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1. INTRODUCTION

This report presents analytical solutions for the
transport of radionuclides through porous sorbing media.
These solutions are developed to serve as analytical stand-
ards for benchmark checking of numevrical solutions and to use

as predictive techniques.

The basic traunsport equation is derived and is sim-
plified for the case of one-dimensional transport through iso-
tropic porous media, with local chemical equilibria‘between
radionuclides in water solution and sorbed by the solid,
Analytical solutions in the present report are limited to this
simplified model and are also limited to an infinite plane

source of dissolving radionuclides.

Possible modes of release of radionuclides from the
waste solid into the ground water are examined. Release-mode
equations and boundary conditions are developed for the cases
of (a) a constant overall vate of dissolution of the waste matrix
and its contained radionuclides and (b) a constant fractional
rate of dissolution of each radionuclide species. Fach release
mode can be written in terms of a concentration boundary condi-

tion foreach radionuclide at the point of dissolution, which is
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applicable if trvansport by liquid diffusion at the waste
location can be neglected, or, more generally, as a volu-
metric source term to be used direcitly in the transport

equation,

A finite dissolution vrate of the waste material re-
sults in a "band relezse’, wherein a chromatographic band of
the released radionuclides propagates outward through the
geologic medium. In Chapter 3 a superposition theorem is
developed such that the relatively complicated equations for
band release can be constructed from the simpler solutions for

)

a '""'step release”, which assumes that the waste material dis-

solves at a finite rate over an infinite period of time.

In Chapter 4 recursive and general solutions of the
transport equation, with and without dispersion, are presented.
Solutions are presented for individual members in a three-
member decay chain and also for any member in a decay chain

involving an arbitvary number of members,

In Chapter 5 the recursive and general solutions are
applied to the various release modes, including the limiting
cases of dmpulse release and step release, for an infinite

geologic medlum surrounding the radiocactive waste, The solutions
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arve demonstrated for the three-member chain

234y 2300, 226

which 1s of practical imporvtance in the analysis of possible
ltong~term environmental releases from high-level waste ve-
positories, Effects of the alternative source boundary con-
ditions are demonstrated. The properties of the maximum con-
centration of Ra-226, its increase with distance from the re-
pository, and its relative insensitivity to the dissolution

rate, ave illustrated.

o

The analytical solutions are alsoc demonstrated for

the radionuclide chain

which i1s also dmportant in analyses of long-term environmental

"

>ffects.

1.3

in Chapter 6 the gensval solutions are applied to multi-

layered geologic media and explicitiy for a two-media system

1o

ol

consisting of a medium of finite thickness adjacent to the
radioactive waste, saundwiched between infinite half spaces of

second medium. FExplicit solutions are developed for a three-

a
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member decay chain without dispersion. A rvecursive formula

ig developed for the system with dispevrsion.

ITn the Appendix is presented a simple computer pro-

ol

gram written to demonstrate the migration features of radio~

nuclides in a three-membeyr chain, with and without dispersion.

The analyses presented herein were developed in part
under financial support frowm the University of California and
were extended under finmancial supporit from the Office of Waste
Isolation (ONWI) of the U, &, Department of Energy. Work under
ONWI support performed during the period April 1 through August
31, 1979 dis included in this report. The ONWI Project Officer

is Dr. H. C. Burkholder.

More detailed demonstration of the use of these equatipus,

as well as analytical solutions for non=-equilibrium sorption and

-

of future reports.

1

multidimensional cases, will be the subjiec
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2. THE RADIONUCLIDE TRANSPORT EQUATION

2.1 Introduction

The accurate prediction of the probable pattern of
contaminant migration is of primary concern in the evalua-~
tion of geological disposal of highlevel radioactive waste.
This chapter is concerned with the formulation of the basic
differential equation for the transport of radionuclides in
a geological medium saturated with groundwatére Section 2.2
contains a discussion of the transport equation for porous

media. In Section 2.3 alinearized formulation is discussed.

2.2 Transport Equation for Radionuclides in Porous Media

"In this section the equations for transport of radio-
nuclides through porous media will be developed with the aid
of the averaging concept for a heterogeneous water=-solid

medium, as proposed by Whitakker (W1l) and Slattery (S2).

2.2.1 General transport equation in porous media
The geological medium is considered to be a
composite material which consists of fluid and scolid phases.
The phenomena of nuclide migration through a geological

medium arve complicated microscopically because the porous
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medium is not an ordered struciuvre. We can formulate the
transport equation governing the nuclide migration in a

geological medium according to a statlstical approach

(W1,52) which smooths out the properviies in complicared
composite material by avevraging over a small volume domain

in this medium.

Let us consider a composite medium as shown in Figure
2.1, din which arbitrary positions are measured by the refer-
ence coovdinate. The volume of an arbitrary domain D is
degignated by V. The domain is fixed in time and in space.
The center of the domain occupiles the point 0', the position
of which 18 designed as ¥ on the reference coordinate. The
position of arbitrvavy point in the dowmain D is designed as

tive position vector from the point 0F.

ot
sl

%, the re!

We can select the domain D of a volume element which is
small ewvough compared to the characteristic length of the com-
posite medium and large enough compared to the microscopic
feature of iThe composite medium, e.g., the inter-particle

\ al
pore size,—

Consider a dynamical property, ¥, which is generally

described as

Vo= Y (X, x, 1) (2.1)

al/ In this system, there are two kinds of pores. One is a
pore of the inter-soill~solid particle and the other an

intra-fine pore in the solid phase. The latter should be
included in the solid phase.



LIQUID -AVERAGING
PHASE

SOLID PHASE "

7‘,(i(?ﬁ/ ////'

Fig, 2.1 - A schema of averaping volume domain com-

prising the solid phase and fluld phase
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The transport equation which governs the time~dependent
and spatially-dependent properties in the composite medium
system can be obtained by the following three steps:

1. Smooth the property in the domain with the aid

of volume averaging:

~ /
Vo= YO D d (2.2)
v
2. Assign the smoothed value to the property at the

center of the domain. The property is thus re-
duced to

~ A . ’

o= y(x. 1) (2.3)

e

¥ is to be considered as a point function with

respect to the position, X,

3. Derive the transport equation for the point function

v
The values of the dynamical property are different for solid

and fluid phases, s and f, in the domain,

V(X x. ) , T Ex

(X, X, L) = (2.4)

[ Yo (X, . 1), X €Xg
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where X denotes the position in the phase «, We can

define a function as

1 i X € Xy
H{a € xy) =

(2.

5)

From the above definition, the V¥ values in each phase and

in the entire domain can be defined as

i

T (X, 3, t)

FX 3 t) = YsHxEKG) + B HIX € 3, ) (2.

The volume average for (2.6) 1s defined as

~ 1 v
‘ %

e I

i

Y

{

%H(K€xu) (2.

: 7 Fdxe = Yy - 4 2.

6a)

6b)

7a)

7b)
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where
/
?@zvj ¥, dx (2.8)
oIy,
of
€, = VQ/V = volume fraction of phase o. (2.9)
n
The average, Wug is an intrinsic value for the da~phase, Va
is the volume of d-phase in the domain and 1s generally a
function of time.

Next we will find the averaging rules for the time
derdivative and the position derivative with respect to X,
which usually appear in the transport equation for a homo-
genous medium. Differentiating (2.7a) with respect to time
under constant volume, V, we obtain

CL//NO I ) e
2 = o) & I E Ly )dX
ot Vi) ot «)
14
F
(2,10)
We can use the following equation
ot dt
(2.,11)

§ Iy — 30 )0y - Tl

i
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where Eb denotes the position on the interface between
the solid and fluid phases, @a is the unit normal vector pointing
out of the interface from the o-phase, and w is the velocity

of the dinterface. 6(x) is the Dirvac delta function. The

second term of (2.10) is rvrewritten with the aid of (2.11).

ML(% %%ng dic = g&«j%é“(}cémﬁc)w»m dx
Y v

!
- 'V’L%(&Cé)t)w'md@

(2.12)
where A is the interfacial area within the domain.
Introducing (2,12) dinto (2,10},
A s
OYn Wy [ (2,13)
W . S, Lw 11, d% +13)
51 3¢ V*A%(%A,E)élé Py A5y,

or each phase and adding, we obtain

iy

Writding (2.13)

% _ Scussdy) |
o G - .
e Wwwfm + ,\Fﬂdfs(@f)ﬂ ?,bf(‘ﬁfb,i)}zgf-élsdﬁb (2.14)

(2.13) and (2.14) are the averaging rules for the time de-

-

rivative.
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We can derive the averaging rule for the position
derivative from a procedure similar to the above. The

dynamical property ¥ can be written as
VX, 3. t) = Y (x+a, i) (2.15)

because V¥ is a point function with respect to the position

vector. V is rewritten with use of the definition function

(2.5):

U (X, 20, 8) = Y (X3, HI(X +20) € (X+)]

of = S or
& (x,0c,t)= Y (X+ac.t) + Y (X+3X, £)
(2.16)

The value of WQ integrated over the fixed domain is now dif-

ferentiated with respect to the position vector X:

| @Jv% H(x+x) € (X+xc),ldx

= | v [% HiCocrx) € (X0 }] d

= [ % [ Hi (e x) €(xoXoa } ] d
%(%%)Hf(ﬁcﬁé)é(;@m—%)d}]d% +L¢MEH§(;@+X)E(%+X)Q,}&%
:L(@K%)H§(%+X)€(X+X)qj 4% »-L“%g(gb_g)% dx

*L%% dax wﬂ;(:&, t) My AL,
Vo A (2.17)
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Dividing both hand-sides by V, the volume average can

be obtained as

o o ] 5
VeV ?l‘/’d(ﬁfb, t )Ny d2C, (2.18)
For VY,

A

P i |
?%\!f ;ﬁ'?xW‘ '““'T\;/"Lf%(%b,f)“%(xb,f)jﬁsd%b (2.19)
These two equations (51) relate the derivative of the averaged

value to the average of the derivative of VY. Henceforth,

?f(g%at) is simply designated as Wf(g%)q

As a first contribution to the transport equation,

the
material derivative of the dynamical property is given by
.@Lw Hixex)dr = 4|y, dac

» dt vd dt Yott) )
Y
*‘fv S de *fll&af;s?zafds +j1!fd(i£,mg(fcb)%d%b

of S(X “a

(2.20)

where Su is the exit or entrance surface area enclosing the

phase o d1n the domain. @&(ﬁ%)is the velocity for oa-phase at

the interface. From (2,20) and (2.13), we can obtain the

general transport equation.
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%ﬂv% H(xex,)dx = %L%H(ﬁc € I )da -

“%in!fd(}Cb)[%j;{(%b) - :{ Mo dZ), «%J(’ MU IS

2,
= birth rate of ?ain the umphased
(2.21)

The left hand side of this equation is equal to the birth
rate of ¥ din g-phase of the domain. From the Gauss integral
theorem, this equation can be rewritten as

%FL% H(xe 1, )da +fvﬁe( AL ) di “’/%(%)wv%a’%b
A

Vot
= birth rate of Wu in g~phase (2.22)

¥or the whole value of V¥ within the domain

d_ _of
dt VE‘ZO]\;{W af}v% di + %‘;( %E/: + %%)C;\%&“’Ag %?(Eb)"“ w{.(ﬁ})}@fﬁgdﬁz
v
= birth rate of ¥ in the whole space

of the domain (2.23)

‘For a mixture of m chemical species, consider m contin-
vous bodies, each of which is visualized by the region it oc~-
cupies in the physical space., The bodies are allowed to oc-
cupy a common portion of the physical space. 1In this case,
the material derivative of the dynamical property for the k-th

chemical species is written by

.10
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4[4 L
ha*t VVQ(XH(kaRM)dK = df’L L}{go( d@
o 2% g L na ,,
){ “é 1‘5& 4 +j1//%°«' é}m{ %C}S + 1}?@%&(‘%5) ﬁwd@b
T 5 A (2.24)

of

wheve subscript k denotes the value for k~th species, Intro-
duction of (2,13) dnto {(2.24) gives the transport equation for

the k-th species

%«j% dx +j%y(%d%)d@ J%wmd&
7 Vi A

= birth rate of k-th species in U-phase = RkOc (2.25)

(2.22) and (2.25) can be rewritten with help of (2,18).

2 (et )+ Gl g)+%£%(%d)[%(§b)~wje%&%

= birth rate of W@ in the d-phase (2.26)

o e 1 ( . 3
S &) Y% Ui ) #7900 [ Vi) - 0 )14,

= hirth rate of Wka in the a-phase (2.27)

Tn the above detvivation we have used the relation:

Pl . L
o e xpin = 3 yix - e
v (4
(2.27) can be rewritten by dintroducing the relative flux éka of

the property Y of k-th species within the O-phase, which moves

at a velocity (vkomwm) relative to the O-phase, i.e.,

I 7 Pew Viea = Us.) (2.29)
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If the solid phase is stationary, measured at the solid~-

Jia
fluid dnterface is the net flux across the interface. Sub-

stituting (2.29) dinto (2.27) results in
‘%%(&R%m)+§§°<ayg;EZ)

e Lo+ Yt w)- med,

f;.J
ﬁ«v%?;%o(a,jwj + birth rate of ¥, =~ in a-phase (2.30)

(2.26) and (2.30) are the general transport equations for a

single body and for multi-bodies of a mixture, respectively.

These equations can also be obtained by integrating the
single-phase transport equation over the volume domain and by

using the averaging rules, (2.13) and (2.18).

2.72.2. The Equation of continuity

In case ¥ ds selected as the density of the
o~phase, the bivrth rate of Y becomes zero, because radiocactive
decay contributes negligibly to a mass change, Then, from

(2.26),

3 ey S 1
G G (e hith) *"Vij%(ﬁfww)%a’& =0 (2.31)

This equation is the mass-conservation equation for the a-phase.
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The last tevrm demotes the vate of change of the g-phase
to another phase. The sum of (2.31) with respect to both
solid and fluid phases yilelds

N

oL P
oot % (PV) (2.32)
whevre
~ ~ A S e, P

and we have used the continuity equation at the interface:

( ;
| Rl w) - ryd % + gﬁsf@s(«%) ~ W 1gd %, =0
A -

Next, we will derive the continuity equation of the k-th
chemical species in the mixture. 1In this case, the general
transport equation (2,30) for the mixture should be used.
Selecting the molar concentration Ck@ as Wkas equation (2.30)

can be written as
98 Ciot) + G (EuClalls ) + Vi (Bt
. ﬁ [Ferl®y) + Coa(30, )V UE) - w0} R X
A

P
= Rk@
(2.33)

where

A !
Q&d = *“\}”j '}Zgg&iﬁ?

|
‘g

.13
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and Rk is the birth rate of the k-th species in the pg-phase.
o ;

The second term in (2.33) epresents convective trans-
port, the third tevrm represents diffusive transport, and the
fourth term rvepresents the net flow of the k-th species
across the solid-fluid interface. Summing over k, (2.33) is
reduced to (2.31), which is the continuity equation for total

mass in the g-phase,

We denote the deviations of Ck and 4 from their
o O o
averaged values in the domain as Ck@ and %& s, respectively.

Then,

Coot = Cia t Cow, Wy = Ei\f(;( + é}" (2.34)

of

Fach deviation is reduced to zero if averaged:

{ & o

{ s o . o

J C%(&ﬁ::J?& adl =0 (2.35)
Vi Ve

Using (2.34) and {(2.35),

Vo (60 Cinlhe) = V- (EuCoulhy ) + - (&0t Co) (2.36)
Introduction of (2.36) into (2.33) yields

(6 ) + G (el )4 ¥ [T + & ol ]

+ hi’jz@ﬁw(%é) + (@a(&@a)? L(Hp) - ééf“}] Fludy,

[
Vi

14
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2
Here the mass flux §

Ko is the net molecular flux for the

k-th chemical species velative to the motion of the d-phase,
In this work, the general constitutive relations governing

“

jk@ will not be treatved. Instead, we assume Fick's law of

diffusion:
Jiop = = Ppu ¥ Co (2.38)

With the help of (2,38), (2.37) is reduced to

- - ~ ’ /;“N‘X
%%(ga g&mﬂ) %‘\?ﬁg(ga(fg?d%) + %( Eoe v, f?ci)
%lD&a%é(g(x Cﬁeo\')J - %/,%2 “%/9} D@ﬁ Czw Mo Ci%g}

>

U (3,300 + @) ()~ wr ) - 1 A2,
A

Fa
= g.oz ;2‘{30(
(2.39)
where the spatial change of D in the avervaging domain was

ko

neglected., The fifth term in the left hand side of (2.,39)
means a kind of the "tortuosity" effect (82,CGl) which vields

the reduction of diffusion flow.

We are primarily concerned here with the migration of

vradionuclides, which may exist in the ground water in vavious

2.15
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chemical forms. Let us consider a decay chain such that

the di-th nuclide species within a given phase exists in m

&t

diffevent chemical forms, each form k containing §, atoms

fod

of nuclide 1 per molecule.
The birth rate of

the i-th nuclide takes the form

- R o M ke - ~
o ko ) } L N Al
>, /i)i !\)ué?a( = ﬁ-l,‘wi L. ’S[ ey ('5?@( A Z My Nke T e (X1 (2.40)

where £ (%, t) is the source term of the i~th nuclide in
&

the o-phase at the position ¥ and at time t. If we multiply

(2.39) by S? and add the resultant equation with respect to

k, 1t follows that

;g?(wmp Vo (€l Now)

V{ gdgf\?w ) SL.& Da Y (&Cﬁw)}
% * P

- i ~k A .
-, % x\»/f; { 75 D Gl d 30 }

44 bef

ey ([i Jgihéw(%) * NCN@Q)?J@Z}(*;@)“ w}}?bd}%é

V JA kw7

e d

= ( ey ML;/,« oy A/L;ae) bu T bu 7(3?“ C%’U

(2.41)

. N . ; . , . o . ; .
where N'a ig the atomic concentration of the i~th nuclide,
i
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~ 2 v
Nz‘oz = Z ’Sa' Ck(x
k=7
and Ai is the decay constant for i-th nuclide. This
equation is the balance for i-th nuclide and is a
generval transport equation governing the migration of
nuclide through a geological medium, to be further

developed in the following section.

2.3 Governing Equations for Radionuclide Migration

In this section we simplify the transport equation
(2.41), and we develop the governing equation for the
nuclide migration process which will be the subject of

analyses described in the later chapters,

Because of the complexity of the geological media,
we postulate that the radionuclides are transported by
ground water moving in a deterministic flow path with a
flow velocity given a priori. In this case the transport

equations for chemical species and radionuclides are given

by (2.39) and (2.41).

2.3.1 Simplifying assumptions
We postulate the following assumptions:

1. The fluctuation terms for the convective transport
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g oy
€£% and € 4 _N , are described

in the water phase, fékf nd € NN,

as a stochastic random process. This assumption is

formulated as

%@? @:"@%fgé(@f%);5&@&@»3“Q#°Z(%Nq) (2.42)
where @df is the dispersion tensor.
The convective term within the solid phase i1s as-

sumed to play no role in the transport of radionuclides.

2. The molecular diffusion coefficients in the

water phase arve assumed to have a value Dmf for each

chemical species. This assumption leads to

R\j]%j( 2Dy Cug Sidac = G (& DugNep) (2.43)
1'%
.

This assumption is reasonable, because the molecular dif-
fusion coefficients of several chemical species are of the
same order and because transport by molecular diffusion
process is less important than transport by dispersive

diffusion, as treated in assumption 1.

The molecular diffusion in the solid phase is also

assumed to be independent of chemical species, so that

D = D (2.44)
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3. The tortuosity term is neglected. Because
this term usually reduces the flow due to the molecular
diffusion, this assumption is conservative for nuclide
migration. Scheidegger (S81) has proposed a dispersion
tensor in which both convective fluctuation and tortuosity

terms are included.

4, The motion of the dinterface 1s negligible, and
the mass-averaged velocities of the two phases across the

interface are assumed to be zero.

W = %§CK$) = Ys (K}, ) =0 (2,45)

This assumption is reasonable when there is no phase change

between the water and the solid phases.

5. The bulk motion of the solid phase is neglected.
v = 0 (2.46)

The transport equations for chemical species and

for radionuclies are then given by
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%(&@;) + % (& Cig )
~ V| Dy (& Cop) ] + “T\;“Lﬁk(ﬁ) 1y 4L

= 0 ?&{

gi (& Zis) -V L Ds¥ (& 625)]

- MLJ jk(@)aﬁf&ib = Eg[?&s
\/A

d (¢, N (€ N
2008 Nog) o+ W (24 T Vi)
Lo i c ke
- %o [ D e ] ) 2 5 Tty d

= Ejg D\c»s ﬁz‘;l,? - HCVQ{F} + Eggij{(?é,é)

%(53 ﬁ(s) “’“% I Dﬁ%}(?g &is)l

= &g {//\M,’») /\//g‘ms,s ~ A f\/aﬁ ) +ég ﬁ@(}{» t)

(2.47a)

(2.47b)

(2.48a)

(2.48b)

.20
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where

and & is the unit tensor.
2.3.2 Transport with Tocal chemical-sorptive

equilibria

At this stage, we encounter a problem coan-
cerned with the rate processes involving in the migration
of radionuclides through geological media, e.g., sorption

and chemical reaction processes.

A geologic medium suitable for radioactive
waste isolation must have a water velocity small enough to
isolate the nuclide from biosphere. With such slow trans-
port, one might expect that local thermochemical equilibrium
will exist within each phase and between water and solid
phases. To examine the migration features under the limit-
ing conditions that chemical and sorption processes are
locally equilibrated, we further assume that

6. At each position X the sorption equilibrium is

described as a linear relation:

ny
ks = *p,k “kf (2.49)

Ca?
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where kD K is a distribution coefficient for the k-th
b

chemical species.

7. Different chemical forms of a given chemical

element arve in equilibrium within a given phase a, so

that

ko R, ko o (2.50)

where Efq is the concentration of the t~-th chemical
speciles involving the nuclide i and kR Ko denotes an
2

equilibrium constant.

From (2.49) and (2.50), the overall sorption

equilibrium is expressed in terms of nuclide concentra-
" o
tions N, _. and N, .
if is

o~

&55 {Z; < ko, k ggk/? R los >/%“ (gf@/!e;ks )] N”\f

i1

~S
= K’D,i Nb][
(2.51)
where KD 5 is the overall distribution coefficient for the
2
i-th nuclide, i.e.,
K _ concentration of nuclide 4 in the solid
d, i concentration of nuclide i in the liquid

oy
The concentrations Ni are expressed in consistent units

(e.g., moles/liter), so that K is dimensionless.

di
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Summing up (2,48) with respect to phase and
using (2.51) the transport equation governing the i-th

nuclide migration is given by the single equation:

L (82K Neg) + 9, [ 1500 - Dy 9.6 - B (Ko &)} W)
““%7%"[(@755% + Ds K:D,igsﬁ)"% /‘Q:?f]
= & KQHLA&IBZFLf - &K Ae EZy

FE F (XA ¥ s s (X )
(2.52)

where

£ (2,53)

2.3.3 One-Dimensional transport with Tocal chemical-

sorptive eguilibria

For simplicity, we also assume:

8. The deterministic water pathway is one-dimen-
sional and the nuclide flow out of the pathway due to trans-
verse diffusion can be neglected. The geologic medium is
isotropic.

(2.52) is simplified by this assumption to

.23
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| A - 0 . ~
%{;(%Kg Ney) +35 (£ ANy )
) o 5
- "’*gg( Dys; B, S Ny )
= Efp K*‘“’ AL.‘“/ ﬁd»/,ﬁ . g;p K[%L‘ /:\\//,7(

"*“gﬁfi}c s j“gw (2.54)

where

Ds & K D,
Dy &y

(2.55)

and 2z is the distance in the direction of water flow.

Dg is the dispersion coefficient in fluid phase, and

vf is the velocity of the water phase in z-direction. If

diffusion within solid phase plays no role in the transport

of the nuclide, then Bi becomes unity.

K, and v_. are constant in space and

When €f’ Kdi9 5 ¢

time the above equation is reduced to

¥ © T RE (2.56)

X fv‘ s ) ~ g E
= Koo Ao f\}wtf ~ KAy f\/@{ + 76‘\7,; + %:\Se—»gjw

.24
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where Di = DB, .

Bquations (2.54) and(2.56) are the fundamental
equations to be solved in the succeeding chapters of

this rveport.

2.3.4 One-dimensional transport without local

chemical equilibrium

For future studies it is helpful to formu-
late the governing equations of the nuclide migration in
a movre general form involving the effects of non~equili-

brium sorption and chemical reaction processes.

First, we consider the problem evaluating
o
the mass flux across the interface gk(§%>’ The mass trans-
fer between two phases avrises from sorption processesg and
information concerning the sorption mechanism is necessary
for a strict formulation of this flux across the interface,
Sorption occurs via three steps; diffusion within the water
phase, diffusion through fine pores in the solid phase, and
adsorption or dion-exchange. We can postulate some limiting
cases, €.g., a process controlled by diffusion or a process

controlled by the rate of the reactions,
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In the case of diffusion controlling, we

can formulate Ek(ﬁb) by the following equation:

° oS I N
QR(15>$;kM,R(Ck§“WWW(¥S)W; (2.57)
Kglg
where kM K is the overall mass~transfer coefficient for

the k~th species which includes the effects of the dif-
fusional resistances in both phases. This equation is
not strictly correct but holds approximately if sorption

process 1is in a neav-equilibrium state,

Whenr mass transfer is controlled by reaction
rates, the mass flux across the interface is obtained from
an assumed first-order reaction rate with respect to the

k-th species.

o ] SR VI /i s \/
ac = N =w_;_sj’ (2e58)
\5@( b) {QA)Q[ C;;vas KA Cmf 6‘& ]A ?Z{
where kA K is the reaction-rate constant. In the above

n

2.26

n
equation, C . and Cm are some charactevristic concentrations.
} v _

f

For an ion-exchange reactlon process,

v

CVS = the concentration of the ion-exchangeable
species, except for the k-th species, in
the solid phase

4y

Cmf = the concentration of the ion-exchangeable

species, except for the k-th species, in the

liquid phase (2.59)
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For an adsorption process, we can select

" .. . .
Cys = the vacancy site concentration in
w)
the solid phase
o
C = 1
mE

(2.60)

There may exist competing sorptive species in each phase,
the concentrations of which may be greater than that of
the radionuclide, It is, therefore, reasonable to assume

o
that the CVS and the % are constant, independent of the

mf
concentration of k-th species. In this case, (2.58) is

formally reduced to (2.57).

The integral terms in (2.47) and (2,48) are

rewritten for the mass-transfer rate of (2.57) as

I ] e . 7oL
“\*/“”Lﬂhffb)”ﬂ{ dac, = ?ZM,e@a( Ciy o x Cs (2.61)

7 e & L » b 7 ~ ke
MLZ jh(jcé;)ﬁ S‘QCI’X 3-32: Rm, k Q(C??.;*w b Ck,s)’s&'
V% Froe L op D
A (2,62)

where a 1s the dinterfacial area per unit volume of the

geologic medium. In general, the values of kM and kD

Lk Lk

are dependent upon the chemical form. It is possible that

.27
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a given nuclide may exist in more than one chemical
form, even within a gilven phase. In such cases (2.62)
cannot be evaluated in terms of the concentration of
nuclide i alone. The prediction of the radionuclide
migration then rvequires the simultaneous solution of
the transport equations for chemical species. If the
radionuclide is in a single chemical form within a
given phase, (2.62) can be simplified as

%&%i(@) My Sk, = i a( Ny - “‘é: Nes) (2.63)
In this case, the simultaneous transport equations for the

nuclide (2.48) can be solved directly with help of (2.63 )

Next we consider the possibility that a
radionuclide mav exist in more than one chemical form
within a phase. As explained previously, the sorbing
process is strongly influenced by the chemical form of the
nuclide. If a certain chemical species dis difficult to
sorb compared with the other chemical sgpecies, the chenical
species which sorbs less easily moves more vapidly through
the geological medium; Some experimental results suggest
the importance of different chemical forms upon the migra-

tion Pu and Am nuclide (F3). This problem is in principle
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evaluated by solving the simultaneous transport equa-
tions for the different chemical forms of a nuclide
with appropriate chemical-reaction rates and mass-

transfer rates as discussed previously.

Another problem concerned with chemical
veaction is the minevralization reaction, i1.e,, the nu-
clide may react irreversibly with some component in the
gsoil. The assumption of reversible sorption, i.e.,, ig-
noring drreversible mineralization, may always be con-

servative, but the effect of mineralization upon trans-

port requires elucidation (B5).

This mineralization process can also be con-

sidered as the problem concerned with different chemicsal
forms of a radionuclide in the solid phase. We consider
two chemical forms, one is desorbable and the other dis im-
possible to desorb. In this case, the transport equations

for the solid phase can be described from (2.47):

v -~ v AY ’i 2
pleslis) % [ Do (6Cs) ] = 5 G (00 ey
== gs ﬁls’

%{(ES 625’)”% [Dﬁﬁ(&é;)] = & s

(2.64)

2,29



DRATFT

where %ls and %Zs are the concentrations of the chemical
forms of the desorbable nuclide, 119 and of the nuclide
impossible to desorb, izo For the nuclide concentrations,

the above equationg can be rewritten as
0 V. ) Y
;}“%(ESM'7§) % [D\s%(‘g‘s Nr,\s)]

1 . 12y
- V//a/g‘ii‘j’(gb%g?fd%b = gszsd ;(?95'

) oy < ~
“étz“(is Nys) = V[ Dv,Es Moo )= & S.° Roe

(2.65)
where
/Séi ’th = 8;;,2(‘“/ NLL/ s A NL'IS - ’%71’ Nz‘zf
2y ~ - o~ - l{j o~
’\Se‘ izeijzs = Sl‘z )‘5-/ NL'V(\S T ;Itk Nt,\zf -+ v leg\f
(2.66)

The lasgt term of the above equation, kiNi o denotes the rate
1

of minervalization, where we have assumed that the vate can be

. , ; i-1
expressed by a first order chemical reaction. Si is the
1

fraction of the (i-1)~th nuclide that is transformed by decay

.30
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to the desorbable chemical species of the i-th nuclide,
In this case, (2.65) and (2.48a) are the fundamental
equations to be solved, with the doterfacial transfer

rate given by:

g A S s
mvé %jh(f‘ﬁt‘ﬁ °ﬁ’;gfé%b = é?/wc@(’va‘.; - féz/\/t"s) (2.67)

!

Solution of these non-equilibria forms of the transport

equation will be a subject of future studies.

2.3.5 Transport along interfaces

The fundamental premise in develop~
ing the transport equations in this chapter has been that
the geological medium is composed only of solid and liguid
phases. Transport of vadionuclide along the interface be-
tween two phases has been neglected, although this might
become important for strongly scrbing species and with very
low water velocities. The treatment of inter facial trans-

port is left for future studies.
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3. NUCLIDE RELEASE MODES

3.1 introduction

The analyses herein provide for various possible
modes by which radionuclides can be released at the re-
pository (H53). These release modes affect the boundary
conditions at the rvepository, and they thereby affect the
migration features of the radionuclides through the geologic
media. In Sections 3.2 mathematical models are developed
for the various release modes assumed for this study. 1In
Section 3.3 the boundary condition and source term for
transport equation are discussed., In Section 3.4 we present
a general superposition relation for constructing the "band

release'" solutions.

3.2 Nuclide Release Modes

3.2.1 Constant rate of dissolution of waste material
Congider a radiocactive waste consisting of radio-
nuclides dispersed through a solid matrix. It is assumed that:
(a) a constant amount of the total waste material
dissoclves into ground water peyr unit time,
(b) all of the waste material begins to dissolve at t=0,.

Dissolution is complete within a leach time T, and
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{(¢) all radionuclides contained within the waste
material go into solution when the waste matrix

dissolves.

Assumption (b) results in a "band release' of radionuclides

into the ground water.

. e 0 , ,
For an initial amount MT of total waste material, the

rate of dissolution MT of the total material is

M, = (o<t<T) (3.1)

The rate of dissolution Mi(t) of radionuclide i in the waste

material 1is then

Mi(t> = “ﬂi(t)MT (3.2)

where ni(t) is the amount of nuclide i per unit amount of

waste matevrial.

If the radionuclides dissolve uniformly into water flow-
ing at a volumetric flow rate Q past the waste material, and
neglecting the diffusdional transport of the dissolved radio-
nuclides in the vicinity of the waste material, the concen-
tration Ni(t) of a dissolved radionuclide at this location

(z = 0) is

N (E) = A PR T) (3.3
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Or, using (3.1) and (3.2):

. O
(e = "My g L) (3.0
QT

The waste concentration nl(t) of a mother nuclide (Ab: 0)

in a decay chain is related to its initial waste concentra-
. o

tion n. by

1

wxlt

Ny (t) = Ne (3.5)

1
For the decay daughter

n/o }xl “‘;}ll% “A.:fé " O «Az‘{j
n,(¢) = m(@ e )f’f’ ", e (3.6)

etc., which continues din the form of the Bateman equation for
radioactive decay (Bl). Therefore, the time-dependent con-
centration Ni(t) in the liquid at the point of dissolution

(z = 0) is also given by a Bateman equation. More formally,

0 1 <o

Ned) = { Bitd) . octeT (3.7

0 ) T >

The above equation can be rewritten as

Nod)=Beeh [heh- hd+m] o8
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where h(E) is the Heaviside step function

0 ;§<o

] 7g>0

Bi(t) can be obtained from the solution of the differtial

h(g) =

equation

B:¢t) :
i/t( A Bior = ABi (“*’7'2'”" ’ )“’30) (3.9)

with the initial condition

Bi(O) = Ni(O) (3.10)

Ni(O) is the concentration in the water phase at the time
zero when dissolution begins. The solution of Equation

(3.10) dis the Bateman equation

~Ant ot
B (t)= Mf% L = B, eJ (3.11)
AZ;( nsquT(ﬂ;'l) €;

/%m

ZN(K TFK)/! (Rrﬂ,) (3.12)

=1 L%

where

the product term in the denominator of Equation (3.12) is

defined as unity when m = j = i,

The Bi(t) values for 1 = 1, 2 and 3 are written as
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Bt = ppLe Mt (3.13)

Bl = g gy M [ oAk oA
B.t) = pNee G (é? ) (3.14)

0 A 20 2 ~Ax “23%
B, () = KoMt Mede [ oMt )

23 - ;{"L
A - 37!: Ty
+2&J¢ﬁﬂ i ¢’ g (3.15)
(7:-2)(2-2 ) (A=A v)L) (L-2) (A2

When the band-release time T becomes very small and
approaches zero, the release mode becomes an impulse re-

lease, such that
N, (t) = N?Té(t) (3.16)
where 6(t) is the Dirac delta function.

When the band-release time T approaches infinity, the

release mode becomes a step release, such that

N (e) = By (e) R (x) (3.17)

On physical grounds, waste matevrial may reasonably be ex-

pected to dissolve at an infinitesimal rate in the case of a
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step release, rvesulting in only differential concentra-
tions of the dissolved radionuclides. However, it is use-
ful to construct step-release solutions which satisfy the
boundary condition of finite concentration in Equation
(3.17). If these finite concentrations are those deter-
mined from the band-release dissolution model of Equation
(3.4) with finite T, then the resulting relatively simple
step-velease solutions can be used in the superposition
equation (Eq.(3.60) developed in Section 3.4 to construct

the more complicated band-release solutions.

3.2.2 Nuclide-Dependent fractional rate of

dissolution

Here we assume that the waste material and its
contained radionuclides begin to dissolve into the water at

t = 0, and we assume that each radionuclide leaches from the

waste at a fractional rate ki’ which is a constant for a given

radionuclide. The amount Mi(t) of radionuclide i within the

repogitory at time t is given by

dM,

1
qr0T ThgMy - AMy A My (3.18)

with the dinitial condition
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o)
Mi(O) = Mi (3.19)

The solution of (3.18) and (3.19) is obtained as

- A
¢ 12

M b= ) = /\ MMZ ; (3.20)
‘ M A Fam n=m T (Aj”"ﬂw)

A=

(%n)

where

N;= Ao+ ke (3.21)

Assuming, as in Section 3,2.1, that the radionuclides dis-
solve uniformly into water flowing at a volumetric rate Q
past the waste material, and neglecting the diffusional
transport of the dissolved radionuclides in the vicinity

of the waste material, the concentration Ni(t) in the water

phase at z = 0 is given by

=-1/Z_ t

M= 3 (oA NS, = o

M=/ hern 7T (A MA

Q%MJ

Niet)=0, By bt teo
J=1
where i @

o °r\/;)?m
f%y ;:ézj *ﬁﬁ '4mﬂw~ (3.23)

or
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o ., . . .
Nm is the concentration of nuclide m in the water phase

at z = 0, ¢t = 0. For three members

N, (1) = /\/,oé;;ﬁ'f (3.24)

i

o ”“/Lﬂ‘l 2 "”c-/l:é - 2
N (t) = Ny e /&/, fiz-»/\ /5 ~ g‘“) (3.25)

/%(g) — /\/é a/lfé {ea /{\/2 A3 A (JJ‘ »l?f)

- ﬁ
%&/\/Oﬂ,/ [ Sii ‘ Jid% J3 26)
K (A VA, J) (M){M (qug

Equations (3.22), (3.23), (3.24), (3.25) and (3.26)

describe the 'preferential release' mode.

Tf all species dissolve at the same fractional rate, then
all have the same fractional rate constant k (ki = k), and

Equation (3,22) becomes

/ : émwﬁ)z‘
Mt = 5, e (4] 5, o
m AR gjﬂ T (A= An)
A=pr
where (ALn)
No = kM- d (3.28)

The release mode of Equations (3.27) and (3.28) is called the

"exponential release mode"
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The release modes of Section 3.2 have been illus-
trated for the case of no diffusional transport of the
released radionuclide at the point of release, so that a
concentration boundary condition at the source can be
specified, as in Equations (3.4) and (3,28). In the next
gsection we apply these release modes in the development

of a generalized source term at the point of dissolution.

3.3 Boundary Conditions and Source Terms

The concentrations Ni(t} obtained in Section 3.2 are

the real concentrations Ni(Ogt) at the boundary only if

transport by diffusion can be neglected at z = 0, However,

these concentrations Ni(t) can also yvield a nuclide source

term to be used directly iun vadionuclide transport equation,

a useful approach 1f diffusiomnal transport at the source is

to be considered and/oxr if the transport equation is to be

solved for spalbially distributed sources,

The physical picture for the source condition is illus-

trated in Figure 3.1, in which the dispersion coefficient Di

is assumed to be zero in the up-stream zone and non-zero in

the down-stream zone.
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YN, (0 ,t) ;@D«SN:’:
(=0 & -] 197 DO
i
B VNi<t> *F”’VNi(Q+’t) water flow
with velocity, v
2=0

Reposztory Site—s &

Figure 3.1 Boundary condition at the
repository (z=0), diffusdional

transport In flow direction only.

In this case, the nuclide balance at the repository for
one-dimensional transport, with flow at velocity ¥ in the

Z direction, yields

5

D[a&%ﬁ] = v[szvNM&Jﬂ (3.29)

5;0.72‘
If the effect of dispersion at z = 0 is neglected, Equation

(3.29) reduces to the simple equation.
t) = Ni(t) (3.30)

This concentration boundary condition has been used in other

published analyses of radionuclide migration,

(V8]

.10
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A more fundamental approach, necessary when diffusional
transport both upstream and downstream of the repository is
to be considered, is to use the dissolution rate as a source
term in the transport equation. The rate of dissolution M;(Ost)

is given from the previous solutions by
Q _ .
Mi(t) = Ni(z)Q (3.31)

The equivalent distributed volumetric source term fi(zst) to

be used in the transport equation is then
forety = N (02 52 (3.32)
S

where & i3 the effective cross—~sectiongl area for water flow

associated with the dissolving waste, orv
f (z,t) = Ni(t)vg(z) (3.33)

where v 1s the water velocity at the point of dissclution, as

illustrated in Figure 3.2.
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Injection of nuclides
%
! flow with
D % 0 ‘ D & O water i
i : 1 z:> velocity, v

|

Z=0

Repository Site

Figure 3.2 Dissolution as a volumetric

source term.

3.4 General Superposition Equation for Band

Release (F1)

In thig section, we develop the general super-
position relation for the band release of decaying
radionuclides through sorbing media. As shown before,
there are two standpoints for connecting the nuclide-
release phenomena with the nuclide migration. One is
to treat the release as a boundary condition at the
repository, and the transport equation without source
term is solved using this bounday condition. The other
is to treat the release as a source term in the transport

equation,

With the first version, the transport equation (2.54)

is reduced to
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Lg(/\/i)m %/({.,,;L‘,,,E/\/g.m/ ) z’:4,2,~,—~—-./0<g<oo’ %>0

LK) g%(f@g;’%\'/g “é%(f?)/ia/\/z)“ %/&Kg/\/ﬂ)ﬁ/ﬁ%ﬂ\/ﬁ%%)

where Ni(zgt) is the nuclide concentratiocn in water, v

is the water velocity, Di the effective diffusion co-
efficient and Ki is the overall sorption coefficient.

Ai is defined in (2.55). . For sdimplicity, the subscript

f has mnot been dincluded in (3.34). The governing equation
for "mother", i1.e., the first member of the decay chain, is
obtained by formally setting kO:Oe The properties &, Di’
v, Ai’ Bi and Ki are considered generally to be functions
of z.

The initdial condition is

NelZ,0)=0 | i=lt2.=, 0<Z< 00 (3.35)
We further prescribe

N[(X,f):‘:o ’ ¢';-/,2,w-~,0(Z(oo, 7{“-(0 (3.36)

In the following we will be concerned with two special fcrms
of the solution to the above equations. These are due to a
step release of the radionuclides at the boundary 2z=0 where

they obey the conditiouns

.13
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Nto, )= B i)fd), A/ﬁoi»«f]")sz(z‘)mz‘-T) (3.37)

for i=1,2,3,...n. With the help of (3.37) we wish to
construct the solution for the band release Nz(z,t)

which satisfies the boundary conditions

NECo ) = B:thhtt)—B,dt)h(4-T) (3.38)

Where T is the leach time for the band release. We will

show that the desired solution is given by

Nz )= N2 ) -N e d=T) , d=rze (3,39
0<7<L 00, T>0

where Ni(z,t) is the solution for the step release,
%
Equation (3.37) and Ni(z,t) is the step release solution

satisfying the coundary condition:

N; to, t)= Bitt) ht) = Bilt~T)h () (3.40)

The system of equation (3.34) ds linear in the Ni functions

14

and simultaneously subject to non-trivial boundary conditions

of the form of (3.37) for all of the nuclides. It is conven-

ient to construct a solution through a set of subsidiary

equations in which only one boundary condition arises, one
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. o . . 8 s
at a time. Thus, we consider for example Ni(zgt) in

0<z<o, where i 1s any number of the chain i=1,2....

s(1)

i

3

n with AOmon The contribution N due to the finite
initial amount of the first member of the chain is given

by
L('(/\/fm) = “"K{;ﬂg,, /\@S,m ) 127, Ao=o0 (3.41a)

NETto t) = B (brhet) , Nz deo)=c (3.410)

Ne

N0 2= 0, (coocter) AN (2 tc0)=0, (22(5.010)

s(2)

The contribution Ni due to the finite amount of the second

member of the chain is given by

Stz)

LAONED) = =Koy Aoy N L, A=o0 . £22 (3.42a)

NiYo by = Bycrhtt) , N O(7, 4<o)=0  (3.420)

2

$C3)

NTot = 0, (mctem), NI (2,t<0) =0, (39 (2420

<

and so forth. In each subsequent subsystem, the starting
index 1s increased by unity to vepresent the member which is
to be a mother for the remainder of the chain. On account of

the linearity it follow at once that

.15
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(" 3
Nzt = 2 NP e, 4) (3.43)
/

j‘ =
and that N;(zst) satisfies Equations (3.34), (3.35), (3.43)
(3.36) and (3.37). In exactly the same way one can construct
the solution for the function st(zytaT) by rewrditing (3.41),
(3.44) and (3,43) in terms of the argument (t-T) after re-
placing Bi<t) by Bz(t). The combination of these two solu-
tions giving Nz(zat), as postdated in (3.39), satisfies the
partial.differential equation (3.34). It also satisfies the
initial conditions because Ni(z,t) and st(zsth) vanish for
£<0 and t<T,. The boundary conditions force a constraint be-

: %
tween the function Bi(t) and Bi(t)’ which is described as
ES
Bi(t> = Bi(t+T) (3.44)

The second version of the nuclide release mode as men-
tioned previously asserts that the transport equation (3.34)

is rewritten as

LN = = (K Aaé Neey + & o 02.4))

== Gz, 4), L=tz (3.45)

D 5 -bo<t<coe , ~o< Z< 00
where we postulate that nuclides are rvreleased into the water

phase bnlye

.16
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At the boundary € of the defined domain D, the fol-

lowing homogeneous condition is satisfied
Nz, t) = o %, te (3.46)

We dintroduce a function Gi(zgtgeﬁ) which satisfies

45[@5(5,%;5,?)J =—§2-8)S(4-7) (3.47)

G, (2.4 58.7) =0 2,1eC (3.48)

if we can find the solution for Gi(zptgis’r)9 then N&(z,t)

is given by

/\/;(Z,f):f Gl t;8.7) 3k, 7)dsdT (3.49)
D

The above relation can be easily shown as follows:
Mulitiplying both sides of (3.47) by gi(ggT) and integrating

the resultant equatiocn over the domain D, one can obtain

ff&@fml [Cf (2,1 @’Z‘)]cf?d’[
ﬂé’(% 7)6(Z-8) S (¢-T)dEdT (3.50)

i

= = 9.(2,1)

The left hand side of (3.50) can be rewvritten as

.17
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ffﬁe(?;,'c) | [Getzt; g.0)]dedr
D

= LGzt 5,0 g5 0]dsdr
J |

(3.51)

= L [ﬂén(z,% RN E (‘?ﬂc”;c{?]
D

Combining (3.50) and (3.51) with (3.,45) we can find that
(3.49) is the solution for (3.45) and (3.46). Equation
(3.49) satisfies (3.45) because Gi(zgt;isT) satisfies

(3.48). Equation (3.49) can be rewritten as

Niw b= [[Gutetipa it e )dan
D

(3.52)

*ff@ri&?,f;%,’Z‘)K~:($)E(§)ﬂc.;Mf—/ﬁs,?)c{§o/‘C
. D
Equation (3.54) 1s a recursive solution. By iterative pro-
cedure, we can find that Ni(zst) is given by the linear
combination with respect to fi9fiﬁl9°°°9f1’ Then, the
solution of the band release in which f? is expressed by the

combination of two step release modes,
7[5-5(’2,1“) - -{,S(g,f)%(ff)mﬁs(z, £y h /z‘wT) (3.53)

is given by the linear combination of the solutions focr

these step releases:

Nz t) = Nz ) — Nz, ¢-T) (3.54)
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*g \ , ; , ,
N, (z,t) is the solution for the step release,

Fog teTohit) = £ (20 hid) (3.55)

Equation (3,54) agrees with (3.39) which has been obtained
on account of the concentration boundary condition. When

f?(zst) is expressed by

. m . %S
Loz tr= P smhdy, %(z,%):géi{) Stz)h(4) (3.56)

the @i term can be described with the help of (3.55) as

follows:
bot)= QB:t))S , D= QBHI/)S  (3.57)

§ is the wvolumetric flow rate of water and S is the effective

cross sectional area of the water phase, Combining (3.57)

with (3.55) we obtain
B (t+T) = Z{%fﬁé) (3.58)

To illustrate how this condition is met, let us assume
that the Bi(t) are given by Bateman equations with known
coefficients Bi°§ which has been shown in 3.2. 1In this case,

(3044) can be expressed as

.19
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¢ A+ T) & Y
%i(’H*’BgiﬁT):ZBge’ ::ZJB;@*ZL (3.59)
./SE'/ \/\a/

Then, if we described the solution of the step release,

li

Ni(ost) B, (£)h(t)

or

i

S
£5(z,0) = B, (0)8 (2)8(x)

as Ni(zgt:Bij), the solution for the band release can be

expressed by

Nz 4= NI dsBy) = NY(Z,4- TS BS)  (3.60)

By use of the superposition equation, the relatively simple
solution for step releases can be used to construct the

exact but more complicated solution for band release.

Lester, et al (L1) have proposed the superposition re-

lation for band release

NE ez )= N2 (2t 5By )~ N?(z,%fi“;&j) (3.61)

.20



Equation (3.61)

DRAFT

ig dncorrect, because it does not take

into account the difference between Bateman coefficients,

%
B.. and B,,. It
i3 ij
chromatographic

CCCuUYr . As seen

%
the B,, and B, .
1] 1]

is, 1dn fact, applicable only to chemical
bands wherein radioactive decay does not
how Equation (3.59), only when XizO are

equal.

21
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4. RECURSIVE AND GENERAL SOLUTIONS OF THE TRANSPORT
EQUATION FOR NUCLIDE MIGRATION

4.1 Introduction

We have obtained the fundamental transport equation
(2.54) which governs the migration of the nuclide through
geological media. When we neglect a term of fis in (2.54),

the governing equatilon can be expressed as

Nt
%‘% ( K ¢ NJ 1 3‘% (/\16\)‘ NL\ - 5%(63{%}“

r (4.1)
= &(KE\QV\NHWK;}&LMZ)* é”h(y,'{?) ) Ao= 0

Ki is the overall sorption coefficient, € is the porosity,
v, the water veloecity, Di9 the diffusion coefficient and
Ai is given by (2.55). These values are functions of z and

time in general.

When KiAisg,v and Di are independent of the distance z

and time t the above equation can be gimplified as

Ny Ny e e s
DC “é’”“;zz‘ U by o3t K\_)\\,NL

= MKL,.\;\i»xML-] W{Q(E,JC) ' ;\,0z o

(4.2)
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In this chapter, we shall be concerned with solving
the fundamental equation (4.2) with arbitrary release
modes. Section 4.2 discusses the solution of the transport
equation with a nuclide source. Section 4.3 treats the
recursive solution for the transport equation without a
source term, in which the release phenomena are treated
as a boundary condition at z = 0. Section 4.4 is concerned
with the case of no-dispersion. Recursive solutions of
different forms and the general solution will be proposed
for an i ~ member decay chain and arbiltrary release modes.
Section 4.5 discusses the condition for local secular
equilibrium in a decay chain in which very rapidly decaying

nuclides are dincluded.

4.2 Solution of the Transport Equation with a Nuclide

Source

4.2.1 Recursive solution of transport equation

(4.2) can be rewritten as:

N \ . g NEXD
d kl\, - 9 Mk — 6,.;_.,!\;3‘" '"’“71‘\, Ni 2N ;K;"" ?\{-—\!\l}ﬁ\ - D{“ .
K{ K¢

lig= ~ W5z 3t
= sz(Z,{)

T o= Dy = “U"/K\\



DRAFT

The defined domain in which (4.3) holds is

D: ~0< X <o | -0t (4 ha)

and the concentrations Ni(z,t) at the boundary of the

domain, €, are zero
Ni(z,t)=0 z,teC (4.4b)

The solution of (4.3) and (4.4) can be obtained with the

help of the Green function as shown in Section 3.4,
Ntz b= [ Go (2t s Of 0 ddT s
D

Gi(zstgggT) should satisfy

E@L _ ,\}\é@%c — ;éél; e A;’ &‘c Emg(i”%)é(ﬁ”?)(qnfya)

L YE V3% >t

Gt t)=0 . F tEC (4.6b)

The solution for Gi(zgtgg,T) can be obtained with the aid
of Fourier integral. Delta function is expressed by Fourier

integral
PO

L k@ RS
Sa-p= g | e TRk Seomg) €Ty

=90 DR
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Then, the right hand side of (4,6a) can be written as

o o
“S-pE o= -k ( e”“’?“moikj Wt e w8

—Do

We prescribe the solution for Gi as

QDo , ) }
GQ(Z,fzé/T)z 4%@} [ €Lk&LEJ%W%ﬁgﬂkﬂﬂdkdumggg)
e Zpo

Introducing (4.9) into (4.6a), S(k,w) takes fhe form:

/

r, = -
S (k) 1w = (R =+ Ay )~ ik (4.10)
Then,
ey
G;~C<3,t:§,'?)m—-4ﬁzfe‘ =8Ik dk T
)
where
o édw(’é’”’?)
o L= CUR A - Uk (2

Now, we consider the dintegral, I(k). The function in the

integral is analytical except for

W= (7 K+2;) + Uk (4.13)
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Then, we can obtain I(k) in the range, t-=T<0;:

R é«éw(*é“m“a’”)

Jrh)y= Mim ~ - dw=0  (4.14)
UG e (kA - 10k |
i
because
lim Re{ggiw(t@T)) + 0 when t =~ ©<0, see Fig,
Pepeo

/
4.1, the closed curve {}D

When © -T>0, we can integrate along the closed curve, C

In this case,

-t 4o
b Re (™Y o g

fm‘sOO
Then, the integral is given by XC%)SJ”ZWL[Qm‘LQs‘«LLM+mW}th
= = 2Teaxp - (T A )tk )
C'
P 0 ) ('{}—“T >O)
T wEpe
R (4.15)
/
// In case of (t
. /
-R [ /N% & ! R
K o i
\ @-«-wm»r---»vi»wSingﬂe pole
X le
N P
\‘\-\\ 14 "N 1In case of (t-t)>0

Figure 4.1

Domain of Complex Variable
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From (4.14) and (4.15), the integral can be given by

o , 1=T<o

L(k) =
AT~ WA+ L) = LRV (E-T) (4.16)
-2m e , =T >0

Introducing (4.16) dinto {(4.11), the Gi(zstgg,T) is ex-

pressed as:

%

:{%ﬁ“jgx’? [Lk(é?@@ﬂg(%w@)& (AR I(t-T )jék
Guatgo=q 7 L E=Tro (41
0 Ct-t«<o

For the integration of (4.17) we can use the formula:
)

ff "“ngs*bk a
c dk = aexp(bac)vn /o, a>o (4.18)

e GO

Then, the Gi(zgtggsT) function 1s explicitly obtained by

Wifi axp (m{zﬁng}}(%w’?g}i] t—T >0
AT (b)) G (4-7T) ’
Gzt %,7)= (4.19)

0 . T-T<o
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The solution for (4.3) and (4,4) is obtained by

introducing (4.19) dnto (4.5).

N, ( \f J Yﬁi’) :~\~\4,<~%:‘ Ncq(?‘?)j

(4.20)

/l (¢~7) %éz ﬁwvd(%“?)?‘z
4/475 () [ G E=T) Jd%df

This 1s the general solution for arbitrary release modes.

When fi(zgt) is expressed as:

o) /e = bz drhod) (4.21)

Niwl<z9t) is zero in the range, t < 0.

Then, Ni(z9t) igs given as

+ 00
8, T) - ~
ﬂh(?ﬁ%&ﬁ S f Piﬁgii~+ ﬂmxikkj (gc)
0 0o (4,22)
A (A7) 1
e [{zw;mmz\»rﬂ
y — . § )
4T (#=T) exp 4 (£-T) A3

Furthermore, we postulate that the nuclide is released out

at z = 0. In this case, fj(z,t) is expressed by

f (2, "H/}{ = (%)@(z)/ﬁ(é)wf(%)g(é’) (4.23)

Therefore, the nuclide concentration is reduced to a sim-

plified form:
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mmmmm C(Z2-nT )

AT
J/ M B SR e,

The physical meaning of (4.24) is clear . The first
rerm Qf the right hand side of (4.24) means the contribution
of the ith nuclide which is released out from the repository.
The amount of the ith nuclide released from the repository at
time t -~ T during the time dinterval, dt, are given by fi(tm't“)d’t°
The probability density that the ith nuclide released at time
t = T locates on the position, z, after time T elapsed, is
given by

/ (ZWlkTﬁ;

— oxp | - 4,25)
Mg;ﬁﬁr ?[ et (

During T, the amount of the iLh nuclide decreases due to decay.

The amount of the nuclide which has been released at the time

£t - T becomes fi(t - T), exp (%XiT)dT after the time interval,
. , .th .

T, Thus, the contribution of the i nuclide released from

the repository is given by the first term on the right hand

side of (4.24).
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The second term of the right hand side of (4.24)
arises from the ith nuclide generated from the (i~1)-th
nuclide, which has been distributed through the whole region
of the water path due to the dispersion. The amount of the
ith nuclide generated from the (i-1)-th nuclide during the

time interval, dt, at the position, &, and at the time

(t=1), dis given by:

24\»1 !{Ca} A
[, A T df
v Ne, (&, 4-7 ) dt (4,26)

G

s .th . .
The probability that the i nuclide generated in the range
of distance, & v & + df, locates on the position, z, during

the time dnterval, T, is given by

/ (z""“i“”vc'?)z
S N - C{ (4.27)
Jirne PU T J s

. . , .th ,
Thus the contribution of the 1 nuclide generated from the
(i-1)-th nuclide for a time interval dt and a distance df is

given by the product of (4.26) and (4,27),

When the dispersion coefficient becomes zero, the
general solution (4.22) yields the solution without disper-

sion, with the aid of the relation:
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fem =t exp [ RO LS g g
@;o Jamge’ P[ 4?L ] $(z-uit) (4.28)
The resultant solution is expressed by
Ne(z4)= { lewe ) M
O (
t (4.29)
o | R (zovre ) €M e
In case of the release given by (4.23), (4.24) is re-
duced to
\ SELRYN ‘
Ne by = (-3 € (- %Ay
Min(t, 740) 2
VA AT
Qlfié»j Ny (2-wt, t-1)€ de 430
K¢
0

th

4,2.2 Concentration of the i nuclide in a decay

chain

We can obtain the concentration of the ith

nuclide from the recursive formula, (4.26). From (4.3b)

the following relations can be derived from setting Di =

To=DV = 1KV, K/ = Uy (4.31)
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Introducing (4.31) into (4.24), one can obtain

T
—Ay &
N (7, )= g fo (-8 €7 F (e, 7-Uedt) 6y

Q

Al UL iy WY
LT f J Nt (5, £- 6 F (vede, 2-5-000) €% g,
¢ oo
where
F(Qj; \::: e / \¥S e ﬁiw
® el P( 47k ) (4.33)
For the mother nuclide, i = 1, Ao = 0,
k A6
N'Cga%}x j’ga (-{5”'6)8 ‘ F(U\@) Zmﬁ;@)d@ (4934)
O
With the help of (4.32), Nz(zst) can be obtained as:
t
~7a B,
MQ(E;%)E ‘}( {Q(Jﬁ“e;ﬂe % Fj (ﬁlez,z’“vaél)dQZ
0
’% ’t"é“z .
AV “AB1 - By
*@TJ&&‘PQ" ft-p-pye™ e (4.35)

0 (o

X Jo\g F (00,8 -U080) F (vi6,, 2-E-156.)

The integral term with respect to & is reduced to

J Flo,k~a) F(bz-E-b)d} = [ (arb, Z-(axb)) (4.36)

.11



DRAFT

Using the above equation, N (zst) can be rewritten by

t
Nzt = goaelf k- 9)@9\1@2?(’%6“2@@;@;&

0

v ptefa
m»z xa Mb2 (4.37)
ﬂd@ fde fict-g-80e
0

X {E— ('\T\@\%&f\y‘aegy E’“ (’\héx—ﬁ*'\)z.@;))
Generally,

the N1<Z t) is calculated by the same procedure
1

oL
Ny (24 = j{ (-0 O (V.00 2- 160 A0

w, t 6 'tv—,gjﬁk
+ Z(Ws ,r ,51,7) { faea,, ‘"'"’“Jdgj
4

(4.38)
[4

3 #ﬂkék ¢ D
Xy (4280 € F (2 Vhtn, T vt
h=) k=) k=
4.3 Recursive Solution of the Transport Equation with a

Concentration Boundary Condition

Consider the canonical system

K S su YN,

\Bt 32 ®§§1+ /,’\\xK\NaB: 0O
(4.39)
K, 2Ny 2 I Ak Na= A K, N,
TR

>N }N{ ?ﬁM&
ig{w »{W\) %? azg 9\ K Nk,’"' /\;-\K\;-%M

which is to be solved for N

;= Ni(z,t) in the domain o<z<w,
o<t<® gubject to the

.12
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Initial conditions: Ni(zso) = 0, Z > 0 (4.40)

. . e al
Boundary conditions —:

DU N = NG for Eeo, tr0 (aian

Ni(zit) and its derivatives must tend to zero with a suitable

exponential order as z =+ ®,

The boundary condition includes a contribution due to dif-

fusion effects and if this term is not desired one can form-
ally set D% equal to zevo in the final solution with certain
additional changes which we indicate later. The boundary data

¢i(t) are arbitrary prescribed integrable functions.
It is convenient to introduce the following parameters:

~ e U D
ofy = Ak Be=-At-T1 T=5 *’lc‘*’“‘jg: (4.42)

Witch the first of these one rewvrites the general equation

{(4.39) as
RINE , SRR o
k£§%”%\ﬁ§;}M]>%%%'*”d{NQz:dg4Khmi) dog;g
? (4.43)

3

We assume that Ni 1(zac) is known and show how to compute

Ni(zet). First ome simplifies (4.43) by removing the

al See section 3.3
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convection and radio-active decay term on the left hand

side. For this let:

~ Yz+Ret . |
ﬁJQ(E,%)»~ e lj@(?f%) (4, 44)

where Ui(z,t) ig as yet an unknown function, Substitution

of this into (4.43) results in the following partial differ-—

ential equation for Uie

3 U
Bgzqi%% v SL_‘(Q,{) } 3>O"{:>O
wheré
_ O(Qﬂ\ “(ﬁﬁ“’(&&—\)’t
Swamty= 57 Un (81) , do=0 (4 4sp)

(4.458)

14

The initial and boundary conditions, (4.40) and (4.41), trans-

form into

Uiz, 0)d=0 , 730
and
U = —2NEY g t g
YR ¥ UL = LTy, dt Z=0,1>0
(4.473)
where

m{g{«t
It =¢e @)

(4.47b)

(4.46)
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We exclude in the following the cases when | = 0 and
U 0, In wview of (4.44), Ui and its derdivatives must

3 e 2 1 - \( Z o o
tend to zero faster than e as z 7 %, The governing

equations of the problem have thus been reduced to (4.45)

v o (4,47). We solve this problem in two different forms.

A-TIntegral Transform Method

One defines a modified Fourier transform and its inverse

with help of

Upep, t)= (”T(p,?)UL(z,"t)dB
(4.48)
[
and
(s ]
UQ (2, %)= J T (p,2) Utlp, ) d
A t P P (4.49)

This transform kernel has the form (c1)

FET (pz)+Yc, -
T(F,zﬁ’“\/m%* Peos(pz )+ sin(pz)

e (30

and satisfies the Sturm-=Liouville problem

,3\; +prT =0 0< 2 < o0 (4.51a)
AT .

AL = O tr z-

realint N ) * ¢ (4.51b)

<15
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If one épplies the integral transform (4.48) to equation

(4.45) there results

o0
A= | SR Tep 2y dy o s (i)

i Soe (4.522a)
0
where
00
Qem (o kY = @
Sem (p, ) ‘y St Tp 2 da (4,52b)

0

By dntegration by parts one obtains with help of equations

(4.48) and (4.51a)

[ ?LL

o

ELF_~UQ%;%};M

Tﬂﬁz>d3~[752 P Cp, )

J (4.53)
0

The bracketed term vanishes at the upper limit in view of

the fact that Ui and its derivatives must vanish faster

= Z k3 0]
than e ! as z =+ @, At the lower limit 2z = o, there

results with help of (4.47) and (4.51),

{ }b ljggz }f5T?PDWX[Z%Q&}ﬂ~{J&Q%q%JJJm{){“Tq;o)
770 (4.56)
= ZTYpongiﬂg%y

If one combines (4,53) and (4.54) and substitutes the result

into (4.52) one obtains the inhomogenous Bateman equations

.16
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AU (p, ) 2
Quipry Drupty = VL et
déc VL\P (P% \,\,Cig )

(4.55a)

where

YL«L<P:£331{ 5¢ﬂ(g%)?ﬁ?go)Z{ﬂngSﬂ%;B)wu% Setpt)=0 (4.55b)

The source term Riwl i(zgt) consists of the transform of the
b

precursor solution and the boundary condition of the ith nu-

clide. Equation (4.55) is solved subject to the transformed

initial conditions (4.46) i.e. Uilp,0)= 0,
-t L, .
Uilp,t) = J\éﬁkp<twﬁ)vﬁhi(P.T><YT (4.56)
0
This can finally be inverted with help of (4.49) and yields

the formal solution for Ui(zat)9 or in terms of (4.44),

Ni(zst)q
- t
, RERTEN NPt i
k(?.%)xﬁ e ¢ ’g)% Yo ! d
N e j ey e L (P Td7 P(4,57)
0 0
The source term T, ., has the form
i-1,4

Yia (po0)= QS&A&TYWHEMZ+Q(TYR®ﬂﬁKjﬁﬂ (4.58)

<17
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with
50(29t> 0

One can separvate the solution into the two basic contri-
butions which stem from the boundary condition of the ith

nuclide and dits radioactive decay of the precursors

JL

Trpid o Pt P
Nz ti= ¢ 2{"@\\46“ T(\o.o)T(P.ZB{ (eﬂw %de?} AF
0

o}

g
(S \P"C
-+ )(Q Tepz) g_q M(E,T}Tw.z)&‘g dT dﬁo L Stz
0 O
(4.59)
Consider now the special case that the diffusive component
at the boundary vanishes (i.e., D* = 0) in (4.41), Then one

can use a standard Fourier sine transform and the kernel in

equation (4.50) 1s replaced by

5
T{p,z; D* = 0) = JE~Sin(pz) (4.60)

With some additional minor changes the final solution reads

%h(gﬁﬂu- [qfﬂ S WF ( 2 I) ) ywwgéfi}kf)
gﬁ 3(@&}6? J Y“DT (p7 D% o){j LT
0 0 0

(J 0 Tep s o0 dx) dt dPJ | (4.61)
o .
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B~ The Greens Function Method

Let us replace in the solution Ui(z,t) of the equation

(4.45) d.e.

oLk " YUk - SHQZ."%) ., EZvo,t>o0

Y L y7? (4.62)

the variables z and t by § and T respectively. Let G(z,£,7T)
be the Creen's function of the homogeneous equation (4.59)
which for boundary conditions of type III, i.e., (4.47) has

the form (C1)

\ _EB (@ Ry o (282,
Gr(glg,?)?:*mj 64‘117- - €4Y\LT }_ij e 4T dz,

J;%mf'

0

0<%, %<0, %%, Tro

(4.,63)
Now replace in G the argument ¢ by t-T . Then G satisfies
the equation
EGF }26”
5 = %0, T»o (4.64)

3T VIL NE? :

and the homogeneous boundary condition

%%; ~ G =0 . E=o0 (4.65)

.19
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Consider now

G (W3 = | 2 uée‘“%cﬁ&,

R V (4.66)
using (4.62) and (4.64). 1If one integrates this with re-
spect to & from O to « and then with respect to T from
0O to t-6 where 0<0<t one obtains

t-p
((QU Vetod¥ )(GYU)”? ‘Q[&%MG\% %“Q‘}E
-9 o
*jnggC%SHé§
> 5 (4.67)

If the first ilntegral on the rvight hand side is integrated

by parts this yields

00 -0

é\(erm e j (GrU e dE "1“( sg‘)

U ad sUoG } 4{;%“’ ‘
Mé? 2% 3E A% Jas)en *| ErSus}

0
(4.68)

UBG‘ )\

On the rvight hand side the first term vanishes on account
of the initial condition, (4.46) and so does the third

integral. The second intepral wvanishes at the upper limit

S

5= ® for the reasons started after (4.47) for the behavior

.20
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of Uie At the lower limit

(&%2;‘ - ug%%’m)\;m; G UUw waﬂ ~ (UG,

=0

= = (2, 0,57 20 NE (k)
(4.69)

on account of (4.47) and (4.65). Hence
t-©

§ Cr(z,%, 00 U5 81 dE = 2y Mg {G««‘cz\o,%mg;mm

JC O
+J dchGrc;z,s,tw@ 55\(\%,”2“)6‘}
° ¢]

(4,70)

We now pass to the limit >0 and recall the delta function
character of the Green's function G (z,§,0) when 0-+0, The
integral on the left hand side sifts out the value of Ui

at x,t go that the solution to our problem is given by

t
Uszt) = ZX‘“QLNCE g Gr (2,0, 4-T) QCt)de
0
t 00
+ jd?J Gz t-7) St_\(;,ma;
0 0 (4.71)

where C is defined by (4.63),

.21
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In the case that the diffusion term in the boundary
condition (4.41) or its equivalent (4.47) is absent
and G must then satisfy a boundary condition of type I

i.e. in place of equation (4,65) we have
¢C = 0, ‘g = 0. (4.72)

The proper form of G 1s then

( BRSNS S
Q(Z é. )= T/"*m;;* % e AT @ AT
T

4 ﬂf?’ , (4.73)
0< 2 <00, o<‘§,<00, Zir\%, T>o
and (4.71) takes on the form
t
U\(Zl %\w W i\f j\ 5\;?(5.0\{“‘(3 8L<T)dfz~
(4.74)

L

L («OQ
* J d‘?J Grez %, t=) O (3, 7Y dT
0 0
4.4 Recursive and General Solutions of Transport

Fquation without Dispersion

4.4,1 Recursive solution of transport equation
without dispersion and some properties of

the solution.

Consider the canonical systemn

.22
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AN 2 2K = o

K;%%h 3&% Aoy = AN

! : ! {(4.75)
4 {
* § 2 ;
2 2 AN = A Ko N
v ot
which is to be solved for Ni e Ni(zgt) in the domain

0< Z<® , 0 <t <o gubjezt to the side conditions that

NeCot)= NI by, tro, with Pehizo, t<0 (4,76a)

Ni(z o)= 0 Z>»0

A (4.76b)

The boundary data ¢i(t) are avrbitrary dntegrable functions
which describe the release of the members

of the chain from

the rvepository.

The general form of the recursive equation system (4.75)

EINN “+ U\i& + AN = K A Neo)  wih Ap=0
ot RE KL

(4.77)

fhere Ve = 1%@<;

.23
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We assume that Ni l(zgt) is known and show how to compute

Ni(zst)s We construct the solution in two different forms,

each of which exhibits certain advantages in demonstrating

certain physical properties of the solution.

A. Integral Transform Method

Consider the Laplace transform of Ni(zst) with respect

to z and define

N et = Jef?ymcz‘-%s 43

0

(4.78)

oD

Moo (p, 1) m{ @“?zg\\tw\(z,ﬂdz
0

The application of the transform operator to the equation

(4.77) and use of equation (4.76a) yields

dri(pt)
at

* (VAN = K2R )+ NG ey (4.79)

This ordinary differential equation is solved subject to
the initial condition ni(pso) which results from the appli-

cation of equation (4.76b). The solution 1is

1
VNiep t) = S{ %é“‘ A N (=7 + Ve Nt ¢¢H:~T)

0

= (P AN T
e d¢

(4.80)
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To invert ni(pgt) we make use of the "shift" rule and

apply it to the first term on the right hand side.

¢ J

{

=0T AT
e M Ty

iZ‘xpdth<Ri“T)

=M
. Kevao o N (2= 0T A=) dT

P\’O\)\‘o\oa '\j\‘, ¥ 0

The second term in (4.80) is seen to be a Laplace trans-

form if as stated above éi(t) Zo for t£< o, Then:

4 o A
~PWT ~AT “PRT ~T ’
U:N?gqﬁﬁfc)ep e M:\WgSef" ¢ (- dn
0 0
o oy ’Acz 7
= NOL PR SRR L
i\.gge-e e =) di
g

This shows that the second contribution in (4.80) has the
inverse
-/ o t ~ (Pt =+ AT ~&rf
A «J;MJ ¢ tt-tre | dt = N{ e ™ eh (4-2)
0

‘\}:_‘

<25



DRAFT

Thus the complete inverse of (4.80) is

0 pi’\\%b 2 Ko ‘t”?\iT o
Ne@ty=Nie ™ . (-5 T RN ERS SR
)
(4.81)
Now the precursor concentration Nigl(zgt) = O‘for t < 0,

z < o. Hence, the upper limit in the integral can be

changed to Min(t,z/v,) so that the final result reads

Al t
TG L . =N
Nz b= Nle v QSC(“%~%:)+%ACAS€ TN{_M\(Ev-UgT,{w’Z‘)dT

0
(4.82)

. . : . .th
The equation yields the concentration of the it member
- . , . th

of the chain in terms of the (i-1) member and can hence be
used in a recursive manner. Starting with the mother con-
centration Nl(zst) solved from the first of the equations
(4.75) one computes from (4.82), Nz(zst) etc.

The physical interpretation of the solution is simple.
. . . . . . th
The first term on the right hand side represents those i

nuclides that have been convected from the boundary (z = 0)

and have escaped decay (the exponential attenuation term)

while propagating along the characteristic th/vi = constant.

.26
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, . th , .
The second term represents those 1 nuclides which are
contributed from the (iwl)th nuclides lying along the
characteristic z = viT = constant with thelr exponential
attenuation,
B, Classical Method
We observe from (4.77) that the equation Nl(zgt) has
the simple solution
A
- O e U _ 2
Nyzg, b= Nye " (t—-35) 483y
This can be verified by direct substitution into (4.76) and
(4.77). This in turn suggests that we try for the ith nuclide

concentration the generalization

{

A . -
-4 7
N 1)}‘
Nitz b= 2 e NQ,M%"’"%\ (4.84)
V=1

The functions Ni (tmz/vr) are at this point unknown and are

b2

to be found. For 1 = 1, (4.84) reduces to

s
z
Nz dr= e & N‘,NJC—%?) (4.85)

which identifies

R o _ 2
Nu(vv‘\m Ny ¢, (1 ﬁ“) (4.86)
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To find the functions Ni r(tmz/vr) lets substitute the

9

proposed solution form (4.84) into (4,74) with Niv =

Y
o

Y=

e Aw
ke RN
= e Ve N

\
[

| iy b0 0 Le

Y\ef

v
Wﬁ[

AT

%%iﬁf}?iiv(%“?%f)

dN,
= i,T

s T d(tmz/vr)a

!

P

Sl L2
Y bt WY (%W“M)
Ki y‘:ﬂ:‘l [ U\P
(4.87)
For r = i, the terms on the left hand side of (4.87) vanish
so with tmz/v:r = T there results on equating the coefficients

of the exponential terms,

A
(oA

for

T34‘2) o

| ! A v '
Txib%y(f)+[jg'“%éjbdw(f)::

s {4

KLN‘ KCW\
'

hJLLvCT)

(4.88)

The initial condition (4.76b) is satisfied in view of (4.84)

if one chooses

Nig(T)= 0 T<0

The boundary condition (4.76a) is satisfied if

VaJ FJCN“(%) = FJS gét(%)
=/

r

(4.,89)

(4.90)

.28
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when

T 50 awd  F= D

We now solve the equation system (4.88) (4.90) recursively.

Let
A %‘L
’O
: A\ : A — Atr ‘
b (4.91)
/\f\‘ '\]\e

then (4.88) can be written as

Vo) d | BT RS L{iq[ BAT W
(Tgﬂ*ggwcygl‘e thv(iﬂ“‘xw\?y' < bd&yVCT{/
(4.92)

which has the solution subject to the initial condition (4.89)

—
%L« l’(iv\ MA\\'VT A\ ’t'

NW(T}S” W - € N (20 €77 " da! | ret, 2,000, (o)
L Wy

(4.93)

The remaining member Ni i(T) is then calculated from (4.84) and

(4.90) as

il
Neochy = N k)~ 2, N th)
Ve

(4.94)

(4.93) and (4.94) determine the Ni functions recursively
%
from those of Nial . and with this the solution for Ni(z,t) is
1,1

4

.29
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completed. The wvariables T and t in these equations are
dummy variables. In order to keep the conditions in equa-

tion (4.89) clearly in mind, one must multiply the Ni

£

functions by unit step functions. The finial solution then

takes on the form

£=1 m&zg wzig
Nitr= 2.4 e Ny bt ) M N (b5 R
Y

N

2
+ Ni e %&m%\

L

\
o

4

(4.95)

The physical interpretation of the solution is didentical
to that discussed in Section A. The first term (sum) represents
. . th 4 . . .
those 1 nuclides which are contributed from all nuclides
r = 1,2,..., (i-1) with their exponential attenuation while
,th .
the last term represents those i nuclides that have been

convected from the boundary and have escaped decay.

An important additional feature of the solution (4.98) is
that it allows one to find the range in the t and z variables
in which the solution is non-trivial. For this considexr the
first term on the right hand side of (4.95). The term in the
bracket wvanishes when both step functions vanish. This will
occur for a time value smaller than the smallest of the values,

(Z/VA), k=1, 2, .., £, ....1). Suppose this smdllest value
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occurs for the migration velocity Ves then Z/vf will

represent the first arrival time of the nuclides at

position z. If furthermore, vf>\iis the second term on

the right hand side of (4.95) is also zero. Consequently,

we have

&
) = 1?) S"’“"‘“‘
M\,(gx%ﬂ) O Tov wt ’\/}; (4.96)

This can be represented graphically at a fixed z position

as shown by Figure 4.2,

Ni(zgt)‘ z = constant
[

Nuclide-free
time span

!
!
l
1
i
!
r

t
£ = z/vf (first arvival time)

Figure 4.2 A scheme of the concentration
against time at fixed position

On the other hand, at a fixed time the above result can

be written as

Physically 2z<v_t defines the region that has been contaminated

f
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at time £ and z = v_t represents the leading edge of the

£

contaminant wave., This is illustrated by Fig. 4.3.

Nj(z,t) t = constant

i
1
| Nuclide-free region
!
|
|
i

z = v.t (leading wave“front edge)

£
Figure 4.3 A scheme of the concentration

profile against distance at
fixed time

Furthermore, the rate at which Ni(z,t) rises (from zero) at

the first arvrival time at =z = constant or at the leading
wave front edge at t = constant is controlled by the term
Af

N

r
T

-[&H2
v _ 2
(4 :\%)e h(t Utf)

The numerical calculation for three member chain shown

in the later chapter verify all of the above conclusion.

In the case of an dimpulse release at z = 0 one can, in
addition, also determine the cut-off in the arrival time (at
fixed 2z) and the trailing wave front edge (at constant t)
of the contaminant wave qulte easily,. The solution for the

mother concentration is in view of (4.853) and (4,.86).



DRAFT

(A
Nyzbr= Ne ' t

With N (4.91) yields

1.1 given by (4.86),

9 A 3 MA\‘QT
Ny (1) = N AR g

L DY

so that

ok, lBER -

N2 b= N =

X {Wt«%)m {,\(%_%i)} “+ Mfé U

In a comparable way, one can write down at

ion for Ng(zgt}g Since the bracketed term

is always positive, the contribution to NZ

will be non~-trivial for

vi < 2 <ot o Vit < Z < ot

Outsgide this range Nz(zgt) Z 0. The edges

are immediately detevrmined from vlivz.

(4.98)

(4.99)

(4.100)

Z
! § (+-%)

once the express-

divided by (szKl)

from the mother

(4.101)

of the wave fronts
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Finally we mnote that the wave front slopes are also
completely determined in terms of the exponential attenua-

tion factors.

4.4.,2 The general solution of the transport equations

without dispersion

Consider the canonical system
oM, INL ) -0
K/@f“ + A >F =+?iKINI.

Kz%%i o) % +Z,,2Kg f\/z = RthNf

;<{ (31‘«';‘ + U 6f\/L' -+ 23( KL‘ M. = R&‘_]}{t-ﬂ,}\!ﬁ,/

EY3 3z
(4.102)
which is to be solved for Ni = Ni(zﬁt) in the domain 0O<z<ws,
o<t<® gubject to the side counditions that
S
Noto.t) = My B, (1), Iyo, with #:(1)=0, £<0 (4.103a)
. = 0
Ni(¥, 0) =0, (4.103b)

The boundary data éi(t) are arbitrary integrable functions

which describe the release of the members of the chain from
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the Fepository.
The general form of the equation system (4.102) is

g‘éi}{é 4 ()L “éix.\_i«"w o 2,; N‘: = Mrl_i{:j AC"‘ N!',,/ I/Vl‘#l 20 = (}
é% éz Kg" g

(4.104)

where

The aim is to obtain the general (i.e, non~recursive)
solution for Ni(zgt)g For this purpose, consider the fol-

lowing i-sets of boundary conditions.

~ f\/u(‘/l'cje C‘Ilr’ﬂél')'?

Boy micvshember ‘
C‘;:zd;;zﬂ;\\ L=1 i=2 sa e [x[ pd e j:l
. () -
J=l N ot B N0 t)=0 b N Tat)=0 - N =0
. ) 3 O, ed e )
J =2 NTot=0 Mo )-NSE A lot)=0 1 Nlot)=0
X : ] . | :
o) : W |

i=4 IMiet)=o [N

B

o ;
(&f)moPT@?@%%%%M&“Mﬁ%j):O
I :

%
%

. s

i {L‘) ‘ ‘
Ntab=0 N0E)=0 |- Mootk 0 A Tty

(4.105)

The solutions to (4.103b) and (4.104) subject to the condi~
tions on a line j of the above set of boundary conditions i

denoted by Ni(j)(zst)9 L 0= 1,2,...,1.
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On account of the linearity of (4,104) the sum of the
solutions for all these individual boundary value problems
for each value of (j) will be the solution to the complete

problem described by (4.103a,b) and (4,104), 1.e.,

o

£-1 .
) _
Np (2, 1) = N;“’(z,t)+z N_ej(“zj) C= L2 o (4.106)
j=1

I

The reader should note that some of the N%(j) functions wvanish.

For dinstance, if say N (2)(ost) = 0 but not N (2)(09t)5 which

1 2
is the case for the second set of boundary data (j = 2) in
(4.105y , then Nl(z)(z,t) Z 0 for all z,t>0. Analogously
if N1<3)(o,t) and NZ(B)(ogt) are both zero then Nl(3)(z,t)5
N2<3)(z t) = 0 for z,t>0. In general there will be no pre-

cursor for the funections NQ(J)(Z t) thus N(J)(z t) = 0 for &< j.

For each set j = 1,2,..,,1 of (4.105) the equation to be solved
for each nuclide NQ(J) is
‘7) . .
@ Ko J)
ONE 4y OMe +,>\1Nj - S N (4.107a)
o 3% ' i<
where & = 1,2,...,1 and Ngi%) = 0 when 2 < j. (4.1071)

The boundary conditions (4.105) can be expressed in a more com~

pact form as
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J 0 , £+
(y)
N, (o.t) =
0 .
l N; ¢j(z‘), d=5 ¢>o0, (Qi}(%)go, #<0)
while the initdial condition is
5,
A@ (z,0) =0 L @20 (4.1074d)

The funciions NQFJ)(zﬁt) are obtained by a repeated Laplace

transform with respect to t and z of (4.107 a,b).

Let

@ 4]
\ r B . _
fﬂ,é’)(fﬁ) =] e ot /\{f)(z: t)dt quf(s) aje Stqi, (F)dt (4,108)
¢ (4
00 % ‘
né‘”(m)::jé” ﬂfj)(Z/S)d?f (4.109)

)
There results from (4.107 a,b,c,d)

X 0 | -
P sy N () 4 My (ps) w ) 1P ip s ),

JA et 2 (4.110a)

)

#) .
7, ps) = VRS (4.110D)

(4.107c¢)

.37
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where
S+ Ay Ki-g A
Mom e Y, = LRy =0 (4.110¢)
% ’ Ke 2z,

Equation (4.107¢) implies that
. ( 0, [%7
Z A@,Vﬂzj (4.1104)
We solve (4.110a) in a recursive manner from 2 =1 to g = 1i
ffor each value of j; j runsg from j = 1 to j = 1 since we are

. . .th . . .
interested in the 1 nuclide of a given chain.

Starting with j = 1 and letting £ run through the values
1,2,...,1 one takes from (4,110b) no(l) (p,s) = 0 from
(4.110d) N,% = N,° = —memmn = N.% = 0. Therefore, (4.110a)

yields in succession

[4
n'Ycps) = N #(s)
P+ ALy
s cps) = v ps) VNP (5)
P r CCpr g i)

e Ve Nt
(p+ My )(P”f/‘f/lz) s (7‘”/”;4)

()
72,5‘ (/7))5) =

(4.111)

.38
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Next one takes j = 2 and again lets & run through the
values 1,2, ~--, 1. From {(4.110) and (4.110d) one has
2), \ 2) N o o o '
I = . = J =2 R = -
éo {p,s) Si (p,s)=0 and 53 N@ Ni 0 res

pectively. - Hence (4.110a) yields

. »
nPcp sy = MR
Pt Ma
P ps) = ~£iﬁ£f@;:2 = ff?ﬂfi%ﬁi&w
P M (pr M) (pHAL,)
. . 0
2 p sy = Pe¥a Vi My B

(prpz)(prps)e (p+p)

(4.112)

Continuing in this manner one shows that in general

(3)
t5) Aij A69¢3(5) Co
NS ps) = : e qk (4.113)
T (p+ M)
m;J
. ~}
where AJJJ: ig?% , while for j=¢
. o
ﬂi'(t)c p/,(:}) == ,_ﬁ»%fhgf_)_‘w (4 ° 114’)

.39
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By partial fraction expansion one can rewrite (4.113)

as
N (g‘)
. \ S5 G (8)
(7 L
ﬁx‘m("qs) = A /‘5'0%(5)2 e (4.115)
77)7 p“*/%m '

provided that the b, oare all unequal. Here

. y -1
sy - I IR
rag
r+m

(4.116)

On inversion of (4.114) and (4.115) with respect to z one

obtains
te) [ 4
Ny (2.5)= AQ 6#‘<%(5) (4.117)
7) 1) 0 L () - M £
29%zs)= AN, %(s)z Cles)e
m3y (4,118)
Since
My = Pom = [ (54 Arm ) (4,119)
where

Vi — Vs -
I, = -2 7T A, = Ao =dmVy

-(/F”) o %}ﬁ

40
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(4.118) becomes with help of (4.112), (4.116) and
(4.119)

w(Sa@‘-x\m iz
$sye )

;
LR (%,S)»‘: Az‘ M Z ; X
" i Rm T (S+8em)
T’—‘\]‘ rsy
rem rim

(4.120)

We transform the right hand side prior to inversion with

regpect to t. Let

. 1 : ()
=3 (j) J
Thw=8Y oo
(&Y (S+Aym)
THm r=j r=j S+ Apm
Y'&m Y$m

(4.121)
where by partial fraction expansion
(,) C “1
Dg = Yﬁ(Agm"Akm
ym [gcl
s v
(4.122)
(i-1)

41
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With these (4.120) reads:
Z ~Am/m)E 2 (5 () s
) e D, %(S}e
?”Z Prgs) = A, A!J Z 5 Z ! A
m=] B»m r=y S+ Arm (4.123)
rem
By the shift rule
[ &) o, z‘(%,ﬁ
-1 e
S+ Nym g f)#
(4.124)

so that by the convolution rule

\/ 2 t)= A} /\/} - »M-; Drf,f)(j (f)@¢(%))

7!7J ™ Y:J
(4.125)
The dinverse of (4.117) is

() “@/Q)Y
NSce t) = N e b(f-%.) (4.126)

In view of the restriction placed on éi(t) in (4.103). The

gsubstitution of (4.125) and (4.126) dinto (4.106) yields the

b2
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general (non-vecursive) solution

No(mt) = NS e T g (R E))

n /\m/’zm)}? ? ())
+¢> A V 2i“”“”“ -2 D ﬁ(%X)é(ﬂ)
] i; (4.127)

: . . . th .
Again the first term vepresents those i nuclides that
have been convected from the boundary (z = o) and have
. . .. . th .
escaped decay., The triple sum vepresents those 1 nuclides

contributed from all precursors.

4.5 Local Secular Equilibrium

There are some decay chains in which very rapidly
decaying nuclides are involved. For example, one of the
most important decay chains is

241 241 237 233 233 229, 225
Pupgy Ay NPy q4— Faggq-—U — Th

x 106y x 107y

Ra

(4.128)

For long term prediction of nuclide migration, almost all

241, 241 A 237

and Am are reduced to Np. Thus in this decay
. . 237 225 \
chain nuclide Pa and Ra are much smaller than those
of the others, For this chaln, we know that the secularvr

equilibrium state in the decay process can be attained

<43

1.62 7340y " "5y
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without migration. In this section, we will verify that
the secular state is also attained in the migration pro-

cess under some conditions.
The solution of migration equation in recursive form
is given by (4.32).

¢ - &
Ny (2,¢) :f f.(t-9,)¢€ Flveog, 2-v:6:)dO;
0

t o
PoAp -4 0;
+ :ﬁ%‘};’f [/\/c-/(gf“gc)el\ F(%Q‘:/ Z-5-1;0)ded o,
0

=/ Js0

(4.32)
where
- 1 o (F-toue)
Fve, &3t = — — exp2~ (Tme o)
G k6, 4K U; O

Let us consider the case that the decay constant for
the ith nuclide is much larger than that for the (i-1l)-th

nuclide:
15 » R&, (4.129)

The time interval, t, of our interest is of the order

1/ Then, the following equation is satisfied.

i-1°

e <t 1/a, (4.130)

Al
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The exp(wkiGi) value in (4.32) is nearly zerxo in the

range except for the shorter tinme O<@i<0(1/Ai)9 because

of the high value of Xie This is illustrated in Figure 4.4,
The function, F(Vi@i)ngmVi@i)9 in (4.32) dis approximated by
a delta function, &(z-E). This approximation is valid under
the conditioné9 AB >> BC and 4Kviﬁl <<ZZ, where point A is

a location having an order (1/%1) at £ = 0 and the point B

is a point, (z, OA). C is a point on the straight line,

7z - v.,0,

;95 £ at @i = 0A. The effect of the above conditions

means that F (Vi@ s 2 ‘5“Vi91> can be approximated by a delta
- 9

function at the point C. Since OA is of the order 1/>\i§ AB =

z and BC = viOAS the above two conditions are rewritten as

7 UE/Q; , 4“1T/&f & 7 (4.131)

Under the conditions, (4.131), the second term in (4.32) is

given by

t %0
v [ s oy  F e, vy w0 )dsda

~ /L’TL.A(;/ N (Z f) “’AL 9:,‘ - L;qu
o AL N (7)) | e e = — L N, (2.8)
VeV VoA (4.132)
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In the above derivation, we used the rvelation that
Nigl(zgt) is almost constant in the range of the order,
1/X. The first term in the right hand side of (4.32) can

be reduced to

R t
r »—/X“@(‘ - -\ 0
.J"ﬂ”“@')@ F(LZ'QL'/Z"V&'OL‘)G[@L"T3(z)j€ABL{L‘({"6’(‘)49{ (4.133)

0 p

because F(viGi Zwvi@i) is approximated as §(z). Then the
9

first term can be neglected in the range, z >0,

From (4.132) and (4.133), we can obtain

ANtz t) o Ao Ney(zt)
L} Ll;/

(4.134)
or

AL K\: NIL' (Y/t) = AL‘~J KL'-! M(L, (t{/»{)

(4.134) shows that the local secular equilibrium is at-
tained between the ith and the (i-1)-th nuclides. The

necessary conditions are summarized as:

Req e, YA 02 e g L] (4.135)

Ni+l<z’t) is obtained from (4.,32):

+
~Awmb
Nfﬂ(f,%):Jﬁﬂ (t-g) " Flo,0, ¥-15,06)d0
Jy .

“Awm b
IN;(;,M)@ F U 0, 7 5-24,0)d 49

ﬁ~2!lliL(
v )
0 Zoo (4.136)

<
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Introduction of (4.134) into (4,136) yields

A

,é B ]
{VL‘"H (417/ {;) ::/’C 74{7”1 (/(L’ @,} @ F(U}‘}—/ @ 2 ZMUZ-}—Ie) dé)

» . { > ‘”‘/i(' @ .
+ »ﬁiﬂ?ﬁﬁ‘ﬂj d@Jag Nt (5800 € F (05,0, %5 s )
1h.

¢! ) Zro

(4,177)

(4.137) shows that the n member decay chain (..,i-1, i,

i+l, .., n) is reducéd to the (n-1) member decay chain

(eovy d=1, di+1, ... n).

—F( 0, 8-5-0:6, )% 3(7-%)

b F(0 #k)= §(x-3)

Figure 4.4 Illustrative functional
behavior for local secular
equilibrium.
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5. APPLICATION OF THE GENERAL SOLUTION

5.1 Introduction

In the preceding chapters, we have discussed the dif-
ferent release modes and the relationship among them and also
have obtained the general solutions of the transport equation

for arbitrary release modes,

In this chapter, the solutions for various release
modes will be shown with the help of the genevral solution,
Section 5.2 is concerned with the dispersion free case. In
this section, the solutions governing the migration of an i -
member decay chain will be shown for several release modes.
In sections 5.3 and 5.4, the solutions for a three member
decay chain with dispersion are shown for the step and the
band release modes. Sections 5.5 and 5.6 will discuss the
numerical results based on these solutions. The migration

features of some important decay chains will be discussed in

detail.

5.2 Application of the General Solution of the Transport

Equation Without Dispersion ~-- Solutions for Several

Release Modes -~

In the preceding chapter, the general solution of the
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transport equation without dispersion was shown in an

explicit form:

SNEL
NERATING N -5
) (5.1)
(et X 9\ . @j}\m 2/ g 0
+ Sr O : s
2R, ) g e
fsi YV‘X’ W“"‘,Q TT \ i V‘sﬁ
where =1 rsmn
Viw
o ) ’t < Mg/\fm

ﬁ\"m(%‘) = j

— %
et s,

In this section, we prupese the solutions for several re-

lease modes with the help of (5.1) and the relatiénship

among these modes which bas been discussed in section 3.2.

5.2.1 Solution for preferential release mode

The preferential release mode has been de~

fined in section 3.2 and is given by:

¢

P LAY
Ny oty = N;(«%)aE&JBS e hih) (3.22)

J=1i

‘jﬁ A‘ o\ | ¢
Z{WL/A\/MMTTT
B, - sl (5.2

u") (
2 (»/Uw/LV,‘)
I
L)
The concentration of the i-th member can be obtained by in-

troducing (3.22) intb (5.1)
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/\)1,\ fj(l %0

w%Q 'B
, ey
6 Um /’3(§é«ﬂ%b‘n)

NPz ey = e

¢l =l ) <&
/(TTI Lm/,ZA

Fe 7 r=A e f }]:i;? PV‘M
P;”
; f Dew By [ gom (4= 5) é;/zém%m>}
M_:Z ijj j‘(ﬂj - A‘W’fﬂ
¥ e

(5.2)

For three members, the above solution i1s as follcocws:

i F P jL ))ﬂ v
N (25 =B, € A-5)-A% X h($-2)

(5.3)
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A 7 f\i( ’ “/\k {«,.‘;Z_,)
‘\fzp\(% *-M){ '\}1 Bm!e‘ ( o }
A MA@( "i) ”‘“/\4(‘%‘%.%_\)
+ q%(%“ kK ) e’ DJZ\ Bn { e \i‘ e \“}
U T
VPR can (b2 A6
-+ %(%”*‘ja) (Y 1t € 12 ,U‘Lw e i '\}zjl
‘U\L r;?, /\i“’“‘é‘\l
(5.4)
.‘_?\5%-‘ :""A\ ’ﬁ_““z«> "‘/\L<%w.§.,.) . “‘/& (twi
TR [ I e

Ni(z, b=

AL ]
?\ //\z ? C Ux D3\ B *‘AgtC—{ﬁg) _./\‘('_%_;i_)}
( ) ( 24 iy U‘ B Ug
UOL h +/ TL V Ay — D { c e

Di: B{\ Ayt ) - ('t»‘—f}«‘)}]
A Az‘{e - ¢

N (m Shle) ]
V\"U\& U‘x (z Au
3t A Jv,iﬂ) }\{ %ﬂgﬂ
‘*"M{Q sl S ( a}
/\\“’Agz

;\3% 3
A Am _ 2 e Y D BQ MAH({"MW) M/\ (-t""““)}
+Sah -5 i e /—\wﬁ - e

L DBy { cAult-g) é/\;(t~%)}J
A= Doy
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2
TR -
. el Ju ! S
P S 41
V‘z IRV y A

+ D;Z@%j @Aw(‘% &) AZ({“E”)B

’A}g('{f"’*‘;) “‘/\x(k }

by (t) Ak
ﬁ 3 bém ﬁ U:v)

(5.5)

Al gyt
K ?\1 . :}(W € T—Us:/ Dgngg
B ) {

where

/ o ol Z’? ?\N\ N b in, ?\Ns K,}J A&?\LN?
Bu= N7, Ba= R A/ ) Bau=Na- Re A ’Bﬁ‘ R (A=A A=A

I .,}ié >\x}\L M? e i@ﬁ - XQNQ
Bzf R (A=A (A=A Ry /\3 /\z

Bf _ }Qs >\>\ N " E?; J&Ng
337

9
A -+ Ng
%’Q /g\\W/\g)(f\z“—*/\g) %Q,z /\2“‘/\3

L e . - A V=)
/A\Zﬁ‘*" iQC*’AL 9 T;W\S = *;w”m QM"M}EX” VANV AW\\(‘“ "n f}\ £

(5.6)
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5.2.2 Solution for exponential release mode
The solution for the exponential release

mode 18 expressed by setting ki = k din (3.22).

Ajt-kt
N ¢ %VZJB e he)
J=
J o;%”\‘ ; (5.7)
By = g; 3 AR
(L))

Then, the concentration of the i-th nuclide can be obtained

. _ . . g )
by setting ki = k in (5.2) and replacing Bij by Bij°

Ay : ~(j+ R (4300
NS b=e l«(v%ﬂZJBcje : v
f
1 =~‘/"\W\yf\)wx
+ZJ( (- ?\v\ZJ %(% %m
reg Uy i ;j; r:w
3 1 (598)
LI - _ 2
By { A (+-Fh) w(3f+k)(%~/6%)}
4 Dy { it
Z kI ;\ '*”;Q Arm < 6
P‘*ém

For three members, we have
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~Gurk )b - REA,
NE(z b= B, ht-%)e

(5.9)
N ¥y, R (-0 = (ke (- %A
NE(2E) = ¢ ” \r\(%w%ﬁ['&f + B,.e ]
"'”')\%4() g
)\l | e ' D 1 B‘i
+ S - ) - 2l 2!
’U\‘ ( /U Ei ’Q“‘?”‘A\ ‘“A;t
~ha (A=F0) Ok G- 2400 Y
e e J
mj\ag/vz 28
P g S DA,
U r:z ﬁ -+ As - A\g

D (=24 = (AR (t=2An)
[ et ]

(5.10)
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s SARRNEH) k(Y
e;\}f/v}ﬂ{f ?/UJ)[B@ fBg;ﬁ Cin Z; )
+Byy @ ~ (A4 k) Vs ]
SN W“)'[ 2,5,, [ cAalt-50) (At %}
OBV K f;" f’7 }\\“‘“’“k\Ag\
_'Dg: DiB. {»Asi({i‘/«f. ~(Ak) (£ - %} ]
e
?\‘%F{“Am
e
\/)\x é’ szg!i AIQ,('{‘ %/Uz) “‘(}\r*?‘h)(ﬁ 2,
vmh (7%, A [ﬁ.e»h A e /@}
DBiBu { Aﬂ(-t %’L} “(ﬂﬁ‘k\)({’ ZA)B)]
}U“f‘k Ajz

A Ca (Y a ol V(
?\ 9\1 1/\(% QA}) ] 3[ Dq%B|\ {QA\?(JC /4}:} e(?\, K)(“’f /4)3)3
\) Va Ath-Ay

5 [
ot »D;&; Bn { €MA2.3 (%n%Q ~(Avt h)(%" %})}]
;'\l'*“hw A)3 - 6

34 e)“%?{ Di. Ba { ;efAs.z(M/wﬁ 8~<A.+m<f~%1>}
v [\;1 R\“%“!Q—ABZ

IR, { SAn(E-%) - Gk (L %)}]
i e, -0
;\2+K~A32

l“)
2 I 332

)
4+ % | g// /'U}[ DE:;’BQ,\ {GNAM(%“‘ %/’{Tgl é‘“(ﬁwk)(‘%'g/\j})}

A\“\‘k A)}

4 D&_}} H e“Au(%“?'U}L é(ki‘%’k)("t“ ?/U‘))}J
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Wher K\N? © /\ MO
ere B\\x N? } B:g,\x NEZWAT 3 %Zl: Nz ?\lm?\\

2Ny A‘ ? Lg
B, = -2 _ AN AN N AN

P A 7 0 (M2 (Age had A P

B%: AN - Aung
<>s)n3(%lwﬁ) M- %3
5.2.3 Solution for step release mode

- N

The solution for step release mode is
easily obtained from the solution of exponential re-

lease mode by setting k = 0,

%)wL B N 5.12)

J=
From (5.8) the concentration for the i-th nuclide is given

by:
-M3

Ay, (4%
NSt = e h (%) %BJ (4= 5)

3 / (,: “';\W\ 2/"L)v\ﬁ

v (i) - ———h (%)

g T

e
¢ @ b[B Ay (- AMx “%(% %})
Y =0y §

(5.13)

For three members, we have:

~AT
Ny b= NS e ™ h b= 24) (5.14)



N

DRAFT

e M - (B,

W)\&?/—\)‘ 2\
A oy € DB
N Uy %<% /v‘) FZ?\ Al"’égl\

“‘:'\m'% B
RSN

oA L2
- 1, h(% /’\fzj

“"“?\x <% “g/'\fa

) “}\z(f“g/x);}
+ B,,e ]

’ "-#\m(%“%ﬂ ‘“A\({“EA),)
[P ¢

T A

€

B ChHo) o Hi|

(5.15)
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5.2.4 Solution for band release mode

The band release mode ig defined by

Nty = Beeh [heb) - hit-T) ] (5.17)

The solution for this release mode can be obtained from the
solution of step release mode by using the superposition re-

lation given by (3.60).

\ oy AT
Nk = NGt y) = NI E=T5Bye? ) (5 60

The first term in the right hand side is given by (5,13). The

second term can be obtained by replacing Bij in (5.13) by Bijx

exp (wle) and also replacing t by (£t - T). The resultant

solution 1s expressed as:

Nf’@c’sw “/mZB A(f%){/f)/éé) [ i T*/é}

\/::!

\ . ;‘zm{; Coy

= Li Aw - i) Eﬁ

2 (1 L :

el ey b”) T’ [ %’5, Ay = D

r o
- m \:‘E/’m ;}\ Y"W\
X {eé e {H(% Y - & h(%-T:%@Mﬁ

N 3 = h T %0

(5.18)
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For three members, the solutions can be obtained with

the help of (5.14) - {5.16).

5.2.5 Solution for impulse reiease mode

The impulse release mode is a limiting case
which can be obtained by applying the condition,
am"TAﬁﬁ“ )~ ﬁ(éf~-} (fz) on the solution of band release
FrO .

mode. Then, the concentration of the i-th nuclide is ex-

pressed as:

«EZ@;
N;I(?f(%) = (I\!‘.)‘T) e E(Z«Mg?)

i~ - ¢ ¢ ”A'”’X/‘))»v
>_, ) i) N T NS
[Tf\ ={ U;’ ‘m:j? ﬁ T' b
y=f =™
rem
N\.%N 4 &Avm(#f%m)
*/ Tm
ved
Y3
(5.19)
For three members, we have:
T ~MEy
N, (2t)=(NT)e ' S (t-5,) (5.20)
T ‘“)‘ZZ/?):?
N, (2 0=(NST) e S(t=54,)
b _NEA ) wa (+-%,)
p MNT e ) e ™
Y I
0 e E 7, 21 ol %,
A N 2 1200 7)
+ 2T A(-5.)D, e (5.21)
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Nzt = (NST)E P s (- )

0 N, ) A, ()
4 2 NiTe r»v]%(% fjé %Dje R VAN

Uz P» ] . 2?)
O e I LA T A =

+ 7\)7 N”Tewﬁ(%«ﬂ)g 323(? 4 ()12%— _DSQQ 3z ;}2}
Ui U 32V .

0 3 | : Ay E

4 Az Nwibj;ot“ gj)i o Az (T 1/5)+ DZ) 57 v;)}

ViVe 15 [%;

22 T |2 ) e e ()

P =L g B)lose T e |
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5.3 Application of Geneval Solution -- Solutions of the

Transport Equation for Three Member Decay Chain with

Plane Source and Dispersion -- (H1)

The general solution for the transport equation with

plane source and disgpersion 1s given by (4.38).

t 5.
Né(z,{)fzj[ﬂ (t-6;)e "X‘G”F(U.é} if~u'@.)q‘9*
0. 6
*Z( TW déc aec,J d%{ﬁzek)
=1 I A= 0

.S
o /“?eﬂf(m 0, %~ 2, 100
¥ *Y (4.38)
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Applying this equation to three members, the concentrations

are given by:

t
)
N,(z,w{ﬁ(f»o,)e}’ F (00, £-16,) 0 (5.23)
N
¢ A6z
N.(2,1)= ffg(fwf}z)e F (U607, 8-U362)d0z
o
t 0,
U3 “A16r~A202
+§;&‘in§sz@,7€,(%~ 6-6)¢€
v ()
x FOU0,+150z, -1 0,-V262) (5.24)

4
4

r 250
Ny (Et)= | fs(+-0) €77 F (105, 2-v;65) do;
\/0

T 03 .
~ )36 ~A262
M@J sz](z({rér-@a)e/bj “

‘ -0y 0382
t K 3 A0, 2:02-2363
+ %E&Jd@j}d@z} d@;f(f‘méi“‘@g“&g} e e
‘U] D fs] 0 .
¥ F(\},Q; + V02 + U303, T-U;8,-Vab2~ V3 53)

+ ’/%Vl}z F(V:%Q?ﬂ/}&f) F-Uz0,-V30;)
2

g,

0

(5.25)

where fi(t) is the source term at the repository and can be
related with the concentration at the repository with the use

of (3.33) and (4.23).

foit) = NA(DY; (5.26)

.15



DRAFT

In this section we apply (5.23) - (5.25) to the three
member chain and propose explicit solutions for step and

band releases modes.

The decaying step release mode asserts that Ni(t)
ig expressed by the Bateman equation. In this case, fi(t)

for three members can be obtained as:

3 At ~Art
TL((%) = UKIN;({_): U} N’l)eA}TE mB” e !

; st
f8) = NI = 0 [(Ne+ ’V’Dz?,%ﬁg) VAR J

A=At

- =t
U;;[Bz;ew + B, e’ ]

i

| /, N‘?}\Z i\/:/\;/\z ’\3’&
Bt)= vshslt) = | L4 Ng%ﬁzmlg " (- )3)0\2*I3j)

0 >\2 N‘ }\ 7 Azt
+ N - e = { R e
( >‘3 2 ()\1 )z (/\; *)\2))
. N A Az At J
()u»")\s)(/\y ~/\2)

~Ast ~/\ ~)lf
= \%{ Egse e Bgz 7 + By e J

(5.27)
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The concentrations for the three members can be
obtained by dintroducing (5.27) into (5.23) - (5.25) and

then by using integration by parts and the following relation:

2 (G0 [ e -Eorf( )
(%

(5.28)

The resultant expressions for the concentrations are:

NGty = B, E(1,151) (5.29)
Nz t) = Bol(22;2)+ ByE(1,1:2)

- By A , ,
4 B2ull NV E(,152)- E(LTST)
U (Ng-2llz) [

~f~£’(7,2,‘f)wE(/,z,'z)J

(5.30)
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Ny (2,00 = BayE(3,353) + By F(2.253) 4By, E(1,173)

v Baae (o203~ E(23:3)-E(22,2)+][(23:2 )J
Uz(/\za";\znﬁ)

Bsy 2
+ 21 2 E(LT)3)“E(?;B)S)vE([,?)2)+E[23)2)J
Va(Azs=hilas)
B A s F(1303)

n BH%\)Z };(4,1 530, ]
U.\)’z(/\xg‘-;\rns)(/\zy]@Q Uz (A=) (P AR “‘é,3;(z3)

B Xy )\;L 23 L(Z 3:3)
Vv, (Azz»)\ TzsxifB/qu“‘Ta/\B)

4~

B F(1L152) By E(2352) T,
+ +-
Ui V2 AJZ ;i 3?>(/\12 A 12) Uv.;(/\;? Al!sz) 17A33 /}gﬂg

n Bz [z (1.2 v2)
UiV (A= M)z A = a/sz)

Bawrz E(1.1,1) » Buxiha I3, E(1.3:1)
U0 (/l\;p)\;f;,){//iz/‘“)lj;/) lf,lfz(/\g/»/}//g/)(/f?/f;/ */72//;/,)

By /\I)ZEE (1.2 1)
s oML A = A5y l)

(5.31)
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where )
AR ) { 1
R R e s
5.32
@‘\ - ! RC ) L‘L::j ( 3 )
Y l %‘)‘k: I+ 41 (A= By ) f
N1 iy -
J 1j’1:?] 4
W;;?/?k B 2
. z
. S ¢ 2 o | — dy
Elyik)= " % L Vo CXPZ\ (Xt o ’émJ)j g

\\//H/‘M«JT

?sgij‘twﬁfc ( R EAe /IZ(”“’U{%\{T )
PR E} J )e

Bi/}'j‘ ,&] E\/qk—t\ﬂ
B @A;«:v vkerC( ) (2(:‘7‘}&)0)

(5.33)
In compact form,

N? (z.4)= By EC1 1 51)

the above equations can be described as:

.19

2 . B
P ey e v By E( 1) WAL | 2)-E(L 1)+ E 2
NS (2.1) Z B LUy 2) + v ol (L(1i2)- Ll D B2 ) ;(/zz)J
NG (24 )= ng (5,3:3) + 220 B2l [E(33)-E(5: 2)+F(252)- F(z3:3)]

UZJ:/ 23~ 2 23
D avebn S E () L ECkI )
LU =) +
) (Aizj M)Ay~ XT ) (A= 00 (PA;U P/\@_)
4 r jﬁE Q} J) - )
(/\X,J }«J/M [Ij/} )J (5.34)

( k<t k#y, f9. L k=1 2.3)
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Let us consider the solutions for band release
mode. The superposition relation is described by (3.60)

a8

b : pss S T
. y: ;%) = N‘ Zl ;‘ Vel N S g \\MA‘
N; (z (2.t BU) Ny, (2 A4-T ; BUe J) (5.35)

The first term in the right hand side is given by (5.34).
The second term is obtained by replacing Bii in (5.34) by
Bji exp (wij) and also replacing t by (t~T). Then, the

concentrations for the band release can be obtained from

(5.34) and (5.35).

When X —+0, (5.34) agrees with the solutions without
dispersion. Then, it can be said that (5.34) dincludes the

case of no dispersion,

5.4 Application of General Solution -- Solution of

Transport Equation (F2) for 3 member chain with

dispersion and the concentration boundary condition -~

The governing equation of migration which we will

treat in this section is

Tﬁjﬁw"ﬁMf QN ,
/L' D 2 v d? - ”‘;—zzﬁ - A Nt' :"212/ /{Lll /\/('~I /KL.

Ap=0. Esl2 )

The initial and the boundary conditions are

.20
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' ) N ) ~k¥ , 0
(\/é(g,o)WO , No(oo,2) = Om’erof@ , M‘(Dﬂjf)::k{‘g%‘/i) (5.36)

The recursive solution of (4.2) and (5.36) is given in the

preceding chapter by (4.61), which can be rewritten as

Nelz t)= ex;)[*;;g-w()ﬁ%)f]
o W 1,t = ¢ v 32
xJﬁ;K ‘.PJ»\:% 5“n(pX)J@KD‘"’b§ K. (p6)dodp
2o )
(5.37)

where

Rei(p,8) = v Se, (pt) + Vs o peos (pZ) exp f““" z,:i: ) ‘9}
X Nl‘b‘;zéi‘ (9)

7 it i 3
Agt‘../(;’o'f):j/vi S/ n (;93)@ 2Kk N(;/("?/f) /17=~/ Q/Z
o
0

Yy 1T

(5.38)
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This section 1is concerned with the concentrationg of

three members for the step and the band release modes.

For step release, the boundary condition at the

repository is expressed as

Nelot ) = /\/[Oszé/é):z Bgé/wé/z‘) (5.39)
J=l

Then, the concentrations of the three members can be cal-~
culated from (5.37) - (5.39)‘by the iterative procedure
with the help of Fourier Integral Table. The resultant
concentrétions are reduced to the analytical solution (5.34)
for the step release in the preceding section, but with the

function E(i,j:k) defined as

o

Y i
oy L aEr Pyl 2 o ke
Llejik)=e jg Vi Wf)[’(J + 7;,;;}}6{7
Vartn ©

- <

¥ A, o s AT
o1 se -8yt [rezym/mwfc % TRt }

2 Vak
pRl Y SN I S T e
+ & €y rj~ A - Jw( ka>0
Varve 10
(5.40)

The band release solution can be obtained by the

same procedure as in the preceding section.
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When the diffusion or dispersion are neglected
in the water path, the functions E(k,j:k) i.e., (5.40)
and (5.33) agree with each other. Thus, the solutions
for concentration boundary condition agree with the ones
for the tranmsport equation with source term.

234 230+

5.5 U 2307y, 226

Ra Decay Chain Migration Behavior (H4)

.23

One of the important nuclide chains to be considered
in the predictive modeling of hydreogeological transport of

radionuclides in high-level wastes is:

242m 242 238 234 230 226
Am -~ Cm - Pu U - Th - Ra
» , ) ; . 226 .
The most dmportant species is usually Ra, because of its

relatively high biological hazavrd and its rvelatively high

mobility in geologic media. The important time scales for

2
the appearance of Ra are of the order of tens of thousands

of years, as controlled by the long life of its precursor

230Th0 Therefore, because of the rvelatively short lives of

the first three members of the above chain, the analysis of

226Ra transport can be reduced to the analysis of the last

three members of the above chain, with the assunmnption that
the first three members have already decaved to form the

long-lived 23&Ua
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In this section, the migration feature for this
three member decay chain will be elucidated with the help
of the solutions of transport equations (5.29) through
(5.31) which correspond to the step and band release

modes. The computer code 1s shown in the Appendix.

5.5.1 Input data and parameters

5.5.1.1 Release Mode

In Chapter 3, several release modes have
been discussed. In this calculation, we select the band
release mode as a typilcal release mode. The band releasge
mode requires the unknown initial concentrations for three
members, Ng (i=1,2,3) (atoms/cm3 of H20)° The amount of
the 1-th nuclide Mi(t7) (atoms) in the repository changes

with time according to the Bateman's equation.

i Y

' WZ(::J’B 'Ajt B . a I L
M= 2, By e e By= 2o T 5 Geety) 5.0m

7 FET
1L§1v2| 3

Where t' is the time measured from the moment of initial
emplacement of the nucludes in the repository, and we as-
sumed that there is no daughter in the repository at t'=0,

The change of the amount of each nuclide is calculated as

<24
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shown in Figure 5.1. The amountsof 230Th and 226Ra
increase with time first, and pass a maximum at

1 = 2x105 year. Finally, the ratios of the amountg of
the second and the third members relative to that of the
first member approach to a steady-state (transient equili-

brium):

. (T i
o M@ A

& o0 M,(i) 9\1“;\?”
Lo Myt Mz

Fam M A A (A A)
(5.42)

In order to gimplify the calculation, we can assume two

kinds of dinitial conditions, i.e., 1} The release of nuclides

from the repository to the groundwater phase occurs at an

early stage, 2) The release occurs after the nuclides have

attained the state of transient equilibrium. In the first
234 . . ’ ] . . ,

case pure U is the only nuclide present in the repository,

and no daughters are present at the beginning of the release,

. o} 0
1.2 N, = =

, WZ N3 0 (5.43a)
In the second case the initial concentrations, N and NO

2 3
are assumed from (5.42) as

L= NOAJ -0, NY= NOAA /(e (M) (5. 43Dy
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!

| 19;

0> 0% o° 0°
Time, yr

Figure 5,1 = Nuclide

repository (z=0) for

(Pure 23&U source at

atoms at 234U at z=0,

concentrations against time in the
the 234U+230Th+226Ra decay chain,
£t=0. Mi =gtoms of ith nuclide. MO =

1
£=0.)
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5.5.1.2 Data of Parameters

Nuclear data and sorption equilibrium

constants for the nuclides are shown in Table 5.1.

Table 5,1
ZSQU ZBOTh 226Ra
Half-life (vyr) 2544x105 707X104 196x103
Decay Constant Xi(l/yr) 2.84 x107° 9.00 x107° 4,33 x10™ %
Sorption Equilibrium
Constant, Ki (=) 1 x lO4 5 x 104 5 % 102

The values of the parameters, Kis v and D
have essentially defined the nature of the sorption medium
through which the nuclides migrate. The Ki values used in
this calculation are taken from the most comprehensive set
of data available, which are obtained from the values eval-
vated by Burkholder (B3). The velocity of groundwater is
assumed to be 100 m/yr. This is of the same order as the
measured value for cracked rock and deep aquifers(H5). With
this assumption for the velocity of the groundwater, the

migration speed of each nuclide (vi = V/Ki) is

.27
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. -2

U \/l = 1.0 x 10 m/vyr.

Th; v, = 2.0 x 1073 n/yr.

Ra: Vg = 2.0 x 1OQ1 m/yr.
L A . : . . ) . 234
In this decay chain, the migration speed of U is
faster than that of ZBOTh9 and that of 226Ra is much

faster than its precursovrs. Half~lives decrease in the

234U 230 226Ra°

order of . Th, and

In this section, the successive developments of
the nuclide profiles are graphically shown for the case

of
leach time (T) = 3 x 104 v

This leach time ds much longer than the half-life of 226Ra

(1600 yv) but much shorter than the time for the occurrence

of maximum MB/Mi in Figure 5.1.

During the period of leach time, each nuclide mi-

crates by the distance of

ZBQU; vlT = 300 m
ZBOTh; VZT = 60 m
226Ra; v3T = 6000 m

Fach nuclide migrates dn its half-1ife the distance

=

shown in Table 5.2.

.28
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Table 5.2

Migration length in each half-life
(half-life) x (migration velocity)

234

U : 2,440 m
ZBOTh : 154 m
226p2 ;320 m
. . . 226
In spite of the fast migration speed of Ra,

the survival distance is not too long because of its

. . 234 .
shorter half-1life. On the other hand, U can migrate
along a relatively long distance without significant de-
cay. From the above Table 5.2, we may expect that large
radicactive effect of this decay chain will extend over a
few kilometers (when V = 100 m/yr) because of the long

survival distance of the first (parent) nuclide, ZgéUa

.29
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The value of the dispersion coefficient is de-
pending greaﬁly on the water velocity, porosity of the
801l column and the pore vradius. The characteristic dis-
persive length, D/V, may range from several to several tenth
order (H3). In this calculation, an average value of 103
mz/yr is selected as the dispersion coefficient. The value

corresponding to the usual molecular diffusion coefficient,

1 x 107t mz/yrg is also used for comparison.

It should be noted that the relative situation of
the development of distributions changes in a variety of
ways depending on leach time. In the series of graphs pre-
sented in this section for T = 3 X 10[+ yr, however, most of

the important features are expected to be seen,

5.5.2 Concentration Profiles of 234U%230Th»226Ra

5.5.2.1 Comparison of the solution of trans-
port equation for the case of plane
source and dispersion and the case
of concentration boundary condition
and dispersion.
Figure 5.2 shows the plotting of the concentra-
tion profile of each nuclide at tszloé yr in the case of
pure 234U source in the repository at t = 0 for two differ-

ent solutions of the transport equations, i.e.,(1l) the solution

of transport equation with plane source and dispersion (plane
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source solution) (5.33) and (5.34); (2) the solution of
transport equation with concentration boundary condition
and dispersion (concentration boundary solution) (5.34)
and (5.40). In this figure, the broken lines show the
solution for the plane source with D = 1x103 mz/yr9 the
dash-dotted lines show the solution for the concentration

boundary also with D = lx103 mz/yzr9 and the solid lines

show the solution both for the plane source with D = l,xlOm1

mz/yr and for the concentration boundary D = lxlOﬁl mz/yrn

In the case of small dispersion coefficient,
D o= 1x10$l9 both solutions for the plane source and the
concentration boundary agree with eachother. Furthermore,
it was found by the preliminary calculation (H2,H3) that
the calculated concentration profiles almost agreed with
those of the dispersion free case. However, in the case
that the dispersion coefficient is larger, D = lx1039 the
concentration profiles near the repository are much more
affected by the difference in boundary conditions of the
transport equation. As shown by the curves in broken lines
and dash-dotted lines, the concentrations of each nuclide
for the concentration boundary are much lower than those for

the plane source. The solution for the plane source takes

into account the e¢ffect of dispersion in the negative z

.31
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domain, but the solution for the concentration boundary
condition does not take this effect into account. Also,

the solution for the concentration boundary condition at

the repository is governed by the Bateman's equation for
£<T, So, for & time t = SXlO4 yr > T, the concentration

of each nuclide has to satisfy the boundary condition so
that the curve of its concentration profile has to start
from zero at the rvepository. Thus, the evaluation of the
distribution of each nuclide near the rvepository using the
solution for the concentration boundary 1is less conservative

due to this artifdicial concentration boundary condition.

On the other hand, the solutions for the two different
boundary conditions at locations far from the repository al-

most agree with each other.

Thus, it should be noticed that the solution for the
transport ecuation with the plane source represents a more
realistic model of the transport phenomenon than the solution
with the concentration boundary condition which has been

usually used by many other researchers.
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5.5.2.2 Concentration profiles of

nuclides in the case of pure

234U source in repository at t=0.

Figures 5.3 through 5,6 show the success-
ive development of concentration profiles of each nuclide for
the case that the leaching begins at t = 0 without any daughter
nuclides in the repository. Ni(zgt)9 i=1,2,3 is the concen-

. .th . . s
tration of the 1 nuclide in water phase at a location z and

a time t.

Ni is the concentration of 234U at z = 0
; . , . 0 0 0
just after beginning of leaching (NZ = N3 = 0), Nl should
be inversely proportional to the leach time, T. The concen-

. 5 . 0 .
trations of Ni are all relative to N shown by the ratio

19

0 . 4 . .
Ni/NJQ In these figures, the solid lines show the concentra-
tion profiles of nuclides for the dispersion coefficient

D = 1x10m1 mz/yr9 and the broken lines are for D = 1x103

mz/yre

In Figure 5.3, t is legs than the leach

time, T = 3X104 VL. ZSOTh which is first leached out from

the repository is at the location of vzte Let us first con-

sider the case that the dispersion coefficient is small.

All ZBOTh in the region vyt < 7z < vlt has been produced by

the decay of 230U outside the repository except a small amount
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from the contribution of small dispersion. In the re-

, .23
t, the concentration of OTh decreases

234U

ion v,.,t < 2z < v
gLon Vo 1

with distance, and ends at the leading edge of band,

In the region ofz < v, t, there are

ZBOT

2

two contributions for the concentration of h. One of

3
them is the decay of 2J4U that hss been leached out from

the repository. The other one 1is ZBOTh which is from the

decay of 234’U at the repository and leaches out. As seen

. 2
in Figure 5.1, Nz(ogt)9 the concentration of 30Th at z = o,

increases with time.

226Ra has been migrating from the re-

pository just after the beginning of leaching and arrives

at the location around z = v, t.

3
As shown in broken lines, due to the

effect of the larger dispersion coefficient (D = 1x103 mz/yr),

234U and 230

the concentration profiles of nd Th are smoothed out,

2 ; .
and the dent of BOTh at Z = V_t disappears. But the disper-

2
, : . . 226 .
sion hardly affects the leading edge of the Ra profile,

hecause 226Ra has a much larger velocity along the migration

path and 13 is large.
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Figures 5,4 and 5.5 show the concentration

profiles of the nuclides after the end of leaching. Before

the time of tZZXIOS vy, the total amount of 226Ra in the mi-

gration column of soil continues to increase (see Figure 5.1).

Since the width of the curve of 226Ra profile becomes broader

and broader with time, and the shape of the profile also changes

with time, the highest peak does not appear at tzZXIOS VY.

Figure 5.4 shows the concentration profiles

after the time when the trailing edge of 234waand catches up

with the first ZBOTh from the repository. ZBOTh behind the

2 , . ; .
trailing edge of 342’U has to migrate without any contributiocn

from the decaying Zgéwaand, and decreases with time by its own

decay. The distribution of 226Ra is almost completely controlled

by 226Ra which has been produced by the decay of ZBOTh outside

the repository. 1In Figure 5.5 at t$1X1059 another peak of 230Th

234U 226

is growing around the trailing edge of . The peak of Ra

at about 800 m is still dincreasing compared to that of Figure 5.4.

Figure 5.6 shows the concentration profiles of the nuclides at

) 22 . .
the time when the overall total amount of 6Ra is a maximum.

However, the height of its peak is lower than that in Figure 5.2.

The two peaks of ZSOTh have almost same height.

233U

The time of leOS yr is around the half-1ife of s at which

234 . . e s
the concentration of 34U is about half of its initial wvalue.
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Figure 5.3 -~ Concentration profiles of ZBQU%ZBOThwzzeRa
decay chain at t = lxlO4 yr. (Pure 234‘(] source at t=0.
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5.5.2.3 Concentration profiles of nuclides
in the case of transient equilibrium
sources in the repository at t=0.

In the case of transient equilibrium, the

relatively large concentration of daughters (ZBOTh and

226Ra) in the repository will have considerably large ef-

fect on the profile curves until around the time of the

g 4
234LUQ (Half-1ife of 23'U is about three times

230Th

half-1life of

).

longer than that of

In the transient equilibrium case, the total
amount of nuclides involved in the repository decreases
monotonously with time. Then, the tendency may be ex-

o et e , . 226
pected that the maximum concentration of Ra along the
migration path will occur at an earlier time in comparison
. , e s 234 . .
with the case of initially pure U source in the reposi-
tory.

Figure 5,7 shows the councentration profiles

of the nuclides at the time before the end of leaching.
Iin the present case of T = 3x104 vr, the total amount of
226 . P . e . .
Ra outside the repository increases with time until the
end of leaching. As seen in the figure, for the casge of
small dispersion coefficient, the highest concentration of

226 2304y

Ra 1 rvealized at z = v,t, at which the first

2
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nuclide from the rvepository arrives. Because of the
large concentration of 230Th between the vepository and
z o= vyt and the condition of & < Vg, @ hump in the pro-
file of 226Ra occurs. The contribution of ZBOTb to the
concentration profile of 226Ra between the leading edge
of 234waand and z = v,t is velatively not so large. The

2

general effect of the large dispersion on migration pattern
. 5 ) 234,

is almost the same as the case of pure U source as shown
in Figure 5.3 through 5.6. Figures 5.8 through 5.10 show

the concentration profiles for times after the end of

26Ra occurs for the case of

small D at the time when the last 226Ra from the repository

leaching. The highest peak of

catcheg up the first ZBOTh nuclide from the repository at

z = vzta After that, the height of the peak decreases with

fime.

As seen din Figure 5,10, a new peak of 226Ra

is developed at the trailing edge of 234U~banda The height
234

of the peak at U-band decreases more slowly with time than
the peak at z = vzt does, because the half-life of 234U is
longer than that of ZBOThB

L
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226

5.5.3 Maximum Concentration and Isopleth of Ra

Figures 5,11 and 5,12 are the plots of the
. 226 ‘ . . , , .

maximum Ra concentration occurring at various locations

1 3 - ; o AR 234
along the migration path for the cases of initial pure U
source in the repository and initial transient equilibrium
sources. The two solid curves rvepresent cases of different
dispersion coefficients. FEach point on the curve means the

. 226, , .

maximum Ra concentration an observer will eventually ex~
perience by sitting at a2 location long enough. Thus, the time
when the maximum concentration occurs at each location dis dif-
ferent. FBach point is obtained by choosing a fixed location Z

- 226 ; = . . ,
and compute the Ra curve numerically for various times until
a maximum concentration i1s obtained by plotting the concentra-
tion versus time for that fixed location. All these curves
have & hump, that means starting from the repository at Z = 0,

‘ ; . ) . 226 .

one sees an increasing maximum Ra concentration as one goes
farther away from the site, until one passes a certain location
where the highest concentration occurs, the nuclide concentration
then decreases. This happens both for the case of dinitial pure
234, ) . s . ¢4 :
U source and the case of initial transient equilibrium sources
in the repository so that the decaying of the parents does not

completely explain this dincreasing maximum ~~ "Ra concentration

phenomenon. In particular for ithe case of initial transient
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Figure 5.11 - Effect of dispersion coefficient on the maxi-

mum concentration of 226Ra for the ZBAU*ZBOTh+226Ra decay chain.

(Pure ZgéU source at t=0. Ni(z,t) = atoms/cmBW N%O=atoms/cm3 of
234U at z=0, t=0, v=100m/yr. T23x104 yr. Ky=1x10 . KTh25x1046

2
KRa = 5x107).
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Figure 5.12- Effect of dispersion coefficient on the maxi-

mum concentration of 226Ra for the 234U+230Th4226Ra decay chain.

(Transient equilibrium sources at €=0. NI(zgt) = atoms/cm” .
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equilibrium sources, this phenomenon is called the "Re-

, 226 ,
concentration'" phenomenon of Ra(B4). This reconcentration

. 226, .
phenomenon of Ra occurs also for the two member decay chain

230, 226 : o
3 Th~ Ras since for a three member chain the uranium is pro-

viding an additional source by decaying to ZgoTh9 the approach

h

to the explanation should be similar for both cases of two and

three member chains.

Consider a simple model that only the decay

230 226R

of Th is significant in countributing to the source of .

and an observer 1is sitting near the repository. When the band

ZBOTh reaches him, he will detect 226Ra from the immediate

£

ZBOTh 226

decay of . At the same time, Ra which is from the decay

230, . . ; .
Th at an earlier time also catches up to reach him because

226 226Th

Ra is two orders of magnitude faster than . Ag the ob-

server 1ls near the site and the nuclides are always migrating in

, . . . 2 .
the forward direction, 1t is the band of 3OTh between the site

L \ , 226
and the observer that contributes to the concentration of Ra

at the observer's position, so that when he is farther away, a

} . 230 . . . .
longer band of Th is contributing to a larger concentration

226R

of a, therefore it explains the increasing siope of the

curves in the above figures. Because ZBOTh undergoes decay

. . . 226
also, when the distance of the observer is dncreased, Ra has
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to take a longer time to reach him and so more 226Ra may
have to decay away before reaching him. On the other hand

] 230 , . . .
the number of Th decaying at an earlier dnstant is greater

ZBOTh has decayed at that earlier

because less of the original
. . . 226 .
instant. Therefore the contribution to Ra are not linear
with increasing distance from the repository.

Eventually when the observer is at an even

farther distance from the repository, the band of ZBOTh will

have a lower concentration due to decay even +though the band

230Th may increase and so from there on the 226Ra con-

width of
centration decreases with distance as shown by the negative
gradient of the curves in the figures. Thus it is seen that
one of the main reasons for this reconcentration phenomenon

to occur is due to the fact that the daughter nuclides are mi-

grating forward faster than the parent nuclides.

It is observed that in both Figures the
dotted curves for the larger dispersion coefficients have their
highest concentrations always under those of the solid ones of
lower dispersion coefficients. Since for a certain instant,
after certadin time of leaching, there is a certain amount of
nuclides along the path, 1f the nuclides are more dispersive,
they will spread out more along the path, thus sacrificing their

highest magnitude of concentration along the path.
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In both Figures 5.11 and 5.12 the lo-

cations where the curves veach their highest point are 840

m {(for DzlxlOmlmZ/yr) and 800 m {(for DxlxlOng/yr) for initial
no daughter case and are 70 m (for DﬁlxlOmlmz/yr and 86 m{for
DzixlOng/yr) for dinitial transient equilibrium case. The
locations of highest point of the former case are much far-
ther from the repository than that of the latter case. Ag for
the magnitude of the highest point, the latter case is about
five times lavger than that of the former, because of the

230Th and 226Ra at .t = 0 in the repository.

initial dinventories of
The effect of the large dispersion on the distribution appears
significant near the repository, in making the curve flatter

and slightly lower in magnitude. One can see the effect 1s more
clearly shown from the plots of isopleths of 226Ra concentration
given in Figure 5.13 and 5.14 for initial pure 234U case and in
Figure 5.15 and 5.16 for initial transient equilibrium case.

The abscissa shows distance (km) and the ordinate shows time
(vr). The disopleths are written for the value of N3<Z’t)/Ng
from 5x10w3 to 2}{10%2 with an dnterval of 5){.10%3 for each iso-

2 to 8x10m2 with an

pleth for the former case, and from 2x10
interval of 2x10§2 for the latter case. They indicate that

. . 226 . .
the time-dependent maximum Ra concentration at any given

location increases with distance until the highest concentration



DRAFT

is reached, after which it decreases monotonically with
distance. This is mainly due to: a) the reconcentration

phenomenon due to the distribution of sorbed ZBOTh through

the media, and b) gradual growth of 226Ra in the waste
material in the case of initial pure 234 source. Let us
considér Figure 5.13 and Figure 5.14 which are for Dxlxlowl
and DﬁlxlOBmz/yro As shown 1n these figures the effect of
dispersion on the slope of the isopleth is less important
except near the repository. The broken lines in these figures
indicate the time when the concentration of 226Ra at any gilven
location reaches its maximum value. One can see that the
broken lines agree with the ridge line of the isopleths.

Fach yidge line lies on the line of T = 3x104 (leach time)
near the repository, until a distance around 0.1 km, and
finally at large distance it lies asymptotically along the
iine t:—fZ/V1 which is the locus of the leading edge of 234U
band. The behavior of the ridge line 1is not so much affected
by the change of the dispersion coefficient for the case of
pure 234U source. Contrarily, the effect éf the dispersion is
much more dmportant in the case of initial transient equili-
brium as shown in Figure 5.15 and 5.16. First, comparing the
plots in Figure 5.15 and Figure 5.16, the slopes of each iso-

pleth on the side of earlier time are almost the same, but the

slope of the isopleth on the side at a later time in Figure

.53
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5.16 is more gentle than that of Figure 5.15, especially

around the region 10 v 200 wm from the repository., This

; . 226
means that the effect of Ra lasts longer in the case of

larger dispersion. For example, the time interval for the

. 226 - .
concentration of Ra to reach the value of 2 x 10 2 is

about 62,000 yr for the small D case, and is about 73,000

yr for the large D case. It is because 234U and 230Th9

22 . i
6Ra9 have long tails towards the direct-

parent nuclides of
ion of the repository due to the large D after the end of
leaching (t > T). Second, more important difference appears

. . ; . - R : . . 226

in the behavior of the line of maximum concentration of Ra.
For the small D case, the line almost agrees with the line

ZBOTh, from

t:Z/v2 which is the locus of the leading edge of
the repository site up to 60 m from the repository. Then it
lies on the line t = 3x104 yr {(leach time) up to Z2=200 m, and
finally it comes asymptotically to the line txz/v1° For the
lavge D case, however, the locus of the highest concentration
does not lie on the line t = Z/V2 but instead it lies on the
line ¢ = 3x104 yr from the repository site up to a distance of
7 = 240 m. This behavior may come from the shape of the tZZ/VZ
edge of the ZBOTh band. For the small D case, it is so called

box shape, and the peak of the highest 226Ra concentration is

seen at Z = Vzt in Figure 5.15., But for the large D case,
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this peak is shifted to the right because the t = Z/v2
edge of ZBOTh band is belng smoothly spread out. Thus,

one can find that the effect of dispersion to the isopleth

. 226 , ; . .
profile of Ra concentration 1s more important in the case

of dnitial transient equilibrium sources in the repository.
Furthermore, as seen in the isopleths, the slope of the iso-

pleths arvound the summit (highest point) is not steep, so

226Ra, it 48 dnsuf-

. . . ; . 226
ficient just to find the maximum concentration of Ra at

for evaluating the hazardous effect of

each location, but one also has to examine the distribution

226

of Ra concentration arvound each location using the iso-

pleth plotting.

5.5.4 Parametric Study

5.5.4,1 The effect of sorption equilibrium

constant on the concentration pro-

files of 226Ra¢

Figure 5.17 shows the concentration profiles

of 226Ra at various locations for different sorption equili-

226

brium constants of Ra (KS/lO’ K 1OK3) in the case of

39
s e 234 . 4 . s -1 2
initially pure U source, at t=5x10 vyr and with D=1x10 n"/yr.

in the figure, the abscissa is a linear scale in units of Z/ngr

. ; . 226 . , .
and the orvdinate is the concentrvation of Ra in logarithmic

scale. The KB and KB/lO curves decredse with ZKB/V linearly,
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and their slopes are -4.69 x lOm4 yr@l for the K3 curve,

and -4,33 x 10@éyrm1 for the K3/10 curve. Since the decay

constant of ZZ6R&(A3) has the value of 4,332 x 10&4 yrwl

9

same as the value of the slope for the K3/10 curve, 80 one
can find that at distance far from the repository the con-

centration of 226Ra decreases exponentially according to
“hg(Z/vg) 226
e for the case that the velocity of Ra (v3$v/K3)

=g

is much larger than that of its parent nuclides. This char~
acteristic can be explained by the explicit solution for the
dispersion free case and step release mode (5.16). TFor

vt < Z < vy

1 3t9 the solution is as follows:

] O (42 ~ At
3/\3‘3[33‘9%(& g M)

. ~}\g(t~3/wl
N"‘; (2,8)= € -

B,e

“%ﬁAE 3l ~A %Q%Ay) ”Ra(%*gAﬁ)
4 >\%2 € {jyxfi‘%{a SK = € }

Tow T, L A=A
A m«:%li,,,.,ﬂmf é’A“(%M%zL éA!(J{TN 9/\)‘3)3}
ALy | -
s e DB f o301 o)
V2 oy A-da,
- D3 B e“A“%w%”) g,\;(%ﬂ/@g}
Ao Dy

(5.44)

.61



DRAFT

¥ o e 4 - -
Let's consider the case that %3 >>A19X2,v3>>vlsv2 and

. " G2 e 2 v il P = ;\;: _ ':\:
£>>1/A,. These conditions yield that XB Ai KBBVB V=V,

> s

= AL, T . . , . e . . ,
and e 3 =0 whevre 1 = 1 or 2. With this approximation,

one can rewrite (5.44) as

~ A3/
S 4 = — kY. O 1
Ny (2 b)Y = oty e s uss
where
) ~At ) Mt
Gr= Bye + Bie
0 3t _ n
+ ?HAL _ \ (DQB\\ ( eféx‘ftw €%$>
Uy Ve 7,3]:73 Av=Dia
'D'N E\\ “‘Azg’{? “‘)lht }
2 P (e e )
//’\;“Az} ( -
oA L DB (orlat Aty
v ( Py L€ ¢
+ D2 B (e At 6“/\“ t 3)
?\z~~Agg
(5.46)

uperposition theorem, one can obtain the solu-

Ra}NZ(Zst)9 for the band release.

.62
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, N
Nbcabr= N2t By) - N3 (2 LT 5 Bye A

S ~Ny %
= { Gt By~ Q"C%“‘T‘;B:je}\ﬁ)g e’ /9

(5.47)

Thus, the solution for the band velease shows that the
) . 226 , u
concentration of Ra decreases with distance exponen-

==)\BZ/V3
tially according to e )

5.5.42 The effect of sorption equili-
brium constant on the maximum

discharge rate of 226Ras

Figure 5.18 and 5.19 show the effect of

varying the sorption equilibrium constants of 226Ra on the

maximum discharge rate of 226Ra for Dﬁlxlomlmz/yr and

Dzlxloj mz/yr undeyr the .condition of initial pure 234U

source and T = 3x104n An estimation of initial activity
234 . L .
for U produced in a nuclear redctor after being cooled

for ten vears is taken to be 7.47 (Ci/GWe-yr)(B2). As

smaller values of K, (5, 50, 500, 5000) than that of X

3 2

(50,000) are taken in all curves, the curves have their
highest point at locations away from the repository. The

values of the highest point and the extent of the curves

.63
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increase as K3 decreases. However, in spite that the con-

. 226 . . \
centration of Ra in the water phase increases proportion-

ally as K, decreases, the highest magnitude and its location

3

are not shifted proportionally. Comparison of Figures 5.18

and 5.19 in regard to different didpersion coefficients show
that the lOK3 curve in Figure 5.19 is affected by large D in
its magnitude and range. But the effect of the dispersion on

the curves for K Kgilo and K3/100 is slight except near the

39
repository. This can be explained by the fact that for small

K39 that is large velocity V the behavior of 226Ra is mainly

39

controlled by the convection term of the transport equations

(4.2),
5.5.4.3 Effect of leach time on the
~ maximum discharge rate of ZZGRa,
Figure 5.20 and 5.21 show the effect of
varying leach time on the maximum discharge rate of 226Ra for
D = lxlOml and 1 x 103 mz/yr at various locations for the con-

dition of initially pure 234U source. Comparison of the T23x103
curve and the T = SXlOé curve in the figures shows that both the
value of the highest discharge rate and the discharge rate after
the highest point of the T = 3x103 curve is slightly larger than
those of the T = 3x104 curve. However, the discharge rate of

the T = 3x103 curve near the repository is much less than that
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of the Tz3x104 curve., Due to the small leach time of 3x103

ZBOT

and the initial condition in the repository at t = 0, h

. . . 234, ,
produced from the decaying U near the repository is of

lesser amount, so that at a location near the repository

226Ra

one seeg a smaller maximum discharge rate of . In the

5 . ; .
case of T = 3x10" vyr, the concentration of each nuclide which
leaches from the repository is vather low, because it is in-
; . » 226
versely proportional to the leach time, and some of Ra
produced in the repository has decayed away without coming
out of the repository. Hence, the magnitude and range of the

IS

influence of 426Ra for T = 3X105 yr are less than those for

T = 3x10° and 3x10%. It should be noted that the location of
the highest point does not shift much in spite of the large
variation in the leach time. The effect of dispersion is sig-
nificant only for the curve of T = 3X103 yvr, because 1t has a
sharper shape in its distribution. 1In the band release mode,
the leach time may have a close relation with the tightness of
the radiocactive waste container in the repository. The highest

discharge rate of 226Ra depends on the leach time.

Figure 5.22 shows the dependence of the

29
highest discharge vrate of Z6Ra on leach time. As seen in the

figure, the dependence is quite different between the two cases
234

of pure U source at t = 0 and dnitial transient equilibrium

sources in the rvrepository, For the former case, very broad

.69
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plateau 1s seen in Figure 5.22. It means that the
e ; . 226 . ;
highest discharge vate of Ra has little dependence

. . . 234 .
on the container tightness when only pure U source is
present at t = 0. Contrarily for the latter case of initial
transient equilibrium sources, the highest discharge rate
depends strongly on the leach time except around the region
of T = 104 yr. Both of the vight hand side and left hand
side of the curve in the Figure for the case of initial
transient equilibrium source has a slope close to -1, It
means that the tightness of the container for radioactive
waste 1s very dimportant for the highest discharge rate of
226 , e e . Cq s , :
Ra in the case of dinitial transient equilibrium sources

in the repository.

5.6 237Np,233p,,233,229¢p 2250, pocay Chain Migration
Behavior
5.6.1 Reduction to a three member decay chain.

Half-1life, sorption equilibrium constant,
migration speed, and migration distance in a half-life time

are shown in Table 5.2.

.71
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Table 5.2
2
237Np 33Pa 233U 229Th ZZSRa
. 6 -2 5 3 -2
Half~-life, T@@ 2.14x10° 7.4%10 1.62%x10 7.34%10 4.1%10
(yr)
K (=) 1x10% 1.7x10% 1x10% 5%10" 5x10°
i
" 1x10°  6x1070  1x107%  2x1073 25107t
i (m/yr)
v, X Tiry 2914x106 4644X10m4 1,62x103 1947X101 8a2x10ﬁ3
(m)
*Assuming V = 100 m/yx
As seen in the above Table, 233Pa and 225Ra have very short half-

lives, and the distance of migration in their half-lives, v,
(half-1ife), are very short in comparison with those for other

three nuclides. So, we may consider as an approximation that

995 225 237 o 2290

Pa and Ra are in secular equilibrium with

nd

o)

2

at every location and at any time.

Then, we can apply the solution for three-

member decay chain for this five-member decay chain, as if it

237,233,229

were the decay chain of Th. As this approximation

.72
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is already verified in Section 4.5, we may expect that the
results will be close enough to that obtained by the exact

solution for five-member decay chain.

This decay chadn is also very dimportant in

the discussion of waste management because it leads to the

225Ra

. ; - . ; ., 2 . ,
predicting of . Ag seen in Table 5.2, 37Np migrates a

very long distance din dits half-life. It means the possibility

of a wide hazardous spread due to Ra~225.

237 233,229

5.6.2 Discharge rate profiles of NP U= Th

(225 Ra) decay chain

Figure 5.23 shows the space-dependence of
discharge rate of each nuclide at © = 5x104 yr under the con-

ditions of the band release of T = 3x104 yr and initial pure

99
37Np source. An estimation of the dnitial activity of 237Np

produced in a nuclear power reactor having cooled for 10 years,

233Pa ‘ 225

is taken to be 14.4 Ci/GWe yr.(B2). and Ra are in

. ; . 2 .
secular equilibrium state with 237 Np and 29Th9 respectively,

The figure shows also the effect of varying the dispersion co-
cre y v - i 237
efficient on the discharge rate profile of each nuclide. Np
migrates very fast, in this hypothetical three member decay
chain, the migration speeds are in the dncreasing order of Vs
v, and Vv respectively. Thus, the first two nuclides have the

2 37
] . s . 225
tendency to leave their daughters behind them. The dip of Ra

.73

between Z:VZ(tmT) in the Dzlxlowl curve, 1is due to the competition
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=

. , . \ 225
between the increase in concentration of Ra in the re-

pository with time and the decrease in concentration of ZZSRa

, . i e q . 233 ,
behind its parent nuclide U because of its decay. The ef-
fect of the lavrge dispersion 1s to smooth and spread out the
profiles of each nuclide. Figure 5.24 dis the plots of the maxi-
. . 225 . ,
mum discharge rate of Ra wversus location under the same con-
ditions as those of Figure 5.23. The maximum discharge rate
decreases monotonously with distance from the repository. The
small D curve might be discussed in three separate regions along
the migration path., In the first region, Z<Vv0.2 km, the maximum
discharge rate at any given location happens to be at the time
) 229, N , . )

when the last Th produced inside the repository passes the

location. In the second region, 0.2 km < 2 < 9 km, the maxi-

s 225 .
mum discharge rate of Ra occurs around the same time at which

. 22 22
the peak of 233U9 the parvent of SRa ( 9Th), OCCUTS . In the
last reglon, the flat part, 9 km <Z, the time when the maximun
discharge rate appears is Z/Vl + 1.7 x 105 yr. It is seen

that this flat discharge vate extends very far from the reposit-

. o 4 237 , .
ory because the first nuclide, Np, has a large migration

velocity and a long half 1ife. In this case, the reconcentration

2! .
phenomenon of 2 SRa does not occur at any location because of the

_ 229 . , :
sorption equilibrium constant of Th is assumed larger than
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that of parent nuclides so. .that the migration speed of 229Th

ZBBUO One should notice the differ-

234U+230T

is smallexr than that of

ences for the occurrence of reconcentration between

226Ra (vRa >VU >VTh) decay chain and 237 Np~+ ZBBU* 229Th

>V

. S ] .
Ra (VNP U vTh} decay chain,

225

h->

s 75
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6. NUCLIDE MIGRATION THROUGH A GEOLOGICAL MEDIUM
OF MULTI-LAYERS '

6.1 Introduction

This chapter deals with the problem posed by a
multi-layer system. It seems indeed very likely that the
nuclides will encounter different media, while being trans-
ported in the water. These media may be characterized by

different values of:

v = water velocity
K.= the sorption constant, this reflects the
different behavior of the nuclides when

adsorbed on chemically different media,

Sfx the cross sectional area of the water phase,
€ = the porosity
Di: the dispersion coefficient, etc.

Fach layer is supposed to have constant properties of
v,k,,e, etc. The transport equation discussed in the pre-
ceding chapters is valid in each layer. The Boundary Con-
dition at the boundary of two layers is given by the con-
tinuity of nuclide flux and the nuclide concentration. TFor
the case of no axial dispersion, a recursive solution can be

easily found by the use of the general solution for a one



DRAFT

medium system (see Chapter 4). Some applications will

be given for a two media system:

a) A general formula, for a general release
mode at the respitory, and an i members chain,
b)Y A geneval formula for a step release and an i
members chain,
c) A step release formula for the first, second

and third members of a radioactive chain.

The solution for the band release can be found by the super-

position principle, which has been derived in Chapter 3.

For the case with axial dispersion, a recursive
formula is given for a two media system and a general re-

lease mode at the repository,

6.7 Transport Equation and Conditions at the Layer

Boundary

in this chapter we consider the case of a multi-
fayer system. Lets characterize each layer by the super-
script, £, at the left, e.g.,

Ni(zst) = concentration of nuclide i, at z and

£t in the %th layer,
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Di = gaxial dispersion coefficient of nuclide i,
; th
in the 2 layer,

% L th _

v = water velocity in the & layer, and so on.

. L . .
Lets fuvrthermore characterize by "Z the coordinate between

the &% and the (2 + 1P layers.

lst layerx 2nd layer - 3rd layer 4bth layer

Flgure 6.1 Multi-layer Pathway

We assume the following parameters to be constant in each

lavyerx:

2 2 L 2 L L 2

Doy Ky, Tvy, TV, e, TS, TS

Under these assumptions the transport equation, as
discussed in Chapter 2 is still valid in each layer. Trans-

port equation din the %th layer
KT g

W\NL(Z;%):‘:QKQN\;\t”lﬂNCJ ; XW{ZS?SQE (671)

IS

where the operator QLi is defined by

A
L S T 2 R 3 .
L\,; wD{J S‘%“L»‘r U"g’é‘“ - QK{/S‘E“ ”"{"JQ {J/"\L (6.2)
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At the interface lz we must have the continuity of the
nuclide flux, that the number of atoms of nuclide i
leaving the layer £ per second 1s equal to the number
of atoms of isotope i entering the layer (& + 1), per

second:

2 SQNL b ok S‘WNL 4 fad
2 g-% [”‘ D\/ ’*éf"rg” - QU'QM’&}Z:QQ’“ ‘S’f ’"’D‘g‘g’ e A ‘\)z [\1\\,}2__:934’2

(6.3)
The term %Di BKNi/Bz represents the transport by diffu-
sion and the term QVQNi by convection. By dintroducing

ﬂdg = Dufoqy (6.4)

and by the use of the conservation of mass of water,

4Q~ - -+ “ "+‘
5-¥QV\X? = Sy Ry P (6.5)

we can rewrite {(6.3) as

[P NN o 3N
I[W&‘\ T? - Q\\lL}:“i digg ML ot 2=%3
(6.6)

where

fl = Qﬂf‘/ﬂf (6.7)
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In most cases, the water density can be considered a con-
2 .
stant, therefore the term I can be set equal to unity,
Since the transport by diffusion is independent of the
transport by convection, (6.6) can be split into two equa-
. L. .
tions, and we get ( "I 1s now considered to be equal to

unity):

1 g
Ne="N¢ 3 a0 #=1

(6.8)
and
It i,
rg LN g 3N g gy

6.3 Analytical Solutions for Non-Dispersion Case

We have the following problem

Solve
IR N _
ry 2D e AN e = AN 22l
X 3t
(6.10)
with
I.c. Nu@zo)y=0 5 a0 e (6.11)
B.C. Ny Cot) =" 7 at ~he reposifery  (6.12)
CPTENL (M7= "Ny2, 1) (6.13)

Let's define for each interval 2 the new variable:

= 212 (6.14)
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In terms of this variable, we have now the problem:

Solve
IMNUEY) 3N L g g
"""“‘g’";‘;’”%**’ K{S? =+ V\KL N‘gm twa?\amsﬂMcws
; 0< X< 24
(6.15)
with
t.c. QN‘L(QJ%,G)&G ool 4% (6.16)
B.C. "No £y =%ty 5 al g8 (6.17)2L
where 1¢i(t) is given by the repository release (6.12)
and
? — BT 4 .
ONES TPNe(mz.4) ;12 6.18)
and

Yh.hy=0  t<o, au &

If (6.15), (6.16) and (6.17) are compared with the
problem posed in Chapter 4.4 we see that we have the same
problem. We can therefore use the general solution (4.117)
shown in 4.4 for each interval. For clarity's sake, lets note

that solution by QFQQ(E;f ;Q@{&))o

“(?\Lf T 3
Nzt '"dw) = € o) %(%m v, )
¢! (j (?\m/l)ﬁm) 2
+ Z_J R Z, DI 13,,(t) 915(%)
J:;.l

’”“’*"” (6,19)

gi The parametery N?s which appeared explicitly in the pre-
vious chapters has now been assimilated with the symbol

Y4t .



where ga¢ represents the convolufion product and 2®e(t)
; LEd

_ , ; ) £ , L L
represents the dependence on éi(t)9 gﬁz(t)9 Y. éi(t)a

The other symbols are the ones used in Chapter 4. The

£
. L v
superscript, £, means that we must take Ve o= g when-
K,
ever the value v, appears. The solution for each inter-

val 1s then:

~ ! N
JZN'L(”Z,%B:,: /\[Z(i?lf;iﬁii%)); o< 17 ¢ g g (6.20)

the Qéivs being given by (6.18).

Finally, in terms of z we have
2 A4 » £ . bt
Nicz )= /\[-/2“’5’2,75: D) i Tt (g o)

where 1éi(t} is given by the nuclide release mode at the

repository and

‘q iy
gﬁﬁ'(é‘)g“ﬁ%‘““gNi(”‘z?,%) for Az 2

Equation (6.21) is a "doubly recursive" solution, i.e. it
is recursive both in space and in the nuclide. One must

; 1 1 - , . . .
calculate first Nj( z,t), for § = 1,2,3,.,1, using equation

(6.21), then calculate ZNj(Zz,t) for j = 1,2,...1, using the
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previous results and (6.21), and so on up to gNi(zgt)g

6.4 Application of Recursive Solution to a Two Media

System
6.4.1 General release mode at the repository:
T, (t)
by
We have:
i 1 LA
NL(?‘{?)S )\[L(;.%) @;(%)) (6.22)

and (6.21) yvields:

M (2-20/a > LA 2= 3R 2
Ni(zt)r= ¢ n Z { < / ¢c(%°' _ ‘Uc)‘+
(:\ N
o ‘JM%A& ~ Ly
+ ZL A Z; o
j‘*/ W\-»J I B"") Z»@J Dhm

(Yﬁm)

I ( / @1 (.é?) } .
L 35%/. ) ¢) ]‘i’“‘ e (2-20/2 10

St ¢ )
(j) \ w/r\m(;“"gu)z & A
4 2 R R treagran Um . a2y e
an éij By © Z, Dy entt)

V‘¢M

J
2€ m%z/v | 2z N cw ! .

A? 1)
. f4/ g Z Dw/g 3(%)@ ;zﬁm} (6.23)

w&/g
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{ , ¢ ! =t-(z-
( Yrm(th) ® ¢%<t) J{ ﬁ (z Zl>/2vi means that omne
must first perform the convolution product using t~,

B 2 . 2
then set t =t-(z Zl)/ v

6.4.2 Step release

lNis(zst) is given by (5.13).

Using léi(t) = Bi(t) in eq. (6.23) we get

N )= Z, Beg ‘Gutats "Fi(a b2, +

C B3 By WG .
Jxl \/’"J T !
Pam

. [QF.“”(z, t, A - R, Lem) | +

1

¢

Z,/Z./ Z Z_J EJ? /-*/LJ ?G ﬁf)[}?J(Z% ﬁf)_s FJ'(},ZL,zAhm)J+

\/’ { M‘QJ V\é‘\/ ?.}...

[aE 3]

R B Y LU BV BN o L ag
S L0 By HIT It
J‘h/ W’» )"-e\/\ of= 1 /lwo( =0l ?:/ ! 'F
e Q)p
@{[*i}:j (2t o)~ “Fju.%,ﬁm)} A ( :ﬁhwg >
Vv, o~ w/g

{“"Ff(z.t Aew) =" (2t )‘Awﬁ]} (6.24)
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where
1F5 o MM,\ ’
- ( ﬁxtn'Xi) = e €55F(3'+> (6.25)
|
\ A
- 1 fim
Fp (2t Be) = Oypeat) (6.26)

2 %,f/\)
E (-2 /23 '
Cg (24 = o h G, b))

? (6.27)
ey E—- fA(JLWLW tpY I
o BI Yrm TIAL A (6.28)
C,ﬁ . - i 3“’“2I 2‘.?*‘
Ojp(2tr= L 8 v (6.29)

B, are the coefficients in the Bateman equation: See
l{j

Thapter 3.

6.4.7 Step sofution in a two media system for

a three members chain, no dispersion

By substituting i = 1,2,3 into (6.13) and
(6.24) one getis:

First member:

)

Pt s TG A et By o 023, (6.30)

.10
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20 13 T Ly 2! / ;
Ng(gl%)“’“ 63<;’L> F’\<}’%'}\‘)B” ) 222 (6.31)

Second member:

1 5 TAS

2 2 S 3/”‘5
N <g.%)s«j§12u.%) UMERDENEE B (6.33)

Third member:

P ls PAS
Ny (2,4) = jk(z.%» 3 0< 2<% (6.34)
3

2

< 2,-‘:3 2 s
NG 2 = ]‘\[3 (2,4) + Q%J@f“* C;(‘)"&’i (6.35)
K2 Z
where:

Hoeanr = Clon[BIE @)+ B (it +
v H, BHI@;(;‘M {“'Ef (2.6 A0 - YR (et %.)} N

OB b (R G A - 4 G )

(6.36)
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{_,fi (2. 4) = 2C et [Bs,“QE(a,{,?\,v ~¥BalgFj(s.%,M+B““F«;3<z,t,9\;)}

+ ‘HQ%A“gG;(z\%) [ﬂf?;(z,%,‘;&z,) - QF;(;Z.%;,?\,)J -

e

WBSG @ [Fyat ) <R b A ]
HBIG ab [ at Ay - R b A
FHBAG @ (Fr a6 ) — (kA0
HBAG (R A1 - B -
+ ‘(w.mgg“‘? GZ <z,%>[e}i‘;(z,~t, A~ F 2t ‘AA;J

LS

FHBAG b R A = R A

“+

af.-:

ol ‘)»\}gBQQQGz (3’%)(2{?32(2'{3 /!A)L) - QF; (2,6, A } +
HBAGan et a) = B ot z;hj

= HEBLGL e [ b a0 = R (a4

(6.37)
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HiB.G, (2t >H:: (2,14, = 2F (3t %ﬂ}

HBGe[PE oA = K it a,)]

(6.38)

@}»—IJBHQQ"(&%)[QF‘I (2,1,27,,) - *F‘:’ (2,15,)\‘)1-%

THBG, b [ TF G - TR+

+HBLG, ¢ [P b A - R (21,24 +

A,‘M

+ B, Gl B QAR et A0 [+
J

’HQBJCQ(Q,t)[zF;(g,t,zAjz)»xZg(y,t,%;s -

.13
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+2HSB2\ZG§<2,%>(ZF;<Q. tA) - QF;(Q,%,%M] +

CHBLG BB @A) - PRt A

(6.39)

+ *HyH, B, 6(%%[?\4 (2,t.A,) -—&sz(z,%:,‘&,ﬂ——

- HS HVBM GG\Z{:[M} (3,t A )+ M (2,1, ;\5 }

~HSHBUIG a0 [ M4, A) + MYt ‘AM)J

(6.40)

and where:

A\(‘ o= /’\W\/’UM _ X%)r R
" e (O

- | ~ K[ -t

) =W B G (M0« Mgk )

14
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v ‘@m ,’"w%
"Fleat, ) =" (31 B )= F(z b A= € (” ()
6.
A e (2t
Fj (E‘t AK)M e P (6.
AY‘W\%}?(}’%) .
FF(H“& New)= € (6
\ \ \ ”E;\/U‘
‘Qf(z,%»:‘@i(s\%)z‘@Jg( %(%wm .
J\P(B 3‘)20{9 }\21/\)3 %( - )i
Q (2.1 e Oppd )55 (6.

h (t) = step function

= AR, (0 )0 ) O8] e

He = R/ A) 3

yHg = 1 m/(?\iwgégx) (6.

43)

44)

«45)

46)

47)

48)

49)

50)

.15
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Hao= /Ay, - )
Hs = MUB/[(%X U (A=A ]
He= 10 [ (fun- 03] (- 14,)]

Hy = A0/ =00 (4 - 484

Min (2t A0 = FF b 0= "Rt A,,)

. D ~ A,
f\/}fm (2'%1 :«Qz\) = M
rm 21

[QES(‘?‘%:‘QA*“W;*‘ZE{&(KI{:; ‘Az\)]

i i _ 223
‘-@}P(g,%)m t o, TDT

(6

(6.

(6.

(6.

(6.

.51)

52)

53)

54

.55)

+56)

57)

.16
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6.5 Recursive Formula for a Two Media System with

Dispersion

For this case we use the transport equation with
the source term. We have the following situation as

shown in Figure 6.2.

repository

1st medium 2nd medium

Figure 6.2 Two media system with disperion

The interface between the two media is set at z = 0, The
repository is set in the first medium, at zZq
The boundary condition at the media boundary has been dis-

cussed in Chapter 6.2. We have therefore the problem:

Solve

QLC’N{(Q'% ) = )\L»:!{m‘Ngm; - l¢('{")g(§‘*3l> ;20

(6,58)

~
lLWQZPQg(E,{>§i Ae K TNy 220 (6.59)

17
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with

"N (20)=2N;(2.0)=0

lMQ<-OO,{f\:: bOuhC‘

2%Jg(+oo;t)éf bound

Wi ot ) = 3N (o, 4)

AN _ AN
e 32 37 ’

This problem is solved by the Green's method.
first the solutions for a unit pulse (in time and space)

in the first medium, then in the second.

A

QEQLMLCE»t;\%;T)z 0

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

We seek

We solve

‘LQLVL;(Q,%‘;%,’Z‘):; g@w% )8(%~’C) ) %40,%;40, 0Tt

) Bco, #20,04TLE

(6.65)

.18
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With the dnitial conditions (6.60) and the boundary
conditions (6.61) to (6.64).

Then we solve

S
;{ ‘ngy\\‘,(g’%.}\%)?)go ) §>o,££0,0.;<;’(\é‘é”

N\
LB (2t 5y, 0= (-8 §(4-2) 5 ¥ 0,220, 0c7

(6.66)

with ditto initial and boundary conditions,

L ) . ; ,
Ni (z,t,£,7T) represents the response in the first medium

to a pulse happening in the first (Left) medium at z=£ and
=T,

L. 5 ]

Mi (z,t,£,T) represents the response in the second medium
to a pulse happening in the first medium at z = & andt = T,

A R R .

On the same way, Ni and Mi represent respectively the re-
sponseg 1n the first or second medium to a pulse happening
in the second {(Right) medium. (6.65) and (6.66) are solved
by taking the Laplace transform with respect to t: the
equations are now ordinary differential equations of second

order inone variable, z. These can be solved, and yield
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X Loy Ly
the Laplace transformed solutions Ni(z,s)9 Mi(zss)9

Rﬁ,(zgs)9 Rﬁ,(zgs)a By the use of Laplace transform
i

L L
tables, one finds then ni(zgt), Mi(zgt), etc.

These functions: LN‘,9 LM,, RN,s RM,, play then the role
i i i i
of a Green kernel. The final result‘is then:
"N (2 t) = frcak )+ tnsat) ; 2<o (6.67)
NGt = ®mez by + Sme (2.4) ;220 (6.68)
where
2
Rin(a.t)= { V)\(Q,Jt‘,g,?) i;(;,?)aﬂ dr 5 2<0
(6.69)
he(ab) = J J Mi%\?“)g }A"c }OR<0
o (6.70)
S N
"2, t)= ([Pm(zﬁ %, g(gc)dgjd ;o Z2>0
0 (6.71)

1
J[ LW\((?.tI%,T)(&(?,’CH%}?&T i 2>0

(6.

72)
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| 2 ~3f
RHL(EI‘“&’ ’\; )M Me/l ;/ld.{zé/bzk

e Py -2, 4-7) —

- ‘?"'B“’(;,a«z,%m?)} hit-2y 5 ¢,
(6.73)

| (=E)hy
Lﬂc<25%;$r7) TTooe f

IR {P, (3 4-t) h(y—z)

R ke - S

(6.74)
| L @By
Qm(ﬂ,?,’r):;;gﬁ ’ h(%”ﬂf?"“(s 47 ) h(2- £) +

Jrgﬁ‘\’(3-‘;)"t~2“)h(§m2) + % Z’P?Q (2+% -1 )+

t ! 200, Pt b
“’%"’EQE;:‘ p (Z%«% 1% 7&) G 3 (Qﬁh;)"ﬁmcj} ; \§>O

(6.75)

<21
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2/28 h\;/id {‘,2 \:
c 2 3 8 )
ben(2ty,0) = T h (=23 TR (-, 4 1)
G.
S N ( ,z,h?ﬂ y B <0
L Fé ; g (6.76)
x% (EM):M&‘::; )+ gz%mg(; Z) §<o<6977)
\ U :
= S L (8 ) >0
et U, b)) d (6.78)
T | E(U ¢+ g%@’t O !dc] '{;
2t)= = € N
F) m (6.79)
t
: ‘A;U i .
D%& (%#%,%): J» e 9R (g—a—?)b{mu)dU P
’ ’ (6.80)
Ly t- )e
D Ptz t-u
i 2 (t-u)Jv : ’
_Ak(;)U ' N h)‘ | . -f)o
W&iﬁm L g (5]
TuU

(6.81)
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t
e = XJ?/DC(X’ t-U) | ] ke
(it = ( S [M ,U) A+

g ) 2V ey L2 Fy,0)
0

FNR g Jdu 5t
(6.82)
' PU W t-u)
WPy 4 = X BN B
3 2(t-u)fuid 2 (t-U)
Q
’ KR<‘3fU)5U ot> 0
(6.83)
“Al‘% §?/
e b ‘-Q,KC\ 2 | / :}
LE (£ = % {6 £Y§.C 7\7-ti<ukc{ ﬁz\/tku/kd M
4 E/QKd - C{ “‘L\/ntk M‘WT . {A>O
- “Q{: \/”‘kujgjﬁ 2 l_yKd B 5
Act (6.84)

N AT -2/,
“Prea, by = -5 %6/2%12v~][<{\/
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Notice: The superscript 1 in QF

. '3 ;
means that one must use Vi d., wi etc whenever

Qvg ng Qwi etc appear in the defindition.

G = dlv-'d*y
- RVSSEEY) (6.86)

| 2
Y (6.87)
= (4.
‘ \/fUa (6.88)
Lo
0 . .
W= A v (6.89)

24



DRAFT

7. CONCLUSION

The research in FY-1979 is aimed to elucidate the

following problems:

1)

2)

3)

4)

5)

The fundamental transport equation governing the

nuclide migration,

The relation among several nuclide release modes

from the repository,

Recursive and general solutions of an ith member

chain migration for one-dimensional water path and

arbitrary release modes,

Application of the rvecursive and the general solu-

tions to three-member decay chain and the elucidation

of the migration features for some most important de-
cay chains,

Nuclide migration through the media of multi-layers.
To summarize, the following results have been obtained:
1. The fundamental transport equations governing the
migration of nuclide decay chain were derived based
on the phenomenological approach and with help of
volume average concept. In case that the sorption
and the chemical reaction processes are attained to
be equilibrated, the fundamental governing equation

is given by equation (1).
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EINN AN, ¥l
K 5t U“”g"g”“DL T “’%A\‘KQNQ

= A K Nia =+ j[g

(1)

: . .Lh . .
Ni = concentration of i nuclide in aqueocus phase
] _ ; 0 q s . . th .
Ki = gverall sorption equilibrium constant for 1i nuclide
ki = yadioactive decay constant
fi = nuclide source term, z=distance, t=time
Di = effective dispersion coefficient
v = groundwater velocity

2. The relationship among several release modes has
been discussed. The release modes include a) impulse,
b) step, ¢) band, d) linear leach rate, f) fractional
leach rate characteristic to individual nuclide. The
transformation to yield different solutions from the
solution of representative release mode has been dis-
cussed. A general superposition theorem has been
developed for the propagation of chromatographic bands
with radioéctive decay, This provides an exact method
for constructing the spaéemtime dependent concentration
resulting from a source of finite duration (band release)

by superposing time~displace solutions for source of

infinite duration (step release).
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3. Recursive solutions of the transport equations

in one~dimensional pathway with and without disper-
sion have been developed both for a generalized

source boundary condition and for a generalized con-
centration boundary condition. Solution for any radio-
active nuclide in an i member decay chain in one di-

mension and without dispersion has been evaluated.

4. Explicit solutionskfor three member chains in one
dimensional transport have been developed for a source
of constant leach vate, with and without dispersion,
using a source boundary condition which specifies a
time~dependent concentration of leachant at the source,

The solution has been programmed,

Solutions for one-dimensional transport with dispersion
have been developed for a time-~dependent plane source.
The results for a three member decay chain have been
programmed. The error due to the usual assumption of

a time-dependent concentration in the leachant at the
source, which dignored dispersion at the source, have

been evaluated.

The explicit solutions for an i member decay chain

without dispersioﬁ have been developed for the above
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five release modes,

The migration features for the most important two

ZBQU%23OTh+226Ra 237NP»}233Pa

decay chains, nd >

233U%229Th—>225Ra9 have been elucidated with the help

of the above solutions. The isopleths for 226Ra in
the water pathway have been demonstrated, in whiqh the
peak concentration of a nuclide in the moving sorption
band can increase with distance travelled through the
medium. Parametric analysis for the migration features
‘has been carried out for the dispersion coefficient,
the leaching time, the sorption equilibrium constant

and the initial vratios of nuclide sources at the

repository.

5. Analytical expression for the nuclide migration
through one-dimensional multi-layered media of differ-
ent hydrological sorptive properties have been developed.
This expression is of recursive type with respect to
media and nuclide decay. The analytical explicit solu-
tion for two media and three member decay chain has been
obtained for dispersion free case, The recursive solu-

tion for two media with dispersion has been developed.

The analysis in 2. to 5. has been carvried out based in
equation (1), which was derived by assuming equilibrium sorp-

tion and chemical reaction processes.
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&. NOMENCLATURE

Interfacial area in. the averaging domain

Coefficient defined by (2,55 )

N
%T(AV/U¥} : Defined by (4.113)

Yom
J

Function defined by (6.36) and (6.37)

Interfacial area per unit volume of geological media

Coefficient defined by (2.53)

Bateman equation

Bateman coefficilent defined by (3.12)

Modified Bateman coefficient defined by (3,23 )

T . Defined by (4.121)
I\:‘J\

Y m
Function defined by (6.38) and (6.39)

Concentration of k-th chemical species in o phase

Fluctuation concentration of k-th chemical species

in o~phase

j X o
C<§]>(s)z[\ntjj(}¢rm}\;m§ : Defined by (4.116)

2

Cx
fotd

D

D#*

i w

function defined by (6.40)

Axial effective dispersion coefficient (mean value)
Axial dispersion coefficient defined by (4.41)

Effective dispersion coefficient for i-=th nuclide
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Df : Dispersion coefficient in fluid phase
D . = + D 1 : Diffusion coefficient tensor

£ df mE
Ds : Molecular diffusion coefficient in solid phase
Ddf : Dispersion coefficient tensor in fluid phase
Dk@ : Molecular diffusion coefficient of k-th species ino -phase
Dmf : Molecular diffusion coefficient in fluid phase

ij L !
Drm = [gjll%wf”ﬁrm>] : Defined by (4.122)

\;J
T, {r

%i z“qf{)i/“’v : Defined by (6.4)

B{i,3,k):Function defined by (5.33) or (5.40)
F (&) : Gaussian distribution function defined by (4.33)
fid{x,t):Source term of i-th nuclide in «®-phase
fi(th): Source term of ith nuclide in water phase
(t) = @A) §(¥) : Defined by (4.23)

Function defined by (6.77) and (6.78)

4.3 : Function defined by (6.42) to (6.45) or (6.25) and (6.26)

Uj<zst;g,w),Gi(z;§,T); Creen function

G,,G_: Function defined by (6.87) and (6.86)
Qc; . Function defined by (6.46) and (6.47) or (6.27)

gi(t) : Function defined by (4.47b)
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Function defined by (4.124)

Function defined by (6.48) to (6.54)

Function defined by (6.28)

Function defined by (2.5)

Heaviside step function
Q+xf//g?
Relative flux of k~th chemical species in &«-phase
Overall sorption equilibrium coefficient defined by (2.53)
Overall distribution coefficient defined by (2.5/)
Leaching rate constant | |
Leaching rate constant for i-th nuclide species
defined by (3.18)
Reaction‘rate constant for k-th chemical species
defined by (2.58)
Distribution coefficient of k-th chemical species
between solid and water phase (2.49)
Distribution coefficient of i-th nuclide between solid
and water phases
Rate coefficient for mineralization reaction
Overall mass transfer coeffiéient for k~th chemical
species
Formation counstant of t-th chemical species from k-th

species in «-phase
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L : Length of repository zone

L Li : Partial differential operators defined by (3.34)

and (6.2)
1 s Unit tensor
MT : Total amount of waste material
Mi(t) : Amount of i-th nuclide in the repository at time ¢t
Mio ¢ Initial amount of i-th nuclide at the repository
Mri : Function defined by (6.55) and (6.56)
mmi(zgtggsr): Green function satisfying (6.65) and (6.66) for
o = R or L
Ng : Nuclide concentration in water phase ;Iwiﬂqf valve
Ni(t) : Concentration of i-th nuclide in water phase at the
exit of the repository
Nia<29t>: Concentration of i~th nuclide in & - phase
N.{(z,t): Concentration of i-~th nuclide in water phase

f N
N iJ”(zg’c}‘; Contribution of j-th nuclide at the repository to

concentration of i-th nuclide

Nisr<t>: Concentration of i-th nuclide defined by (4,84)

B : Unit mormal vector pointing out of the interface from
% -~ phase

ni(t} : Amount of nuclide i per unit amount of waste

nf(pgt):Laplace transform of Ni(zgt) with respect to z



n(g%Pst)

dni(zgtzgsT): Green function satisfying (6,65) and (6.66)
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. P .
Laplace transform of NS(zst) with respect to z

z

o = R or L
Lk, i . .
Pj Function defined by (6.81) and (6,82)
QP% sFunction defined by (6.79) and (6.80), (6.84) and
(6.85)
P Variable for Laplace transform with respect to
Q Volumetric flow rate of water
Rk% Birth rate of k-th chemical species in ®-phase

R, (w +
1”’§JL\1)D} N

P i (Pt

S

Sim1<zst):

e

e

iml<p9t>:

i1
3:1’

Inverse transform of L i(pst)

1,
Function defined by (4.55b)

Effective cross—-sectional area for water phase
the pathway

Cross=~sectional area of «-phase

Function defined by (4.45b)

Atomic number of i-th nuclide in k-th chemical
species
Variable for Laplace transform with respect to

Laplace transform of Sivl<2’t)

Fraction that 1, chemical form is generated by

the decay of (i-1)-th nuclide

Time

of

time t
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Ui(zsth

uy (p, £t

N
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Leach time or mean residence time of water phase
in the repository zone

Transform Kernal defined by (4.50)

Function defined by (4.44)

Laplace transform of U;(z,t)

Volume of éveraging domain or water phase volume
at repository

water phase velocity

Velocity din o - phase

V/Ki

Fluid phase velocity

Interface velocity

Position vector measured from the outer coordinate
Position vector relative to X

Position vector at interface

Distance along water pathway

Repository position

Length of 1-th layer

Relative distance from (f~1)-layer boundary

Kiki : Defined by (4.42)

: wkg«~gzﬁ£ : Defined by (4.42)

Parameter defined by (5.32)

v/2D : Defined by (4.42)



DRAFT

. Jﬁcg;/gf\}g : Defined by (6.88)

Ve ¢ Parameter defined by (5.32)
J

YZM = Uy - U%?
Air - (AC Uﬁgﬁkv/vy)/Ci%f'm‘j;;)

g(t) s Dirac delta function

€ ¢ Porosity

Em : Volume fraction of s~ phase
@iP ¢ Function defined by (6.29)

’f’/i = Di/Ki

x = DJv

A=A TRy
uﬂkj = A&/&% - AJ/QG

Xi : Decay constént of i-th nuclide
Wy = (S+%)/% : Defined by (4,110c¢)
Y, = Ke-h-1/Kp), ¢ Defined by (4.110c¢)
£, : Distance

P : Density of water phase

Foc : Density of « phase

T : Time

@i(t) ¢ Functions defined by (4.21) or (4.41)
U : Dynamical property

Y ¢ Dynamical property in « =~ phase



DRAFT

T,¥, : Dynamical property defined by (2.6)
Qwi : Parameter defined by (6.89)
Subscript

i : nuclide 1

k : Chemical species k

« : phase

Superscript

b : band release

e : exponential release

1 : impulse release

P : preferential release

s : step release

2 : 2~th layer (superscript at left-hand side)
N : Volume average defined by (2.8)

Volume average defined by (2.7)
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APPENDIX - Computer Code

A computery code named MGRATOLl has been developed to
calculate the migratioh of vadionuclides with dispersion for.
both the band and the step. release made up to three member
chain, in a geologic media using the analytical expressions

which are given in Section 5.

The MGRATOLl calcules the distribution either of the
relative concentration in a water phase of each nuclide or
of the discharge rate, along the time for fixed locations or
along the location for fixed times. The code is constructed
by a main program MGRAT, and three function programs, ELF,
ERFC, ERF as attached lists of programs., Some rational ap-

proximation shown below are used to calculate the error

function.
: |
of o = 1~ + E(X)
[+ o o v ex 1
lecn] £ 3xi07T
= . 07052 30784 Qa=.04228 20123
Qy= . 00927 05272 Qs = 00015 20143
Us=.0002'7 65672 Qe= 00004 30638
and
P “Kl
ek x = [~ (at+ .t -~~~ +a:t7)e "+ €x)
S R . leml= asxigT
L+ px
P:;: ,3?75(5 11 Ay = . 25482 95@2
o= —. 28449 6736 Q, = 1.4214( 374}

G4 = —1.45315 2027 Qs = 1.06140 5429
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3

Due to the approximation, the absoclute error of the code

is less equal to 3x10w/0 The development of the code has

been made by using the CDC 6600 and 7600 of the Lawrence
y g

Berkeley Laboratory Computer Center. However, this code

ig valid when the value of { ijk din (5.32) dis positive,

A

Ny
in the case of gijk<09 we can easily extend the code using
a direct numerical integration of the function E(i,j; k) in

-

(5.33). The development of the code is now underway,



: ; ~ ; ; 9-6
#EPROGEAM MIGRAT (INPUTsGUTPUT ¢ TAPLES=INPUT s TAPEG=0UTPUT J =%

PEOGRAM MIGRATIINPUT OUTPUT ¢ TAPES=INPUT,TAPES=0UTPUT)

DIMENSTON ANAME(S ) gHLIFE(S) gCURIN(5) g COEFKI5)9T12)9Z{209R {509 ATI5)
1 gVi?)g52§53953(15§991(23902§5923%03§1§9239CN§539€M€53
? RCGW{Z)

H?AD(S@ET?% TCeICALyIRCGHIDM

READ(S9571)  (ANAME({TI)oHLIFELI)pCURINIT ) COEFKITI)oRCGWIT )9 I=1,1C)

REAN(5,5702)  DIFVIL oFLKTL

PEADIS,502)  IToTL1),7T(2)

READLS4 5031 1247243 31,2121)

DG s I=1y10

ww ALOG(2. 3/HLIFELT)
b= A

Ii= CURIN(II/UFLW®TL)
I0MaFQel ) AT(I )= AT(I)/A
5 v{ll= VWEL/CCEFK(I)
K= AMAX T VI1)eViZ2)aVI3))
N=  AMINIIVIL)oVI2)oV(3)
FU“ ROLI=CURIN{L) /116683518
IFLIDMa¥ Q1) CUR= CURIN{L}
; D= DIF/VEL
52 FOEMAT(411)
501 FORMAT(AT 34F8.0)
52 FORMATIA4FE.D)
513 FORMAT{I242F8.7)
WRITE(6,605) (ANAME{T) gHLIFELL)oCURINGI o CCEFKITIpR{TIgVITIgATIT ),y
1i=1,1C) ; o
WEITE(Ey676) DIFeVELpFLWgTL

B OFORMAT(LOXgAT91lPT153 9% YP%9551563)

6 FOREMAT{INOX P41 52 1H1 )
Rl2= R{lj=RI{2}
T22= R{21=0103)
R3 FAZ)=R{1}

=R12

- =R 232
SR |
- ELL e {21%AT (1)

Rid=  AT(1)

BizZ= %T{QB%R(XBi?12

322= T{21=R12

Ri2= «RR/{RIZHR3L)

R24= MQ?fiPlZ*QZB3WQ7529*R§Z$!?ZB

R8s =RkP/(RZABRITI+ATI2IER{2)/R23+ATL3)
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Solutions - I, LBL 10500 Draft, by M. Harada, P. L. Chambréd, M. Foglia
K. Higashi, F. Iwamoto, D. Leung, T. H. Pigford and D. Ting, February 1980.
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previous results and (6.21), and so on up to 2‘1\31(2:&)‘,
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6.4 Application of Recursive Solution to a Two Media

System
6.4.1 ~ General release mode at the repository:
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