitnesses of the intermediate genotype. In the “jackpot”

landscape, between-host fitness does not change until the pathogen reaches the emergence

genotype (and thus hits the jackpot) (R
(1)
0 = R

(2)
0 < R

(3)
0 ). In the “uphill” landscape, the

fitness increases with each step through genotype space (R
(1)
0 < R

(2)
0 < R

(3)
0 ). We arbitrarily

choose fitnesses that increase linearly for this example. In the “valley” landscape, the fitness

of the intermediate genotype is lower than the fitness of the initial genotype, so the pathogen

must traverse a valley of lower fitness to reach emergence (R
(1)
0 > R

(2)
0 � R

(3)
0 ) (Figure 1(a)).

For simplicity, in all of our examples, we assume rates of recovery or death (di) are equal

across genotypes. Variation in the recovery or death rates di lead to qualitatively similar

results, though the probabilities of emergence increase more rapidly with R
(1)
0 = R

(2)
0 because

the rising reproductive numbers correspond to longer infectious periods 1/di, allowing more

time for substitution events to occur [4].

At the within-host scale, only pathways with increasing fitness are relevant under the

SSWM framework, so we consider three cases that span the qualitative range of possible

fitness landscapes, given that we fix the fitnesses of the initial and emergence genotypes

(Figure 1(b)). We define the “equal-rate” landscape as the case that has equal gains in

relative fitness when moving from the initial to the intermediate genotype, and from the

intermediate to the emergence genotype. Under the SSWM model for within-host evolution,

this yields equal substitution rates for the two mutational steps (m1,2 = m2,3). We note that

the equal-rate landscape under SSWM corresponds to previous models that have assumed

equal substitution rates and no back-mutations. The “fast-slow” landscape has a greater

fitness gain from the initial to the intermediate genotype than from the intermediate to the
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terminal genotype; thus the substitution rate for the first substitution is faster than the sec-

ond (m1,2 > m2,3). The “slow-fast” landscape is the opposite case, with the substitution rate

for the first substitution slower than the second (m1,2 < m2,3). We assume a symmetry of

fitnesses between the fast-slow and slow-fast landscapes, for ease of comparison: m1,2 in the

fast-slow case is equal to m2,3 in the slow-fast case and vice-versa. To depict the within-host

fitness landscapes, we plot the logarithm of the absolute fitnesses wi. This emphasizes the

multiplicative relationships that define relative fitnesses which drive the SSWM framework.

For example, the equal-rate landscape is linear in log-scaled absolute fitness (Figure 1(b)).

The approximation (equation (1.2)) shows that the probability of emergence is maxi-

mized when m1,2 = m2,3. This is because, when the fitnesses of the initial and emergence

genotypes are fixed, the product of substitution rates is maximized when the rates are equal

(and hence when the relative fitnesses for each genotype transition are equal). This in turn

maximizes the overall probability of emergence, since faster substitution means less chance

that the competing recovery rates di will prevail. This outcome can also be explained through

Jensen’s inequality [29], because the logarithm of the product of terms
mi,j

mi,j+di
in equation

(1.2) is concave down as a function of mi,j. Thus we expect anything other than the equal-

rate case to have lower probability of emergence, because variation in the mi,j’s decreases

the value of this product. We test this prediction, and illustrate the interplay between fitness

landscapes at different scales, by considering how the probability of emergence for a jackpot

between-host landscape is affected by different within-host fitness landscapes (Figure 2(a)).

The equal-rate scenario has the highest probability of emergence, as we predicted; we also

see that the approximation (equation (1.2)) is quantitatively accurate through most of the

parameter range considered (Figure 2(b)). The fast-slow and slow-fast cases have virtually

identical probabilities of emergence, given the jackpot between-host landscape and our as-

sumption of symmetry between the fast-slow and the slow-fast landscapes.

We can explore the different qualitative interactions across scales by varying the interme-

diate values for both within-host and between-host fitness landscapes, fixing the initial and
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emergence fitnesses at both scales. Figure 3(a) shows how the probability of emergence varies

across a range of possible intermediate values, spanning from valley to uphill landscapes for

the between-host scale, and from slow-fast to fast-slow landscapes at the within-host scale.

The probability of emergence increases going from a valley to uphill between-host land-

scape (i.e. along the horizontal axis), as expected intuitively and known from earlier studies

[6, 4, 27]. Considering different within-host landscapes, we see that the probability of emer-

gence is maximal close to the equal-rate case, as predicted from the approximation, but

deviations from this pattern arise from interactions between the fitness landscapes at each

scale. For clarity, we focus on the three within-host landscapes shown in Figure 1(b), and

track how the probability of emergence varies as the between-host fitness of the interme-

diate state increases (Figure e(b); shown as slices of the plot in Figure 3(a)). When the

intermediate between-host fitness is greater than the initial fitness (R
(2)
0 > R

(1)
0 ), it is more

advantageous for the pathogen to mutate immediately and gain the between-host fitness

advantage so the fast-slow scenario is more favorable for emergence. When the intermediate

fitness is below the initial fitness (R
(2)
0 < R

(1)
0 ), it is more advantageous for the pathogen to

spend less time in the intermediate state, so the slow-fast scenario is more favorable for emer-

gence (Figure 3(b)). Based on these arguments, we would expect the curves for the slow-fast

and fast-slow cases to cross at R
(2)
0 = 0.5, the fitness of the initial genotype. However, the

crossing point is shifted slightly in favor of the fast-slow scenario, reflecting an additional

evolutionary benefit to spending more time in the A2 genotype. All else equal, it is beneficial

to spend more time in the A2 genotype than the A1 genotype, because all new cases infected

by an A2-infected individual are born into the A2 genotype (and have a chance of mutating

directly to the A3 genotype) and thus have a head-start towards emergence. (This effect also

causes the slight inequality between emergence probabilities for the slow-fast and fast-slow

landscapes in figure Figure 2(b)). This scenario illustrates how selection can interact across

scales in non-obvious ways, as the geometry of the within-host fitness landscape can shift

between-host outcomes and change the expected probabilities of emergence.
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1.4.2 Scenario 2: Alternative pathways illustrate the potential for conflict across

scales

To explore the potential for conflicts in selection pressure across scales to influence

pathogen emergence, we extend our analysis to a more complex scenario where two neigh-

boring mutations are available to the initial genotype B0: one that leads to a pathway of

decreasing between-host fitness and eventual extinction (B′1, B
′
2), and one that leads to a

pathway of increasing between-host fitness and possible emergence (B1, B2). We assume that

these pathways have linearly decreasing or linearly increasing between-host fitness values,

respectively (Figure 4(a)). As a first exploration of interactions across scales, we consider

simple within-host scenarios by fixing the extinction pathway (B′1, B
′
2) to have a particular

equal-rate landscape and exploring the space of possible equal-rate landscapes for the emer-

gence pathway (B1, B2) (Figure 4(b)). This creates a potential conflict at the two scales for

some pathways (i.e. when the within-host landscape for the emergence pathway (B1, B2)

is relatively flat) as within-host selection favours the pathway that leads to extinction at

the between-host scale. We summarize this effect with the Pearson’s correlation coefficient

between the fitness values at the within-host scale (wi) and the fitness values at the between-

host scale (R
(i)
0 ) for each genotype. When within-host fitness is negatively correlated with

between-host fitness (i.e. when (B1, B2) is flat), the probability of emergence is low. The

emergence probability drops drastically as the negative correlation becomes stronger, as the

lineage almost always evolves into the extinction pathway; in effect, the lineage is lured into

an evolutionary dead end. When within-host fitness is positively correlated with between-

host fitness, then the probability of emergence is higher as the lineage almost always evolves

along the emergence pathway (Figure 4(c)).

To explore the generality of these insights, we examine a much broader set of scenar-

ios by assigning random values to the within-host fitnesses of all genotypes (B′1, B
′
2, B1, B2)

(Figure 5(a,b)). The positive association between the probability of emergence and the cor-

relation of fitnesses across scales is maintained (Figure 5(c)). There is significant scatter in
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the relationship, because the correlation is influenced by the fitnesses of genotypes B2 and

B′2, which may have minimal influence on the probability of emergence depending on the

fitnesses of B1 and B′1. Thus, having a high correlation between the two fitnesses at the two

scales does not necessarily mean the lineage will be drawn towards the emergence pathway

by within-host selection. Additionally, because correlation describes the linear dependence

between the fitnesses at both scales, it becomes a less appropriate measure given the nonlin-

earity of the within-host fitness values. To clarify this relationship, we plot the probability of

emergence versus the probability that the first mutational step is to genotype B1 and there-

fore the emergence pathway (Figure 5(d)). This shows a strong positive relationship with

less scatter, indicating that the probability of emergence is influenced powerfully by which

evolutionary pathway is taken by the pathogen population, and hence by the within-host

fitnesses of the mutational neighbors of the introduced strain. The residual scatter comes

from randomly-generated landscapes for genotypes B1 and B2 that correspond to the fast-

slow scenario. A high within-host fitness w1 leads to a high probability of stepping toward

emergence, but then the fitness w2 is only marginally higher, so the substitution rate m1,2

is slow and there is a high likelihood that the lineage never reaches emergence. The strong

influence of the first mutational step partially results from the absence of back-mutations

(a consequence of strong selection), which means if the first mutational step is towards the

extinction pathway (which may be favorable at the within-host scale despite its cost at the

between-host scale) the pathogen is unable to reach emergence.

1.5 Discussion

We have presented a cross-scale model of evolutionary emergence of pathogens, drawing

on population genetic theory to embed a mechanistic model for within-host selection into a

branching process model for population-scale emergence. Our results show that within-host

fitness plays an important role in evolutionary emergence and that interactions between se-

lection pressures at the within-host and between-host scales can have a substantial effect
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on the probability of emergence. A growing number of studies are mapping the structure

of within-host fitness landscapes for pathogens [14, 17, 8], making it clear that within-host

selection plays a non-trivial role in real-world emergence scenarios. At the same time, em-

pirical research has started to measure fitness at multiple scales [26, 24] and track cross-scale

evolution [43, 44, 46] for pathogens linked to emergence events. Improving our understand-

ing of pathogen emergence in novel environments requires integration of evolutionary and

ecological phenomena across scales [48]. Our model provides a framework to begin this in-

tegration, offering the potential of coupling phenotypic data from experimental studies to

pathogen genotypes detected in field surveillance.

The most important results of our analysis are the qualitative insights about the relative

risk of different emergence pathways. Our simulations illustrate two key points about the

interactions between selection at the within-host and between-host scales when multiple evo-

lutionary trajectories are available. First, and most broadly, positive correlations between

the fitnesses across scales increase the likelihood of emergence. Because within-host selection

drives movement through genotype space, this conclusion is consistent with theory showing

that positive correlations between fitness and dispersal patterns increase the establishment

likelihood of invasive species [55]. This also echoes themes from prior theoretical studies of

the influence of cross-scale selection on the evolution of virulence, which have emphasized

the importance of conflicts in selection and the consequences for optimal virulence and co-

existence of strains with different strategies [20, 11, 40]. Second, the local neighborhood of

the initial genotype in the within-host fitness landscape has a dominant effect on emergence

probabilities, because the first mutational step determines what evolutionary trajectories are

accessible, reflecting empirical results in bacteriophage experiments [9]. The importance of

the local neighborhood of the initial genotype is especially pertinent when selection is strong,

so that the probability of back-mutation is negligible. Both of these effects are masked when

emergence dynamics are studied at a single scale.

Our analysis shows that selection acts differently at the within-host and between-host
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scales in the evolutionary emergence scenarios we are considering. At the within-host scale,

under assumptions of SSWM, evolutionary change is driven by the relative fitness of neigh-

boring genotypes (compared to the current fixed genotype), and the effects of selection are

manifested chiefly in the duration that a given genotype is fixed. At the between-host scale,

the absolute fitness of the current genotype (R
(i)
0 ) is the crucial measure, as it determines

whether the transmission chain continues or goes extinct. These differences stem from basic

population dynamic properties of the emergence problem, which apply to many emerging

infections, such as weakly-transmitting zoonoses [35]. Because R
(i)
0 < 1 for unadapted geno-

types, the between-host process is in an invasion regime, and competition for susceptible

hosts is negligible. We have assumed that all genotypes are viable at the within-host scale

in order to focus our attention on population-scale emergence, and because the emerging

pathogens of greatest concern are those that are already able to infect the novel host. How-

ever, it is important to recognize that the pathogen can also undergo evolutionary invasion

or escape within the host, and that these can be cross-scale problems involving within-cell

processes [36, 27, 42, 46].

We have used the SSWM framework to incorporate mechanistic evolutionary principles

at the within-host scale. The SSWM model has been a favored approach to analyzing evo-

lutionary trajectories in empirically derived fitness landscapes [59, 37, 12]. Some aspects of

the SSWM framework are very well suited to modelling pathogen emergence, such as the

stochastic nature of mutation and fixation and the strong selection pressures experienced by

pathogens in novel environments [59, 46]. However, other aspects of the SSWM model are

poor approximations to many pathogen emergence problems. For instance, the assumption

of weak mutation (and consequently, a single genotype within each host) does not match the

high mutation rates of RNA viruses and the tremendous diversity that can result [61, 54].

Quasispecies theory may provide a more accurate portrayal of pathogens with high muta-

tion rates, where selection acts on a “cloud” of mutants rather than any individual genotype

[13, 39]. The assumption of constant population size inherent to SSWM is also a strong sim-

plification, because pathogen loads can vary markedly throughout an infection (and between
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infections). An important future aim is to integrate the within-host population dynamics of

the pathogen, which will influence the relative strength of selection versus drift. A particu-

larly important application is to study evolutionary change during transmission bottlenecks,

which can be extremely narrow [32, 58] so drift can act strongly. André & Day [4] pre-

sented an elegant model showing how this effect can interact with within-host substitutions

to influence evolutionary emergence, but further work is needed to model both evolutionary

processes in the context of explicit within-host genetic diversity. These strong assumptions

of the SSWM model should be borne in mind when interpreting our results, as well as those

in earlier studies applying the SSWM framework to pathogen emergence problems. Indeed,

we have shown that previous models assuming equal substitution rates for all genotypes,

and no back-mutations, are equivalent to the SSWM model for within-host evolution with

a equal-rate fitness landscape. Therefore the caveats outlined above apply equally to these

earlier studies, with the added caution that the equal-rate landscape tends to give an upper

bound for probabilities of emergence.

The SSWM framework has previously been applied to extracellular parasites and bacte-

ria, as well as viruses [59, 37, 12]. Because viruses have a distinctive life history involving

reproduction within host cells, we have explored the applicability of the SSWM framework

to viruses by deriving the substitution rate under SSWM assumptions from a basic model of

within-host viral dynamics (see Appendix). This derivation reveals additional assumptions

that are implicit in using SSWM to represent viral evolution. Namely, we assumed that all

within-host fitness differences among genotypes arise from replication rates (not cell infection

or within-host clearance), that viruses reproduce by budding at a constant rate, and that

mutations in offspring virions of a given host cell occur independently [36]. Our result also

gives new perspectives into the population size component of the SSWM substitution rate.

First, the derivation shows that the relevant population size is the equilibrium abundance of

infected target cells, not viral particles. Second, this population size will vary as a function

of within-host viral fitness, and will not remain constant for all genotypes as assumed un-

der the classical SSWM formulation. Further investigation of how within-host dynamics lead
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to shifts in viral genotypes is an important avenue to developing improved cross-scale models.

Recent empirical studies have increasingly reported measures of viral fitness or tracked

viral evolutionary dynamics across biological scales. These show how our work could be

applied, and also guide priorities for on-going theory development. As a first example, we

consider the recent studies describing mutations that enable H5N1 influenza to transmit

among mammals [26, 24]. This work shows a predominantly positive correlation between

fitness measures across scales, indicating that some mammal-transmissible genotypes may

be favoured at the within-host scale [26]. This amplifies concerns that these genotypes could

emerge in naturally circulating virus populations, though we emphasize that there is no ev-

idence that the higher-fitness genotypes would have R0 > 1 in humans, since experiments

were performed in ferrets under laboratory conditions. It is also possible that other nearby

genotypes (as yet uncharacterized) may have higher within-host fitness, leading to evolu-

tionary dead ends as illustrated in figures 4 and 5. Nevertheless, our study contributes new

insights to the assessment of risk from these H5N1 influenza genotypes by providing a the-

oretical framework in which to qualitatively assess and compare the risk of emergence of

particular genotypes that could arise through mutation, given fitness measures at within-

host and between-host scales. The model also presents a complementary approach to other

modeling analyses that have focused on the within-host dynamics of emergence [53]. Con-

versely, consideration of these influenza studies reveals complexities in current data that our

model does not address. Future work will need to relate temporal changes in viral titre to

within-host fitness (and hence selection), and consider the potentially crucial influence of

different tissue compartments within a host [52].

Similar opportunities are evident when we consider recent studies of viruses that have

emerged across species boundaries, such as canine parvovirus [31, 57, 2] and severe acute res-

piratory syndrome coronavirus (SARS-CoV) [63, 56]. Extensive laboratory work on SARS-

CoV, motivated by genotypes detected in field samples, has identified adaptive mutations

that improve cell receptor binding in humans; these were found in viruses transmitted be-
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tween humans, but not in civet isolates [56]. Tracking the spread of such mutations in the

early stages of human-to-human transmission would provide a unique opportunity to recon-

struct an evolutionary emergence event, if the data can be linked [63]. Beyond-consensus se-

quencing studies have mapped out changes in genotype frequencies within hosts and through

transmission chains, giving a window into cross-scale dynamics [43, 44] and showing prelim-

inary evidence of how viral diversity is influenced by transmission bottlenecks. Such data

sets will allow us to test the validity of cross-scale evolutionary models, and refine our un-

derstanding of pertinent mechanisms. A recent study of HIV-1 highlights the unexpected

insights than can arise from considering sequence data across scales. Investigating the phe-

nomenon that HIV-1 exhibits faster substitution rates within hosts than between hosts, it

concludes that the probable mechanism is that viruses closely related to the infecting strain

are preferentially transmitted following storage in long-lived CD4+ T cells [38]. Such a find-

ing demonstrates the potential importance of considering specific (and sometimes idiosyn-

cratic) biological factors when addressing questions about particular host-pathogen systems,

and shows the power of cross-scale data to advance our understanding of pathogen evolution.

Accurate quantitative prediction of emergence probabilities is probably a distant goal,

but mechanistic models help us better understand the relative risk of different pathogen

genotypes, and assess which pathogens may be closer to emergence. As a simple example,

if two viral strains are each shown to be two mutations from an emergence genotype with

R0 > 1, but the within-host fitness landscape is smoothly uphill for one trajectory and

rugged for the other, then the strain with a smooth evolutionary path is the greater risk.

Our theoretical results show us how relationships between fitnesses at multiple scales influ-

ence emergence, providing an integrative lens through which to view accumulating data on

emerging pathogens. These data are arising from a broad array of approaches, from empiri-

cal mapping of fitness landscapes to deep-sequencing studies of evolutionary dynamics, and

from in vitro and in vivo experiments to global field surveillance. All of these approaches can

yield insight on evolutionary dynamics of pathogens at within-host or between-host scales.

We applaud the recent trend toward characterizing transmissibility and inter-host evolu-
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tion, since this has been a crucial data gap [48]; however, our results show that within-host

fitness must be measured in parallel to arrive at a holistic picture of emergence risk. As

the complexity and abundance of empirical work on emerging pathogens (or pathogens that

threaten to emerge) continue to grow, the need for theoretical frameworks to analyze the

resulting data and draw integrative conclusions will be even greater. The model introduced

here represents a foundation for such an integrative cross-scale theory.

1.6 Appendix

1.6.1 Deriving the SSWM transition probabilities from a model of viral dy-

namics

For a population of viruses with a single strain or genotype, let V denote the density

of the virus, U denote the density of uninfected target cells, and I denote the density of

infected target cells. The uninfected target cell population has a net growth rate f(U). In

the absence of infection, assume that dU/dt has a unique positive, stable equilibrium at U∗,

i.e. f(U∗) = 0 and f ′(U∗) < 0 (the virus-free equilibrium). Free viral particles encounter

and infect uninfected target cells at a rate aU . Infected cells produce new viral particles via

budding at a rate β and infected cells die at a rate δ. Viral particles are cleared from the

host at a rate c. With the exception of f(U), all rates are per capita. Provided the viral

population is sufficiently large we can describe the viral and host cell dynamics by a mean

field equation:
dU

dt
= f(U)− aUV

dI

dt
= aUV − δI

dV

dt
= βI − cV − aUV.

(1.4)
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When the virus initially infects the host at low numbers, we approximate the establishment

probability within the host by assuming that U = U∗ is constant and I, and V are determined

by a continuous time branching process with transitions:

(I, V )→ (I + 1, V − 1) with rate aUV

(I, V )→ (I, V + 1) with rate βI

(I, V )→ (I, V − 1) with rate cV.

(1.5)

Then a single viral particle infects a cell with probability:

q =
aU∗

c+ aU∗
(1.6)

and does not infect a cell (i.e. is cleared by the host) with probability 1 − q. In the event

that a viral particle infects a cell, it gives rise to a number of offspring viruses that is

geometrically distributed with mean n = β/δ. Thus the reproductive number for a virus,

which is the expected number of viruses produced after one full cycle of cell infection, is qn.

The generating function for the complete offspring distribution is given by [36]:

g(x) = 1− q +
q

1 + n(1− x)
. (1.7)

From basic branching process theory, the ultimate probability of extinction for the viral

lineage is given by the non-zero solution to g(e) = e. We can then solve for the probability

of establishment for a single viral particle, which is q − 1/n [36].

If the viral population establishes, under appropriate assumptions, the quasi-stationary

distribution is concentrated on the attractor of the system [16]. For simplicity, let us assume

that this attractor is an equilibrium. We denote this equilibrium with established virus by

the † superscript. The probability that a virus infects a cell is denoted q† and is found by

substituting U † for U∗ in equation (1.6). Because the system is at equilibrium, q†n = 1,
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giving:
aU †

c+ aU †
n = 1. (1.8)

From this we can solve for U † and for the nontrivial equilibrium of equation (1.4):

U † =
c

a(n− 1)

I† =
f(U †)

δ

V † =
f(U †)

aU †
.

(1.9)

Now consider two competing viral genotypes, genotype 1 and genotype 2. Assume there

is no superinfection, i.e. each cell has only one fixed viral genotype, and that infection,

clearance, and infected cell death rates for the two viral types are the same (i.e. a1 = a2 = a,

c1 = c2 = c, and δ1 = δ2 = δ). Then the viral dynamics are given by:

dU

dt
= f(U)− aU(V1 + V2)

dIi
dt

= aUVi − δIi

dVi
dt

= βiIi − cVi − aUVi.

(1.10)

Define the equilibrium abundance of uninfected cells when only viral type i is present as:

U †i =
c

a(ni − 1)
(1.11)

where ni = βi/δ. With this deterministic model linearization of the boundary equilibrium

suggests that the viral population with the lower U †i invades and displaces the other viral

type. This aligns with classical theory of ecological competition for a single limiting resource.

Without loss of generality, assume that U †1 > U †2 , which occurs when n2 > n1. Note that,

because a1 = a2 and c1 = c2, the cell infection probabilities q1 = q2 = q for a given uninfected
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cell density U . Therefore the ni are proportional to the reproductive numbers for each viral

type, and the condition n2 > n1 means that type 2 has higher fitness.

If viral type 1 has already established in the host and is at equilibrium abundance U †1 ,

we can approximate the invasion dynamics of the other genotype with a continuous time

branching process with transitions:

(I2, V2)→ (I2 + 1, V2 − 1) with rate aU †1V2

(I2, V2)→ (I2, V2 + 1) with rate β2I2

(I2, V2)→ (I2, V2 − 1) with rate cV2.

(1.12)

Following from the probability of establishment of viral type 2 being q2 − 1
n2

and using

equation (1.8), the probability of establishment of viral type 2 is:

aU †1

c+ aU †1
− 1

n2

=
1

n1

− 1

n2

(1.13)

where
aU†1
c+aU†1

corresponds to q for viral type 2 invading over viral type 1 at equilibrium. This

probability is always positive given our assumption of U †1 > U †2 .

When viral type 1 is at equilibrium, mutant viruses are produced at a rate νβ1I
†
1 where ν

is the probability that a given offspring virion will bear a mutation at the locus that converts

type 1 to type 2. Altogether this gives the rate of substitution (in which viral genotype 2

displaces viral genotype 1) as:

m1,2 = νβ1I
†
1(

1

n1

− 1

n2

) (1.14)

We equate the establishment probability ( 1
n1
− 1

n2
) with the selection coefficient s1,2 from

the main text. This choice is consistent with Haldane’s proof that a beneficial allele with

selection coefficient s sweeps to fixation with a probability directly proportional to s [22],

and is equivalent with Gillespie’s definition of s in the weak selection limit used in his orig-

inal SSWM derivation. We can then compare quantities from the derivation above with
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the classical SSWM formulation showin in the main text: νβ1 in our result is equivalent to

the mutation rate µ, and I†1 in our result is equivalent to the population size N . Thus the

expression νβ1I
†
1( 1
n1
− 1

n2
) derived here corresponds closely to the mi,j expression in the main

text (equation (1.1)).

We have shown conditions under which the viral dynamics model reduces to a form closely

analogous to the SSWM formulation for substitution rates. Yet this derivation cannot be in-

terpreted as an exact derivation of the SSWM model, as there are some subtle inconsistencies.

The measure of population size, I†1 corresponds to the infected host cell population, not the

total number of viral particles. Significantly, the quantity I†1 is a function of within-host viral

fitness, leading to the potential for viral fitness to impact substitution rates through the rate

at which new mutants are generated. This demographic impact of higher fitness is neglected

in the classical SSWM formulation. Overall, though, the derivation shows that a close ana-

logue of the SSWM framework can be derived from a simple model of viral dynamics, subject

to similar assumptions about the strength of selection and mutation processes. Further work

to explore how within-host pathogen dynamics can link to simple models of genotype sub-

stitution would be valuable, given the widespread usage of SSWM in the empirical literature.

1.6.2 Exact solution for the probability of emergence in a sequentially con-

nected landscape

To write down an exact solution for the extinction probabilities, we consider the “em-

bedded” discrete-time branching process where one unit of time corresponds to an update

of the continuous time branching process. The extinction probabilities for the embedded

process and the original continuous time process are equivalent. The i-th component of the

generating map G : [0, 1]k → [0, 1]k for the embedded branching process is given by a power

series

Gi(z1, . . . , zk) =
∑

n1,...,nk

pi(n1, . . . , nk)z
n1
1 z

n2
2 . . . znkk
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where pi(n1, . . . , nk) is the probability that an individual of type i has n1 offspring of type

1, n2 offspring of type 2, etc.

For our model, an update of an individual host infected with genotype i leads to death

with probability di
bi+di+

∑
j∈Mi

mi,j
, leads to a birth with probability bi

bi+di+
∑
j∈Mi

mi,j
, or leads

to a substitution event in which genotype i is replaced by genotype j with probability

mi,j
bi+di+

∑
j∈Mi

mi,j
for each genotype j in Mi. Hence, the i-th component of the generating map

is

Gi(z1, . . . , zk) =
1

bi + di +
∑

j∈Mi
mi,j

(
biz

2
i + di +

∑
j∈Mi

mi,jzj

)
.

Let ei be the extinction probability of the process given the initial condition of one individual

infected with genotype i. Provided that the branching process is supercritical (i.e. there is

a positive probability of emergence), the vector of extinction probabilities e = (e1, . . . , ek) is

the unique solution to G(e) = e in [0, 1)k.

For the landscapes considered in the text, we can solve for e explicitly in an inductive

fashion. Consider the case of a sequential landscape for which M1 = {2}, M2 = {3},

. . .Mk−1 = {k}, and Mk = ∅. For 1 ≤ i < k, let mi = mi,i+1. As in the text, we assume that

bk/dk > 1 i.e. type k is an emergence genotype. To solve for the extinction probabilities, we

proceed inductively from genotype k back to genotype 1. The extinction probability ek is

the unique solution ek = zk to

bkz
2
k + dk

bk + dk
= zk for zk ∈ (0, 1)

which is given by

ek =
dk
bk
.

Proceeding inductively, suppose that we have solved for ei+1. The i-th component of the

generating map Gi only depends on zi and zi+1. Slightly abusing notation, ei is the unique
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solution ei = zi to Gi(zi, ei+1) = zi with zi ∈ (0, 1). Equivalently, ei is the unique solution to

biz
2
i + di +miei+1

bi + di +mi

= zi for zi ∈ (0, 1)

which is given by

ei =
−
√
−4 bimiei+1 +m2

i + 2(di + bi)mi + d2i − 2bidi + b2i +mi + di + bi
2bi

.

A similar induction method can be used to find the exact solutions to the landscapes with

two linear paths emanating from genotype i. More generally, it is possible to write down an

exact solution for landscapes whenever the underlying directed graph has no directed cycles.

This result will be presented in a future study.
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Figure 1.1: Fitness landscapes at between-host and within-host scales. Example landscapes
are shown for a simple genotype space, with three genotypes connected sequentially. For
this illustrative example, we consider landscapes where the fitnesses of initial (A1) and
emergence (A3) genotypes are fixed, and only the fitness of the intermediate genotype (A2)
varies. (a) At the between-host scale the intermediate genotype may be more fit (yielding
an “uphill” landscape), of equal fitness (“jackpot”), or less fit (“valley”) than the initial
genotype but only the emergence genotype A3 has R0 > 1. (b) At the within-host scale,
under the SSWM model, the gain in relative fitness determines the rate of substitution be-
tween neighboring genotypes. The “equal-rate” landscape arises when relative fitness gains
are equal for each step, the “fast-slow” landscape when the first step yields greater fitness
gain than the second, and the “slow-fast” landscape in the reverse case. Note that we
plot the logarithm of the absolute within-host fitnesses wi, as noted in the text, because
wj = (1 + si,j)wi. We have normalized the fitnesses such that w1 = 1. (R

(i)
0 (uphill) =

[0.5, 0.9, 1.3], R
(i)
0 (jackpot) = [0.5, 0.5, 1.3], R

(i)
0 (valley) = [0.5, 0.1, 1.3], wi(equal-rate) =

[1, 1.2, 1.44], wi(fast-slow) = [1, 1.38, 1.44], wi(slow-fast) = [1, 1.04, 1.44]
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Figure 1.2: Example of the interaction between selection at different scales. (a) We consider a
set of jackpot landscapes at the between-host scale, with a range of fitness values for the initial
(A1) and intermediate (A2) genotypes (indicated by the shaded region). (b) The probability
of emergence as a function of the between-host fitness of the A1 and A2 genotypes, showing
the interaction with the three within-host landscapes. The equal-rate landscape gives the
highest probability of emergence because it gives the fastest substitutions overall. Results for
fast-slow and slow-fast landscapes overlap almost exactly. Black lines show exact solutions;
grey lines show the approximation from equation (1.2), which fits well until R

(1)
0 and R

(2)
0

approach 1. (d1 = d2 = d3 = 1; b3 = 1.3, b1 and b2 adjusted to yield desired R
(i)
0 values;

N = 106, µ = 10−6, constant of proportionality = 0.4).
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Figure 1.3: Cross-scale interactions for all combinations of landscapes in a three-genotype
chain. (a) Heat-map showing the probability of emergence as the intermediate genotype is
varied in fitness at both the within-host and between-host scales. Fitnesses of the initial and
emergence genotypes are fixed, as in figure 1. The vertical solid line marks the between-host
jackpot scenario and the horizontal solid line marks the within-host equal-rate scenario. The
dotted and dashed lines represent the slow-fast (bottom) and fast-slow (top) from figure
1b, respectively. (b) Probability of emergence as a function of the between-host fitness

of the intermediate genotype, R
(2)
0 , for three within-host landscapes, corresponding to the

horizontal lines in (a). The grey vertical shows where R
(2)
0 = 0.5, i.e. the same value as R

(1)
0 .
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Figure 1.4: Alternative pathways can lead to conflict between scales. We assume the ini-
tial case is infected with genotype B0, and two evolutionary pathways are available to the
pathogen population. (a) At the between-host scale, fitness increases along the B1, B2

pathway, leading to possible emergence; fitness decreases along the B′1, B
′
2 pathway, lead-

ing to certain extinction. (b) At the within-host scale we assume equal-rate landscapes
on both pathways, but vary the slope of the B1, B2 pathway (as indicated by the shaded
area). Depending on the slope of the B1, B2 pathway at the within-host scale, substitu-
tion rates toward B1 and B2 can be higher or lower than toward B′1 and B′2. (c) The
correlation between fitnesses at within-host and between-host scales is a strong determi-
nant of the probability of emergence. Positive correlations favor emergence, while negative
correlations (which corresponds to lower slopes of the within-host B1, B2 landscape) cause
the pathogen lineage to be drawn toward lower between-host fitness and extinction. We
use Pearson’s correlation coefficient to measure the linear dependence between the fitnesses
at the two scales. (R0[B

′
2, B

′
1, B0, B1, B2] = [0.2, 0.45, 0.7, 0.95, 1.2], di[B

′
2, B

′
1, B0, B1, B2] =

[0.1, 0.1, 0.1, 0.1, 0.1, 0.1], wi[B
′
2, B

′
1, B0, B1, B2] were drawn uniformly from the ranges

[1.44, 1.2, 1, 1.01− 2.24, 1.02− 2.25], within-host parameters N and µ as in previous figures).
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Figure 1.5: Exploration of alternative pathways for general within-host landscapes. This
figure generalizes figure 4, such that (a) the between-host landscape is identical, but (b)
the within-host landscapes sample a much broader set of possibilities. Within-host fitness
of genotypes B′2, B

′
1, B0, B1, and B2 were selected randomly, such that wi[B

′
2, B

′
1, B0, B1, B2]

were drawn uniformly from the ranges [1.02 − 2.25, 1.01 − 2.24, 1, 1.01 − 2.24, 1.02 − 2.25].
(c) The probability of emergence shows a positive association with the correlation between
fitnesses across scales, though with considerable scatter. (d) The probability of emergence
is more strongly associated with the probability that the first substitution event is toward
genotype B1 (i.e. toward possible emergence). Points for plots in (c) and (d) show the results
of 5000 simulated within-host landscapes. (All parameters as in figure 4).
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CHAPTER 2

Effects of prophylaxis and intermittent selection on the

emergence of drug resistance

Miran Park, James O. Lloyd-Smith

2.1 Abstract

Drug resistance is an increasing concern in the treatment and control of pathogen out-

breaks. Individual behavior regarding antimicrobial treatments can create intermittent selec-

tion environments that change rapidly relative to pathogen life-history parameters. Prophy-

lactic treatment can also create a host environment where evolutionary selection for resistance

is present from the moment of first exposure to the pathogen. Previous theoretical stud-

ies have described how different treatment regimens and administration of prophylaxis give

rise to different resistance outcomes. However, these studies have favored different optimal

treatment strategies: some have recommended widespread drug treatment to reduce trans-

mission and suppress epidemic growth, with aggressive treatment to suppress the emergence

of resistance; others have argued that aggressive treatment increases the selective pressure

for resistance to unacceptable levels. Often, there is a high fitness cost assumed for resis-

tance mutations which may additionally limit the scope of qualitative outcomes. Here, we

explore both short-term and long-term outcomes of drug resistance using stochastic models

of pathogen emergence to better understand the influence of treatment and pathogen fitness

on the emergence of drug resistance in the early phase of an epidemic. We find that treat-

ment always (and prophylaxis often) reduces both the probability of establishment of the

41



epidemic and the intensity of the epidemic, but increasing treatment may worsen resistance

outcomes, especially combined with prophylaxis and a small fitness cost for resistance. Our

analysis shows that the effects of prophylaxis and treatment depend strongly on the fitness

of the resistant genotype and efficacy of the prophylaxis, and advances our understanding

of tradeoffs between efforts to control epidemic versus resistance outcomes. In light of our

results, we propose further theoretical and experimental analysis regarding the emergence of

resistance, prophylaxis and treatment protocols, and studies on pathogen fitness.

2.2 Introduction

Antimicrobial resistance is an increasing concern for many infectious diseases, and the

scope of the resistance problem is expanding with respect to pathogens, drugs, and geographic

areas affected [40, 15]. Although drug resistance is a major concern for many pathogens,

other priorities in epidemic control, such as using treatment to reduce transmission and con-

trol epidemic growth, may sometimes conflict with optimal outcomes in terms of resistance

emergence. Individual behavior related to treatment usage, such as personal stockpiling of

drugs and poor treatment adherence, can influence the selective pressures acting on resis-

tance and rapidly change the evolutionary landscape experienced by the pathogen [37, 49].

Pathogens can evolve quickly, and if individuals go on and off treatment on a short timescale

relative to the infection duration (e.g. going on and off treatment on a daily basis versus

a two-week infection duration), this rapidly changing treatment environment creates fluctu-

ating selection pressures for the pathogen. Prophylaxis (i.e. taking an antimicrobial before

contracting a disease in order to prevent transmission) has also been shown to select for

resistance in certain cases, such as in pre-exposure prophylaxis for HIV [31], oseltamivir re-

sistance for influenza [4, 14, 39], and doxycycline prophylaxis for malaria [34]. Also, while the

early phase of an epidemic has been shown to be important to resistance outcomes [12, 57],

most studies have focused on the long-term evolutionary dynamics of drug resistance in a

deterministic setting [57, 51]. The few studies that have examined the earlier, transient
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phase of dynamics have shown that stochasticity can be important to resistance outcomes;

for example, stochastic variability in epidemic size can make treatment more favorable if it

prevents an outbreak [56, 57]. Understanding the mechanistic underpinnings of the factors

driving resistance and epidemic outcomes in the inherently stochastic environment of epi-

demic establishment and growth is a crucial part of understanding the underlying factors

influencing emergence of resistance as a whole.

Human behavior can lead to great variation in how individuals interact with antimicro-

bial drugs [7]. Increased media reports about pandemics and emerging infectious disease

events have garnered concern regarding preparation and control policies, including regard-

ing resistance [36]. Previously, influenza epidemics and media reports have likely led to an

increase in filled prescriptions of oseltamivir, the most commonly prescribed influenza an-

tiviral, for personal stockpiling [41, 16]. Personal stockpiling of antimicrobials can lead to

insufficient doses or inadequate courses of therapy as individuals may take the treatment

more randomly or at-will, without the supervision of a medical provider [37]. Individuals

prescribed antibiotics inappropriately (e.g. for a viral infection for which antibiotics would

have no effect) are at risk of developing persistent drug resistance as commensal bacteria

acquire resistance under the selection pressure of the antibiotic, creating a potential source

of resistant genotypes as gene transfer can occur with pathogenic species during subsequent

infection [9]. Similarly, prolonged and inadequate prophylaxis can lead to the generation

of resistance [23]. Given this evidence, it is important to consider how individual behavior

and time spent on treatment can affect the evolutionary pressures selecting for resistance, as

population-wide treatment measures may not have their intended effect on epidemic control.

Theoretical models have been analyzed to study how structured populations, fitness cost

of resistance, and timing of treatment and prophylaxis can affect the emergence of drug

resistance. It has been shown that there are trade-offs between controlling epidemic severity

and the emergence and proliferation of resistance [57, 51]. A number of studies, many of

which have assumed a high fitness cost to resistance, have found trade-offs between con-
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trolling epidemic severity and the proliferation of resistance [11, 21, 22, 13, 56, 45, 52], and

perspectives differ about optimal timing of treatment and prophylaxis. Some studies have

shown that controlling epidemic size is generally preferable as it leads to a decreased number

of transmission events occurring overall, giving less opportunity for the pathogen to develop

resistance because of reduced numbers of infections [1, 13, 22]. However, other analyses have

shown that although treatment and prophylaxis may significantly reduce epidemic transmis-

sion events, this can result in the greatest number of resistant infections due to increased

selection on the pathogen for resistance [1, 21, 32, 35, 52]. Both perspectives show that

the treatment regimen during initial stages of the epidemic is crucial, and that efforts to

strongly suppress the epidemic can be beneficial but may not outweigh the added risk of

high resistance if the pathogen is able to establish an epidemic in the population. However,

existing work has not considered how these outcomes and expectations may be altered given

the interaction of differing levels of treatment and prophylaxis with different fitness of the

resistant genotypes.

The fitness of drug-resistant genotypes can vary widely across pathogens and antimicro-

bial drugs. Fitness costs are often expected for resistant mutations but empirical studies have

revealed some exceptions [44, 27, 33]). Transmission fitness has been shown to be compro-

mised by the evolution of resistance to atovaquone in malaria, and multiple drug-resistance

mutations have been shown to be completely unable to transmit from mouse to mouse via

mosquito [20]. In contrast, the H274Y mutation conferring oseltamivir resistance in influenza

has been shown to have little to no fitness cost for transmission in ferrets [27], and possibly

in human data, which may be due to compensatory mutations or genetic hitchhiking on an

escape mutation [6]. Describing the evolutionary fitness of a pathogen is complicated by the

fact that pathogens exhibit fitness at multiple scales [43, 19, 42]. At the within-host scale,

fitness is measured by a pathogen’s ability to grow within an infected individual, while at

the between-host scale, fitness is measured by a pathogen’s transmissibility. Within-host

fitnesses may not correspond to between-host fitnesses, as in the example mentioned for

H274Y, where the resistant genotype is outcompeted within-host by the sensitive genotype
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but without any effective difference at the between-host (transmission) scale [27]. A differ-

ence of fitness across scales is implicit in any situation where drug-resistant strains, which

are selected at the within-host scale when drug is present, have poor transmission, as with

the example of atovaquone-resistance in malaria. Higher resistant genotype fitnesses will be

favored by selection, but it is unclear how evolutionary outcomes will interact with treat-

ment, prophylaxis, and the selection acting at multiple scales.

We still lack a complete understanding of how treatment and prophylaxis can affect

early-stage evolutionary and epidemiological dynamics, and how these dynamics may affect

longer-term resistance outcomes. Additionally, while individual behaviors determine the evo-

lutionary selection environment for the pathogen (which may change rapidly as individuals

go on and off treatment), most previous studies have modeled treatment at the population

level without considering these effects. Here we present a model that represents the early

dynamics of an epidemic while incorporating these important factors (individual behavior,

prophylaxis, selection at multiple scales) to better understand the mechanisms that drive

emergence of drug resistance during the emergence and establishment of an epidemic. Fol-

lowing established literature on pathogen emergence [3, 43], we use a stochastic multitype

branching process model to represent the stochasticity of emergence of an epidemic and the

behavior of individuals as they switch on and off drug treatment. We also present longer-

term stochastic expectations of the model after the epidemic has established, in order to

study the overall growth rate of the epidemic and the prevalence of resistant genotypes in

the population. Using this model we address questions about the influences of treatment and

prophylaxis on the emergence of resistance, and we present an explanation for discrepancies

among past studies by showing how different regions of parameter space lead to different

qualitative outcomes.
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2.3 Model structure

We use a continuous-time, multitype branching process model to represent the stochas-

tic dynamics of transmission, recovery, and pathogen genotype change (at individual and

population scales) during the initial stages of an epidemic. We make the assumption of a

well-mixed population that is homogenous with respect to all traits other than antimicro-

bial drug use, in which the number of susceptibles is initially large enough that it is not

significantly depleted by the initial phase of the epidemic considered here. We use a simple

one-allele model for resistance (no compensatory or permissive mutations, or partially resis-

tant genotypes) as a basic model, reflecting empirical examples such as point mutations in

influenza conferring drug resistance [4], but the model can be expanded readily to incorpo-

rate multiple genotypes.

Each infected host is characterized by a single pathogen genotype (drug-sensitive or

drug-resistant) and treatment status at any point in time. These types consist of sensi-

tive/untreated (su), sensitive/treated (st), resistant/untreated (ru), and resistant/treated

(rt) (Figure 1). For readability, in the text following, we will refer to these genotype and

treatment combinations as types i = 1, 2, 3, and 4, respectively. At the population scale, the

reproductive number, R0, is the number of new infections an infection will create over its du-

ration, and is an important determinant of epidemic potential. If R0 is less than 1, then the

epidemic will die out, whereas if R0 is greater than 1, the epidemic can establish with non-

zero probability. We assume that without drug, the sensitive genotype has a reproductive

number greater than 1, and that the treatment is effective such that in a treated popula-

tion the sensitive genotype has a reproductive number less than 1. Parameters are marked

with a subscript or superscript i corresponding to the four numbered pathogen genotypes.

Each infected individual of type i infects other individuals at a constant rate bi (modified by

prophylaxis and the protective efficacy of prophylaxis), and in a successful transmission will

give rise to a new infected individual of the same genotype but of either treatment status.

Infected hosts of type i cease to be infectious, through recovery or death, at per capita rate
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di. In order to consider the effects of differing genotype fitnesses, we define the reproductive

number of each type. We herein define each type’s fitness (corresponding specifically to a

between-host transmission fitness measure) as the ability to transmit through a homoge-

nous population of hosts of that type: R0(i) = bi/di for type i. We note that this quantity

refers to an individual of type i’s ability to reproduce when existing as that type, however

infections of type i may also be created by other types, as shown in Figure 1 and detailed

below in the mechanistic structure of the model. The fitnesses for the sensitive/untreated

(type 1) and sensitive/treated (type 2) types are fixed, at supercritical and subcritical values,

respectively, while we vary the resistant/untreated (type 3) and resistant/treated (type 4)

fitnesses to reflect how differing fitnesses of resistant genotypes influence resistance emer-

gence. However, we assume that the resistant/untreated and resistant/treated types have

equal fitness, i.e. we assume that the resistance phenotype nullifies any effect of treatment,

and that the between-host transmission cost of resistance is not influenced by whether the

host is on treatment.

We incorporate fitness at the within-host scale implicitly through the parameter µ, which

represents both the rate at which the resistance mutation occurs and the probability that it

goes to fixation in the host, since each host is assumed to have a single dominant genotype of

pathogen. In past work, drawing upon the strong selection, weak mutation model from pop-

ulation genetics [18], we have shown that this model formulation can represent within-host

fitness, subject to the assumptions that only beneficial mutations have a non-zero chance

of fixation [43]. We need two parameters for this process (Figure 1): µs→r, representing a

change from the sensitive to resistant genotype (only selected while under treatment), and

µr→s, representing a change from the resistant to sensitive genotype (only selected while

not under treatment). We choose µs→r > µr→s, reasoning that within-host selection for the

resistant genotype over the sensitive genotype when an individual is undergoing treatment

will be stronger than selection for the sensitive genotype over resistant genotype when the

individual is not undergoing treatment, i.e. the benefit of resistance under treatment out-

weighs the cost of resistance when not under treatment.
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Treatment is represented through the parameters ρ and σ, which represent per capita

rates of switching on and off treatment, respectively. For simplification we represent the σ

parameter as a scaled factor of ρ, such that σ = kρ (Figure 1). We assume that changes

in treatment status and changes in genotype of infection occur independently, and that a

genotype change event and a treatment switching event cannot occur simultaneously, e.g.

the sensitive/untreated type cannot change directly to the resistant/treated type. We as-

sume that a proportion p of the population is on prophylaxis at any point in time, and that

mixing patterns are independent of prophylaxis; thus we divide up all potential transmission

events occurring from each type, with the fraction p going to individuals on prophylaxis, and

(1 − p) to individuals not on prophylaxis (Figure 1). We also accommodate the protective

efficacy of prophylaxis using the parameter c (which we herein call the ”protective efficacy”

referring specifically to that of prophylaxis); this parameter only applies for transmission

occurring from the sensitive genotype, as we assume that prophylaxis is not protective when

the pathogen is resistant to treatment. When c is 1, prophylaxis is completely effective and

all transmission of the susceptible genotype to individuals on prophylaxis is halted. Similarly,

when c is 0, prophylaxis has no protective efficacy and transmission rates are not affected

by whether the target individuals are taking prophylaxis.

2.4 Model analysis

We analyze this stochastic model to obtain the probability of emergence, P (emergence),

which denotes the probability that the epidemic breaks out in the population (which can

include any mixture of types). We calculate P (emergence) numerically using standard meth-

ods for the multi-type branching process model, here we use a functional iteration of the

generating functions to first calculate the probability of extinction, P (extinction), and then

calculate the probability of emergence as P (emergence) = 1 − P (extinction) [24, 30]. The

generating functions used in these calculations are as follows:
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g(su) =
1

b1(1− p) + b1(1− c)p+ ρ+ d1
b1(1− p)s2u + b1(1− c)psust + ρst + d1

g(st) =
1

b2p+ b2(1− p) + σ + d2 + µs→r
b2(1− c)ps2t + b2(1− p)sust + σsu + d2 + µs→rrt

g(ru) =
1

b3(1− p) + b3(1− c)p+ ρ+ d3 + µr→s
b3(1− p)r2u + b3(1− c)prurt + ρrt + d3 + µr→ssu

g(rt) =
1

b4(1− c)p+ b4(1− p) + σ + d4
b4(1− c)pr2t + b4(1− p)rurt + σru + d4

(2.1)

Each equation describes the dynamics of each type in our system, and each term in the

equation reflects the probability of different outcomes in a competing rates formulation. The

first denominator term represents the overall rate of any event occurring, with each term

containing the rate of that process occurring and the quantity of index variables reflecting

the types created or transitioned from that state, e.g. the term containing b1(1 − p)s2u in

g(su) describes the infection and creation of another individual of type su which requires a

successful infection b1 and for the transmission to be an individual on not on prophylaxis

(1− p) resulting in two su individuals total (hence the exponent of 2), divided by the overall

rate (first denominator term).

The extinction probability when the epidemic is initialized with one individual of type

su is the first value of the smallest nonnegative root of g(~x) = x (where ~x is the vector of

host types in the model, i.e. ~x == {s1, s2, r1, r2}). We can calculate this root by functional

iteration of this recurrence relation, starting the process at a value of {0, 0, 0, 0} and iter-

ating the equation to convergence of the extinction probability. It is possible to calculate

the extinction probability for any initial distribution and abundance of individuals given

these relationships by substituting the initial distribution into the equations described and

calculating by a similar process [48]
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We can obtain the fundamental matrix N for the transitions of genotype and treatment

state of an individual during infection using the relationship:

N = (I −Q)−1 (2.2)

[29] where I is an identity matrix of the same dimensions as N , and Q is the infinitesimal

generator of the Markov chain, where each element qij is a rate reflecting the transition

probability from type i to type j:

Q =


1− d1 − ρ ρ 0 0

σ 1− d2 − σ 0 µs→r

µr→s 0 1− d3 − ρ ρ

0 0 σ 1− d4 − σ

 . (2.3)

This matrix includes the individual state transitions (i.e. changes in treatment status,

mutations in genotype) but excludes transmission rates.

The fundamental matrix then tells us the expected time an infected individual will spend

in each type, given the type they were in when they became infected (i.e. row 1 indicates

starting the system with an individual of su (sensitive/untreated), with the columns corre-

sponding to the time spent in each of the other respective types) [53].

For results relating to after the epidemic has established, following previous work we ob-

tain the next-generation matrix, given by K = FV −1 [53, 38], where F is a matrix describing

the rate of new infections in each type i from each type j, and V is the matrix describing
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the rate of transitions out of state − the transitions into a state, with transitions out of the

type occurring on the diagonal and all other transitions into a type occurring on off-diagonal

according to their indices. Here F and V are as follows:

F =


b1(1− p) b2(1− p) 0 0

b1(1− c)p b2(1− c)p 0 0

0 0 b3(1− p) b4(1− p)

0 0 b3(1− c)p b4(1− c)p

 (2.4)

and

V =


d1 + ρ −σ −µr→s 0

−ρ d2 + σ + µs→r 0 0

0 0 d3 + ρ+ µr→s −σ

0 −µs→r −ρ d4 + σ

 . (2.5)

Note that V −1 is equivalent to the transpose of the fundamental matrix derived above

[53, 38].

R0 of the epidemic incorporating all types is found by calculating the largest eigenvalue

(spectral radius) of K. (When we refer to R0 without superscript in the text following, we

are referring to this quantity regarding the system as a whole.)

In order to calculate an instantaneous prevalence of each type after the epidemic has

established, we calculate the quasi-stationary distribution of the system. By finding the

normalized left-eigenvector associated with the dominant eigenvalue of the next-generation

matrix, we are able to find the proportion of new infections occurring in each type conditioned

on emergence in the system [10]. We then normalize the fundamental matrix by rows,

creating a matrix N∗ for which the element N∗i,j is the proportion of time spent in type

j by an individual who begins their infection as type i. We can multiply the eigenvector
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~u by each column of the normalized fundamental matrix and sum these values to get an

instantaneous prevalence ~a of each type after the epidemic has established:

~a = ~u ·N∗. (2.6)

This allows us to analyze the instantaneous prevalence of resistance of each type given

different parameter values and combinations akin to potential real-world scenarios.

Throughout our work, we have used these analytic results to compute desired quantities,

and confirmed their accuracy by simulation (Supplemental Figure 1).

2.5 Results

2.5.1 Model parameterization

We chose illustrative parameter values comparable to values used in previous studies of

this topic [13, 21, 32, 35, 52]. Our main analyses explore a range of values for the fitness of

resistant genotypes, and a range of values for the proportion of time spent on treatment, for

scenarios with and without prophylaxis (Table 1). In later analyses we explore the sensitivity

of our findings to these parameters values. For simplicity, when varying the amount of time

spent on treatment we fix ρ (going on treatment) and vary σ (going off treatment). Fitness

for the sensitive/untreated and sensitive/treated types are fixed at R
(1)
0 = 1.5 and R

(2)
0 = 0.5

respectively, as the sensitive wild-type pathogen is assumed to be fit enough to sustain an

epidemic when no treatment is administered, and the treatment is assumed to be effective in

reducing the burden of susceptible strains, but not effective enough to clear infection entirely.
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2.5.2 Effect of treatment and prophylaxis on epidemic outcomes

In Figure 2, we outline the dependence of R0, P (emergence), and the long-term preva-

lence of the resistant genotype on the impact of control measures (treatment, prophylaxis)

and fitness of the resistant genotype. Each curve corresponds to a different value of the

resistant genotype fitnesses (which are equal in untreated and treated hosts, i.e. R
(3)
0 = R

(4)
0

) ranging from 0.3 to 1.7 to encompass a fitness range from lower than the sensitive/treated

to higher than the sensitive/untreated types.

Without prophylaxis, more time on treatment (increasing x-axis) generally leads to a

lower R0, except when the resistant genotype is more fit than the wild-type (Figure 2(a)).

More treatment always reduces P (emergence) (Figure 2(b)), but there is a trade-off where

increasing time spent on treatment increases the resistant genotype prevalence if the epi-

demic does become established (Figure 2(c)). The combination of these patterns leads to a

subtlety in the behavior of the system R0: when the resistant strain is slightly less fit than

the sensitive/untreated strain, R0 has a minimum at intermediate treatment levels, when

the sensitive strain is suffering the fitness reduction from effective treatment, then increases

towards the fitness of the resistant genotypes as the prevalence of resistance rises with more

treatment (Figure 2(a,c)).

We then considered a scenario with a moderate level of prophylactic use of antimicrobials

(specifically, 30% of people use prophylaxis, and it is 70% effective at blocking infection by

the sensitive strain). With prophylaxis, results are similar for R0 (Figure 2(d)), with slightly

more extreme values, where there is a broader range of resistant fitness values for which the

curve is strictly increasing due to the additional reduction in fitness from prophylaxis. Note

that values on the x-axis are a ratio of the ρ and σ parameters and do not account that some

cases are started in the treated state. Absolute values of P (emergence) with prophylaxis

(Figure 2(e)) are lower than those without prophylaxis (Figure 2(b)), however, these values

increase slightly as time spent on treatment increases. This is consistent with previous re-
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sults which have generally found a benefit to prophylaxis for curbing resistance emergence

via containing the outbreak [21]. The prevalence of resistance also generally rises with time

on treatment, as before, with a small dip for the resistant genotype values with the highest

fitness as treatment is initially increased. This dip occurs because time spent in the resis-

tant/untreated type decreases rapidly as treatment is increased, and then resistant/treated

prevalence increases as time spent on treatment is increased due to the evolutionary advan-

tage of higher resistant fitness (results not shown). Based on these results, a moderate level

of prophylaxis appears to be generally valuable for suppressing P (emergence) and there-

fore the probability of an epidemic, without too much effect on other outcomes of interest.

However, we have identified interesting non-monotonic relationships between time spent on

treatment and epidemic outcomes when prophylaxis is present, implying more careful con-

sideration is needed for both prophylaxis and treatment measures. We will explore these

relationships further in order to understand what is causing this more complex behavior and

its implications on epidemic outcomes.

2.5.3 Trade-offs in epidemic control versus prevalence of resistance

To explore the relationships between probability of emergence, R0, resistant genotype

prevalence, and prophylaxis we plot these quantities against each other in Figure 3. We

see again that, for a given fitness of the resistant genotype, the probability of emergence

is lower with prophylaxis than without (dashed vs. solid lines respectively). More fit re-

sistant genotypes lead to both higher probability of emergence and higher population-level

R0 values and thus, unsurprisingly, are of greater concern (Figure 3(a)). As time spent on

treatment is increased (following each trajectory starting at the circle marker and ending at

the triangle marker), generally, both P (emergence) and R0 initially decrease. As treatment

time increases, however, a trade-off emerges between P (emergence) and R0. Generally the

probability of emergence continues to decrease with increasing time spent on treatment, but

eventually R0 increases, implying that although there is less probability of an epidemic es-

tablishing, once the epidemic establishes it will be more severe. This effect becomes more
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marked as the fitness of the resistant mutant increases. As time on treatment is increased

even further, the trajectory can slope back upwards, implying increased risk with respect

to both the probability of the epidemic establishing and the intensity of the epidemic. This

is especially evident for trajectories with prophylaxis (dashed lines). Although prophylaxis

lowers P (emergence) and R0 for a given fitness of the resistant genotype, increasing amounts

of treatment after infection often lead to worse control outcomes with regard to severity of

the epidemic, and can also potentially increase the probability of emergence. With more ex-

treme values of higher resistant fitness the increases in epidemic severity and probability of

emergence can also occur without prophylaxis, however for infection and recovery rates this

requires the resistant genotype(s) to be significantly more fit than the sensitive genotype(s),

which is an unlikely scenario.

In Figure 3(b), we illustrate the strong trade-off between probability of emergence and

prevalence of the resistant genotype. Greater time spent on treatment generally decreases

the probability of emergence, but there is virtually always an increase in the resistant geno-

type prevalence if the outbreak were to establish, especially when there is no prophylaxis.

With prophylaxis and higher resistant genotype fitness it is shown that higher treatment

increases both probability of emergence and resistant genotype prevalence.

2.5.4 Characterizing the effects of prophylaxis and resistant genotype fitness

on resistance prevalence

Given the importance of prophylaxis for resistant genotype prevalence and epidemic

outcomes, we explore the different qualitative outcomes comparing prophylaxis and no pro-

phylaxis for multiple scenarios of resistant genotype fitness and treatment intensity (Figure

4). This heat map shows the increase of resistant genotype prevalence when prophylaxis is

added to a system, with all other parameter values fixed at values spanning the full range

examined previously. For some of the explored range of parameter values there aren’t no-
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table differences when adding prophylaxis to the system, however, there is a broad regime

of parameter combinations where the resistant genotype prevalence is significantly increased.

Generally, when the resistant genotype fitness is high, increasing the time spent on treat-

ment decreases the difference in the prevalence of resistance when adding prophylaxis. No-

tably, the most extreme differences arise when the resistant genotype has comparable fitness

to the wild-type, and when time spent in treatment is near zero. This can be understood

because the prevalence of such highly fit resistant strains will be high in the presence of

any antimicrobial selection, so the marginal impact of prophylaxis is greates when other

treatment rates are low (Figure 2(c,f)). When the resistant genotype fitness is lower (but

still high enough to generate significant numbers in an outbreak), adding prophylaxis can

still increase the resistant genotype prevalence substantively, despite its lowered fitness. If

the prevalence of the resistant genotype is an important control outcome, it is worthwhile

to consider that there may exist combinations of parameter trade-offs that can suppress or

favor resistance, especially in the context of prophylaxis.

To further elucidate the interaction between the resistant genotype prevalence and sever-

ity of the outbreak and epidemic potential, we simulated 1000 outbreaks per set of parame-

ters and recorded their sizes and resistant genotype prevalences (Figure 5). Simulation was

conducted as a stochastic branching process model using the Gillespie forward simulation

algorithm [17]. Outbreak size was captured as the number of total cases in existence at a set

time after iteration (150 time steps), and outbreaks were considered established if epidemic

size reached over 100 cases. Here we assumed that 30% of the population used prophylaxis

(p = 0.3) throughout, and we explore different values of c, the proportion by which prophy-

laxis reduces risk of infection with the sensitive strain, to understand how protective efficacy

can affect epidemic outcomes. Here we compare values of c = 0.3 and c = 0.7, to represent

approximate values corresponding to notable examples of established prophylactic regimens

[25, 50] and to demonstrate different qualitative outcomes.

56



Figure 5 elaborates upon the trade-offs we have discussed, to explore varying efficacies

of prophylaxis. For lower fitness of the resistant genotype (black and blue points), effective

prophylaxis helps curb epidemic emergence overall and outbreak size, indicated by the lack

of successful outbreaks (in number) and lowered outbreak size. Additionally, the prevalence

of the resistant genotype is generally low due to its poor fitness. Notably, however, when

prophylaxis is more effective (black points), there is a tendency toward outbreaks with sig-

nificantly higher resistant genotype prevalence – though these are few and small in size, so

ultimately a minor health risk. For higher fitness of the resistant genotype (red and pur-

ple points), we see larger epidemics (note the log-scale on the x-axis) which have a large

proportion of resistant infections. In this case, more effective prophylaxis (red points) leads

to significantly higher prevalence of the resistant genotype, though outbreak sizes tend to

be smaller than for less effective prophylaxis (purple points), and the number of successful

emergence events is fairly comparable for the two scenarios, showing a limited influence of c

on this parameter set. This illustrates that the trade-offs identified in our analysis extend to

weighing outbreak size versus resistance prevalence, and to varying efficacies of prophylaxis.

2.6 Discussion

Here we have presented a model to explore how patterns in antimicrobial treatment us-

age shape the early-stage evolutionary dynamics during an epidemic that drive resistance

outcomes. The complexity of interactions and range of outcomes identified in our study

enable us to reconcile previous findings which appeared, at face value, to give conflicting

results. Our results also show how parameter values in different spaces spaces may lead to

qualitatively different control recommendations. Specifically, our analysis revealed trade-offs

between time spent on treatment and prophylaxis in terms of epidemic outcomes, including

resistant genotype prevalence. When resistant genotypes have low fitness, treatment has

little influence, whereas when the resistant genotype is more fit, prophylaxis can increase

resistant genotype prevalence. Overall, in the parameter regimes explored, both prophylaxis
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and treatment tend to be beneficial to epidemic control with respect to preventing the epi-

demic from becoming established, and controlling it if it establishes. However, caution is

needed if the resistant genotype has transmission fitness approaching that of the wild-type;

here increased treatment or prophylaxis can spur higher prevalence of resistant genotypes

in conjunction with significant outbreak sizes, potentially incurring larger, less controllable,

resistant-dominant epidemics. One take-home message from our work is that the fitness of

the resistant genotype is an essential determinant of the outcome, and if possible should be

empirically characterized in order to better understand the implications of control strategies.

Another is that greater protective efficacy of prophylaxis can select more strongly for resis-

tance, leading to unexpectedly worse epidemic outcomes. Overall, our findings show that

resistant genotype fitness – which has not been a focus of previous analyses of this problem

– is a key influence on epidemic outcomes, and that control measures such as treatment

intensity and prophylaxis must be considered in the appropriate evolutionary context when

weighing the risk of emergence and establishment of resistance.

The broad range of qualitative outcomes we have found, for different regions of parameter

space, provide a way to reconcile conflicting findings in the published literature, since previ-

ous studies can be mapped onto various sub-spaces of the model described here. Ferguson et

al 2003 [13] assumed that, for their particular example in influenza, there is little risk of resis-

tance even with high levels of treatment, but their example has a very low estimated fitness of

the resistant genotype (10% that of the sensitive genotype) and thus aligns with trajectories

on the left half of Figure 3b. Moghadas 2008 [35] found that as treatment increases, there is

generally a decrease in epidemic size until resistance emerges and causes increased numbers

of infections; this study considered a resistant genotype fitness comparable to that of the

sensitive pathogen, consistent with the higher-valued trajectories without prophylaxis in our

results. Alexander et al 2007 [1] and Handel et al 2009 [21] both showed that it is optimal

to control an epidemic quickly (especially with effective prophylaxis) to prevent emergence

of resistance, which corresponds in our model to the left-half of figure 3a, but otherwise it

is better to use intermediate levels of control to reduce the risk of selecting for resistance
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emergence (where control can be either treatment or prophylaxis). Our model shows that

it is also necessary to account for the fitness of the resistant genotype (as demonstrated in

Figure 3) and the amount of prophylaxis (discussed below) to understand where and how

these trade-offs can arise with varying amounts of treatment. Unlike Handel et al 2009 [21],

we find that if the epidemic establishes, moderate amounts of treatment can decrease overall

R0 but will always increase the prevalence of the resistant genotype in long-term epidemic

outcomes. Additionally, in the presence of prophylaxis, any amount of treatment can even

increase R0 when resistant genotype fitnesses are higher, adding further unexpected com-

plexity to judgements about prophylaxis as a control strategy. These differences in results

likely arise at least partially from different implementation of treatment within the models,

as we assume constant per capita rates of treatment, and Handel et al 2009 [21] considers

a population-wide control measure after a certain number of infected cases has been estab-

lished.

In order to explore this high-dimensional problem we have made several simplifying as-

sumptions. Pharmacokinetics and pharmacodynamics play an important role in the effects of

antimicrobial treatments, as the concentration of drug within a host will affect the strength

of selection acting on the resistant genotype of a pathogen [28, 46]. As a preliminary in-

vestigation, we built a model with intermediate treatment states in between our untreated

and treated states, using with intermediate parameter values to represent a treatment state

when drug concentrations are waning after a patient?s last dose. Our core results did not

differ qualitatively, as the intermediate treatment state acts effectively as a delay in transi-

tion dynamics, though we emphasize that a full investigation is needed to more realistically

capture varying treatment levels as individuals go on and off drug treatment. We have also

made simplifying assumptions about individual treatment behaviors. We used constant per

capita rates of going on and off treatment, but people may be more likely to stay in a given

treatment status once they have transitioned into it. This could be incorporated easily into

our analysis by implementing different rates of staying on or off treatment when already on

or off treatment, but data on individual dosing patterns are limited. Related to this, trans-
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mission may also be non-random with respect to treatment status, for instance in hospital

settings where there may be concentrated groups of individuals with higher contact, treat-

ment, and prophylaxis rates which could lead to an increased risk for resistance. Some of

these factors have been explored in previous work [54], but would benefit from a mechanistic

and stochastic depiction of prophylaxis and treatment, which we have shown this can be

influential in the emergence of resistance.

We have assumed that the duration of infection is not affected by treatment, however

treatment is likely to shorten the duration of infection in some scenarios. Although we have

focused on fixed durations of infection for simplicity, our time units are relative, and therefore

the model could be applied to acute or chronic infections by adjusting the relative ratios of

time on treatment and duration of infection. It has been argued theoretically that relatively

longer infections provide greater opportunity for evolutionary adaptation of pathogens [2],

however others have shown that selective disadvantage within-host (which can occur for re-

sistant mutations [27]) may impede emergence in chronic infections, providing an interesting

avenue to pursue further development of the model [47]. The competing timescales of in-

fection duration and other life-history traits in comparison to treatment rates could also be

coupled with empirical data for individual behavior regarding treatment adherence in more

chronic infections such as HIV [26].

Another important frontier is to account for broader sets of pathogen genotypes. We

can speculate about how the relative fitnesses of more genotypes, in the context of different

treatment environments, will affect the emergence of drug resistance. As an example, per-

missive [5] and compensatory [8] mutations have been shown to play a role in allowing or

sustaining drug resistance mutations. Our model could be extended to examine these factors

and explore how strongly the fitness of such mutations, potentially at multiple scales, can

help or hinder the emergence of resistance. Fitness landscapes and the interaction of pheno-

types present at multiple scales are still largely unexplored, however new sources of data are

revealing that these aspects can factor influentially on evolutionary trajectories [55, 42]. We
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have largely subsumed within-host fitness aspects to a single mutation and fixation parame-

ter with some qualifying assumptions, however it has been shown that correlations between

within-host and between-host fitnesses can facilitate selection and emergence [43]. This is an

important aspect to explore as we have shown the between-host transmission fitness of the

resistant genotype to be a crucial part in understanding epidemic outcomes and emergence

of resistance, and it is important to see how these results may change with more realistic

within-host fitness dynamics. Future developments on this work could incorporate important

factors regarding within-host evolution, such as the innate immune system, and demonstrate

how within-host and between-host evolutionary dynamics could interact to affect epidemic

and evolutionary outcomes.

The findings presented here show qualitative trends of emergence, epidemic intensity,

and resistance that have not been previously demonstrated. Although the work presented

does not aim to make quantitative predictions regarding treatment and control, it lends a

further understanding how these control measures can influence emergence, and how several

mechanistic aspects of treatment and prophylaxis can affect epidemic outcomes in a broad

range of parameter space. Additionally, it provides a context for the measurement of resis-

tant genotype fitnesses and how these might interplay with the epidemic control measures

described, and demonstrated that this is a key challenge to improving our understanding of

resistance emergence. The model introduced here helps to resolve previous studies that gave

apparently conflicting results, and provides a basis for further exploration of how prophylaxis

and treatment can influence the emergence of resistance in an evolutionary context.
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Variable
description

Variable name Value(s) used

infection rate bi [0.15, 0.05, 0.03 - 0.17, 0.03 - 0.17]

death or recovery rate di [0.1, 0.1, 0.1, 0.1]

rate of treatment ρ 1

rate of going off treatment σ [0.01 - 20.0]

mutation from
sensitive to resistant

µs→r 0.04

mutation from
resistant to sensitive

µr→s 0.02

proportion of
prophylactic transmission

p 0, 0.3

protective efficacy c 0.3, 0.7

Table 2.1: Parameter values used for studying a qualitative range of epidemic outcomes.
Note here that all parameters are positively valued, though the possible range of values for
p and c are between 0 and 1.
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Figure 2.1: Schematic of the model. si indicate sensitive genotypes, ri indicate resistant
genotypes; subscript u indicates the untreated state, subscript t indicates the treated state.
Numerical shorthand used in the text also indicated, where [su, st, ru, rt] = [i = 1, i =
2, i = 3, i = 4]. p is the proportion of transmission to individuals on prophylaxis, c is the
protective efficacy of prophylaxis where c = 1 indicates prophylaxis is completely protective
against transmission. (There is no c term for transmission to individuals on prophylaxis for
resistant genotypes as we assume that resistant genotypes are not affected by prophylaxis).
Arrows represent infection (bi), death or recovery (di), treatment status changes (ρ, σ which
represent going on and off of treatment, respectively) and genotype change through mutation
and effective fixation (µs→r, µr→s, for mutations from sensitive to resistant, and resistant
to sensitive types, respectively). Blue arrows and terms represent dynamics of prophylaxis
while red arrows represent dynamics of mutations in genotype.
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Figure 2.2: Effects of time spent on treatment on epidemic outcomes, for scenarios without
and with prophylaxis. Curves represent different between-host fitnesses of the resistant geno-
type, with red values indicating lower fitness than the sensitive/treated type, green values
indicating higher fitness than the sensitive/untreated type, and blue representing interme-
diate values (see values on right hand axis of (a) and (d). The x-axis is the ratio of time
spent on treatment to time spent untreated (ρ : σ ratio). The y-axis in the leftmost column
represents the overall epidemic R0, the y-axis of the middle column represents P (emergence)
when the epidemic is started with a single individual of the su type, and the y-axis of the
rightmost column represents the resistant genotype prevalence in the event of a major epi-
demic. Here b1 = 0.15, b2 = 0.05, b3 = b4 = [0.03 − 0.17] corresponding to colored values,
d1,2,3,4 = 0.1, µs→r = 0.04, µr→s = 0.02, ρ = 1.0 (fixed), σ varying for x-axis values. For top
row of figure, c = 1, p = 0; for bottom row of figure, c = 0.7, p = 0.3.
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Figure 2.3: Trade-offs between shorter-term and longer-term epidemic outcomes and drug
resistance. Circle indicates no time spent on treatment, with increasing time spent on
treatment over the range of the trajectory towards the triangle symbol, corresponding to
increasing x-axis values in Figure 2. Parameters and color values are as in Figure 2. Solid
lines indicate scenarios with no prophylaxis (corresponding to Figure 2(abc)), dotted lines
indicate scenarios with prophylaxis (corresponding to Figure 2(def)). P (emergence) values
are the same in both figures, but some values of the resistant genotype fitness trajectories
where the resistant genotype fitnesses are lower (red) are obscured in panel (a) by the density
of higher resistant genotype fitness trajectories (blue).
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Figure 2.4: Difference of resistant genotype prevalence with and without prophylaxis. The x-
axis represents time in treatment vs. time spend not in treatment. The y-axis represents the
fitness of the resistant genotype. Color values represent the difference in resistant genotype
prevalence for a system with prophylaxis and a system without prophylaxis, corresponding
to parameter values in Figure 2.
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Figure 2.5: Outbreak size and resistant genotype prevalence. The x-axis represents outbreak
size. The y-axis represents prevalence of the resistant genotype. Colors correspond to legend
values as shown, σ = 10.0. 1000 epidemics are simulated for each parameter set and run for
150 time units to ensure sufficient establishment of successful epidemics.
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Figure 2.S1: Validation of theoretical results by simulation. The x-axis shows each parameter
and the y-axis shows parameter values. Solid points are theoretical calculated results, hollow
points are results from simulating epidemics starting with one infected individual of the
sensitive untreated type. 1000 epidemics are simulated for each parameter set and run for 150
time units to ensure sufficient establishment of successful epidemics, for each parameter set,
as in Figure 5. Figure S1(a) infection parameters are bi = [0.15, 0.05, 0.15, 0.15], Figure S1(b)
bi = [0.15, 0.05, 0.1, 0.1], Figure S1(c) bi = [0.15, 0.05, 0.05, 0.05], with all other parameters
indicated by colors in respective legend captions and otherwise fixed as used and described
in main analysis.
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CHAPTER 3

Joint estimation of within-host and transmission

fitness of a virus from experimental data: influenza in

ferrets as a case study

Miran Park, Jessica, A. Belser, James O. Lloyd-Smith

3.1 Abstract

Pathogen evolutionary dynamics play out at multiple spatial scales, with pathogen pop-

ulation dynamics and selection occurring both within individual hosts and across host pop-

ulations. Pathogen fitness has distinct consequences at different scales, corresponding to

pathogen replication rate at the within-host scale and to transmissibility at the between-

host scale. These two scales of fitness, and how they covary across pathogen strains, have

been shown theoretically to have major influence on evolutionary outcomes. Yet there are re-

markably few studies that estimate pathogen fitness at both scales for a given pathogen strain

and host type. Indeed, there are few frameworks to analyzing pathogen data at multiple

scales simultaneously, presumably due to the complexity of modeling multi-scale evolution

and the limited availability of suitable data spanning within-host and between-host scales.

Here we present a model-based method for estimating both within-host viral fitness and

between-host transmission fitness from commonly available data from animal transmission

experiments, using influenza in ferrets as a case study. Our model integrates data routinely

measured in ferret transmission experiments, using a Bayesian data augmentation approach
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to jointly estimate within-host and between-host fitness. We demonstrate the validity and

sample size requirements of our framework using simulated data, showing that experiments

as small as 3 transmission pairs can yield robust estimates of fitness values. We then esti-

mate fitness values for 7 subtypes of influenza A virus, and for two modes of transmission.

We identify an apparent negative correlation between within-host and between-host fitness

in ferrets, implying a possible trade-off. Finally we find significant overlap in qualitative

characteristics of influenza subtypes in their ability to transmit in ferrets and humans at the

between-host scale, corroborating and extending earlier findings.. Overall, this work pro-

vides a mechanistic framework to jointly estimate within-host and between-host fitness from

experimental data, opening the door to extract greater insights from animal transmission

experiments for many pathogens.

3.2 Introduction

Selection acting at multiple scales have been shown to have important influence on

pathogen evolution [15, 29, 19, 30]. Recent theoretical work has started to address the chal-

lenges and opportunities arising from modeling evolution at multiple scales, as it pertains to

emergence of novel pathogen strains, immune escape, fitness landscapes, and genetic diversity

[34, 14, 37, 3, 42, 33]. However, research that explicitly addresses cross-scale pathogen evo-

lution remains largely theoretical, raising challenges in connecting its findings to real-world

problems. In particular, efforts to estimate crucial parameters such as pathogen fitness have

largely focused on a single pathogen scale [15]. This is in part due to the fact that is in-

herently difficult to measure fitness across scales. Recent empirical studies have increasingly

presented correlates of fitness at both within-host and between-host scales [16, 41, 1, 20, 21],

but measures at the two scales are typically presented as raw data (e.g. time course of viral

titers within hosts, and raw success rates of transmission experiments). Thus, despite this

growing body of theoretical and empirical work, there is a lack of methodology for system-

atic and quantitative comparison of fitness values derived simultaneously from within-host
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and between-host data. We introduce a mechanistically-based approach for joint estimation

of within-host and between-host fitness, and demonstrate its application to influenza A virus.

Influenza is a rapidly evolving virus with significant epidemic and pandemic potential.

Epidemics consisting of novel strains or subtypes are largely a product of emergence from

zoonotic reservoirs, and although potentially hazardous strains have been increasingly iden-

tified from animal populations, it is difficult to characterize the epidemic potential of these

viruses in human populations [25]. Estimating the human-to-human transmissibility of these

zoonotic strains is a particular challenge. Increased epidemiological surveillance efforts have

captured outbreaks of emerging strains in humans, small case numbers and imperfect ob-

servation present challenges in inferring transmission rates [26]. Household outbreak data

has been used to estimate transmissibility of emerging strains [43, 38], but it is unclear how

well transmissibility parameters at the household level translate to larger human populations.

Ferrets are widely used as an animal model for studying the transmissibility of emerging

subtypes of influenza [7, 32]. Ferret transmission experiments are generally conducted in

one of two experimental setups: 1) where ferrets are co-housed in the same enclosure and

able to interact freely (which we call direct contact, DC) and 2) where ferrets are contained

in separate enclosures but aerosol particles can travel through connected airways to the

enclosures (which we call respiratory droplet, RD). Physiological factors of ferrets lead to

parallels in influenza pathology and transmission to influenza in humans [7], but few studies

have considered the translatability of transmission experiments in ferrets to transmissibility

in humans [32]. Controversy surrounding ‘gain-of-function’ experiments on influenza in fer-

rets [20, 21], which have discovered small numbers of mutations that allow avian strains to

gain airborne transmissibility in mammals, has highlighted the importance of understanding

whether ferret transmission experiments reflect potential for human pandemics in emerging

strains of influenza. Ferret transmission studies typically collect data at both within-host and

between-host scales, and given their relative abundance and consistent experimental design,

ferret transmission studies make an excellent case study to develop empirical approaches to
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studying pathogen dynamics across scales [7, 12].

In a recent study we demonstrated a strong quantitative connection between influenza

transmissibility in ferret experiments and in human households and populations [12]. The

previous analysis quantified transmission fitness using the secondary attack rate (SAR),

defined as the probability of infection for a susceptible individual following known contact

with an infectious individual [17]. SAR is calculated as the ratio of successful transmission

to potential transmission in number of contacts; for ferret experiments, this was simply the

fraction of ferret pairs where transmission occurred.

Transmissibility among humans was captured quantitatively as the SAR, calculated from

household exposure data in the literature, and qualitatively as supercritical or subcritical,

from the epidemiological behavior of each subtype. Supercritical strains exhibit sustained

human-to-human transmission, i.e. influenza subtypes such as H3N2 and H1N1 that cause

seasonal or pandemic flu. Subcritical strains do not transmit from human to human, or

transmit so weakly that they cannot cause major outbreaks, i.e. influenza subtypes such as

H7N9 or H9N2 that cause only zoonotic infections and self-limiting clusters.

Our previous study identified statistical relationships between the SAR in ferret transmis-

sion experiments and the different measures of human-to-human transmission. In particular,

a strong positive correlation was found between the human SAR and the ferret SAR in res-

piratory droplet (RD) experiments, and the ferret RD SAR was shown to be a surprisingly

good predictor of subcritical versus supercritical transmission among humans [12]. However,

the results highlighted significant challenges arising from small sample sizes. Using SAR as

a measure of between-host fitness in ferrets is especially limiting: because of the small sam-

ple size of ferret experiments (often on the scale of 3 pairs of ferrets), SAR estimates were

very discrete and often saturated (100% successful transmission) for the more transmissible

strains.The study emphasized the need for further research, including approaches to address-

ing this sample size challenge and opportunities for further insights from incorporating the

within-host scale
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Here we refine these estimates of transmission potential and incorporate within-host

dynamics, by developing a Bayesian statistical modeling framework for simultaneously esti-

mating within-host fitness and between-host fitness from transmission experiment data. At

the within-host scale, we use viral titer dynamics to estimate the viral population growth

rate, a measure of within-host fitness. Despite the focus on the between-host scale in trans-

mission experiments, viral titers are commonly measured in ferret influenza transmission

studies [7, 12]. At the between-host scale, we extract greater information from transmission

data by using the time of infection, imputed through a data augmentation scheme, to esti-

mate the force of infection (FOI) as a measure of between-host fitness. The FOI is defined

as the per capita hazard rate of becoming infected for any given susceptible, and as a contin-

uous quantity it allows better resolution of fitness differences than the discretized SAR. The

method presented gives mechanistic underpinnings to the estimation of within-host fitness

of viral populations, and addresses previous limitations in the estimation of between-host

transmission fitness of SAR by allowing a continuous measure of the force of infection. We

show that our analyses corroborate and expand upon previous results, and we call for further

applications to broader cross-scale data.

3.3 Materials and methods

3.3.1 Ferret experiments and data

To estimate parameters of within-host and between-host viral fitness, we utilized data

from 9 groups of ferret transmission experiments, each of which consisted of multiple trans-

mission experiments [10, 4, 28, 8, 6, 9, 5, 27, 22]. To maximize consistency in the data, we

used experiments from a single laboratory, and only paired designs with one donor ferret

and one contact ferret were used. In these experiments, a naive ferret (donor ferret) is in-

tranasally inoculated with a specific dose of the virus that has been grown from egg or cell

culture. If the donor ferret is infected successfully, there is a delay period of 24 hours before

a virus-naive contact ferret is exposed. Both direct contact (DC) and respiratory droplet
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(RD) transmission experiments were included, but considered separately, as we have previ-

ously demonstrated that there is a significant difference between these experimental setups

[12].

The viral titer data are taken from individual contact ferrets during the course of an in-

fection via nasal wash, titrated by standard plaque assay, and taken at discrete time points

(typically every 2 days). Viral titer data in our sources was presented as plaque forming units

(PFU) or egg infectious dose (EID). Despite these differing units, we found these quantities

comparable in magnitude and generally grouped subtype data was in one or another unit,

and use these as a measurement of viral titer throughout our analysis. The threshold for

detection of viral titers across studies was generally 1 log10(PFU,EID). Infection of contact

ferrets (i.e. successful transmission events) were confirmed by detectable viral titers in the

a 12 day window of exposure and observation. (Some studies consider transmission to have

occurred if a ferret underwent seroconversion despite having no detectable titers. For our

study, in order to be able to model viral growth, we considered this a negative transmission

result). In total, 106 ferret pairs and 9 influenza A subtypes (H1N1, H3N2, pH1N1, H7N9,

H7N3, H7N2, H7N7, trsH1N1, H5N1) were considered. However subtype trsH1N1 ended up

being excluded from later analyses due to lack of comparison data for human SAR (6 ferret

pairs), and H5N1 was excluded due to no successful DC or RD transmission in this set of

data (9 ferret pairs) (Table 1). In order to have enough data per analysis to estimate viral

fitness across scales, following previous analysis [12] we pooled data at the level of subtype

rather than at the level of strain, and assumed that characteristics of viral fitness were suf-

ficiently consistent across subtype-level data.

3.3.2 Likelihood model

At the between host-scale, for N = n+m pairs of ferrets for a given subtype and trans-

mission type (DC or RD), we denote n as the number of successful transmissions, and m as
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the number of unsuccessful transmissions. We assume transmission to be stochastic, mod-

eled as a Poisson process with rate parameter λy, where λy is the between-host transmission

rate (force of infection or FOI) and y = DC or RD. λDC estimates are fixed to be above

λRD, as literature suggests the force of infection to be comparatively larger for DC than RD

transmission [12]. For the n successful transmissions, each has a time of infection which we

denote as τi for each individual i ferret out of n ferret pairs. For the m unsuccessful trans-

missions, we assume that they are exposed to the same force of infection λy for the subtype

and transmission type for the duration of the total exposure time during the experiment,

denoted as T . Because the outcomes in each ferret pair are independent, the probability of

observing a particular transmission outcome is:

n∏
i=1

λye
−λyτi

n+m∏
i=n+1

e−λyT (3.1)

for each type of transmission (y = DC,RD).

At the within-host scale, after a successful transmission event occurs, we assume the viral

population initially grows exponentially with growth rate r. We assume this growth process

is deterministic, and consider only this exponential growth phase for estimates in our model

in order to avoid potential complications arising from innate immunity, cell resource avail-

ability, and other complexities. To be conservative, we base our estimation on only the first

detectable titer in the contact ferret, to minimize contributions from these non-exponential

processes that arise later in infection. We assume that across a subtype there exists one

characteristic growth rate, which is not affected by transmission type (DC or RD). Follow-

ing recent empirical studies, we assume that each transmission type inoculates the contact

ferret with a fixed number of viral particles, which we refer to as the bottleneck width. In

considering the viral titer data, we account for measurement error by imposing a normally

distributed error. The probability of observing a given set of initial titer values, across all
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successful transmission events, can then be written as:

n∏
i=1

1√
2πσ2

e
−(xi−µi)

2

2σ2 (3.2)

where

µi = xye
r(ti−τi). (3.3)

where xy is the initial viral population size after transmission bottleneck (DC or RD), xi

is the first detectable viral titer in contact ferret i, ti is the time of that titer (in days from

initial contact), and τi is the time of infection, as above.

Bringing together the between-host and within-host factors, we can write the likelihood

function for all data from each subtype as :

L(λy, r, τ1, ..., τn) =
∏

y=DC,RD

(
n∏
i=1

λye
−λyτi 1√

2πσ2
e
−(xi−µi)

2

2σ2

m∏
j=1

e−λyT

)
(3.4)

As is typical for infectious disease studies, the times of infection τi were not observed

directly, so we took a data augmentation approach and imputed their values using MCMC.

The estimate we used for overall variance in viral titer measurement is σ = 1log10(PFU,EID)

unit, in line with standard deviations of source data as determined in analyses of individual

datasets [10, 4, 28, 8, 6, 9, 5, 27, 22]. Values used for initial viral population size after
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transmission bottleneck, xDC = 16 and xRD = 4 viruses [39]. For each subtype of influenza,

we jointly estimated λDC , λRD, r, and all τi for a particular subtype.

3.3.3 Bayesian inference

We used Bayesian MCMC methods for our likelihood as described (package ’MHadaptive’

in R) to obtain parameter estimation results for λDC , λRD, r, and the nuisance parameters

τi for each successfully infected contact ferret. Prior distributions for λy and r were gamma

distributions, with shape k = 2 and scale θ = 1. Priors for the infection times τi were triangle

distributions bounded by 0 and the first viral titer time for contact ferret i, such that the

lower limit a = 0, upper limit b = xi, and mode c = xi − 1 unless the xi = 1, in which

case c = xi − 0.5. Because DC transmission is known to be more rapid and efficient than

RD transmission [7], we rejected any proposed set of parameters that had λRD > λDC. A

10000 iteration burn-in period was used with a total of 150000 iterations per set of parameter

estimations. Convergence was assessed visually.

3.3.4 Simulated data for power analysis

For valid reasons, samples sizes in ferret experiments tend to be small, which has the

potential to compromise statistical power [11, 31]. To explore the statistical power of our

method, we conducted simulation analyses at sample sizes of N = 3, 6, and 12 ferret pairs

(6, 12, and 24 total ferrets). Biologically reasonable values of λDC , λRD, and r were chosen

based on preliminary analyses of our data. Infection events within ferret pairs were simu-

lated as a Poisson process, so the time of transmission τi was drawn from the exponential

distribution with rate parameter equal to the appropriate λy value. Viral populations were

then modeled by exponential growth starting at xy (with values as described previously)

according to growth rate r, and viral titers calculated at the same time points as viral titer

measurements in our data sources (t = [2, 4, 6, 8, 10, 12] days). The first viral titer above

the threshold for detection (1 log10(PFU,EID)) was taken as the simulated data point, xi,
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along with the corresponding time point. A normal error was then added to the viral titer

measurement with σ2 = 1 as described previously. If the random value drawn for τi was

above the 12 day time period of exposure, we considered this an unsuccessful transmission

event, and xi = 0 and T = 12 accordingly.

3.3.5 Human data and SAR calculation

Human SAR estimates were obtained from Buhnerkempe et al 2015 [12]. To parallel

the contact structure of ferret experimental data, human SAR values were calculated from

household contact data. Both ad hoc SAR estimates, where estimates are simply the ratio

of successful infections to household contacts, and SAR estimates from more sophisticated

maximum likelihood approaches were considered in these estimates. Following the availabil-

ity of data, and to match the ferret analyses, influenza strains were grouped at the subtype

level for all analyses of human-to-human transmission.

3.4 Results

3.4.1 Validation of model inference with simulated data

Our model for joint parameter estimation for simulated parameters shows high accuracy

for key model parameters chosen over a range of values, for realistic sample sizes of 3, 6,

and 12 ferret pairs, which are comparable to sample sizes in our data (Figure 1). Estimates

consist of posterior means and Bayesian credible intervals resulting from likelihood-based

estimation by MCMC. Both accuracy (i.e. proximity of the posterior mean to the true pa-

rameter value) and precision (i.e. width of 95% credible interval) improve with larger sample

sizes for both λy and r values. Importantly, though, 95% Bayesian credible intervals cap-

tured the true parameter values of λy and r in all sample size cases. Higher λy values tend to

have wider credible intervals, as saturation of successful transmission in smaller sample sizes

allows more possible values for λy. Posterior mean estimates for λRD are below those for
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λDC , which are according to our assumption; the 95% credible intervals overlaps for sample

sizes of 3 and 6 ferret pairs, but results are significantly different for 12 ferret pairs. Esti-

mated τi values were also well captured by joint parameter estimation (results not shown).

The sample sizes evaluated here are comparable to sample sizes in our ferret experimental

data (Table 1), thus simulation results lend confidence to our effort to estimate parameters

from the real data despite the small sample sizes.

3.4.2 Estimates of within-host and between-host fitness in ferret transmission

experiments

Plotting the time-course of viral titer values in all contact ferrets illustrates the general

pattern of infection (Figure 2), but it is difficult to elucidate any clear patterns across sub-

types from these raw data. Figure 2(a) shows the individual variation arising for all contact

ferrets infected by a single influenza subtype (pH1N1), along with the mean viral titer tra-

jectory. Figure 2(b) shows a superposition of individual and mean trajectories for all contact

ferrets infected by all subtypes. As a general pattern, viral titer trajectories initially follow

an exponential growth pattern (note that y-axis is on a logarithmic scale), then plateau for

a period of 2-4 days, subsequently decrease toward zero on roughly the same time scale as

initial growth. Note that some infections do not initiate until several days after contact is

initiated on day 1, highlighting the opportunity to use mechanistic models to understand

more about between-host viral fitness than the more simplistic binary outcome of SAR.

Using our model-based inference framework, we estimated the fitness parameters of

between-host transmissibility (for each transmission type) and within-host growth rate (Fig-

ure 3). Results are shown for for λDC , λRD, and r (the nuisance parameters τi were estimated

but are not shown). In Figure 3, subtypes are plotted in order of increasing human SAR

estimates from Buhnerkempe et al 2015 [12], from top to bottom of the figure (i.e. human

SAR estimates in order of increasing transmissibility are ranked as H7N7 < H7N2 < H7N3
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< H7N9 < pH1N1 < H3N2 < H1N1). Notably, the force of infection for ferret transmis-

sion in respiratory droplet experiments, λRD, increases monotonically with human SAR. The

force of infection in direct contact experiments, λDC , shows some signs of fluctuation, but

is consistent with the same monotonic trend. To quantify this relationship, we conducted

Spearman rank correlation calculations between parameter sets. There is a fairly significant

positive correlation between λDC and human SAR (Spearman rank correlation coefficient

ρ = 0.750, p = 0.066) and a strong, significant positive correlation between λRD and human

SAR (ρ = 0.96, p = 0.0005, however, p-value could not be computed exactly due to multiple

zeroes in the data set). r shows a weak negative correlation with human SAR (ρ = −0.43).

Parameter estimates for H7N9, while considered subcritical, are fairly similar in value to

estimates for pH1N1, a known supercritical subtype. Importantly, our estimates provide

a more continuous estimation of between-host fitness, as previous estimates of ferret SAR

were limited to discrete ratios due to small groups of ferrets (often out of 2 or 3 pairs per

experiment). Regarding within-host growth rate, r, viral growth rates for less transmissible

subtypes are not compromised, although limited data leads to broader confidence intervals

on estimates. This highlights the fact that within-host and between-host fitness are separate

quantities, and can vary independently from one another.

To explore the relationship between within-host and between-host fitness, we plot the

force of infection estimates, λy, versus the within-host growth rate, r, categorized by trans-

mission type and transmission ability in human populations (Figure 4). Results show a

potential negative correlation between between-host fitness and within-host growth rate, at

the subtype level. A Spearman rank correlation calculation on these parameters shows a

negative correlation between λRD and r (ρ = −0.55, p = 0.195, however, p-value could not

be computed exactly due to multiple zeroes in the data set) and a nonsignificant negative

correlation between λDC and r (ρ = −0.32, p = 0.498). This pattern holds for both trans-

mission types, but is more evident in direct contact transmission since only a few subtypes

successfully transmit by respiratory droplet. Supercritical subtypes occupy a notably higher

parameter space for between-host fitness for both λDC and λRD, with some interesting excep-
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tions. λRD is conspicuously lower for subtype pH1N1 than for other supercritical subtypes.

Meanwhile H7N9 has a λDC value in a similar parameter space to supercritical subtypes,

but a λRD value similar to other subcritical subtypes in our estimates.

3.4.3 Comparison of estimates to existing data on influenza transmission in

humans

To support previous analyses and further confirm estimates, we compare current model

results to previous human SAR estimates collected in Buhnerkempe et al 2015[12]. Gen-

erally, between-host transmission estimates exhibit positive correlations with human SAR

estimates in both DC and RD experiments (Figure 5). Subcritical and supercritical sub-

types occupy distinctly lower and higher parameter spaces, respectively, for both λy and

SAR. Again Subtype H7N9 is an outlier: its human SAR estimate positions it at the high

end of transmissibility in the subcritical grouping. Combined with its λDC estimate, this

causes H7N9 to occupy a region of parameter space closest to supercritical subtypes, while

its λRD estimate again groups it with subcritical subtypes. Our estimation of between-host

fitness using FOI offers considerable advantages over previous analyses using ferret SAR, in

which supercritical estimates of ferret SAR were saturated at 1 or very close to 1 for both

DC and RD transmission (Supplemental Figure 1).

When comparing r and human SAR, there is no evident correlation within the subcritical

or supercritical groups of subtypes (Figure 6). Combining all estimates, again it appears that

subcritical subtypes occupy a distinct parameter space from supercritical subtypes. Interest-

ingly, when distinguished by criticality, there is a clear signal of higher within-host growth

rates in the subtypes with lower human SAR, echoing the patterns shown in Figure 4 for

ferret between-host fitness, and implying a possible trade-off between transmissibility and

within-host viral fitness in both ferrets and humans. More data are needed to further clarify

these relationships, both from ferret and human data sources, since with few estimates for
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supercritical subtypes it is difficult to currently ascertain the strength of the distinction of

clustering. In any case, it is clear that within-host fitness in the ferret is not compromised

for the subtypes that are less transmissible among humans or ferrets.

3.5 Discussion

We have introduced and demonstrated a statistical inference framework, based on a

mechanistic model, that uses data routinely collected in animal transmission experiments to

simultaneously (and accurately) estimate within-host viral fitness and between-host trans-

mission potential. The unique aspect of jointly estimating fitness across within-host and

between-host scales introduces a methodology for analyzing any transmission experiments

where data are collected at the two scales of within-host pathogen titer data and between-host

transmission outcomes. Analysis of simulated data showed that pathogen fitness parameters

can be reliably estimated from the small sample sizes that are typical of experimental stud-

ies of transmission or household contact studies. With more data, the relationship between

within-host and between-host fitness can be better characterized for particular pathogens,

and by understanding these trends, it is possible that between-host fitness could be predicted

(cautiously) from within-host data alone. The apparent negative correlation we found in our

case study of influenza transmission in ferrets highlights the distinction between within-host

and between-host fitness, and may point to trade-offs in maximizing fitness at these two

scales, as has been found empirically in some systems [16, 21]. Previous theoretical work

has shown that correlations between within-host fitness and between-host fitness can have

dramatic impacts on pathogen adaptation [33], so it will be important to revisit these trends

with more data and with in-depth study of particular systems.

While our approach could be applied directly to any host-pathogen combination where

transmission experiments are conducted, we have focused on influenza transmission in ferrets

as a case study with relatively ample data and clear scientific impact. Our results support

previous analyses which demonstrated quantitative links between ferret and human trans-
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mission, with key improvements arising from incorporating within-host fitness estimates and

an using a higher-resolution measure of between-host fitness. Our framework creates a con-

text to analyze existing and future data from transmission experiments, and supports and

extends the scientific value of such laboratory-based transmission studies. The parameters

we estimated for H7N9 varied in closeness to those of subcritical and supercritical subtypes,

and the fact that H7N9 has had significantly high numbers of human cases [36, 40, 24] may

point to why our results show increased transmissibility. H5N1 was excluded from our anal-

ysis due to no successful transmission, however, would be valuable to reassess with further

data.

Small sample size is always a limiting factor in animal transmission experiments, and

there are potential trade-offs to using data from multiple sources which may include incon-

sistencies in experimental protocols [7, 32]. Existing ferret transmission experiment data

need to be considered carefully, due to possible differences in inoculation protocols, units of

measurement, or criteria defining successful transmission. For example, different studies use

different units of measurement for estimating viral titers (e.g. EID, PFU), and although we

found units to be comparable, measurement methods can vary across experimental designs.

For all source data used in our analysis, any quantities in different units were compara-

ble and units were generally consistent within subtype estimations, but a careful approach

is necessary whenever dealing with multiple measurement approaches. Similarly, in some

ferret transmission experiments, transmission is considered successful as long as seroconver-

sion occurred even if a viral titer was never detected; we did not consider these successful

transmissions in our model because there was no signal to estimate within-host fitness. We

restricted our analysis to studies from a single laboratory, as standardized experimental pro-

tocols ensured consistency within the data, however our analysis could easily be extended to

the literature of existing and future ferret transmission experimental data.

A promising avenue for future work is to revisit the logistic regression analysis described

in Buhnerkempe et al 2015 [12], which revealed that the SAR from ferret respiratory droplet
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experiments is an effective predictor of subcritical versus supercritical transmission in hu-

mans. The greater resolution achieved by estimating between-host fitness using a continuous

quantity (force of infection) rather than the cruder discretized SAR may give more power to

this statistical analysis. Additionally, it will be interesting to see whether within-host fitness

(as estimated in the ferret) adds any predictive value to the model, though surprisingly our

results point towards that the relationship might be a negative correlation.

There are numerous ways in which our analysis could be extended or improved. Data

on ferret body temperature and body weight over time are often collected in these experi-

ments, and could potentially aid in prediction of epidemic or pathogenic potential. Increasing

amounts of data are becoming available using genomic diversity studies to more accurately

estimate viral bottlenecks in influenza transmission [39, 13, 23], and it would be possible

to incorporate more subtype specific estimates for transmission bottleneck size and other

parameters of interest. Bottleneck size has been shown theoretically to have an important

influence on adaptive evolution of pathogens [37], so it is important to consider how varia-

tion in bottleneck size may affect results. Our work focused on ferret transmission studies,

both to study the relation of fitness values across scales within ferrets and to improve un-

derstanding of the relevance of ferret experiments to studying transmissibility in humans.

If suitable data on influenza viral titers in humans soon after infection were available, it

would be interesting to pursue similar analyses to study the multiple scales of viral fitness

in humans, and their relationship to criticality across subtypes.

Due to the complexity of jointly estimating parameters at the within-host and between-

host scales, we chose to use an exponential growth model at the within-host scale, coupled

with the choice to use only the first viral titer value. Our methodology could be extended to

incorporate more of the viral titer trajectory beyond the first detectable time-point, though

this risks incorporating other processes such as immune response, and thus may call for a

more complex within-host model along with a more complex within-host model. Many more

mechanistic within-host models that incorporate immune response or target cell resource
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availability [35, 18, 2] could be substituted for the mechanism of within-host parameter esti-

mation. Estimates of the time of infection can allow for further exploration of transmission

dynamics, e.g. in the case of ferret transmission experiments, is there a pattern to the viral

titer of the donor ferret once it is successfully infected by inoculation, and could this tra-

jectory be analyzed in conjunction with infection times to clarify the drivers of transmission

potential? (The data we used shows a relatively reliable pattern to viral titers after donor

ferrets have been successfully inoculated [results not shown]).

We have presented a novel model-based approach to estimating pathogen fitness at

within-host and between-host scales simultaneously, and applied this method to present

the first systematic analysis of cross-scale fitness values for a set of influenza subtypes. This

work constitutes a substantial contribution to the literature on empirical approaches to cross-

scale evolutionary dynamics of pathogens, a field that has been dominated by theoretical

work. As a case study, our results support the translation of influenza transmissibility from

the ferret animal model to human populations, and corroborate our previous findings that

showed that ferret data can be used to predict transmissibility among humans. We have

verified our results by simulation for small sample sizes, such that despite limited data, we

are able to estimate fitness values across scales and transmission types with relative con-

fidence, and to understand where these estimations are limited. Our results confirm and

further increase the scientific value gained from ferret transmission experimental studies.

Both the results and model we have presented highlight directions for further statistical

and experimental research, and open opportunities for analyzing empirical within-host and

between-host pathogen data more broadly.
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Subtype Transmission type Successful
transmissions n

Total contact
ferrets (n+m)

H7N7 DC 4 9
H7N7 RD 0 9
H7N2 DC 4 9
H7N2 RD 0 6
H7N3 DC 5 6
H7N3 RD 0 3
H7N9 DC 14 17
H7N9 RD 5 21

pH1N1 DC 9 9
pH1N1 RD 6 9
H3N2 DC 3 3
H3N2 RD 11 11
H1N1 DC 3 3
H1N1 RD 3 3

Table 3.1: Transmission data by subtype. Data sources described in detail in text [10, 4, 28,
8, 6, 9, 5, 27, 22], numbers are totaled over all available data per subtype. For transmission
type, DC indicates direct contact, RD indicates respiratory droplet.
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Figure 3.1: Simulation parameters and model results. Results from simulations of 3, 6, and
12 ferret pairs (6, 12, and 24 total ferrets). True parameter values are [λDC , λRD, r] =
[2.5, 0.5, 2.5] for 3 ferret pairs, [λDC , λRD, r] = [2.0, 1.0, 3.0] for 6 ferret pairs, [λDC , λRD, r] =
[1.5, 0.5, 0.5] for 9 ferret pairs. x-axis shows these respective parameters, Circles on y-axis
show chosen parameter values, with black line indicating mean posterior values, red line
indicating upper bound of 95% Bayesian credible interval, blue line indicating lower bound
of 95% Bayesian credible interval.
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Figure 3.2: Contact ferret viral titers. Viral titers in log10(EID)orlog10(PFU) versus time
in days, separated by subtype. Solid lines indicate mean by subtype, dotted lines indicate
individual ferret viral titer trajectories. Panel (a) shows contact ferret viral titer data for
pH1N1 only, panel (b) shows contact ferret viral titer data for all subtypes.
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Figure 3.3: Estimates of within-host and between-host fitness. Points represent mean poste-
rior values from MCMC analysis, bars indicate 95% Bayesian credible intervals. Estimates
are grouped by influenza subtype. Between-host transmission fitnesses, λDC and λRD, are
represented by red and blue colors, respectively, where DC is direct contact transmission and
RD is respiratory droplet transmission. Within-host growth rate fitness, r, is represented
by purple color. Subtypes are plotted in order of increasing human SAR estimates (from
Buhnerkempe et al 2015) from top to bottom of figure.
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Figure 3.4: Patterns of within-host and between-host fitness by transmission type and crit-
icality. Circles indicate estimates for subcritical subtypes, triangles indicate estimates for
supercritical subtypes, with text labels indicating individual subtypes. Bars represent 95%
Bayesian credible intervals. Direct contact transmission (DC) and respiratory droplet trans-
mission (RD) are indicated by red and blue colors, respectively.
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Figure 3.5: Comparison of between-host fitness estimates to human SAR data. Circles indi-
cate estimates for subcritical subtypes, triangles indicate estimates for supercritical subtypes,
with text labels indicating individual subtypes. Bars represent 95% confidence intervals for
the x-axis, 95% Bayesian credible intervals for the y-axis. Direct contact transmission (DC)
and respiratory droplet transmission (RD) are indicated by red and blue colors, respec-
tively. Human SAR values (and data sources used to calculate these values) are taken from
Buhnerkempe et al 2015 [12].
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Figure 3.6: Comparison of within-host fitness estimates to human SAR data. Circles indicate
estimates for subcritical subtypes, triangles indicate estimates for supercritical subtypes,
with text labels indicating individual subtypes. Bars represent 95% confidence intervals for
the x-axis, 95% Bayesian credible intervals for the y-axis. Human SAR values (and data
sources used to calculate these values) are taken from Buhnerkempe et al 2015 [12].
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Figure 3.S1: Comparison of between-host fitness estimates to ferret SAR data. Circles indi-
cate estimates for subcritical subtypes, triangles indicate estimates for supercritical subtypes,
with text labels indicating individual subtypes. Bars represent 95% confidence intervals for
the x-axis, 95% Bayesian credible intervals for the y-axis. Direct contact transmission (DC)
and respiratory droplet transmission (RD) are indicated by red and blue colors, respec-
tively. Ferret SAR values (and data sources used to calculate these values) are taken from
Buhnerkempe et al 2015 [12].
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