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COMPARISON OF SPECTRAL REFRACTION AND
REFRACTION-DIFFRACTION WAVE MODELS

By W. C. O’Reilly,' Member, ASCE, and R. T. Guza®

ABSTRACT: Wave energy estimated from linear, spectral wave propagation models
incorporating refraction and refraction-diffraction are compared over two bottom
configurations: an analytic circular shoal and relatively smooth coastal bathymetry
from San Diego, California. The agreement between the two models improves with
an increase in the width of the incident directional spectrum and with a decrease
in the complexity of the local bathymetry. There are, however, significant differ-
ences between the model transformations of directionally narrow spectra on both
bathymetries. Pure refraction models are not quantitatively accurate in these cases.
These comparisons also demonstrate the importance of directional wave spreading
in transformations over even relatively simple natural bathymetry. Data from a
fundamentally low-resolution pitch-and-roll buoy, if used as the sole source of
directional information for incident waves, can lead to significant uncertainty in
wave heights estimated by the refraction-diffraction model.

INTRODUCTION

The need for accurate surface gravity wave information has recently led
to a rapid development of wave modeling techniques. In addition, the advent
of microcomputers has eliminated the necessity of a number of simplifica-
tions concerning wave transformations in shallow water. One of the most
questionable model simplifications is the reduction of an incident wave fre-
quency-directional spectrum into a few wave trains. Vincent and Briggs (1989)
showed that wave transformations over a laboratory shoal are sensitive to
the shape of the incident wave directional spectrum and differ significantly
from a single unidirectional wave. The representation of a wave field as a
spectrum is not new, but has only recently become commonplace in engi-
neering practice [e.g., Goda (1985) and others].

Wave transformation models that include refraction and diffraction have
progressed dramatically since Radder (1979) applied the parabolic equation
method (PEM) to the mild-slope equation (Berkhoff 1972). Kirby (1986a,b)
describes higher-order approximations in PEM methods, which permit wave
propagation at larger angles to the principle wave direction. Typically, so-
lutions of the mild-slope equation are obtained for incident waves of a single
frequency and direction, or a combination of phase-locked waves with a
single frequency and multiple directions. Isobe (1987), Izumiya and Hori-
kawa (1987), and Panchang et al. (1990) have applied PEM models to the
transformation of incident wave frequency-directional spectra by combining
multiple model runs, each for a single frequency and direction. These spec-
tral models do not explicitly predict the directional spectrum, but have been
used to estimate the directionally integrated energy (i.e., wave height). Fi-
nally, a very wide-angle refraction-diffraction model, which allows for the
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evolution and propagation of directional “modes” from a single incident wave
direction, has recently been developed by Dalrymple and Kirby (1988) and
Dalrymple et al. (1989). The high-order PEM (Padé approximant) method
(Kirby 1986a) is used here.

The theory of wave spectra transformations by refraction was first pro-
posed by Pierson et al. (1953), later theoretically derived by Longuet-Hig-
gins (1957), and discussed more recently by LeMehaute and Wang (1982).
The transformed directional spectrum is estimated from the incident wave
spectrum by back-refracting rays from the target site.

This paper compares wave energy predictions from a linear spectral re-
fraction (R) model with the linear form of a spectral PEM refraction-dif-
fraction (RD) model [extended for wave spectra as described by Isobe (1987)
and Izumiya and Horikawa (1987)]. The R model can be very efficient nu-
merically when the incident waves propagate over a large area, and trans-
forms the directional portion of the wave spectrum in a more straightforward
manner. Conditions under which the methods yield comparable results are
therefore of practical interest.

The RD and R models are first briefly reviewed. Wave energy estimates
by the two models are compared for broad and narrow incident directional
spectra on an analytic circular shoal, and a relatively featureless coastline
near Mission Beach, California. Although the model results are similar with
broad directional spectra, they differ significantly with a narrow directional
spread. Thus, diffraction can be important even on relatively smooth natural
bathymetry. Finally, we show that the directional sensitivity of wave trans-
formations is such that field testing of RD models may be limited by the
accuracy of the estimated incident directional spectra.

SPECTRAL TRANSFORMATIONS BY REFRACTION AND DIFFRACTION

The refraction-diffraction model used here is based on the linear version
of the higher-order PEM derived by Kirby (1986a) and discussed further in
Kirby (1986¢), and Kirby and Dalrymple (1986). Berkhoff (1982) and Kirby
(1986a) have compared a unidirectional PEM refraction-diffraction model,
and Panchang et al. (1990) a spectral PEM refraction-diffraction model, with
laboratory data for waves propagating over a shoal. The models predicted
the transformed wave heights quite well. For unidirectional waves, the weakly
nonlinear form of the unidirectional refraction-diffraction model compared
more favorably with laboratory measurements than the linear model. How-
ever, a nonlinear spectral model requires individual model runs over the
range of possible initial wave energies as well as frequencies and directions.
These additional model runs are computationally intensive, and the present
discussion is limited to linear models.

Izumiya and Horikawa (1987) used a PEM model to transform a direc-
tional wave spectrum over parallel contours, where there is a one-to-one
relationship between the incident and transformed wave directions. The sin-
gle transformed wave direction is calculated from the phase difference be-
tween the solutions at two neighboring points on the numerical grid. Direc-
tional transformations are more complicated over irregular bathymetry, since
a single incident direction (and frequency) can be transformed into multiple
directions. In these cases, the RD solutions describe a partially standing
transformed wave field resulting from the interference of phase-locked waves
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with the same frequency, but propagating from multiple directions. Using
the grid points as an array of wave gauges to resolve the directional com-
ponents of a spatially inhomogeneous, partially standing wave field, is mark-
edly more complicated than estimating the directional spectrum of a spatially
homogeneous wave field, and was not attempted here. Instead, solutions at
the RD-model grid points were used to estimate directionally integrated wave
energies. In the examples that follow, the incident directional spectra are
transformed at a single wave frequency of 0.06 Hz. The incident wave di-
rectional spectrum is discretized with a uniform directional bandwidth. The
transformed, directionally integrated energy is the sum of the contributions
from each of these input directions

N
E = [S©O)d8 ~ > 8(0)So®)AByi . ..ottt )

i=1

with 8 defined as the ratio of transformed energy to incident energy, cal-
culated from the RD model for each direction. The number of individual
RD model runs, N, required to adequately define 8 is bathymetry dependent.
Since the RD model is linear, the response at each grid point need only be
calculated once, for an incident wave of unit amplitude, at each frequency
and direction. The response to any desired incident directional spectrum is
then constructed by appropriately weighting each discrete component. This
is the equivalent of assuming there is no phase coupling between the dif-
ferent directional components of the incident wave field. The extension to
include frequency as well as directional spread in the incident wave field is
straightforward.

SPECTRAL TRANSFORMATIONS BY REFRACTION

If diffractive effects are neglected, the relationship between a spatially
homogeneous incident wave spectrum, S,, and a wave spectrum at a shallow-
water or sheltered location, S, is given by

5(,0) = = £ 50,0, @
@,0) = — == S5(0,0,) ..t e
K, C, "

The subscript, o, refers to the incident wave spectrum; & = the wave number;
and C, = the group velocity for a given wave frequency and water depth.

Eq. 2 is valid along a ray path, and the relationship between 6 and 6, is
obtained by back-refracting a directional range of rays from a specific lo-
cation. LeMehaute and Wang (1982) refer to this relationship as the inverse
direction function, I', where 6, = I'(w,0). Eq. 2 then becomes

S(,0) £ Co [, T'(w,0)] 3)
®,0) = —— §, o, O e e
. Cg w,l(w

A sufficient number of rays must be back-refracted to adequately define T’
in frequency and directional space. The number of rays and their directional
spacing depend on both the complexity of the bathymetry along with the
frequency and directional scales over which the incident wave spectrum is
approximately constant. This procedure is somewhat analogous to numeri-
cally integrating a function, with additional ray calculations performed where
I" varies most rapidly with » and 6.
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FIG. 1. Forward (Left to Right) and Back-Refracted Rays over Circular Shoal.
Depth Contours and Axes are in Meters; Wave Frequency, f = 0.06 Hz: (a) Circular
Shoal Configuration, Bottom Depth around Shoal = 310 m; (b) Forward-Refracted
Waves, Initial Ray Spacing = 25 m, Initial Angle = 180°; (c) Back-Refracted Waves,
Initial Angle Spacing = 2.5°; (d) Back-Refracted Rays, Initial Angle Spacing = 10°
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FIG. 2. Spectral Transformation of Arbitrarily Selected Incident (f = 0.06 Hz) Wave
Directional Spectrum (Upper-Left Panel) to Location Y (Lower-Right Panel); kC,./
k,C, = 1. Units of Spectra are Arbitrary and Upper-Right Panel is Inverse Direction
Function for Location Y in Fig. 1(c)

Refraction models based on the concept of a continuous directional spec-
trum are robust in comparison with traditional (nonspectral) ray theory, which
will be referred to as forward ray tracing. These methods are fundamentally
different; the caustics that plague forward ray tracing schemes do not occur
in the spectral model. For example, when forward ray tracing is performed
over a circular shoal [Fig. 1(a)], caustics, inidicated by the crossing of ad-
jacent rays [Fig. 1(b)], result in infinite, or arbitrary, wave heights. In the
spectral model, rays are back-refracted from site ¥ behind the shoal [Fig.
1(¢)] to define the inverse direction function, I', (Fig. 2). Note that crossing
rays created when back-refracting do not generally represent caustics since
the rays are associated with different incident angles, 6,. However, the local
maxima or minima in I', where 30,/00 = 0, indicate the incident directions
from which forward-refracted rays would form a caustic point directly at Y.
Eq. 3 can be used to transform an incident spectrum of any shape to a finite
spectrum at site ¥ (demonstrated as a 6, — 0 mapping in Fig. 2).

It is interesting to examine how the caustics of unidirectional forward re-
fraction theory are manifested in spectral refraction solutions. Back-refracted
rays are shown for site X, 75 m down wave of the shoal center [Fig. 1(d)].
The transformation of incident energy from 6, to 6, at site X is shown in
Fig. 3. These directions are associated with the local maxima in I'. The
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FIG. 3. Spectral Transformation of Incident Wave Spectrum to Location X in Fig.
1(d); kC,,/k,C, = 2.14. Same Format as Fig. 2. incident Angle 6., Produces Caustic
at Transformed Angle 6.

“caustic” energy at X is defined from Eq. 3, with J = kC,,/k,C, = 2.14,
as

E.=J J' S,[lw,I'(w,0)]dd = JS,(»,0,,) -[ do = JS,(0,0,,)A0, ........... “)
, 6.

e

where A0, refers to the small range of continuous transformed directions that
back-refract to the same incident direction, 0.,. Over this range of directions,
the back-refracted rays are the same as the forward rays that form a caustic
at site X. Thus, E, is the total amount of wave energy contained between
the rays that formed the caustic, now spread over a small range of trans-
formed wave directions A@.. At the caustic point, the rays’ finite energy
density per unit wave-crest length is transformed to energy density per unit
0. Spectral refraction allows the finite energy associated with forward rays
to pass through caustics, and continue to propagate as dictated by the rays.
This is still a pure refraction problem, but the introduction of a directional
spectrum yields finite wave amplitudes everywhere.

Unlike RD models applied to spectra, spectral R transformations are not
the summation of a number of unidirectional (i.e., fundamentally nonspec-
tral) solutions. The R model is directionally spectral throughout its deriva-
tion, and through its more moderate treatment of caustic forming bathym-
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etry, it can provide useful wave energy estimates where the overall diffractive
effects associated with an incident wave spectrum are small.

SPECTRAL TRANSFORMATIONS OVER CIRCULAR SHOAL

The circular shoal [Fig. 1(a)] is used to explore the limitations of the
spectral R model, which produced severe caustics with unidirectional re-
fraction [Fig. 1(b)]. The transformed spectra are compared along the axis of
the grid, at cross sections just down wave of the shoal where the wave field
is evolving rapidly, and in the far field (Fig. 4).

Back-refraction for the R model was performed at individual points along
the axis and ctoss sections with a wave frequency of f = 0.06 Hz, an angle
step size of 0.1° and a grid spacing of 25 m. The RD model was run for
incident angles from 135° to 225°, corresponding to +45° from the x-axis
(although the solution is symmetric about the axis). An incident angle step
size of 1° was used with a grid spacing of 25 m. Two directional spectra
were transformed, a very narrow spectrum with a full width at half maximum
(FWHM) equal to 5°, and a broad spectrum with FWHM = 45° (Fig. 5).

In the narrow case (Fig."6), the R model estimates a finite but unrealist-
ically large wave energy maximum along the axis. In addition, the R-model
solutions do not have the large side lobes evident in both the RD-model cross
sections and in laboratory experiments involving shoals and unidirectional
waves (Berkhoff et al. 1982; Vincent and Briggs 1989). Part of this dis-

135°

225°
-2

-4}

-6}

_gl L n " s n
[} 2 4 6 8 10
Distonces in kilometers

FIG. 4. Locations of Circular Shoal Axis and Cross Sections for Spectral Trans-
formation Comparisons. Cross-sectional Distances from Shoal Center are A = 300
m,B =1km, C =10 km
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FIG. 5. Narrow and Broad Incident Directional Wave Spectra. Full Width at Half-
Maximum (FWHM) = 5° and 45°

crepancy results from a fundamental difference in how the two models view
the transformed waves behind the shoal. The R model treats each back-re-
fracted ray as an independent wave train. However, in the case of the cir-
cular shoal, three separate rays back-refracted over the center and around
opposite sides of the shoal can have the same incident direction, 6,. For
example, this can be seen in Fig. 3, with 6, = 180° being associated with
three different values of 6. When this incident direction is transformed using
Eq. 3, the multiple contributions to the transformed spectrum are treated
independently when integrating S(w, 0) to estimate the wave energy. That is,
waves from different transformed directions are assumed to have no phase
coupling, and standing waves are not possible. This is not the case for the
RD model, where multiple transformed wave directions, resulting from a
single incident direction, are phased-locked and manifested in the energy
estimates as a partially standing wave field. Thus, the present R model does
not predict side lobes because the relative phase information of crossing wave
trains is not retained.

The spectral transformations of a broad directional spectrum (Fig. 7) re-
sulted in better agreement between the two models. The maximum R-model
wave energy immediately behind the shoal was much smaller than in Fig.
6, but still was twice as large as the RD result. The intense focusing of wave
energy over the shoal again prevented the R model from being quantitatively
accurate in the very near field. However, the improvement in model agree-
ment at cross sections B and C suggests a possible role for the R model in
wave energy estimates not directly over the shoal. With a further broadening
of the incident spectrum the two model solutions continue to converge, but
the solutions behind the shoal become relatively featureless.

The R model overestimates the relative energy maximum in regions of
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FIG. 6. Normalized, Directionally Integrated Wave Energy for Circular Shoal
(Transect Locations Shown in Fig. 4). Narrow Directional Case, FHWM = 5°, Wave
Frequency f = 0.06 Hz. Solid and Dashed Lines are RD and R Models, Respec-
tively. Distances in km

strong wave energy convergence and fails to resolve the interference pattern
associated with a transformed wave spectrum containing phase-locked di-
rectional components. Both of these errors are reduced as the incident di-
rectional spectrum becomes broader. The energy maximum is reduced be-
cause the caustic point, or the region with the strongest spatial wave energy
gradients, shifts with a change in incident direction. Thus, through direc-
tional averaging, broader incident spectra produce smoother solutions in these
areas, with a larger region of increased energy but a smaller overall relative
energy maxima. The lack of phase information in the R model becomes less
important, since both models are estimating the transformed energy from a
wider directional range of phase-independent incident waves. A complete
discussion of spectral refraction-diffraction model solutions behind a shoal
can be found in Panchang et al. (1990).

SPECTRAL TRANSFORMATIONS OVER NATURAL BATHYMETRY

To address a more practical problem, model solutions are compared for a
section of coastline (Mission Beach, California, Fig. 8) chosen for its rel-
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FIG. 7. Normalized, Directionally Integrated Wave Energy for Circular Shoal. Broad
Directional Case, FWHM = 45°, Same Format as Fig. 6

atively broad shelf (by West Coast standards) and mild bathymetry. Three
cross sections, centered in the grid to minimize the effects of numerical noise
generated at the grid boundaries, are used to illustrate the evolution of the
solutions from transitional to shallow-water depths. The model wave param-
eters are the same as those used for the circular shoal. The grid spacing in
this case is x = 78 m, y = 92 m, for the R model, and x = 26 m, y = 23
m, for the RD model.

Results for the narrow deep-water directional spectrum (Fig. 5) are shown
in Fig. 9. Although diffractive effects are usually associated with compli-
cated bathymetries or coastal structures, they also can play an important role
on much simpler bathymetries. Even though the bathymetry is smooth, the
waves must propagate for some distance over transitional water depths. The
R and RD solutions begin to diverge in the intermediate depths (50—-100 m)
of cross sections A and B, and differ by more than a factor of two in E/E,
at a depth of 10 m. It is interesting to note that the R-model solutions show
more spatial structure than the RD solutions. This is quite the opposite of
the circular shoal solutions for the narrow spectrum. In this case, the ba-
thymetry is too mild to create the large RD interference patterns that form
behind the shoal. Instead the present differences occur because the R model
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FIG. 8. Bathymetry near Mission Beach, California, and Cross Sections for Model
Comparisons. Distances are in km; Depths are in Meters

overestimates wave energy convergence in the near field of mild caustic-
producing bathymetry.

The estimates for a broad deep-water directional spectrum (Fig. 10) are
in much better agreement. Comparisons at cross sections A and B are nearly
identical, although featureless, and the solutions continue to compare well
at cross section C. The broad incident spectrum results in slightly smoother
RD-model estimates. More importantly, it smooths the R-model solutions in
areas of wave energy convergence. The combination of milder bathymetry
and a broad incident spectrum minimizes the overall effect of diffraction in
this case.

The additional dotted line on cross section C (Figs. 9 and 10) is the RD-
model solution for unidirectional waves from 180° (the peak direction of the
incident spectrum). With a broad incident spectrum (Fig. 10), the R-model
estimates were better (i.e., closer to the spectral RD model) than those of
the unidirectional RD model. In this instance, including the directional dis-
tribution of wave energy was more important than including diffraction. The
opposite is true for a narrow directional spectrum (Fig. 9). These compar-
isons demonstrate the potential importance of both diffraction and directional
wave spreading in transformations over even relatively simple natural ba-
thymetry. We note that the two incident wave directional spectra used in
these examples were for illustrative purposes and were not representative of
the incident wave spectra typically found in the region.
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COMMENTS

The model comparisons demonstrate that the solutions converge with an
increase in the incident spectral width and a decrease in the complexity of
the bathymetry. As expected, both R and RD solutions become smoother
under these circumstances. Why the two models converge toward similar
smooth solutions is less clear. Pierson (1951) noted that for caustic-forming
bathymetries, the redistribution of wave energy by diffraction is relatively
symmetric down wave of the focusing regions. The diffracted wave energy
tends to propagate in directions similar in orientation to, but wider than,
those of refracted rays that pass through mild caustics. It is this relationship
between the two models that results in similar solutions when a broad range
of incident directions are contributing to the energy estimate at a given lo-
cation.

The computational efficiency of the two models is dependent on both the
number of locations where transformed wave spectra are needed and on the
frequency of the incident waves. The R model transforms wave spectra on
a site-by-site basis using back-refraction. The RD model provides solutions
over the entire numerical domain. In addition, the acceptable bathymetry
grid spacing in the RD model becomes increasingly smaller with higher fre-
quency, shorter wavelength waves. In the R model, the number of numerical
calculations grows like 1/A,, where A, is the incident wavelength. In the RD
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FIG. 9. Normalized, Directionally Integrated Wave Energy for Mission Beach,
California. Transect Locations Shown in Fig. 8. Narrow Directional Case, FWHM
= 5°, Wave Frequency f = 0.06 Hz. Solid and Dashed Lines are RD and R Models,
Respectively. Dotted Line (Upper Panel) is Unidirectional RD. Distances are in km
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model, the calculations grow like (1/\,)>. Thus, the R model’s efficiency,
when compared to RD, increases with both a decrease in the number of
estimate locations and an increase in wave frequency. Furthermore, high-
frequency, locally generated waves often have broad directional distribu-
tions, and the shorter waves undergo milder transformations over a given
bottom configuration. The R model is, therefore, most likely to be valid,
and has the greatest computational advantage, when modeling local seas.
The degree of spectral broadness required for convergence of R and RD
solutions depends on the bathymetry and is, therefore, site specific.

Hypothetical directional distributions were used in the previous section to
illustrate the importance of the directional spread of incident wave energy
in the modeling of finite depth wave transformations. In the laboratory, the
incident wave directional distribution is specified a priori and generated us-
ing a computer-controlled wave maker [e.g., Vincent and Briggs (1989);
Panchang et al. (1990)]. However, field verification of R or RD models
requires accurate estimates of naturally occurring incident directional spec-
tra. One potential source of directional wave data is the ubiquitous pitch-
and-roll buoy. Unfortunately, the instruments themselves provide a funda-
mentally low-resolution estimate of wave directionality. Fig. 11 shows two
directional distributions, one bimodal and the other unimodal, which both
fit the same error-free pitch-and-roll-buoy data exactly [Ochoa and Gonzalez
(1990) presents a discussion of the variety of directional spectra that are
consistent with the same pitch-and-roll data). In other words, the two spectra
have the same low-order directional moments
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FIG. 11. Bimodal (Solid) and Unimodal (Dash) Directional Spectrum, / = 0.06 Hz.
Both Spectra Exactly Fit Same Error-Free Pitch-and-Roll-Buoy Data

that form the buoy data. When these two incident spectra are transformed
over the bathymetry near Mission Bay using the RD model (Fig. 12), the
two solutions differ significantly (a factor of 2 in energy) at the far end of
cross section C. The differences are even more significant behind the circular
shoal (not shown). Thus, pitch-and-roll data, when used without some ad-
ditional a priori knowledge of the incident spectrum, may be insufficient for
wave-modeling purposes. Further information (e.g., hindcasts or known di-
rectional blocking by headlands and islands) can be used with inverse meth-
ods to improve buoy directional estimates substantially (Long and Hassel-
mann 1979; Herbers and Guza 1990), but the buoy may still lack the resolution
required to test a propagation model. Accurate estimation of the incident
wave spectrum will be a vital component in any field tests of RD models.

SUMMARY

Wave energy estimates from a spectral refraction and a spectral refraction-
diffraction model were compared for a circular shoal (Fig. 1) and a relatively
mild section of coastal bathymetry at Mission Beach, California (Fig. 8).
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The spectral refraction (backward ray tracing) model, unlike unidirectional
(forward ray tracing) models, did not result in infinite or arbitrary wave
heights over caustic-producing bathymetries (Fig. 2, 3). However, the R
model could not provide quantitatively accurate estimates when the incident
directional wave spectrum was narrow (Fig. 6, 9), or the near-field bathym-
etry was complex (Fig. 6, 7). The R model was a reasonable alternative to
the RD model when the incident wave spectrum was broad and the bathym-
etry was relatively mild (upper panel, Fig. 10), or when the location of
interest was in the far field of the complex bathymetry. In the case of a
broad incident directional wave spectrum, treating the wave field as a single
unidirectional wave produced significant errors in the RD-model predictions
with both bathymetries (Fig. 10).

Further, it was illustrated that using pitch-and-roll-buoy directional data
alone to specify the incident wave spectrum can lead to a significant degree
of uncertainty in the RD-model estimates of transformed wave energy, even
over smooth bathymetry (Fig. 12). This conclusion has significant impli-
cations for the field verification of RD wave models. Unlike laboratory stud-
ies, the incident wave directional spectrum in field experiments is not easily
obtained. Therefore, meaningful comparisons between shallow-water field
measurements and wave model estimates can be limited by the degree to
which the incident wave directional spectrum has been unambiguously re-
solved.
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