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ABSTRACT 

We study the formation of second harmonic double-resonance cones in hyperbolic 

metamaterials. An electric dipole on the surface of the structure induces second harmonic light to 

propagate into two distinct volume plasmon-polariton channels: A signal that propagates within 

its own peculiar resonance cone; and a phase-locked signal that is trapped under the pump’s 

resonance cone. Metamaterial dispersion and birefringence induce a large angular divergence 

between the two volume plasmon-polaritons, making these structures ideal for subwavelength 

second and higher harmonic imaging microscopy. 

PACS: 42.65.Ky, 68.65.Ac, 41.20.Jb, 78.20.-e 
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The inhomogeneous or phase-locked solution of nonlinear Helmholtz equation for 

harmonic generation processes [1, 2] travels at the same phase and group velocity of the 

fundamental frequency (FF) signal [3, 4].  It has also been shown that the generated phase-

locked components survive in the presence of linear absorption at the harmonic frequencies [5].  

In this Letter we predict that a hyperbolic metamaterial supports resonance cones (RCs), or 

volume plasmon polaritons (VPPs), in the presence of absorption at the fundamental and its 

harmonic frequencies, propagating in directions that are tilted with respect to the optical axis of 

the metamaterial. 

Hyperbolic metamaterials can be implemented via layered metal-dielectric metamaterials. 

In such implementations, the study of harmonic generation should necessarily include material 

dispersion and absorption. Additionally, the artificial birefringence found in this class of 

metamaterials causes ordinary and extraordinary effective permittivities to have opposite signs, 

leading to a hyperbolic dispersion relation [6] and the propagation of large but finite spatial 

frequency components [7, 8].  In contrast, in the effective medium approximation (EMA) there is 

no upper bound to the maximum spectral component allowed in the medium. The further 

inclusion of cubic nonlinearities can improve the quality of subwavelength imaging by inhibiting 

diffraction via self-focusing, while maintaining broadband operation and increased propagation 

distances compared to linear metamaterials [9]. Favorable conditions for imaging through flat 

hyperbolic metamaterial lenses [10] are met when the ordinary effective permittivity o  vanishes 

[11, 12], i.e., the permittivity component parallel to the metal-dielectric interfaces. Under these 

circumstances, the field distribution of an object at the input surface of the multilayer lens is 

imaged at the output plane with minimal distortion thanks to the formation of parallel rays that 
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carry high spatial frequency components along the optical axis (z-axis, direction normal to the 

interfaces). Subwavelength imaging in metal-dielectric stacks can be further improved in the 

super-guiding [13, 14] and canalization [15] regimes, as described in Ref. [16] in terms of the 

point spread function. The multilayer focusing capabilities [13] may also be tailored by properly 

designing the curvature of the dispersion relation [17].  

The chromatic dispersion of the metal permittivity limits the condition o 0   to one 

specific wavelength, λ0. Increasing the optical path length in the dielectric layers pushes λ0 from 

the UV to the visible and infrared regions. For a given configuration, when λ > λ0 the multilayer 

displays negative ordinary permittivity, whereas the extraordinary permittivity, i.e., the 

permittivity along the optical axis, is positive. In this regime, the stack still allows propagation of 

large spectral wave numbers, but not along the optical axis direction. Instead, the slab supports 

RCs [18] or VPPs [19] propagating in a preferred direction [20] tilted at some angle with respect 

to the optical axis.  

Subwavelength interference of VPPs in a hyperbolic metamaterial substrate has been 

observed in a Young’s double slit experiment [19]. It has been suggested that RCs may be used 

effectively to design single photon sources [21], but so far only the linear properties have been 

extensively investigated. Nevertheless, we will show that nonlinear optical interactions in these 

metamaterials may lead to exotic phenomena with potential for subwavelength imaging 

applications. We investigate the field patterns generated at the second harmonic (SH) frequency 

from electric dipole sources located on the surface of nonlinear, anisotropic slabs. While the FF 

signal diffracts in a RC with a single VPP, we predict that the diffraction of harmonic signals is 

channeled in two distinct VPPs: a homogeneous VPP that propagates in the RC of the harmonic 

frequency signal, and a phase-locked VPP, which is trapped in the RC of the FF signal. 
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We consider a hyperbolic metamaterial as in Fig. 1(b) made by alternating 5nm-thick, 

planar layers of silver and a generic dielectric medium having εd=4, compatible for example with 

metal-oxides like Ta2O5, TiO2, ZnO, and with LiNbO3 and SrTiO3. The permittivity of silver εm 

is taken from Palik’s handbook [22]. The metal-dielectric interfaces lie on the x-y plane. By 

adopting the EMA, a simplified homogenization of this lamellar structure is based on a uniaxial, 

anisotropic model for the effective permittivity tensor  o eˆ ˆ ˆ ˆ ˆ ˆ   ε xx yy zz . In this model, 

ordinary and extraordinary permittivities,  o m d1f f      and 

  1
e m d/ 1 /f f  


     (in that order) depend on the metal fill factor  m m d/ ,f t t t   

where mt  and dt are metal and dielectric layer thicknesses, respectively. We set f = 0.5. The 

problem of a line source radiating in a linear, planar [23] or cylindrical [24] metal-dielectric 

stack has been extensively studied. In the planar geometry, it is straightforward to demonstrate 

that the two-dimensional, scalar Green’s function is singular when    2 2
e o' ' 0x x z z     , 

where  ,x z  and  ', 'x z  are observation and source points, respectively. For a lossy, uniaxial 

crystal with  eRe   and  oRe   having opposite signs, the singularity manifests itself as a RC 

with a semi-angle  

    1
RC o etan Re / Re    ,              (1)  

evaluated with respect to the optical axis. In Fig. 1(a) we sum up the linear properties of the 

hyperbolic metamaterial described above by plotting the real parts of ordinary and extraordinary 

permittivities and the semi-angle of the RC, RC . The RC reduces to a single VPP propagating 



5 
 

along the optical axis ( RC 0  ) when the ordinary permittivity is zero, i.e. when λ0= 405nm. At 

larger wavelengths, VPPs propagate in RCs with angle RC 0  .  
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FIG. 1. (a) Real parts of the extraordinary (red, dash-dotted line) and ordinary (blue, solid line) permittivities of the 
uniaxial, anisotropic, effective medium model of a metal-dielectric stack with metal fill factor f = 0.5. The black, 
dashed line is the RC angle RC . (b) Schematic of an electric line dipole p on the surface of a hyperbolic 

metamaterial made of a semi-infinitely extended metal-dielectric multilayer. Red/green arrows represent FF/SH 
photons radiated into the structure. 

We consider the field emitted by an electric line dipole ˆ i t
xp e p x  located in free space 

at a distance h = 5 nm from a semi-infinite substrate shown in Fig. 1(b). The distance h affects 

only the transverse size of VPPs without significantly altering RC angles. A detailed discussion 

on the effects of dipole-substrate distance is found in Refs. [8, 25]. We assume that the substrate, 

whose EMA properties are summarized in Fig. 1(a) has a homogeneous, instantaneous quadratic 

nonlinearity with non-zero susceptibility components (2) (2) 1 pm/Vxxx zzz   . The metamaterial 

scatters both FF and SH fields. Here we limit our attention to the fields radiated into the substrate 

region. We first tune the SH wavelength where RC 0  , so that FF SH 02 2 810 nm     . 

For undepleted pumps, the FF signal propagates linearly, and the VPP at the FF is tilted at 

 RC FF 49     with respect to the z-axis − Fig. 1(a). The magnetic field intensity distribution 
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  2
,yH x z  in the hyperbolic substrate at FF 810 nm   − Fig. 2(a) − shows the propagation of 

subwavelength VPPs at  RC FF 49     . 

The source of SH radiation is the electric current density  

 (2) 2 (2) 2
SH SH 0 FF, FF,ˆ ˆxxx x zzz zi E E     J x z  induced by the FF signal in the substrate region, where 

SH  is the SH angular frequency, 0  the free-space permittivity, and FF,xE  and FF,zE  are the FF 

electric field components in the x and z directions, respectively. Even if the intensity of the 

current SHJ  peaks in the RC of the FF signal, i.e., at  RC FF  , the SH field also shows 

maxima in the directions  RC SH  , i.e., the RC at the SH wavelength. The generated SH 

radiation divides into two RCs: (i) The phase-locked SH cone at  RC FF   that overlaps with 

the RCs at the FF, and (ii) the homogeneous cone generated in the volume of the hyperbolic 

metamaterial just below the dipole. The SH component in the homogeneous cone walks off the 

RC at the FF, and freely propagates along the  RC SH   directions. For  FF 810 nm  , the 

phase-locked cone is tilted by  RC FF 49   with respect to the z direction; the homogeneous 

cone  RC SH   is emitted at  RC SH 0    , since SH 0  . We note that under TM-

polarized light, a slab of stacked metal-dielectric layers with hyperbolic dispersion acts as a 

subwavelength imaging lens for SH light [26], thus providing strong spectral isolation from the 

excitation signal.  

In Fig. 2(c) and Fig. 2(d) we report the case for FF SH2 1010 nm   .  Now, the FF and 

phase-locked SH cones are tilted by  RC FF 57    ; the homogeneous SH cone is found at 

 RC SH 22    , in accordance with Fig. 1(a). These results show that the theory of 
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homogeneous and phase-locked SH generation, applied earlier to plane waves or beams 

propagating in regimes of negligible diffraction [1-5], may be extended to subwavelength VPPs 

propagating in RCs of hyperbolic metamaterials. Waves with spectral wave numbers propagating 

along the phase-locked SH (or FF) cone travel at the same phase and group velocity, and 

attenuation rate of the FF.  In contrast, waves with spectral wave numbers belonging to the 

homogeneous SH cone propagate with the phase and group velocity and attenuation rate of the 

hyperbolic medium at the SH frequency.  
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FIG. 2. (a) Magnetic field intensity distribution from a dipole located 5nm above the stack calculated with EMA. 
Dipole emission wavelength is λFF = 810 nm. (b) Same as in (a), for the generated SH signal (λSH = 405 nm). (c) 
Same as in (a), assuming λFF = 1010 nm. (d) Same as in (b), at λSH = 505 nm. (e), (f), (g) and (h), same as in (a), (b), 
(c), and (d), respectively, calculated for the DMD geometry. Solid and dashed red arrows point in the same direction 
since they are associated with the FF and phase-locked SH RCs, respectively. Green arrows indicate the 
homogeneous SH RC.  
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The anisotropic, effective medium model adopted above is valid strictly for metal-

dielectric stacks with very small layers thickness. The homogenization model overstates the 

structure’s ability to support propagation of large wave numbers. In fact, hyperbolicity of the 

dispersion relation is limited by layer thicknesses [7, 8, 25]. For these reasons we perform SH 

generation calculations by considering the discrete metal-dielectric (DMD) stack geometry − Fig. 

1(b). We now assume the bulk nonlinearity is present only in the dielectric layers in the form: 

(2) (2) 1 pm/Vxxx zzz   . The magnetic field intensity distributions [   2
,yH x z ] for the same 

FF/SH wavelengths as in Fig. 2(a-d) ( FF SH 02 2 810 nm      and FF SH2 1010 nm   ) 

are now shown in Fig. 2 (e-h).  The presence of VPPs propagating under RCs, and more 

importantly, the phenomenology of double-resonance-cone formation in the SH radiation pattern, 

are preserved when one compares the results from the EMA and those from the DMD geometry. 

Two RCs are clearly visible in the SH field distribution: homogeneous and phase-locked 

components. Despite the similarities, the models differ in several respects. For example, the RC 

angles are slightly larger and the transverse size of VPPs is wider for the DMD stack. In 

particular we find that, when FF SH 02 2 810 nm     , FF and phase-locked SH RCs are 

found at 56 for the DMD case compared to 49 for the homogenized hyperbolic model, whereas 

the homogeneous RC is normal to the interfaces in both models. When FF SH2 1010 nm   , 

FF and phase-locked SH RCs are tilted at 62 for the DMD stack compared to 57 using the 

EMA, whereas the homogeneous RC is tilted by 34 for the DMD case compared to 22 in the 

homogenized hyperbolic model.  

We now examine the differences between the EMA and the DMD stack. We gain insight 

into the physics of hyperbolic media using the Bloch theory for the bulk, plasmonic modes 
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supported by the structure [8, 20]. In Figs. 3 (a) and 3(b) we plot the isofrequency diagrams of 

real and imaginary parts of the Bloch wave number for two wavelengths: (i) 2λ0 = 810 nm (red 

curves), and (ii) λ0 = 405 nm (green curves), i.e., FF and SH wavelengths of the radiation 

patterns shown in Figs. 2(a) and 2(b) and Figs. 2(e) and 2(f).  In the representation of Figs. 3(a) 

and 3(b), kx is the transverse wave number, assumed purely real and indicating each spectral 

component emitted by the dipole, kB,z = βz+iαz is the complex, Bloch wave number, and G = 2π / 

(tm + td) is the magnitude of the reciprocal lattice vector. For comparison, isofrequency diagrams 

obtained using the homogenized, anisotropic dispersion relation 2 2 2
e o/ /x zk k k    are 

illustrated with dashed curves (k is the free space wave number). 

A significant deviation from the hyperbolic behavior predicted by the EMA is observed 

at 810 nm [i.e., the difference between solid and dashed red curves in Figs. 3 (a) and 3(b)]. The 

flattening of βz for high kx components and the associated increase of αz are due to the modes’ 

cutoff above the first Brillouin zone, in the region / 0.5z G  . The EMA is remarkably accurate 

at λ0 = 405 nm, as suggested by the overlapping region of dashed and solid green curves in Figs. 

3(a) and 3(b), and by looking at the virtually identical direction and transverse size of the 

homogeneous VPPs in the EMA [Fig. 2(b)] and in the DMD geometry [Fig. 2(f)].   
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FIG. 3. Isofrequency diagrams at 810 nm (red) and 405 nm (green) in the kx-βz (a) and kx-αz plane (b) for the metal-

dielectric multilayer described in Fig. 1(b). Solid lines refer to Bloch theory, dashed lines to the anisotropic, 

hyperbolic model (EMA). Arrows indicate the direction of the group velocity; (c) RC angle with respect to the z-axis 

evaluated via Bloch theory, i.e., BT  and with the anisotropic effective medium model, i.e., EMA . 

Isofrequency diagrams also contain information about the direction of group velocity of each kx-

component. The group velocity,  k k  , is perpendicular to the frequency contours and points 

in the direction of increasing frequency ω [27]. This direction is evaluated as 

   1tan /x z xk k    . We first analyze the diagrams related to the EMA [dashed curves in 

Figs. 3 (a) and 3(b)] and observe that the angle    1
EMA tan /x z xk k     is nearly constant. 

In other words, the dashed arrows in Fig. 3(a), which indicate  EMA xk  in the homogenized 

hyperbolic metamaterial, point in the same, preferred direction regardless of the chosen kx-

component. We note that this preferred direction coincides with the RC angle [Eq. (1)], derived 

by examining the shape of the Green’s function singularity. This result is expected because both 

definitions of the RC angle, one in the spatial frequency domain [  EMA xk ] based on the group 

velocity direction, the other in the real space domain ( RC ) based on the Green’s function, 
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originate from the EMA. Hence one may surmise that   EMA RCxk  . In contrast, the group 

velocity angle    1
BT tan /x z xk k     in the metal-dielectric multilayer modeled via Bloch 

theory is not constant. In fact,  BT xk  is very close to RC  only for small kx-components 

( / 0.1xk G  ), becoming much larger than RC  for kx-components near and above the edge of 

the first Brillouin zone ( / 0.1xk G  ). This may be inferred by looking at the solid red arrows in 

Figs. 3(a), which indicate the group velocity direction in the DMD geometry,  BT xk . A zeroth 

order approximation of the RC angle in the DMD model is given by the weighted average   

     1 1
BT BT

0 0

/z x x x z x xk k dk k dk   
 

    ,             (2) 

where the function  1
z xk  weighs the radiation angle  BT xk  of each kx-component with 

respect to its characteristic propagation distance (i.e., attenuation length) in the multilayer.  

In Fig. 3(c) we show the wavelength dependence of the RC angle evaluated via the EMA 

and Bloch theory, defined by EMA  (dashed curve),  and BT  (solid curve), respectively. It 

turns out that in the wavelength range 405-1010nm, BT EMA  . This result explains the 

discrepancies between radiation patterns evaluated with the two models at 810 nm [Figs. 2(a) 

and 2(e)] and the good agreement between the two models at λ0 = 405 nm [Figs. 2(b) and 2(f)] 

where BT EMA  . 

In summary, we have discussed the formation of double RCs in dispersive hyperbolic 

metamaterials. We have demonstrated that a quadratic nonlinearity in anisotropic plasmas 

generates two subwavelength VPPs: One associated with the homogeneous SH component that 

propagates in a small-angle RC, the other phase-locked under the larger-angle RC at the FF. The 
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differences between models based on EMA and DMD consist in a wider VPP cross section and 

larger RC angles in the metal-dielectric geometry, due to cutoff of high kx-components near and 

above the first Brillouin zone. SH double RCs may drastically improve the subwavelength 

imaging abilities of metamaterial-based lenses thanks to the large spectral separation between the 

excitation and the observed signals. Double RCs are predicted in the radiation patterns at second 

and higher-order harmonic wavelengths in any anisotropic medium with hyperbolic dispersion. 

Although we have considered planar metal-dielectric multilayers, similar phenomenology is 

expected also in other implementations, such as nanowire metamaterials [28] and multilayer 

graphene structures [29, 30].  

 

This research was performed while the authors M. A. Vincenti, D. de Ceglia and J. W. Haus held 

a National Research Council Research Associateship award at the U.S. Army Aviation and 

Missile Research Development and Engineering Center. 
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