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Web-based Supplementary Materials for Bayesian
Modeling and Analysis for Gradients in

Spatiotemporal Processes by Quick et al.

A The legitimacy of Cw(A,J)

The legitimacy of the cross-covariance matrix, Cw(A,J), can be established by first con-
structing the associated finite-difference process and then passing to limits. To be precise,

let Up(s,t) = (Z(s,t), Z(s + hey,t),..., Z(s + heq,t))" be (d+ 1) x 1 and let Wy (s, t) =

1 0’
GLUy(s,t), where G, = . Since Z(s,t) is a Gaussian process,

—(1/h)1a (1/h)laxa
Uy (s, t) has a nondegenerate Gaussian law for every h # 0. Therefore, W (s, ) is a well-

defined multivariate Gaussian process because it is a nonsingular linear transformation of
Up(s,t). If Cy (A, §) is the cross-covariance of Wy (s, t), then limy,_,o Wy 5(s, t) = Wi (s, ?)
is a legitimate multivariate Gaussian process as long as limy,_,0 C1 (A, 0) = C1(A, 0) exists,
which is, then, the valid cross-covariance matrix of W(s,¢). Assuming that our parent spa-
tiotemporal covariance function K(A,d) is such that C;(A,J) exists, we further construct
the 2(d + 1) x 1 process

Lixa @) Wi (s, 1)
Wh,k(s, t) =

_(1/k)Id><d (1/k)Id><d Wl,h(57 t+ ]C)
Therefore, for every nonzero h and k, Wy (s,t) is a nonsingular linear transformation
of a random vector with a nondegenerate Gaussian law and, hence, W, (s, ?) is a well-
defined process. Let Cpx(A,d) be the cross-covariance function for Wy, x(s,?). Then,
limp, 0 Whri(s, t) = W(s,t) is a well-defined multivariate Gaussian process with cross-

covariance function limy 0 Cp (A, ) = Cw(A,d), whenever the latter limit exists. Our



choice of K(A,J), so that its required derivatives exist, ensures that Cw (A, ¢) exists and
the spatiotemporal gradient process is well-defined.

The cross-covariance matrix in (8) can be constructed by first deriving the cross-covariance
matrix of Wy, x(s,t) and then passing to the limit as h — 0 and £k — 0. The legitimacy
of the finite difference processes ensure that Cw(A,0) in (8) is valid because it arises as
limits of the valid finite-difference cross-covariances. For example, cross-covariance between

the mixed spatial gradients Cov(VZ(s,t), VZ (s + A,t +9)) is obtained as

it Tim Cov Z(S—l—hu,t—l—h)—Z(s,t)7Z(s+A+ku,t+(5+k)—Z(S+A,t+5)
h—0 k—0 h k

:}Lin%)iir%%[K(A+(k—h)u,5+(k—h))—K(A—hu,5—h)—K(A—Fku,é—i—k)—l—K(A,é)]
—0 k—

1
= lim 5 [V K (A — hu,6 —h) = VuK(A,0)] =~V V. K(A, ),

h—0

whose (i, j) element is —(9*/0t?00;0A ;) K (A, §). All the blocks in (8) are obtained similarly.

B Details for deriving Cov{V Z(sy,t),Z} = VK

To illustrate how to derive Cov{V Z (s, %), Z} = VK, we work out the details for deriving
VK (A, dy;) using the covariance function in (10). In order to ease the notation, we again

VSK(Aio, 50j) = COV(Z(S@', tj), VSZ(S(), to))

1
= lim E [COV(Z(SZ', tj), Z(S() + llh, t()) — Z(SQ, to))]

h—0
1 ds|| Aol ds|| Aol
0y AOj AOj

N A%j A2

0j

2 A
_ s exp [_¢8H z0||] Ayp.



Expressions for VK (A, doj) and VK (A, dg;) can be derived in a similar fashion, where
it is convenient to note that 9Ag; /05 = 2¢?6 and use the chain rule.

The cross-covariance matrix of VZ (s, t) at (0,0), Cy(0,0), is block diagonal (Section 4)
and straightforward to derive. Now defining A = (¢?|6| + 1), the first diagonal block of
Cvz<0, 0) is

1
Cov(VZ(s,t),VsZ(s+ At +0)) = }llirr(l) 5 [Cov(Z(s + hu,t) — Z(s,t),VsZ(s+ At +9))]
—>
VL (VLE(JA]L )

2

ol
A

¢ AAT
I —
AV Al

— ¢’ lhas A —=0,5 0.

The remaining diagonal blocks of Cyz(0,0) are obtained similarly.

C Estimated Gradients from California Air Quality

Data

This appendix includes maps of the posterior medians for each component of our spatiotem-
poral gradient process from the analysis of the California air quality data. Spatial gradient
maps can be found in Figures 1 and 2, and the temporal gradient maps can be found in

Figure 3. Maps of the mixed gradients can be found in Figures 4 and 5.
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