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Space-Time Signal Design for Multilevel Polar

Coding in Slow Fading Broadcast Channels

Hossein Khoshnevis, Ian Marsland, Member, IEEE,

Hamid Jafarkhani, Fellow, IEEE, and Halim Yanikomeroglu, Fellow, IEEE

Abstract

Slow fading broadcast channels can model a wide range of applications in wireless networks. Due

to delay requirements and the unavailability of the channel state information at the transmitter (CSIT),

these channels for many applications are non-ergodic. The appropriate measure for designing signals in

non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs

based on the outage probability at moderate SNRs.

Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits

from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality

condition for multistage decoding and propose a rule for determining component code rates. We also

derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based

labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce

a novel method for the joint optimization of short-to-moderate length polar codes and STBCs.

Index Terms

Slow fading broadcast channel, space-time signal design, bit-to-symbol mapping design, polar codes,

multilevel coding.
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I. INTRODUCTION

In broadcast channels the channel state information (CSI) varies from user to user and is

generally not available at the transmitter. As such, spectrally efficient adaptive modulation and

coding cannot be employed. Instead, the system should provide reliable communication to as

many users as possible, at as high a rate as possible. To achieve reliable communication,

the system can be designed to minimize the average frame error rate (FER) at an average

signal-to-noise ratio (SNR) for given channel statistics (e.g., Rayleigh fading). Alternatively, the

outage probability can be minimized since it is a lower bound on the FER of the system in

non-ergodic slow fading broadcast channels [1, references therein].

Space-time block codes (STBCs) are a class of low complexity multiple-input multiple-output

(MIMO) schemes that can achieve low outage probability without CSI at the transmitter. Thus,

STBCs are a reasonable solution for communicating over slow fading broadcast channels.

Orthogonal STBCs (OSTBCs), introduced by Alamouti in [2] and by Tarokh, Jafarkhani and

Calderbank in [3], benefit from low decoding complexity and can provide the full spatial diversity.

However, they cannot achieve any coding gain and suffer from a rate loss as the number of

antennas grows. To overcome these limitations, quasi-orthogonal STBCs [4], super-orthogonal

space-time trellis codes [5], algebraic codes [6], [7], [8, references therein], and space-time

super-modulations [9] have been proposed.

Tarokh et al., in [10], introduced the rank and determinant criteria as two useful measures for

designing STBCs at high SNRs. Even though most STBCs are designed on the basis of these

criteria, they do not guarantee good performance at low-to-moderate SNRs [11]. Instead, STBCs

can be optimized to achieve a specific outage probability at the lowest possible SNR.

Polar codes, introduced by Erdal Arıkan, are a low complexity class of forward error correction

(FEC) codes that work based on the concept of channel polarization as a method to improve

the reliability of some bit-channels at the expense of others [12]. Polar codes are uniquely

designed for specific channel statistics and a given modulation scheme by determining the set

of bit-channels that are used to carry the message (the information set).

For matching binary codes to the modulation and STBC, an efficient coded-modulation scheme

should be used. It has been shown that polar coded-modulation, constructed on the basis of

multilevel coding (MLC) with multistage decoding (MSD), outperforms polar coded-modulation

constructed on the basis of bit-interleaved coded-modulation (BICM) [13]. This is due
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to clarity of design and the conceptual similarity of MLC with the set-partitioning-based

bit-to-symbol mapping (SPM) to channel polarization, observed initially in [14]. Moreover,

multilevel polar coded-modulation (MLPCM) outperforms BICM-based convolutional and turbo

coded-modulation schemes as well [15]. Indeed, MLPCM can provide a low complexity

power-efficient scheme that can be employed in a wide range of wireless applications.

Typically, due to the fact that MLC/MSD achieves the channel capacity, the symbol-wise

average mutual information is maximized to design the signal constellation for MLC/MSD [16]

assuming that capacity-achieving FEC codes are employed. Similarly, as we will show in this

paper, the symbol-wise outage probability can be minimized to achieve reliable STBCs for

non-ergodic channels.

To design the SPM, direct evaluation of the open-form measures on the performance of

MSD, such as the sum of the binary channel cutoff rates [14], is difficult. Instead, typically

channel dependent pairwise measures are used to design set-partitioning [17]. One relevant

pairwise measure for slow fading channels is the pairwise outage probability [18]. Fortunately,

by substituting the cutoff rate [19] instead of the mutual information, a closed form upper bound

on the pairwise outage probability can be derived.

The signal design based on the outage probability can improve the performance especially for

long FEC codes [20]. However, since it does not consider the structure of the FEC codes and

decoders, it is not the best measure for designing signals used with short to moderate length

codes.

In this paper, we aim to enhance the performance of the concatenation of STBCs and

multilevel polar codes for slow fading broadcast channels. The main contributions of this paper

are summarized as follows:

● We propose a method to optimize STBCs, low complexity space block codes (SBCs) [21],

[22], and time-varying SBCs (TVSBCs) [23], by minimizing the outage probability;

● derive an outage rule to determine the component code rates of MLC/MSD in slow fading

channels;

● design the SPM for MLPCM based on a novel bound derived on the pairwise outage

probability and a proposed algorithm to modify existing measures; and

● propose a method for the joint optimization of polar codes and STBCs.

The rest of the paper is organized as follows: in Section II, the system model is defined; in
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Section III, the STBC design methods and codes used in this paper are reviewed; in Section IV,

the STBC design by minimizing the outage probability is described; in Section V, the design

elements of the MLPCM, including the outage rule for determining the component code rates,

the labelling algorithm, and the MLPCM design procedure are discussed; in Section VI, the joint

optimization of polar codes and STBCs is explained; in Section VII, the numerical results are

presented; and in Section VIII, the conclusions are provided.

II. SYSTEM MODEL

The system consists of a transmitter and a receiver equipped with Nt transmit and Nr receive

antennas. Each K bits of data are coded using a multilevel binary polar code with a rate of

Rtot = K/Ntot and a length of Ntot = NB consisting of B levels each with a code length of

N for each level. Each level encoder of the multilevel code encodes a portion of the total K

bits corresponding to the component code rates {R1, ...,RB}. After encoding all levels, each set

of code bits {c1n, c2n, ..., cBn }, for n = 1, ...,N , are mapped to a space-time symbol by employing

a multidimensional SPM. The space-time symbol is one of the signal points of a STBC, G,

distributed on L time slots and Nt transmit antennas. The space-time symbol is then sent through

the Nt ×Nr quasi-static MIMO Rayleigh flat fading channel H with the distribution CN(0, I).

The L ×Nr received samples are

Yn = SnH +Wn, (1)

where Sn is the space-time signal and Wn is the zero-mean complex additive white Gaussian

noise (AWGN) with variance N0/2 per dimension. Note that each MLPCM codeword only

observes one independent realization of H. In the following we consider the transmission of

the nth space-time symbol, and drop the subscript n to simplify the notation. The probability

density function of the received samples, Y, given perfect CSI at the receiver, for the space-time

symbol S with elements slnt
being the complex constellation symbol transmitted in time slot l

from antenna nt, is given by

p(Y ∣ S,H) =
1

(πN0)
LNr

exp(
−∣∣Y-SH∣∣2F

N0
) , (2)

where ∣∣ ⋅ ∣∣F is the Frobenius norm. Throughout this paper, the average SNR is adjusted using N0

and we set E[∣∣S∣∣2F] = 1. The STBC points are chosen using a multidimensional SPM that spans

all bits of all STBC elements slnt
. This method of employing multidimensional SPM is elaborated

on in [17] for the Golden code [6] and the Grassmannian constellation. The received samples
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of codewords {ĉ1, ĉ2, ..., ĉB} are decoded using an MSD, where ĉb is the decoded codeword of

the bth level code.

In the MSD architecture, the code bits of each level are deduced with the aid of the received

symbol and previously deduced code bits of the upper levels [24]. At each level after decoding,

the received message word is fed to an encoder and the generated codeword ĉb reduces part of

the ambiguity for the demapper of the next level, which enables it to compute more reliable

log-likelihood-ratios (LLRs). Therefore, the LLR estimation at bth level can be given by λb =

ln p(Y∣c1∶b−1=ĉ1∶b−1,cb=0,H)
p(Y∣c1∶b−1=ĉ1∶b−1,cb=1,H) , where

p(Y∣c1∶b−1 = ĉ1∶b−1, cb = 0,H) =
1

2B−b+1
∑

cb+1∶B∈[0,1]B−b+1
p(Y∣S = SM[ĉ1∶b−1,0, cb+1∶B],H),

p(Y∣c1∶b−1 = ĉ1∶b−1, cb = 1,H) =
1

2B−b+1
∑

cb+1∶B∈[0,1]B−b+1
p(Y∣S = SM[ĉ1∶b−1,1, cb+1∶B],H),

(3)

and ci∶j represents code bits levels i to j at a specific n and SM[c] defines the mapping from

code bits c1∶B to a space-time symbol according to the bit-to-symbol mapping rule and the STBC

used. Note that there are various techniques to simplify the LLR calculation for STBCs (e.g.

[25]).

III. REVIEW OF STBC DESIGN METHODS

In this section, we review the structure and the design methods of STBCs, SBCs, and TVSBCs

used in this paper.

A. Space-time Block Codes

The pairwise error probability between two space-time symbols of a STBC, Si and Sj , can

be bounded as [1]

p(Si → Sj ∣H) ≤
1

2
exp( −

∣∣∆i,jH∣∣2F

4N0

), (4)

where ∆i,j = Si−Sj with elements δl,nt . The rank and determinant criteria are extremely effective

in minimizing the pairwise error probability of STBCs at high SNRs [10]. The rank of the

pairwise difference matrix, ∆i,j , as a measure of the diversity, and the determinant of ∆i,j∆Hi,j ,

where H is the Hermitian transpose, as a measure of the coding gain for STBCs have been

widely used for the design of codes. One of the well-known STBCs designed with this method,

capable of achieving full diversity and the highest coding gain for a 2×2 antenna configuration,
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is the Golden code introduced by Belfiore et al. in [6]. The structure of the Golden code, herein

referred to as Matrix A, is given by

GA =
1

√
5

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α(s1 + s2θ) α(s3 + s4θ)

ᾱ(s3 + s4θ̄) ᾱ(s1 + s2θ̄)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

where s1, s2, s3, and s4 are complex constellation symbols of the code chosen from a constellation

with cardinality ∣2B̂ ∣, θ = (1+
√

5)/2, θ̄ = 1−θ, α = 1+(1−θ), and ᾱ = 1+(1− θ̄), and  =
√
−1.

Note that by substituting constellation points in GA, space-time symbols S in (1) are generated.

Later, Sezginer and Sari in [7] introduced a 2 × 2 STBC to reduce the decoding complexity of

the Golden code. This code, herein referred to as Matrix B and can be written as

GB =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α1s1 + α2s3 α1s2 + α2s4

−β1s∗2 − β2s
∗
4 β1s∗1 + β2s

∗
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

where α1 = β1 = 1/
√

2, α2 = 1/
√

2eφ, β2 = −α2 and ∗ denotes the conjugate. By performing a

numerical search, φ = 114.29○ is found to maximize the minimum determinant for QPSK and

larger size QAM constellations [7], [26]. As shown in [7], GB performs only slightly worse than

GA.

To approach the capacity, the average mutual information can be used as an SNR-dependent

measure for designing and analyzing STBCs [27]. The mutual information for a given realization

of H can be written as

I(Y; S∣,H) =
2B

∑
i=1

Pr(Si)EY[ log2 (
p(Y∣Si,H)

∑
2B

j=1 Pr(Sj)p(Y∣Sj,H)
)]. (7)

For notational convenience, I(Y; S∣,H) is denoted as I hereinafter. The average mutual

information can be estimated by taking the expectation over H as I(Y; S) = EH[I].

In [11], to achieve good performance at low SNRs, the Matrix B code is optimized by

maximizing the mutual information at low SNRs. As a result, the parameters of the Matrix

B code for low SNRs are different from the code designed based on rank and determinant

criteria. For example, for a wide range of low-to-moderate SNRs and by employing QPSK, φ

is found to be 135○ for Nr = 2.

B. Space Block Codes and Time-Varying Space Block Codes

Most high-performance STBCs have unnecessarily high decoding complexity. Instead, a strong

binary FEC outer code used with a simple SBC can achieve most of the coding gain of a complex
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STBC that is achieved by temporal expansion of the signal. Therefore, to reduce the complexity

of STBC detection, the code can be expanded only across the antennas (i.e. L = 1) to increase the

transmission rate compared to single input multiple output systems. This class of STBCs is herein

referred to as SBCs. In this section, we review the structure and design method of SBCs. The

simplest form of SBCs is the vector channel symbol introduced by Hochwald and ten Brink in

[21]. This code can be written as GC = [s1 s2 ... sNt] where snt is chosen from a quadrature

amplitude modulation (QAM). Instead of using available constellations in the structure of SBCs,

parameterized SBCs can be optimized according to channel statistics. A parameterized SBC

introduced in [28], herein referred to as GD, can be written as GD = [α1s1 +β1s2 α2s1 +β2s2].

Using GD, the received vector can be given as y = sVH +w where s = [s1 s2] and V is given

as

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α1 α2

β1 β2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

To achieve the maximum diversity for GD, sVH must be of full rank. Thus, the determinant

of H and V should be non-zero. We know that ∣H∣ ≠ 0 since any matrix with random variable

elements will be full rank with probability one [1].

In contrast, V should be adjusted to have a non-zero determinant. This results in α1β2 ≠ α2β1

which must be used when designing GD. In GD only two symbols are employed. By increasing

the number of symbols, the number of degrees of freedom for the optimization increases. To

this end, we propose to use four different symbols in the structure of a SBC. The corresponding

SBC structure can be given as GE = [α1s1 + β1s2 α2s3 + β2s4]. The matrix V for GE can be

written as

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α1 β1 0 0

0 0 α2 β2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

, (9)

where T is the transpose operator. In this case, as soon as all coefficients are non-zero, the

matrix V is of full rank.

In the next sections, we optimize the SBCs using different measures. All these codes are

designed on the basis of the following principles. First, to limit the emitted power of each

antenna, we assume ∣α1∣
2 + ∣β1∣2 = ∣α2∣

2 + ∣β2∣2. Next, to limit the search space, we set α2 = α1

and ∡α1 = 0○. To satisfy α1β2 ≠ α2β1 for GD, we can set β2 = β1. Without loss of generality,

the same condition can be used for GE. Therefore, the phase of β1, ϕ = ∡β1, and the ratio of
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magnitudes ∣β1∣/∣α1∣ should be optimized. To keep the total power constant, a power constraint

is considered which can be given as 1
NtL ∑i∑j ∣g

l
nt
∣2 = 1.

SBCs with a higher number of transmit antennas can substantially enhance the performance.

In this paper, we also optimize the extension of GE for Nt = 3 given as GF = [α1s1+β1s2 α2s3+

β2s4 α3s5+β3s6]. For GF, to limit the search space, we set α1 = α2 = α3 equal to a constant and

optimize the other parameters given the power condition ∣α1∣
2 + ∣β1∣2 = ∣α2∣

2 + ∣β2∣2 = ∣α3∣
2 + ∣β3∣2.

Introduced by Duyck et al. in [23], TVSBCs can improve the performance of SBCs by

providing a wide range of rotations for symbols of each antenna during a codeword transmission.

This in turn results in limiting the effect of the worst-case fading rotation and increasing

the diversity. For implementing the TVSBC, the corresponding SBC can be multiplied by a

Nt × Nt diagonal matrix An which is known at the receiver. The main diagonal elements of

An are time-varying (TV) random complex numbers with constant magnitudes given as eθi(n).

Therefore, the new TVSBC can be written as G(n) = GAn. Since approximately universal codes

are already designed to be robust against the worst-case rotation [29], unlike SBCs, they cannot

be improved by applying time-varying schemes.

IV. STBC DESIGN BASED ON THE OUTAGE PROBABILITY

For non-ergodic channels, the outage probability is an achievable bound on the FER of an

FEC coded system [1]. Thus, it is a useful measure for the design and analysis of STBCs used

with outer channel coding. The outage probability is the probability of the instantaneous mutual

information being less than a specific target rate RtotB. It can be written as

Pout(S,RtotB) ∶= Pr(I < RtotB) = F(RtotB), (10)

where F(RtotB) is the cumulative distribution function (CDF) of I . For the sake of simplicity,

the total outage probability of a STBC is denoted by ε hereinafter. Similarly, by substituting

the mutual information for the bth address-bit of a specific STBC in (10), the level-wise outage

probabilities, εb, can be defined. The outage probability can be evaluated numerically by noting

that

ε = ∫ 1(I,RtotB)fHdH, (11)

where the distribution of H is given as fH = 1
πNtNr exp(−∣∣H∣∣2F), and 1(u, v) is the unit step

function defined as

1(u, v) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 u < v,

0 otherwise.
(12)
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As a parallel concept, the ε-outage capacity for a given outage probability ε is defined as

Cε = F
−1(ε). (13)

Similarly, Cεb,b can be defined for different levels of a space-time signal. For a given εb, Cεb,b

can be approximated numerically by estimating the outage probability for a large number of

target rate values between 0 and 1 and choosing the one corresponding to the target εb.

MLC/MSD used with STBCs optimized by minimizing the outage probability can achieve high

performance since, as we show in the following theorem, the outage probability of MLC/MSD

approaches the constellation-constrained outage probability.

Theorem 1. The outage probability of MLC/MSD scheme approaches the

constellation-constrained outage probability of the slow fading broadcast channel.

Proof. Using the chain rule of the mutual information, we can connect the total mutual

information and level-wise mutual informations as follows:

ε = Pr(I < RtotB) = Pr(I(Y; c1∶B ∣H) < RtotB) = Pr(
B

∑
b=1
Ib < RtotB), (14)

where Ib is defined as the level-wise mutual information given by I(Y; cb∶B ∣c1∶b−1,H). Note that

since the MLC/MSD achieves the constellation-constraint mutual information, the mapping does

not need to be SNR-adaptive.

To compute the outage probability, due to unavailability of closed-form expressions, (11) can

be computed numerically or simulation can be used. In this paper, since the search space is

continuous, the particle swarm optimization (PSO) [30] is employed. For a detailed explanation

of the steps, see [31] and the references therein. For faster convergence of the algorithm, we

modified the PSO according to the following principles. As the FER decreases, the number of

realizations of H to achieve an accurate estimation of the mutual information or the outage

probability should be increased. When the PSO starts, a small number of realizations of H is

enough to achieve a coarse estimation of the outage probability for the initial population since

they are chosen randomly and thus are most likely far from local or global minima. Therefore,

we increase the number of realizations of H to estimate the mutual information or the outage as

the best function value is lowered. For a detailed explanation about the optimization algorithm

see [32].

To design STBCs and SBCs using the outage probability, we use the conditions on shaping

and power provided in Section III-B to limit the search space and then we use the modified
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Fig. 1: Outage probability comparison of GC, GD, and GE and their time-varying variant with

a) Rtot = 0.5 and 4 bits-per-channel-use (bpcu), and b) Rtot = 0.9 and 7.2 bpcu, both in a 2 × 2

antenna configuration.

PSO method to determine the rest of the parameters. In this paper, by employing an additional

linear search over the SNR [17, Algorithm 2], all STBCs and SBCs are optimized at ε = 0.01

for Nr = Nt. The optimized values for GB for QPSK constellation and Rtot = 1/2 are given as

α1 = β1 = 0.314, α2 = 0.067 + 0.381, β2 = −0.070 + 0.384. The optimized values of α1, β1,

and ϕ for Rtot = 1/2 are as follows: for GD, 0.5, 0.5, and 330○; for TV GD, 0.5, 0.5, and 180○;

for GE, 0.5, 0.5, and 45○; and for TV GE, 0.5, 0.5, and 45○. The parameters α1, β1, and ϕ for

Rtot = 9/10 are as follows: for GD, 0.5, 0.5, and 270○; for TV GD, 0.48, 0.52, and 120○; for GE,

0.33, 0.63, and 195○; and for TV GE, 0.34, 0.62, and 285○.

The outage probability results of the outage-optimized schemes are shown in Fig. 1. For

low-to-moderate FEC code rates, TV GE shows the minimum outage probability but performs

very close to GC. At high rates, for moderate values of the outage probability (e.g., 0.001),

GE shows the least outage probability while for lower values of the outage probability, TV GD

is better. Indeed, the TV GD benefits from a higher diversity, which is useful at high spectral

efficiencies, while GE benefits from more flexibility in optimization, which results in better codes

for low-to-moderate spectral efficiencies.
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V. POLAR CODED-MODULATION DESIGN

In this section, we explain different aspects of polar coded-modulation design including

determining component code rates, designing the SPM, and the coded-modulation design

procedure. To design the polar code, the information set should be determined. In this paper, we

use the simulation-based best bit-channels rule proposed in [17]. In this method, we measure the

number of first error events for the bit-channels of all levels and choose the bit-channels with

the lowest error probabilities to determine {R1, ...,RB}.

A. Determining Component Code Rates based on Outage Probability

In this section, we derive a rule based on the outage probability for determining component

code rates and compare it with the best bit-channels rule. Two main design rules for determining

component code rates of MLC are the capacity rule and the equal error probability rule for an

ergodic channel [33]. When using the capacity rule, the component codes rates are chosen

based on the constellation constrained subchannel capacity. The capacity rule is only optimal for

capacity achieving codes. However, for non-capacity achieving codes, the equal error probability

rule is typically employed due to the possibility of deriving bounds on the performance of the

coded-modulation scheme. For non-ergodic channels, the parallel concepts are the outage rule

and the equal error rate rule. The equal error rate rule can be applied similarly to the ergodic

channel. However, the outage rule needs to be derived.

When adjusting the level code rates based on the outage rule, we would like to set Rb = Cεb,b

for the optimal εb values that minimize the total outage of the coded-modulation scheme using

independent decoding of different levels. Let us denote the total outage probability of sequential

decoding of levels as P SD
out . This is a lower bound on the FER of the coded-modulation scheme.

Theorem 2. P SD
out is minimized if level-wise outage probabilities are equal and for any H

realization, either all levels are in outage or no level is in outage.

Proof. In MSD, an outage event occurs as soon as at least one level is in outage. Thus, we

can write P SD
out = p(⋃

b

{Ib < Rb}). Because the probability of the events {Ib < Rb} for all

b = 1, ...,B is never less than the maximum of the probabilities of individual events, we have

P SD
out ≥ max

b
p(Ib < Rb), with equality if the events are fully dependent. Since we assumed for

all realizations of H, either all levels are in outage or no level is in outage, the events are fully
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dependent and therefore, we have P SD
out = max

b
p(Ib < Rb). Now let us assume Cεb,b is chosen

so that the level-wise outage probabilities are equal. Setting R1 < Cε1,1 results in decreasing

p(I1 < R1). However, since the total ∑bRb is constant, we should set R2 > Cε2,2 that results

in increasing p(I2 < R2). Therefore, the maximum outage probability and consequently P SD
out

increase. Thus, we should choose equal level-wise outage probabilities in order to minimize

P SD
out .

Note that in practice when ε1 = ε2 = ... = εB for large FEC codes, we observe that either all

levels are in outage or no level is in outage. Therefore, based on the results from Theorem 2,

to determine the level code rates Rb, we should minimize the level-wise outage probability

ε1 = ε2 = ... = εB such that ∑bCε,b = ∑bRb = Rtot. Thus, in an attempt to find the code

rates, we can estimate the Cεb,bs using (13) for a given εb and check whether ∑bCε,b = Rtot.

Note that εb should be changed from zero to one with the step length M . However, the search

space can be substantially limited by starting from εb = ε. In fact, the total outage of the joint

decoding, ε, is a lower bound on the outage of different levels since in Theorem 2 we assumed

P SD
out = max

b
p(Ib < Rb) and P SD

out → ε only when N →∞.

Algorithm 1 presents the outage rule for determining level code rates. In this algorithm,

Function Estimate_Mu(.) estimates the bth level mutual information by substituting the

probabilities of transmitting zero and one at each level corresponding to (3) in (7). In each

iteration, the level-wise outage capacities Cεb,b are estimated. If ∑bCεb,b is less than the target

spectral efficiency, the threshold ε̂ is increased by a factor M and the same steps are repeated.

Here, we set M = 1.05.

Fig. 2 shows the comparison of the FERs of the equal FER rule, outage rule, and the

simulation-based best bit-channels rule. We observe that the FER of the equal FER rule is

1 dB worse than the other two rules and the FER of the best bit-channels rule is approximately

the same as that of the outage rule. This shows that the simulation-based rule can predict the

FERs correctly. For the rest of the paper, we use the simulation-based rule to determine the code

rates.

B. Labelling Algorithm

Typically, set-partitioning algorithms with relevant channel measures are used to construct good

bit-to-symbol mappings for MLC/MSD [34]. Recently, for general irregular multidimensional
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Algorithm 1: Outage Rule for Determining Component Code Rates
Input : GX, Rtot

Output: Component code rates R
Procedures: [I1∶B]=Estimate_Mu(GX): Estimates the 1st to Bth level mutual information

using (7) for N̂ realizations of H and outputs them in an N̂ ×B matrix I1∶B. Find(u,v):

Outputs arg max
i

ui < v.

1 [I1∶B]=Estimate_Mu(GX)

2 ε̂ = ∫H1(I,RtotB)fHdH ▷ Using (11)

3 do
4 for b=1:B do Cε = 1

N̂
Find(Ib,ε̂) ▷ Using (13)

5 ε̂ = ε̂M

6 while ∑bCεb,b < RtotB

7 R = [Cε̂,1,Cε̂,2, ...,Cε̂,B]

8 return R
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Fig. 2: FER comparison of polar code level rate determining algorithms, all for the Alamouti

code with 2 bpcu and Ntot = 1024 in a 2 × 2 antenna configuration.

constellations, in [17] a set-merging algorithm to create a set-partitioning is proposed that works

as follows. At the first step, for each symbol, the most distant symbol is found and the minimum

of them is considered as a distance threshold for pairing the sets denoted as τ . Then every symbol

is paired with the closest symbol with the minimum distance of τ and labels 0 and 1 are assigned

to the first and the second symbols in each pair. The threshold τ ensures that the set of distances

of paired points does not have a high variance. After pairing every two symbols, the distance of
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each two-symbol set with respect to other two-symbol sets is measured and the minimum of the

maximum of their distances is chosen as the new τ and the mentioned procedure is repeated in

B consecutive steps. In [17], for fast fading channel, the Frobenius norm is used as a measure

of distance between subsets. The SPM typically regularizes the component code rates in an

incremental order, i.e., R1 < R2 < ... < RB. Note that the SPM indeed increases the variability

between channel capacities.

For the slow fading channel, based on the result of Theorem 2, we are interested in equalizing

the level-wise outage probabilities. If we assume that the code rates are in an incremental order,

we expect that for any given fading realization, the average mutual information of levels is also

incremental, i.e., I1 < I2 < ... < IB. Thus, we can employ the algorithm in [17] assuming that the

appropriate measure is used. If we use approximately universal codes, the corresponding design

measure is the determinant criterion when Nr > Nt and the product of smallest min(Nt,Nr)

singular value of ∆i,j for Nr < Nt [29]. For SBCs, the distance is found to be the Frobenius

norm using the pairwise error probability analysis according to [10].

For TVSBCs, fading coefficients change slowly while AWGN and TV sequences change

fast. Therefore, we need a class of bounds that can model both effects to achieve good

design measures. However, bounds proposed in [10] cannot model both slow- and fast-changing

parameters since they are derived under the assumption that the coefficients of a STBC remains

constant during one codeword transmission. Alternatively, the pairwise outage probability1 may

be employed as a measure to design good SPM since it can model both kinds of parameters.

Assuming that the cutoff rate is a lower bound on the mutual information, we can derive

bounds on the outage probability. The cutoff rate R0 can be written as

R0(S∣H) = max
Pr(Si)∣i∈1,...,2B

Si∣i∈1,...,2B

[ − log2{
2B

∑
i=1

2B

∑
j=1
ρ̂i,j}], (15)

where ρ̂i,j = ρ(Si,Sj ∣H)Pr(Si)Pr(Sj), in which ρ(Si,Sj ∣H) is the pairwise Bhattacharyya

coefficient, defined as

ρ(Si,Sj ∣H) = ∫
√
p(Y∣Si,H)p(Y∣Sj,H)dY. (16)

Substituting the cutoff rate, (11) can be upper-bounded as

ε ≤ p(R0(S∣H) < RtotB). (17)

1In [18], it is shown that the outage probability can be upper bounded by union bounds of pairwise outage probabilities. Thus,

pairwise outage probability is a relevant measure for the system behavior.



15

Note that since the cutoff rate is a lower bound on the mutual information, the rate region of

the outage is larger and thus (17) is an upper bound on the outage probability. The bound can

be written as

p(R0(S∣H) < RtotB) = p(2−RtotB <
2B

∑
i=1

2B

∑
j=1
ρ̂i,j). (18)

Similar to (18), we derive a closed form for the upper bound on the pairwise outage probability

(UBPOP). We start with SBCs.

Proposition 1. For space block codes an upper bound on the pairwise outage probability is

given as

p(qi,j < ρ̂i,j) =
γ(Nr,−4N0 ∥∆i,j∥

−2
F ln(qi,j))

Γ(Nr)
, (19)

where qi,j ≥ 0 and γ and Γ are lower incomplete gamma and gamma functions, respectively.

Proof. In Appendix. A.

Note that qi,j in general should be different for each pair since the distance of pairs in

a STBC and correspondingly the effective SNR and their effect on union bounds may be

different. However, finding qi,j needs complicated optimizations. Instead, we can find a relatively

good value for qi,j as follows. Using (15), the pairwise events {qi,j < ρ̂i,j} can be written as

{R0(Ŝi,j ∣H) < Ri,j} where Ri,j = − log2(
1
2 +

1
2qi,j) and R0(Ŝi,j ∣H) is the pairwise cutoff rate.

Assuming the average spectral efficiency Rtot equals Ri,j for all pairs of the STBC, qi,j can be

found as q = 21−Rtot −1. Next, to make the upper bound manageable and find a relevant measure

for designing SPM, we can approximate the UBPOP for STBCs as follows:

p(qi,j < ρ̂i,j) ≈
γ(

µ21
µ2
,−4N0

µ1
µ2

ln(qi,j))

Γ(
µ21
µ2

)
, (20)

where

µ1 = Nr∑
l

∑
nt

∣δl,nt ∣
2, µ2 ≈ Nr

L

∑
u=1

L

∑
v=1

∣∑
nt

δu,ntδ
∗
v,nt

∣2. (21)

The approximation is derived in Appendix. B.

Note that since we approximate the upper bound in (20), it is not anymore an upper bound but

it remains a relevant measure for designing SPM. This class of measure can be used to design

the SPM for STBCs. However, for TVSBCs, we need to model TV sequences as well. In this
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case, we can model the TV sequence using the cutoff rate since it is a fast-changing parameter.

An approximation of UBPOP for a 2 ×Nr TVSBC is

p(qi,j < ρ̂i,j) ≈ 1 −Q
⎛

⎝

ln(−4N0 ln(qi,j)) + ln( 1
µ1
+
µ2
µ31

)
√

ln(1 + µ2
µ21

)

⎞

⎠
, (22)

where Q(.) is the Gaussian tail function. The first two moments µ1 and µ2 are given as

µ1 =Nr(∣δ1,1∣
2 + ∣δ1,2∣

2) − 2(a1∣δ1,1δ1,2∣E[Ω] + a2),

µ2 =Nr(∣δ1,1∣
4 + ∣δ1,2∣

4) + 4a21∣δ1,1δ1,2∣
2(Nr −E[Ω]2)

− 4a1Nr(∣δ1,1∣
2 + ∣δ1,2∣

2)∣δ1,1δ1,2∣(E[∣h1,nr ∣
2Ω] −E[Ω]),

(23)

where Ω = ∣∑nr
h1,nrh

∗
2,nr

∣ and coefficients a1 and a2 are defined in (33). The approximation is

derived in Appendix. C.

The provided UBPOPs can be used as a measure to construct the mapping. However, it turns

out that the use of the determinant criterion and UBPOP for STBCs result in the same SPM.

The same result is valid for SBCs when we use the corresponding UBPOP and the Frobenius

norm, although for TVSBCs, the use of UBPOP results in an improvement compared to the

Frobenius norm.

To overcome the shortcomings of these measures, we can analyze different conditions that

may happen for pairwise measures in a slow fading channel and modify the labelling algorithm

in [17]. The general form of the bounds derived in this section is Pr(qi,j < ρ̂i,j). We expect that as

the distance of two pairs increases, ρ̂i,j decreases and correspondingly −Pr(qi,j < ρ̂i,j) increases.

However, due to a variety of reasons, e.g., the effect of pairwise measures on sum cutoff rate or

on the equality of outage probability of different levels, −Pr(qi,j < ρ̂i,j) may decrease with the

distance. But it is unlikely that it happens when the difference in pairwise distances is relatively

large. Motived by this explanation, we consider the same value for distances of two pairs of

points if the relative difference of their distances is smaller than a threshold. The threshold is

determined in a few iterations by constructing the mapping and the polar coded-modulation. In

fact, we use the simulation-based design to find the best threshold. In practice, we observe that

the threshold remains constant (typically around 0.1-0.2) for a wide range of SNRs. Also while

this threshold is substantially effective on unoptimized SBCs, e.g., GC, it has a negligible effect

on optimized SBCs, OSTBCs, and approximately universal STBCs.
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C. Design Procedure for the MLPCM

To design a MLPCM for STBCs, the multidimensional SPM is generated for a STBC using

the algorithm reviewed in Section V-B. Then, the multilevel polar code is designed for the

constructed set-partitioned STBC scheme by using the code design method proposed in [17]. In

this paper, MLPCM is designed at the minimum SNR such that a target FER of 0.01 is achieved.

VI. JOINT OPTIMIZATION OF FEC CODE AND STBC

The outage probability is a good criterion for designing the modulation (or STBC) for FEC

codes that perform close to the outage. However, when there is a gap between the performance

of an FEC code and the outage, the outage probability is not necessarily a good measure. This

gap exists for all currently available finite length FEC codes, even in the presence of powerful

decoders, and motivates the research on the joint optimization of STBCs and practical FEC

codes.

To optimize concatenated schemes, bounds on the performance of the concatenated FEC code

and STBC are needed. For cases such as BICM, if the LLR distribution is nearly Gaussian,

general bounds on the performance of the concatenated schemes can be derived [35]. However,

for MLC/MSD in which the LLR distribution of each subset within each level is different,

deriving any closed form bound on the performance of the system is difficult. Furthermore,

optimizing the sum cutoff rate bound is numerically intensive. Instead, the simulation-based

design method explained in Section V can determine the information set and the FER of the

limited length MLPCM. In fact, simulation-based design plays the role of a bound on the

performance of the system since it can approximate the FER. Thus, using the simulation-based

method, joint optimization of limited length FEC codes and STBCs is possible.

In simulation-based polar code design, given a specific code rate and SNR value, the

information set for MLPCM is chosen and the FER of the polar coded-modulation is determined

[17]. To jointly design the polar code and STBC, the best STBC matched to the polar code

structure should be determined. To this end, the optimizer generates a set of parameters of

a specific STBC, e.g., GB. Then, for each combination of parameters of the STBC, the

set-partitioning algorithm described in Section V-B is applied to find a good SPM for the

generated STBC and polar code design procedure for the new set-partitioned STBC is repeated.

Finally, the best match of the information set, SPM, and parameters of a specific STBC
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corresponding to the lowest FER is chosen. The modified PSO, described in Section IV, is

used for the joint optimization.

To compare the performance of different design methods in Section VII, we optimized a few

codes using the joint design algorithm at a minimum SNR corresponding to a FER of 0.01.

The parameters of theses codes are as follows; for GB, α1 = β1 = 0.765, α2 = −0.265 + 0.587,

and β2 = 0.587 + 0.265; for TV GD, α1 = α2 = 0.5 and β2 = β1 = −0.410 + 0.287; for GF,

β1 = 0.358 + 0.358, β2 = −0.358 − 0.358 and β3 = −0.506; and for TV GF, β1 = 0.359 + 0.359,

β2 = −0.359 − 0.359, and β3 = −0.507.

Note that the joint optimization method is less complex than the outage probability

optimization for short to moderate length codes since the relatively precise numerical evaluation

of the outage probability in (11) is expensive. However, for long codes, the joint optimization

method is expensive and it turns out that the outage probability optimization is cheaper.

Furthermore, in online optimization when the statistics of the communication channel are not

known, both outage probability based optimization and the joint optimization methods can be

used. But employing the joint optimization is more affordable since it does not need an additional

software as the polar encoder and decoder are embedded in the system.

VII. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the performance of the outage optimized and the joint optimized MLPCM

schemes with STBCs and SBCs are compared with MLPCM designed using the rank and

determinant criteria, and the mutual information. STBCs are designed based on rank and

determinant criteria, referred to as the RD Method, mutual information, referred to as the MI

Method, the outage probability, referred to as the OP Method, and the joint design of FEC

codes and STBCs referred to as the JD Method. The parameters of the optimized codes are

mentioned in Sections IV and VI for the OP and JD Methods, respectively. For designing

MLPCM, the construction method in Section V-C is employed. We also compare MLPCM with

bit-interleaved turbo coded-modulation (BITCM). For BITCM, the BCJR decoder is used with

20 iterations of the turbo decoder. The turbo code in BITCM is LTE’s turbo code [36]. The

optimized parameters are mentioned in Section IV. The polar decoder in all cases is SCD. The

SC list decoder, introduced in [37], is also tried but no curve has been shown. For all SCD

curves, SCLD slightly improves the performance, e.g., around 0.2 dB. Unless otherwise stated,

we use a 2 × 2 antenna configuration. The constellation used for Matrices A, B, E, and F is
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TABLE I: Summary of compared signal design methods and the corresponding figure numbers.

STBC GA GB GD GD, TV GE GF GF, TV

Rank and Determinant Criteria (RD) 3-a 3-a

Mutual Information (MI) 3-a

Outage Probability (OP) 3-a 4-a 4-a 3-b

Joint Design of FEC and STBC (JD) 3-a 4-a 4-b 4-b

QPSK and for Matrix C and D is 16-QAM. A summary of compared signal design methods and

the corresponding figure numbers are mentioned in Table. I.

The performance of the BITCM and MLPCM with Matrices A, B, and the Alamouti STBC

for 2 bpcu with Rtot = 1/2 and Ntot = 512 bits are compared in Fig. 3(a). MLPCM with Alamouti

STBC scheme is constructed using an MLC with 4 levels for a 16-QAM constellation with the

total code rate of 1/2. The BITCM with GA is 0.8 dB worse than the MLPCM with GA at a FER

of 0.01. Note that the BCJR-based turbo decoder with 20 iterations is far more complex than

the SCD. In the set of curves provided for MLPCM with GB, the STBC designed using the MI

Method is 1.2 dB worse than the RD Method since the mutual information is not an appropriate

measure for the slow fading channel. Furthermore, FERs of STBCs designed using the OP and

ID Methods are 0.1 dB and 0.4 dB lower than the one with the RD Method, respectively. Thus,

as expected, the joint optimization can improve the performance even more than the optimization

based on the outage probability.

In Fig. 3(a) for all curves, we used the SPM designed based on the determinant criterion since

other measures do not generate better SPMs or the improvement is negligible. In Fig. 3(b), we

evaluate the effect of labelling rules including the Frobenius norm, referred to as the FN Rule,

the Frobenius norm using the modified labeling algorithm presented at the end of Section V-B,

referred to as the MFN Rule, and the design based on the UBPOP, referred to as the UBPOP

Rule, for 4 bpcu. A summary of the compared SPM design rules and the corresponding figure

numbers are mentioned in Table. II. For all curves, Ntot = 1024 bits and Rtot = 1/2.We observe

that for the MLPCM with GC, the SPM designed using the MFN Rule, improves the FER by

about 2 dB in comparison to the FN Rule at a FER of 0.01. Moreover, for TV GC, SPMs

designed using the MFN and UBPOP Rules work 1.2 and 1.7 dB better than the SPM generated

using the FN Rule, respectively.

In Fig. 4(a), we provided the compression of GD and GC at 7.2 bpcu for the total code length
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Fig. 3: a) FER comparison of BITCM and MLPCM with GA, and MLPCM with GB designed

using the rank and determinant criteria (RD), mutual information (MU), outage probability (OP),

and the joint design (JD) Methods, and the Alamouti code for 2 bpcu and Ntot = 512. b) FER

comparison of MLPCM with GC designed using the Frobenius norm (FN), modified Frobenius

norm (MFN), and UBPOP rules for SPM generation and GE designed using the OP Method, all

for 4 bpcu and Ntot = 1024.

TABLE II: Summary of compared SPM design rules and the corresponding figure numbers.

STBC Alamouti GA GB GC GC, TV GD GD, TV GE GF GF, TV

Frobenius norm (FN) 3-a 3-a 3-a 3-b,4-b 3-b 4-b 4-b

Modified Frobenius norm (MFN) 3-b,4-b 3-b,4-b 4-a 4-a 3-b

UBPOP 3-b 4-a

of 128 bits and Rtot = 9/10. The results indicate that at a FER of 0.001, the MLPCM with TV

GD designed using the OP Method outperforms MLPCM with GC and TV GC by 0.8 dB and

0.6 dB, respectively. Furthermore, for MLPCM with TV GD, optimization using the JD Method

provides 0.2 dB improvement over the OP Method. It is clear that the joint optimization of polar

codes and STBCs for all code rates can slightly improve the performance in comparison to the

outage probability based optimization. Also, by comparing Fig 4(a) with Fig. 1(b), we realize

that the order of curves in terms of the FER is the same as that of the outage probability curves.

Finally, the comparison of MLPCM with GC and GF for 6 bpcu by setting Ntot = 256,
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Fig. 4: a) FER comparison of MLPCM with GC and GD designed using the OP and JD Methods,

all for 7.2 bpcu and Ntot = 128. b) FER comparison of MLPCM with GC and GF designed using

the JD Method, all for 6 bpcu and Ntot = 256 in a 3 × 3 antenna configuration.

Rtot = 1/2 and Nt = Nr = 3 is shown in Fig. 4(b). We observe that for MLPCM with GC,

employing the MFN Rule improves the performance by 0.3 dB in comparison to the FN Rule

at a FER of 0.01. This improvement is less than what we have observed for Nr = 2 antennas in

Fig. 3(b) since as Nr increases, the diversity order increases and eventually the Frobenius norm,

as the measure for designing SPM, becomes optimal. In addition, MLPCM with GF and TV GF

optimized using the JD Method work 0.5 and 0.6 dB better than MLPCM with GC and TV GC,

respectively.

VIII. CONCLUSION

In this paper, we improved the space-time signal design for multilevel polar coding as a low

complexity power-efficient scheme for slow broadcast channels. To do so, we first optimized

STBCs for MLPCM by minimizing the outage probability at a target outage or SNR. The method

includes limiting the number of free parameter of STBCs by using power and shaping conditions

and employing a modified PSO algorithm to find other parameters. In addition, we showed

that the outage probability of all levels of MLC/MSD should be optimally equal under certain

conditions and based on that we proposed an outage rule for determining component code rates.

Furthermore, to design SPM we derived an upper bound on the pairwise outage probability that

can model both slow- and fast-changing parameters of the system and the channel. We showed
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employing this bound to generate SPM for TVSBCs can substantially improve the performance

up to 1.7 dB compared to the Frobenius norm. Due to the similarity of SPMs generated using

the derived bound to those generated using the Frobenius norm for SBCs, we further proposed

an algorithm to modify pairwise measures that decreased the FER up to 2 dB.

We also proposed a novel approach to jointly optimize multilevel polar codes and STBCs.

For the joint optimization of polar code and STBCs, here, we first change the parameters of a

STBC to create a new STBC; then we generate a new SPM using a set-partitioning algorithm

and repeat the code design procedure for the new STBC until we find an information set and

the corresponding parameters of the STBC that minimize the FER jointly. The modified PSO

can be employed for the joint optimization as well. The numerical results show an improvement

compared to STBCs, SBCs and TVSBCs designed using the rank and determinant criteria. For

future work, algorithms could be extended to a variety of alternative channel models, including

correlated and multi-path fading channels.

APPENDIX A

THE PROOF OF THE BOUND (19)

We begin with simplifying the Bhattacharyya coefficient for the space-time signal model in

(1). By substituting (2) and using [38, Lemma. 1], (16) can be simplified as

ρ̂i,j = exp(
−∣∣(Si − Sj)H∣∣2F

4N0

). (24)

Using (16), the upper bound on the outage probability denoted as p(qi,j < ρ̂i,j) can be written

as

p
⎛

⎝
qi,j < exp(

−∣∣∆i,jH∣∣2F

4N0

)
⎞

⎠
. (25)

Taking ln of qi,j and ρ̂i,j , (25) can be simplified as

p(∣∣∆i,jH]∣∣2F < −4N0 ln(qi,j)). (26)

In (26), the left hand side of the inequality can be written as

∣∣∆i,jH∣∣2F = ∑
nr

∑
l

∣∑
nt

δl,nthnt,nr ∣
2

. (27)

The term Λ inside of ξl,nr = ∣∑nt
δl,nthnt,nr ∣

2 = ∣Λ∣2 in (27) can be algebraically extended to the

real and imaginary parts. Each real and imaginary part is the weighted sum of terms including

real or imaginary part of an element of H denoted as hnt,nr . Therefore, both real and imaginary

parts are the sum of Gaussian random variables and consequently have Gaussian distribution.
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Since the real and imaginary parts of ξl,nr are Gaussian random variables and their correlation

turns out to be zero, their sum is distributed according to a central chi-squared distribution with

two degrees of freedom. In case of SBCs, (27) is simplified to ∑nr
∣∑nt

δ1,nthnt,nr ∣
2 in which for

different receive antennas, the term ξ1,nr is independent of others. Therefore, the distribution of

sum of ξ1,nr is the sum of chi-squared distributions with two degrees of freedom which in turn

is a chi-squared distribution with 2Nr degrees of freedom and µ2 = ∑nr
µ2,nr where µ2,nr is the

variance for each receive antenna. The variance of the each real and imaginary part of Λ in ξ1,nr

is µ2 = 0.5∑nt
∣δ1,nt ∣

2. From (26), the outage is the CDF of this distribution expressed in (19).

APPENDIX B

DERIVATION OF THE APPROXIMATION (20)

In this section, we use the definitions in Appendix A. In case of STBCs, for each receive

antenna, (27) can be simplified as ∑l ξl,nr which includes L correlated terms. Since ξl,nr has a

gamma distribution, for L = 2, ∑l ξl,nr is distributed according to a type I McKay distribution

[39]. For L > 2, the general expression ∑l ξl,nr is the sum of correlated gamma random variables

and is distributed according to a complex infinite power series [40]. As a computationally cheap

yet accurate approximation, the sum of correlated gamma random variables can be accurately

approximated as a gamma random variable by matching the first two moments [41]. In a few

straightforward steps, these moments can be derived as (21) and the CDF is expressed in (20).

APPENDIX C

DERIVATION OF THE APPROXIMATION (22)

The Bhattacharyya coefficient in (24) for one receive antenna by considering TV sequences

can be expressed as

ρ(Si,Sj ∣H,θ) = exp( −
1

4N0

∣∑
nt

δ1,nthnt,nre
θnt ∣

2

). (28)

Due to the fast-changing nature of TV sequences and assuming the code length tends to infinity,

the integral over ρ(Si,Sj ∣H,θ) can be taken as

∫
θ
exp( −

1

4N0

∣∑
nt

δt,nthnt,nre
jθnt ∣

2

)
dθ

(2π)Nt
= exp( −

1

4N0
∑
nt

∣δ1,nthnt,nr ∣
2)∫

θ

exp(−Fnr(∆i,j))

(2π)Nt
dθ,

(29)

where

Fnr(∆i,j) =
2

4N0

Re{
Nt

∑
u=1

Nt

∑
v=1
δ1,uδ1,vhu,nrhv,nre

−θ̂}, (30)
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in which θ̂ = θu − θv and (2π)−Nt is the density function of θ which is uniformly distributed in

range [0,2π]. Taking the general form of the integral ∫θexp(− 1
4N0

Fnr(∆i,j)) in (29) is difficult.

However, for Nt = 2, it can be simplified as

I0(
1

2N0

∣δ1,1δ1,2∣), (31)

where I0 is the modified Bessel function of the first kind with zero order. To estimate the upper

bound on the outage probability, we take the logarithm of the Bhattacharyya coefficient in (26).

Similarly, for Nt = 2 and Nr = 1 by taking the logarithm, the left hand side of (26) is simplified

as
1

4N0
∑
nt

∣δ1,nthnt,nr ∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Part 1

− ln (I0(
1

2N0

∣∏
nt

δ1,nthnt,nr ∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Part 2

). (32)

In (32), ln (I0(x)) can be estimated using piecewise linear approximation given as

ln(I0(x)) ≈ a1x + a2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0.12x 0 < x ≤ 0.5,

0.35x − 0.12 0.5 < x ≤ 1,

0.59x − 0.37 1 < x ≤ 2,

0.8x − 0.81 2 < x ≤ 4,

0.92 − 1.3 x ≥ 4.

(33)

Note that for x > 4, the linear approximation remains valid for a wide range and thus, for

designing a SPM, δ1,nt or the signal energy can be adjusted to lie in this region.

Finding an exact distribution for (32), as discussed in [32], is difficult. Alternatively, to find a

close distribution for a given pair of STBC points, the empirical distribution in (32) is generated

and compared with a large number of classes of distributions and the one with the lowest

Kullback-Leibler divergence is chosen. To find a distribution that works well on average for

all points of the STBC, the average Kullback-Leibler divergence over all STBC points is used.

Thus, the measure to choose the distribution is given as

1

22B ∑
u
∑
v
∑
i

Pi(Su,Sv) log2 (
Pi(Su,Sv)
Qi(Su,Sv)

), (34)

where Pi(Su,Sv) and Qi(Su,Sv) are the ith elements of the vector of probability values of the

tested and empirical distributions, respectively. After testing a large number of classes of one and

two parameters distributions, the log-normal distribution is chosen to model the distribution in

(32). To find the parameters of the under-test distribution, we match the first two moments. Note
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that although three parameter distributions may better model the empirical data, matching their

first two moments may be difficult. For Nr > 1, Part 1 in (32) changes to 1
4N0

∑nr∑nt
∣δ1,nthnt,nr ∣

2

and Part 2 should be extended as − ln(I0(
1

2N0
∣∑nr

δ1,1h1,nrδ
∗
1,2h

∗
2,nr

∣)). The matched CDF and

the first two moments are presented in (22) and (23), respectively. To observe the difference of

the empirical and the matched log-normal CDFs refer to [32, Figure 7.11].
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