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SUMMARY

We used clinical tissue from lethal metastatic castra-
tion-resistant prostate cancer (CRPC) patients ob-
tained at rapid autopsy to evaluate diverse genomic,
transcriptomic, and phosphoproteomic datasets for
pathway analysis. Using Tied Diffusion through Inter-
acting Events (TieDIE), we integrated differentially
expressed master transcriptional regulators, func-
tionally mutated genes, and differentially activated
kinases in CRPC tissues to synthesize a robust
signaling network consisting of druggable kinase
pathways. Using MSigDB hallmark gene sets, six
major signaling pathways with phosphorylation of
several key residues were significantly enriched in
CRPC tumors after incorporation of phosphoproteo-
mic data. Individual autopsy profiles developed us-
ing these hallmarks revealed clinically relevant
pathway information potentially suitable for patient
stratification and targeted therapies in late stage
prostate cancer. Here, we describe phosphoryla-
tion-based cancer hallmarks using integrated
personalized signatures (pCHIPS) that shed light on
the diversity of activated signaling pathways in
metastatic CRPC while providing an integrative,
pathway-based reference for drug prioritization in in-
dividual patients.
INTRODUCTION

DNA and RNA sequencing data have been used to analyze key

transcriptional targets, cell surface molecules, or pathways at

work in cancer (Aytes et al., 2014; Cancer Genome Atlas

Network, 2012a, 2012b; Cancer Genome Atlas Research

Network, 2015; Grasso et al., 2012; Robinson et al., 2015; Taylor

et al., 2010; Vaske et al., 2010). One goal from these approaches

is to select mutations corresponding to genes or pathways from

tumors and then match targeted therapies based on these le-

sions. However, missing from many genomic or transcriptomic

analyses is further measurement and extension of the activated

pathways that are found by such approaches using mass spec-

trometry-based phosphoproteomics.

Protein phosphorylation remains a critical, rate-limiting step

for the regulation of signaling pathways over numerous biolog-

ical events. Determining both the level of phosphorylation and

what residues are phosphorylated on a given protein may inform

us about the activity of kinases and phosphatases as well as
Cell 166, 1041–1054, August 11, 2016 ª 2016 Elsevier Inc. 1041
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Figure 1. Characterization of the Phosphoproteome in Metastatic CRPC Tissues

(A) General workflow of the phosphopeptide enrichment and quantitative mass spectrometry protocol followed by data and pathway analyses. Analyses is

described in the text.

(B) Unsupervised hierarchical clustering heatmap of phosphoserine and phosphothreonine peptides identified from prostate cancer cell lines and tissues. 3,911

unique phosphopeptides (rows) were significantly identified from over 36 samples (columns). Unsupervised hierarchical clustering was performed using the

Cluster program with the Pearson correlation and pairwise complete linkage analysis.

(legend continued on next page)
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uncover new functional information that was previously underap-

preciated. Cellular signaling can also be controlled through the

recruitment of protein domains (such as SH2 and SH3) to spe-

cific phosphorylation sites on kinases (Pawson, 2004). Protein

phosphorylation leads to a cascade of downstream signaling

events important for cell maintenance and survival and dysregu-

lation of this process has been implicated in many diseases

including cancer (Hunter, 2009). It stands to reason that the im-

plementation of phosphoproteomics, coupled with traditional

mRNA-based approaches, may provide greater clues to these

signaling events than either alone.

Recent computational advances allow for the simultaneous

examination of genomic, phosphoproteomic, and transcriptional

data, in the context of prior pathway knowledge (Cancer

Genome Atlas Research Network, 2013, 2014a; Huang et al.,

2013). These methods have the advantage of being able to

detect events that are below the threshold of statistical signifi-

cance when examining a single dataset in isolation, as well as

finding evidence for functional interactions between proteins.

For instance, a multistep systems-level approach was recently

used to find genomic events that drive tumorigenesis in glioblas-

toma by first finding transcriptional ‘‘master regulators’’ that are

predicted to control a large number of differentially expressed

genes and then reversing pathway database interactions to

look ‘‘upstream’’ for genomic events that may be influencing

(and statistically associated with) the activity of regulators active

in individual patients (Chen et al., 2014). Similarly, the TieDIE al-

gorithm (Paull et al., 2013) was recently used in a study of thyroid

papillary carcinoma to identify signaling pathways linking mutant

BRAF and RAS genes to transcription factors and signaling pro-

teins with altered activity in tumor samples. It was found that the

small GTPase RHEB, a known regulator of mTOR activity, was a

contributing factor to the differences observed between BRAF

and RAS mutants (Cancer Genome Atlas Research Network,

2014a). Both of these analyses ranked candidate regulators ac-

cording to multiple data types and pathway context, though the

latter analysis focused on identifying intermediate ‘‘linking’’

genes that are strongly implicated by the combination of

pathway context and the incorporation of multiple data types.

Here, we set out to define the global picture of signaling path-

ways in lethal prostate cancer through dataset integration. We

developed a complete and extensive new dataset of the phos-

phoproteome in metastatic CRPC by extending our analysis to

phosphoserine and phosphothreonine peptides and then

combining this information with our previously published phos-

photyrosine peptide data (Drake et al., 2013). To develop

comprehensive pathway networks that are both enriched and

activated in CRPC, we used TieDIE to integrate independent

datasets of mutations, transcriptional changes, and phospho-

proteome activities in an unbiased manner from a similar set of

tumor samples obtained at rapid autopsy (Rubin et al., 2000).

The integration of tissue samples from a single autopsy program
(C–E) Gene set enrichment analysis (GSEA) was performed to identify canonical p

yellow bars) or lower (left blue bars) in metastatic CRPC compared to primary tis

kinases that were not directly sequenced by the mass spectrometer in the p

phosphorylation; blue, hypophosphorylation in the heatmap (B).

See also Data S1A–S1F.
allowed us to make inferences on the connections between

the mRNA and phosphoproteome datasets. In addition, both

mRNA and phosphoproteome data were available for several

of the patients. Using this information, we introduce a new

tool called phosphorylation-based cancer hallmarks using inte-

grated personalized signatures (pCHIPS) to establish patient-

specific pathways marking key signaling events for possible

targeting.

RESULTS

Development of a Robust Phosphoproteomic Dataset
for Integration
We analyzed the phosphoproteome of metastatic CRPC tissues,

obtained via an IRB approved tissue procurement protocol from

the University of Michigan (Rubin et al., 2000) and identified 297

phosphotyrosine (pY) peptides, (Drake et al., 2013) and 8,051

phosphoserine/phosphothreonine (pST) peptides from 54 total

runs corresponding to 27 samples of interest (11 treatment-

naive, 16 metastatic CRPC; Data S1A–S1C) using quantitative

label free mass spectrometry (Figure 1A). Hierarchical clustering

revealed similarities in the groupings of the samples compared

to previously published pY peptide data (Drake et al., 2013).

For example, cell lines were distinct from primary tissues and

treatment naive localized prostate cancer clustered indepen-

dently from metastatic CRPC tissues (Figure 1B). Within this

dataset, we were able to directly identify phosphopeptides

corresponding to 74 kinases, 18 of which were differentially

phosphorylated (false discovery rate [FDR] <0.05, >1.5-fold) in

metastatic CRPC tissues (Data S1D). To get an initial sense of

the biological processes and pathways enriched in metastatic

CRPC, we performed gene set enrichment analysis (GSEA) typi-

cally used for RNA-based datasets (Subramanian et al., 2005) as

well as kinase-substrate enrichment analysis (KSEA) better

tailored for phosphoproteomic-based datasets that we and

others have previously established (Drake et al., 2012, 2013;

Casado et al., 2013; Newman et al., 2013). GSEA of canonical

processes and pathways detected over-representation of

mRNA splicing and processing, DNA replication, and AR tran-

scription factor pathways as well as loss of integrin signaling,

focal adhesion, and axon guidance pathways in metastatic

CRPC (Figure 1C). GSEA of transcription factor targets revealed

several E2F family members as well as theMYC/Max complex to

be over-represented in metastatic CRPC (Figure 1D; Data S1E).

The enrichment of E2F target genes is intriguing as we have pre-

viously been able to connect a primary basal stem cell signature

to small cell neuroendocrine carcinoma with this gene set (Smith

et al., 2015). KSEA further implicated enrichment of several ki-

nases in metastatic CRPC including cyclin-dependent kinases

(CDK2/CDK3), casein kinase 2 (CSNK2A1), and b-adrenergic re-

ceptor kinases (ADRBK1/ADRBK2) (Figure 1E; Data S1F). Many

of the genes and kinases identified through GSEA and KSEA
athways (C) and transcription factor targets (D) with activity either higher (right

sue. (E) Kinase/substrate enrichment analysis (KSEA) identified several unique

hosphoproteomic data. NES, normalized enrichment score; yellow, hyper-
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Figure 2. Pipeline for Omic Dataset Integration

Flow diagram depicting the integration pipeline. Twenty-seven gene expres-

sion and 16 phosphoproteomic CRPC patient datasets were integrated with

mutational data and combined using TieDIE to generate the resulting inte-

grated network. The overlay of input gene expression, kinase master regula-

tors, and phosphorylated kinases are shown as a Venn diagram.

See also Figures S1, S2, and Data S1G–S1J.
have previously been implicated in prostate cancer confirming

the validity of our dataset (Gioeli et al., 1999; Li et al., 2014; Lu

et al., 1997; Wang et al., 2006). Importantly, the large number

of pST identifications enabled an integrated computational

approach to identify pathways implicated from this phosphopro-

teomic dataset.
1044 Cell 166, 1041–1054, August 11, 2016
Integration of Transcriptomic and Phosphoproteomic
Datasets Using TieDIE
To prioritize kinases that are likely to regulate the observed gene

expression profile of metastatic samples, and be related to

genomic aberrations observed in prostate cancer, we developed

an original computational pipeline using the TieDIE algorithm, a

pathway-based method developed to find protein and gene in-

teractions related to disease (Cancer Genome Atlas Research

Network, 2014b; Paull et al., 2013). The approach integrates

complementary transcriptomic and genomic datasets collected

from different metastatic CRPC tissues or patients, as well as

prior knowledge in the form of pathway databases, to find sub-

networks of related proteins implicated by multiple forms of bio-

logical evidence (Figures 2 and S1A). We first applied the master

regulator inference algorithm (MARINa) (Alvarez et al., 2015), a

method to infer the activity of a given protein based on the differ-

ential expression/phosphorylation of the targets it regulates.

This allowed us to identify transcription factors with differential

activity (repression/activation) as well as differentially activated

kinase regulators (based on the predicted upstream kinases

for each phosphopeptide) in metastatic CRPC samples as

compared with treatment naive prostate cancers (Data S1G

and S1H). In addition, kinases directly identified by the mass

spectrometer in our phosphoproteomic dataset (phosphorylated

kinases) were merged with the kinase regulators before input to

TieDIE.

From this differential analysis, we were able to incorporate 74

transcription factor (TF) regulators, 14 inferred kinases regula-

tors, and 24 differentially phosphorylated kinases (Figure 2).

The dataset used for analysis included a matrix of inferred and

measured kinases for the same 16 metastatic CRPC samples

and a matrix of inferred transcription factors for 27 metastatic

samples. Several patients with marked variations in response

to therapy (e.g., anti-androgens or chemotherapy; Data S1A)

had highly similar transcriptomes as evidenced by the transcrip-

tion factors identified by MARINa for the 16 metastatic CRPC

samples. Thus, the differences in protein level signaling could

help explain this observation as well as offer new treatment

options that could abrogate the signaling upstream of these

TF-driven circuits (Figure S1B). These phosphoproteomic and

transcriptomic matrices only overlapped for seven patient

samples (from six unique patients) and are used for our pa-

tient-specific networks. As a third input to TieDIE, a background

of somatic mutations and copy-number aberrations was

collected from a large number of prostate cancer samples

from multiple datasets. The strength of our approach is that it

unites these diverse data, collected on different patient samples,

to identify pathways implicated by several viewpoints.

We asked if the kinases inferred by master regulator analysis

or identified by phosphorylation status were significantly interre-

lated to the set of genes involved in somatic mutations or to

those genes implicated as transcription factors by master regu-

lator analysis of the expression data. A conservative test that

permuted the input gene sets over 1,000 replications demon-

strated that the kinases are indeed ‘‘nearby’’ in pathway space

to genes with genomic or transcriptomic alterations (Figure S2A).

Thus, despite the fact that the inferred TF regulators are not

directly targeted for phosphorylation by the kinase regulators



more than we expect by chance, the TFs are ‘‘close’’ in network

space suggesting longer paths are needed to encompass the

signaling transduced from the phosphoproteome to the tran-

scriptome. The TieDIE solutions were robust to changes in the

method’s single parameter (alpha) that controls the size of the

network solutions (Figure S2B). Using varying settings for alpha,

we selected a compact network with a high level of specificity

(Figure S2B), which consisted of 338 nodes—40 kinases, 53

transcription factors, 86 amplified/deleted/mutated genes, and

163 linking proteins—connected by 1,889 edges. To simplify

this network, interactions that were supported by the phospho-

proteomic data were retained. This resulted in a network we refer

to as the ‘‘scaffold network’’ for metastatic CPRC that contained

122 nodes and 256 edges (Figure S2C; Data S1I). TieDIE used 61

genes that were not included in the input set, termed ‘‘linker’’

proteins, to produce the scaffold network. Consistent with their

predicted embedding in metastatic signaling, these 61 linkers

were found to have phospho-residues with significantly higher

phosphorylation abundance in metastatic CRPC compared to

treatment naive prostate cancer (Figure S2D; p < 4.5 3 10�6).

The diffusion process employed by TieDIE controls for the

spurious inclusion of ‘‘hub’’ genes—those genes with many con-

nections in the generic background network potentially as a

result of study bias. However, it was possible other factors could

influence a linker’s inclusion that would undermine the network’s

relevance to the given input set. Thus, we explicitly tested for in-

clusion bias in the linker genes by quantifying the frequency with

which they were included in random TieDIE solutions con-

structed using simulated arbitrary input gene sets of the same

sizes as the provided inputs. One thousand simulations demon-

strated that the linker genes were included at frequencies no

higher than other background genes (Figures S2E and S2F).

Furthermore, no inclusion bias was observed for linkers with

higher connectivity or centrality.

The scaffold network was found to have sub-networks signif-

icantly represented by cancer-related MSigDB cancer hallmarks

gene sets including AKT/mTOR/MAPK signaling, nuclear recep-

tor signaling (that includes the androgen receptor [AR] pathway),

the cell cycle, DNA repair, stemness, and migration (Figures

S2G–S2L; Data S1J) as well as established prostate cancer-

specific pathways recorded in the KEGG pathway database

(8.8-fold enrichment, p < 4.8e-15 or based on DAVID overlap

analysis; https://david.ncifcrf.gov). Sub-network views in Fig-

ures 3 and S2 show only genes that fall within both the curated

hallmark gene sets and the previously generated scaffold

network, with gray nodes representing genes that are in the scaf-

fold network but not in the respective hallmark.

To determine the distinct biology revealed by the phosphopro-

teomic data in metastatic CRPC, we re-ran the same TieDIE

analysis to obtain a comparably sized scaffold network without

the phosphoproteomics information and compared its cancer

hallmark enrichment against the one found when all the data

were included (Figures S3A and S3B). We found significant

enrichment of AKT/mTOR/MAPK signaling pathways when the

phosphoproteomic data were included whereas enrichment

was only marginal without inclusion of these data (Figure 3A;

4.6 versus 1.6 -log10 hypergeometric p value). In addition, we

found higher relative enrichment of proteins involved in cell cy-
cle, DNA repair, and nuclear receptor pathways when the phos-

phoproteomic data were included (Figure 3A; cell cycle: 20.5

versus 14.7, -log10 hypergeometric p value; DNA repair: 6.6

versus 5.1; nuclear receptor signaling: 8.1 versus 5.8). Inspecting

each sub-network through our phosphoproteomic data revealed

several newly discovered enzymatically active phospho-resi-

dues enriched in metastatic CRPC. This included MAPK

signaling targets (RPS6KA4 S343/S347, S682/T687), cell-cycle tar-

gets (MCM2 S40/41, S27), and the DNA repair kinase PRKDC

T2609, S2612 (Figures 3B–3I). Several other kinases within these

sub-networks were hyperphosphorylated at residues with un-

known function in metastatic CRPC including PRKAA2 S337,

MAPK14 S2, STK39 S385, NIPBL S318, and SNW1 S14 implicating

several more new targets for investigation. Lower relative enrich-

ment in metastatic CRPC was observed for TGF-b or WNT/

b-catenin signaling pathways when the phosphoproteomic

data were included. This can be partially explained by the lack

of overlap between kinases identified directly by the phospho-

proteomic data, lowering the relative importance of these gene

sets after its inclusion. However, our differential analysis of met-

astatic CRPC to treatment naive prostate cancer did observe

strong enrichment of both TGF-b and WNT/b-catenin signaling

pathways after the integration of the phosphoproteomic data in

metastatic CRPC (Figure S3B). We also observed that the frac-

tion of proteins overlapping with any of the ‘‘hallmark’’ gene

sets to be higher when including the phosphoproteomic data,

accounting for any potential study bias. These results provide

evidence of actionable phosphorylation events in metastatic

CRPC, several of which have previously been implicated in this

disease including PRKDC, PRKAA2, and AKT (Goodwin et al.,

2015; Yu et al., 2015; Park et al., 2009) while others such as

RPS6KA4 and MCM2 represent new drug targets.

Identification of Patient-Specific Integrated Networks
To identify patient-specific signaling routes we used the inte-

grated phosphoproteome-transcriptome network to analyze

the six metastatic CRPC patients that had both transcriptomic

and phosphoproteomic data available. We ran the VIPER algo-

rithm, a sample-specific version of MARINa that infers the

activity of proteins based on measurements of the targets they

regulate (Alvarez et al., 2015), to summarize the transcriptomic

and phosphoproteomic data vectors of each patient into protein

activity inferences of a relatively small number of transcriptional

and kinase ‘‘master regulators,’’ respectively (Figure 4A). Similar

to the full dataset, the transcriptional master regulators were

highly similar across this patient cohort but the inferred and

phosphorylated kinases were somewhat different between

each of the individual patients (Figure 4B). Importantly, we found

that phosphoproteomic-driven VIPER inferences of protein ac-

tivity for patient RA55 were highly correlated and consistent

across two metastatic sites (Figures S4A and S4B). Similarly, a

second patient, RA43, was found to have higher pairwise corre-

lations (on average) between samples when comparing inferred

protein activities from VIPER, than when comparing the relative

phosphorylation of peptides (Figures S4C–S4H). We asked if

the high differential kinase activities in CRPC compared to pri-

mary prostate cancer inferred by VIPER were concordant

with the measured phosphorylation levels. We measured the
Cell 166, 1041–1054, August 11, 2016 1045
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Figure 3. Pathway Analysis of Metastatic CRPC

(A–I) Enriched cancer hallmarks generated by dataset integration using TieDIE after inclusion of the phosphoproteomic and gene expression data relative to gene

expression data alone (A). Several cancer hallmarks were enriched after inclusion of the phosphoproteomic data including the cell-cycle pathway (B, red nodes),

DNA repair pathway (D, yellow nodes), AKT/mTOR/MAPK pathway (F, blue nodes), and the nuclear receptor pathway (H, green nodes). Detailed analysis of each

of these pathways revealed several common and unique players with high connectivity. Assessment of a select number of kinases and phosphoproteins

from each network confirmed their elevated phosphorylation state (C, E, G, and I) including some with direct phosphorylation on their enzymatic active residue

(C and E). This supports the activation state of the networks observed. Black arrow represents phosphoresidues that result in enzymatic activity of the given

protein. These defined subnetworks only contain genes that fall within both the curated hallmark gene sets and the previously generated scaffold network, with

colored nodes corresponding to genes that are members of a hallmark and exclusive to the integrated network solution containing the phosphoproteomic

data; gray genes are other scaffold members in the surrounding region. A t test was performed to calculate significance. *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.

See also Figure S3.
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Figure 4. Development of a Patient-Specific Network Using VIPER

(A) Flow diagram depicting the integration of gene expression and phosphoproteomic datasets for VIPER analysis.

(B) Heatmap of the gene expression and kinase master regulators and phosphorylated kinases for all six patients. These data were used as the input for patient-

specific network analysis.

See also Figure S4.
correlation between VIPER-inferred andmeasured activity for 26

phosphoresidues for which functional annotations could be

found recorded in the http://phosphosite.org database (Fig-

ure S4I). Of these, ten had significant positive correlations with

VIPER activity (Benjamini Hochberg [BH] FDR <0.1); none had

significant anti-correlations. Of the ten phosphoresidues with

positive correlations, eight were annotated on enzymatically

active sites, consistent with the higher activity predicted by

VIPER for the metastatic samples.

To generate patient-specific network models, we intersected

sample-specific VIPER inferences, the phosphorylation abun-

dance of select phosphoresidues, mutations, copy-number

gains, and copy-number deletions with the integrated TieDIE

‘‘scaffold network’’ solution. Proteins could then be prioritized

by their activities and by their ability to regulate (or be regulated

by) other genes implicated in a patient’s network. The use of the

scaffold allows the cohort-level data to inform the analysis of a

single patient’s data, which improves the accuracy and robust-

ness of the resulting networks (Figures S4J and S4K). The scaf-

fold network was also found to generalize to unseen patient data
based on a leave-one-out test in which the scaffold network was

rebuilt after removing the data for each patient in turn as

assessed by multiple different sub-sampling tests (Figures

S4L–S4N).

Assessment of Actionable Pathways for Personalized
Medicine Predictions
We created a visualization scheme we refer to as phosphoryla-

tion-based cancer hallmarks using integrated personalized sig-

natures, or pCHIPS (Figures 5A and S5; Data S1K). pCHIPS

enables visual inspection and prioritization of the signaling path-

ways specific to each individual patient and is useful for suggest-

ing personalized treatment options. Dissecting the pCHIPS of

patient RA40, we observed four significantly enriched subnet-

works including a large active network related to cell-cycle pro-

cesses (Figures 5B–5F). Interestingly, this was the only patient

that we analyzed with a missense mutation and deletion in the

tumor-suppressor gene APC. While frequently observed in colo-

rectal cancers, APC mutations can occur in other cancers (Kan-

doth et al., 2013) where its inactivation leads to increased
Cell 166, 1041–1054, August 11, 2016 1047
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Figure 5. Integrated Pathway Network of Patient RA40

(A–F) Phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) analysis for patient RA40 revealed strong enrichment of cell

cycle and PI3K-AKT-mTOR pathway networks (A). The pCHIPS wheel summarizes enrichment between genes in each patient-specific network and the cor-

responding pCHIPS category: labels indicate categories with significant enrichment after multi-hypothesis correction (FDR <0.1). Black dots indicate SNV and

copy-number genomic events in this patient. Patient-specific network nodes and edges related to cell-cycle pathway (B and C), nuclear receptor pathway (D),

PI3K-AKT-mTOR pathway (E), and stemness pathways (F). Edges belonging to both the patient-specific network model and the cell-cycle-related scaffold

network are shown as thick yellow edges, while corresponding genes are shaded in dark gray. Yellow arrows indicate that the upstream kinase directly

phosphorylates the downstream substrate. ‘‘Circleplot’’ quadrants for each gene summarize genomic, transcriptomic, and phosphoproteomic activity relevant to

metastatic CRPC phenotype (upper right, amplification; lower right, deletion; lower left, mutation; upper left, transcriptional regulatory activity; center, kinase

regulatory activity). Node ‘‘ears’’ peripherally attached to circleplots represent relative phosphorylation of specific, functionally annotated peptides sites on each

protein. Genes and edges that are not represented in the patient-specific network but are in the scaffold network are shown in light gray.

See also Figure S5, Data S1K, and Data S2.
b-catenin activity (Morin et al., 1997). Indeed, we observed

strong phosphorylation of the enzymatic active site of b-catenin

(S675). The putative activation of EZH2 is also linked to b-catenin

activation in several cancers including hepatocellular carcinoma

and breast cancer (Chang et al., 2011; Cheng et al., 2011). EZH2

activation in this patient is supported by both low level amplifica-

tion (Mermel et al., 2011) and hypophosphorylation of residue

T487 (a marker for ubiquitination of EZH2) as well as amplification

of DNA methyltransferase 3 (DNMT3) and predicted transcrip-

tional activity of DNMT1 (Ning et al., 2015) (Figure 5C). Further,

the amplification and predicted transcriptional activity of

SUV39H1 correlates with EZH2 expression in tumor develop-

ment (Pandey et al., 2014), consistent with our observations.

Mechanistically, EZH2 activity is sufficient for activation of

AKT1 (Gonzalez et al., 2011), which we observed through both
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hyperphosphorylation of the enzymatic active site T308 as well

as indirectly through the prediction of high AKT activity by VIPER

analysis (Data S1H). Together, this information implicates the

involvement of b-catenin, AKT1, and EZH2 in contributing to

altered cell-cycle regulation and growth and suggests that tar-

geted inhibition within this network could have been useful in

this patient. Similar mechanisms related to other signaling path-

ways for other patients can also be described (Data S2A–S2F) as

well as inter-patient pathway differences within the same hall-

mark (Figure 6).

Given a complex patient-specific network, how do we use it to

select an optimal treatment strategy? Under the assumption that

we seek to reverse as many altered gene activities found in a pa-

tient, we consider here the idea of using a minimum combination

of targets that influence the largest area in a patient’s network.



Figure 6. Comparison of the Stemness Pathway Hallmarks across All Seven Patient Samples

Patient-specific networks were developed from the stemness pathway hallmarks and revealed distinct regions of the network were differentially activated across

the CRPC patient samples. This suggests that while the stemness pathway hallmarks were enriched in all the patients evaluated, a patient-specific evaluation is

needed to determine the precise targets for therapy. Genes and edges that are not represented in the patient-specific network but are in the scaffold network are

shown in light gray.
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Figure 7. Summary of Kinase Target Potential in Patient-Specific

Networks

(A) Network diagram of hierarchy between kinase targets derived from KSEA

interactions and potential ‘‘coverage’’ of phosphopeptides activated in CRPC.

The thickness of each edge represents the degree of overlap in the set of

protein targets that each kinase is predicted to phosphorylate. Directed arrows

indicate predicted phosphorylation from a (source) kinase, at a residue on the

corresponding target kinase.

(B) Therapeutic potential and summary of kinase targets. Far left: the hierarchy

of therapeutic kinase targets shown in (A) is briefly summarized. Left: green

boxes indicate kinases (rows) that are members of each of the six major

hallmark subnetworks (columns) shown in Figure 3. Right: orange boxes

indicate the predicted importance of kinase targets based on the combined

evidence from VIPER-inferred kinase activity, phosphorylation status of

functionally annotated peptides, and connectivity, for each patient-specific

network (columns). Currently available clinical inhibitors for each are listed on

the right.

See also Figures S6, S7, and Data S1L–S1M.
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Understanding the nesting of gene regulatory signals provides in-

formation about how to select genes for this purpose. Therefore,

we developed a hierarchy of therapeutic kinase targets based

on KSEA-derived relationships between kinases and the sets of

peptideseachkinase regulates, aswell asevaluationof thecancer

hallmarks and pathways of each individual patient (Figures 7A,

S6A, and S6B). The hierarchy reveals the top kinase targets for

every individual patient that we analyzed and the corresponding

therapeutic intervention (Figure7B).Given this structure, targeting

of a single kinase such as PRKDC may be sufficient to blunt the

activity of other kinases that phosphorylatemany of the same tar-

gets (NEK3, PRKCZ) and those that are, additionally, predicted to

be phosphorylated by PRKDC (ATM, IKBKB).

To assess the validity of our kinase predictions, we developed

kinase hierarchies for prostate cancer cell lines, LNCaP, 22Rv1,

and DU-145 for which external data were available and for which

we had transcriptomic and phosphoproteomic data. Using exist-

ing in vitro drug response data from the Genomics of Drug

Sensitivity in Cancer (GDSC) (Yang et al., 2013) (http://www.

cancerrxgene.org/; Data S1L), we compared the relative sensi-

tivity, measured in -ln(IC50) values, for all of the inhibitors that

target the predicted kinases. The relative rank of the personal-

ized network prediction score was significantly correlated to

kinase inhibitor sensitivity in an aggressive DU-145 cell line

(p < 0.024; Kendall-tau rank correlation) but not for a second

aggressive cell line 22Rv1 (Figures S7A–S7E). In the case of

DU-145 cells, the highest activity corresponded well with the

strongest response (MAPK14, EGFR, and PTK2) (Figure S7A).

Interestingly, for 22Rv1, PRKDC had the highest inferred activity

of all kinases and was found to be essential for 22Rv1 survival in

a genome-wide RNA silencing screen performed by the Achilles

project (Figure S7F). In addition, the predictions for 22Rv1 were

also found to be weakly positively correlated overall with the

gene essentiality data (p < 0.07; Figure S7F). Indeed, a recent

publication evaluated PRKDC function in a panel of prostate

cancer cell lines, including 22Rv1, and observed that inhibiting

PRKDC activity was effective at delaying metastasis formation

after tail vein injection (Goodwin et al., 2015). This result provides

evidence that PRKDC activity in the 22Rv1 cell line, as predicted

in our models, is essential for development of metastases in vivo

and targeting this kinase with a PRKDC selective inhibitor was

effective at blocking this process. Taken together, both aggres-

sive cell line predictions could be corroborated with either the

external drug sensitivity or gene essentiality data despite the

known sources of inherent noise in both profiling studies. Future

in vitro and in vivo experiments will be necessary to further

confirm the results of these data-induced networks.

DISCUSSION

Targeting the synthesis of androgens or AR directly is the current

standard of care in advanced prostate cancer and most tumors

are responsive to these therapies. Our network models identified

and implicated AR signaling as active in this cohort of patient

samples. However, current clinical inhibitors targeting AR alone

in late stage prostate cancer patients provide survival benefits of

only 3–4 months (de Bono et al., 2011; Scher et al., 2012). Previ-

ously, we analyzed the abundance of phosphotyrosine peptides

http://www.cancerrxgene.org/
http://www.cancerrxgene.org/


using unbiased quantitative mass spectrometry to identify tyro-

sine kinase signaling pathways in metastatic CRPC (Drake

et al., 2013). Together with this work, we have provided clues

into the signaling pathways that are activated in metastatic

prostate cancer patients who had received, and became resis-

tant to, anti-androgen therapy and that individual patients with

multiple metastatic lesions displayed similar kinase signaling

profiles (Drake et al., 2013). If kinase activity is one mechanism

by which prostate tumors bypass anti-androgen therapy, then

an interesting concept would be the implementation of kinase in-

hibitor therapies in combination with AR targeted agents. One

exception would be patients who develop a lethal variant of

CRPC termed small cell neuroendocrine carcinoma (SCNC) as

these tumors, on average, lack AR signaling and have been

shown to be driven by oncogenes such as MYCN or aurora ki-

nase A (AURKA) (Beltran et al., 2011; Lee et al., 2016). For

patients with intact AR signaling, several clinical trials are under-

way to address combinatorial therapy in metastatic prostate

cancer including inhibition of AKT, MET/VEGFR2, or SRC in

combination with AR blockade (ClinicalTrials.gov Identifiers:

NCT01485861, NCT01995058, NCT01685125). While the results

of these trials are still pending, the need for models to predict

combinatorial therapies through joint analysis of high-

throughput datasets that interrogate multiple aspects of the

cell in clinical tissues are essential to identify the key biomarkers

for patient stratification and therapy.

We presented pCHIPS as a method to capture multiple

perspectives of cellular biology from phosphoproteomic and

transcriptomic data integration and present these data at the in-

dividual level. Our analysis implicated several signaling proteins

such as PRKDC, PRKAA2, PTK2, RPS6KA4, and CDK family

members within these pathways as possible new therapeutic

targets and/or biomarkers in prostate cancer. In nearly every

case, we note a different implicated therapy suggested by the

phosphoproteomic data. Interestingly, the transcriptional regu-

lators were found to be more consistent across the metastatic

samples while the kinase activities were found to vary. This sug-

gests that the dominant signaling networks driving the biology of

each patient may converge on the downstream transcriptional

programs identified by the gene expression data. Several pa-

tients with marked differences in response to therapy (e.g.,

anti-androgens or chemotherapy; Data S1A) have highly similar

transcriptomes as evidenced by the transcription factors identi-

fied by VIPER for the 16 metastatic CRPC samples. The differ-

ences in protein level signaling could help explain the variable

responses and offer new treatment options to abrogate the

signaling upstream of these TF-driven circuits.

An intriguing question is whether network-based approaches

like the one presented here yield similar or complementary infor-

mation about treatment strategy compared to those based on

so-called actionable mutations. First, for the five patient samples

for which we had genomics data, we found cases in which

different hallmarks were implicated with the patient-specific net-

works compared to using only the mutational information. Seven

hallmarks were concordant across the patients, seven were

discordant, and five agreed in a subset of patients (see Fig-

ure S6B). Second, we used the models derived from cell lines

to investigate whether the presence of mutations or inferred acti-
vated kinases were more informative about drug sensitivity. We

tabulated the data and found that the inferred phospho-based

activities were as indicative of drug response as the presence

of somatic mutations in those pathways and, when averaged

across pathways and cell lines, these data suggest one type of

data is sufficient to implicate pathway targets (Figure S7G;

Data S1L and S1M). Importantly, for an individual patient af-

flicted with a tumor that lacks mutations in known actionable

pathways, phosphoproteomic data could be informative to prior-

itize treatment.

Continued development of these computational strategies will

enable better determination of the specific vulnerabilities in indi-

vidual tumors as our work sheds light on the diversity of the acti-

vated signaling pathways in metastatic CRPC tumors. These

data and resulting pathway-based inferences establish a win-

dow into the regulation of protein signaling of aggressive tumors

and a valuable reference for further investigation. Specifically,

cell-line-specific networks and kinase targets could be selected

to inhibit cell growth or to test whether inhibition of kinases at

higher levels can abrogate those at lower levels of the signaling

hierarchy. Ultimately, further interrogation of these networks in

appropriate pre-clinical models to assess co-targeting or combi-

nation therapies are necessary and warrant future investigation

into patient stratification prior to clinical intervention. To facilitate

such follow-up investigations, we have made available several

modalities of the data and results. The mass spectrometry pro-

teomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository with the dataset

identifier PXD002286 (Vizcaı́no et al., 2014). In addition to these

data, the results are available through the UCSC TumorMap por-

tal (http://tumormap.ucsc.edu/), providing public access to the

assayed and predicted phosphorylation levels for primary and

metastatic prostate cancer datasets from several public sour-

ces. Finally, we provide an online tool (https://sysbiowiki.soe.

ucsc.edu/pchips) for users to input gene expression data to

develop their own phosphoproteome-guided networks without

the need for their own phosphoproteome data.

EXPERIMENTAL PROCEDURES

Quantitative Analysis of Phosphoserine and Phosphothreonine

Peptides by Quantitative Mass Spectrometry

Phosphopeptide enrichment was performed as previously described (Zim-

man et al., 2010) with minor modifications. The desalted peptide mixture

was fractionated online using EASY-spray columns (25 cm 3 75 mm ID,

PepMap RSLC C18 2 mm). The gradient was delivered by an easy-nLC

1000 ultra high-pressure liquid chromatography (UHPLC) system (Thermo

Scientific). Tandem mass spectrometry (MS/MS) spectra were collected on

a Q-Exactive mass spectrometer (Thermo Scientific) (Kelstrup et al., 2012;

Michalski et al., 2011). Samples were run in technical duplicates, and raw

MS files were analyzed using MaxQuant version 1.4.1.2 (Cox and Mann,

2008). MS/MS fragmentation spectra were searched using ANDROMEDA

against the Uniprot human reference proteome database with canonical

and isoform sequences (downloaded January 2012 from http://uniprot.org).

N-terminal acetylation, oxidized methionine, and phosphorylated serine,

threonine, or tyrosine were set as variable modifications, and carbamido-

methyl cysteine (*C) was set as a fixed modification. The false discovery

rate was set to 1% using a composite target-reversed decoy database

search strategy. Group-specific parameters included max missed cleavages

of two and label-free quantitation (LFQ) with an LFQ minimum ratio count of

one. Global parameters included match between runs with a match time
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window and alignment time window of 5 and 20 min, respectively, and match

unidentified features selected.

MS Data Analysis

Quantitative, label-free phosphopeptide data from MaxQuant were log10
transformed and missing data were imputed using random values generated

from a normal distribution centered on the 1% quantile and the median SD

of all phosphopeptides (Deeb et al., 2012). After missing value imputation,

phosphopeptides were quantile normalized. For clustering, phosphopeptide

data were filtered using an FDR-corrected ANOVA p value of 0.05. Hierarchical

clustering was performed using the Cluster 3.0 program with the Pearson cor-

relation and pairwise complete linkage analysis (Eisen et al., 1998). Java

TreeView was used to visualize clustering results (Saldanha, 2004). Quantita-

tive data for each phosphopeptide can be found in Data S1B–S1D.

TieDIE Pathway Analysis of Clinical Prostate Cancer Samples

We used the TieDIE algorithm (Paull et al., 2013) to connect 35 kinases and ‘‘ki-

nase regulators,’’ 108 putative cancer driver genes with genomic perturbations

in CRPC, and 74 transcription factors, using the ‘‘Multinet’’ (Khurana et al.,

2013) pathway database consisting of a diverse set of literature-based

gene-gene interactions (43,722 protein-protein interactions; 27,900 direct

phosphorylation; 27,914 transcriptional/regulatory; 9,714 metabolic; genetic

interactions excluded). Each of these three inputs were treated as a separate,

equally weighted, input set for the algorithm, while the gene members of each

input set were weighted by the total evidence for each protein: kinases by

combined SAM d-statistic and MARINa inferred activity level, transcription

factors by MARINa inferred activity level, and genomic events by the number

of mutations and copy-number alterations observed in the 49 metastatic

prostate cancer samples. The kinase, genomic event and TF gene sets were

found to be significantly close in pathway space (p < 0.012; Figure S2A), ac-

cording to a conservative background model run with 1,000 permutations of

the input data.

The resulting network consisted of 338 nodes and 1,889 edges (597 direct

phosphorylation; 1,184 protein-protein interaction; 102 transcriptional/regula-

tory; 6 metabolic). This network was filtered further by restricting to protein-

protein edges with at least one pair of constituent phosphopeptides with at

least modest correlation (Spearman rank correlation, Rho R 0.3), resulting in

a final ‘‘scaffold’’ network of 122 nodes and 256 edges (190 protein-protein

interaction; 131 phosphorylation).

Cancer Hallmark Enrichment Analysis

Cancer hallmark definitions were downloaded from the GSEA/MSigDB (http://

www.broadinstitute.org/gsea/msigdb) database and reduced to hallmarks

highly linked to cancer (Data S1J). Enrichment analysis was performed by

calculating the probability of overlap between the test set (defined by the set

of genes in a network model) and the hallmark sets, using the hypergeometric

distribution. Hallmark ‘‘wheels’’ were colored proportionally to the negative log

p value returned by the hypergeometric test.

Patient-Specific Network Generation and Kinase Target Prediction

To generate sample-specific networks, we used the VIPER package (Alvarez

et al., 2015) to infer sample-specific activity and applied thresholds derived

from the MARINa analysis to each sample’s data, generating binary calls for

each of the 35 kinase regulators and 74 TFs, respectively. Scores for the 24

peptides with significant differential phosphorylation activity were z-normal-

ized by gene and thresholded at a Z score of 1.0 or above, while VIPER pseudo

Z scores were thresholded at the level corresponding to a 0.1 FDR cutoff in

each corresponding Network Enrichment Score for MARINa analysis (Supple-

mental Experimental Procedures). Functional ‘‘high-level’’ copy-number gain

and loss was assessed with the GISTIC algorithm (Mermel et al., 2011). For

each sample, we searched all paths connecting any active kinase, mutation

or high-level copy-number gain or deletion to any active TF over edges con-

tained in the scaffold network, using the NetworkX python package (Hagberg

et al., 2008).

For all proteins in each patient-specific network, we performed three inde-

pendent rankings based on the phosphorylation activity of functionally anno-

tated peptides, VIPER inferred activity scores, and the network connectivity
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as measured by the shortest-path betweenness centrality for all genes. These

three independent rankings were averaged for each protein providing a

patient-specific network (PNET) score, from which a final combined ranking

of all proteins for each patient was derived (Figure 7).

Statistical Analysis

All statistical data were presented after either t tests or one-way ANOVA as

described in the figure legends. Correlation analysis was performed for each

pair of proteins with an edge in the TieDIE network, by calculating the pairwise

Spearman correlation between all corresponding peptides; only protein-pro-

tein edges with at least moderate positive or anti-correlation (Rho R 0.3;

Rho % 0.3) between one pair of respective peptides were retained.
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