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ARTICLE

Subtle changes in chromatin loop contact
propensity are associated with differential gene
regulation and expression
William W. Greenwald1, He Li2,8, Paola Benaglio3, David Jakubosky4,5, Hiroko Matsui2, Anthony Schmitt6,

Siddarth Selvaraj6, Matteo D’Antonio 2,7, Agnieszka D’Antonio-Chronowska2, Erin N. Smith3 &

Kelly A. Frazer2,3

While genetic variation at chromatin loops is relevant for human disease, the relationships

between contact propensity (the probability that loci at loops physically interact), genetics,

and gene regulation are unclear. We quantitatively interrogate these relationships by com-

paring Hi-C and molecular phenotype data across cell types and haplotypes. While chromatin

loops consistently form across different cell types, they have subtle quantitative differences in

contact frequency that are associated with larger changes in gene expression and H3K27ac.

For the vast majority of loci with quantitative differences in contact frequency across hap-

lotypes, the changes in magnitude are smaller than those across cell types; however, the

proportional relationships between contact propensity, gene expression, and H3K27ac are

consistent. These findings suggest that subtle changes in contact propensity have a biolo-

gically meaningful role in gene regulation and could be a mechanism by which regulatory

genetic variants in loop anchors mediate effects on expression.
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Chromatin loops colocalize regulatory elements with their
targets1–15 by bringing genomic regions that are distant
from one another in primary structure close together in

3D space16. These colocalized regions, also known as loop
anchors, are preferentially enriched for disease associated
distal regulatory variation and expression quantitative trait loci
(eQTLs)17–22. While it has been shown that the physical 3D
distance between looped loci can vary16,23–25, previous studies
examining cell type and haplotype differences in looping have
considered loops to be either present or absent, rather than a
quantitative phenotype. Thus, the extent to which quantitative
differences between chromatin loops exist, and whether they are
associated with differences in gene expression and regulation, has
yet to be explored.

Bulk chromatin conformation assays (e.g., 3C, 4C, and Hi-C)
were designed to measure physical contact frequency between two
pieces of colocalized (i.e., looped) DNA in a pool of cells. While a
recent single-cell Hi-C study found that contacts occur within
single cells at loops called from bulk data, there was variability in
the contact profiles of looped loci between cells26. Together, this
suggests that the contact frequency measured in a pool of cells
reflects the proportion of cells in which a contact is occurring, or
the probability for the contact to occur (contact propensity)
across all cells in the sample. Investigating contact frequency as
measured by Hi-C, in combination with molecular phenotypes,
may reveal if contact propensity between looped loci varies across
cell types and haplotypes, and if this variation is associated with
differential regulation of gene expression.

If contact propensity between looped loci does in fact play a
role in gene regulation, a genetic variant that affects contact
propensity would likely have a downstream effect on gene
expression. Therefore, the association between contact propensity
and gene expression would exist not only across cell types, but
also across haplotypes. Recent studies examining whether chro-
matin loops vary across haplotypes, and the functional con-
sequences of this variation, have come to conflicting conclusions.
Rao et al.2 created and phased the GM12878 Hi-C map (which is
the highest-resolution map currently available) to study differ-
ences in looping across haplotypes, and did not observe differ-
ences between the paternal and maternal haplotypes outside of
imprinted regions. Other more recent studies employing CTCF
ChIA-PET5 and H3K27ac Hi-ChIP27 have reported that allelic
imbalance in chromatin looping occurs throughout the genome.
These contradictory results are likely due to the experimental
design and types of effects examined in these studies. Rao et al.2

used Hi-C data to look for large differences across haplotypes,
and thus may have missed smaller effects. The studies using
ChIA-PET and Hi-ChIP sought to identify allelic imbalance of all
sizes, but employed experimental approaches that may be biased
as they simultaneously measure either CTCF binding or reg-
ulatory region activity and chromatin looping, thereby conflating
the allelic bias of the two phenotypes. A genome-wide quantita-
tive analysis into allele-specific chromatin looping using phased
Hi-C would enable the unbiased estimation of the magnitude at
which contact propensity varies across haplotypes at all types of
chromatin loops (rather than only those at promoters and/or
enhancers). Additionally, integrating this data with phased gene
expression and H3K27ac data could provide evidence that contact
propensity plays a role in long-range gene expression regulation,
and provide insight into how regulatory genetic variants may
influence chromatin structure.

In this study, we generate a resource of phased, high resolution
Hi-C chromatin maps from induced pluripotent stem cells
(iPSCs) and iPSC-derived cardiomyocytes (iPSC-CMs) from
seven individuals in a three-generation family for whom we have
50× whole-genome sequence (WGS), and phase gene expression

(RNA-seq) and enhancer activity (H3K27ac ChIP-seq) data
generated from the same iPSCs and iPSC-CMs. We identify
chromatin loops, quantitatively characterize cell-type-associated
looping, and find that while loops tend to be present in both cell
types, some loops exhibit significantly increased contact pro-
pensity within one cell type. We show that these quantitatively-
identified cell-type-associated loops (CTALs) recapitulate known
biology discovered through previous qualitative comparisons of
cell-type-specific loops, including being enriched for differentially
expressed genes and regulatory regions, becoming more specia-
lized throughout differentiation, and connecting distal eQTLs to
their target gene. Additionally, our quantitative analyses reveal
that small magnitude changes in contact propensity are pro-
portionally associated with large changes in molecular pheno-
types: an association that could not be identified by qualitative
comparisons. We next examine allelic differences in contact
propensity by phasing our Hi-C data, and find that haplotype-
associated chromatin loops (HTALs) are highly enriched for
imprinted regions or for being associated with copy-number
variation, but not for eQTLs, suggesting that regulatory genetic
variants do not exert large effects on chromatin contact pro-
pensity. Finally, we examine the association between differential
contact propensity and differential gene expression and H3K27ac
over a range of magnitudes across both cell types and haplotypes
by quantitatively associating the phenotypes in aggregate across
the genome. These analyses reveal a genome-wide proportional
relationship between differential contact propensity and differ-
ential expression and H3K27ac that is consistent across cell types
and haplotypes. Our study therefore suggests that the cellular
context of a chromatin loop (i.e., cell type, genetics, etc.) affects
the propensity for an interaction at a loop to occur, and that these
small changes in contact propensity are associated with large
functional effects. This model suggests that regulatory genetic
variation could mediate its effects on gene expression through
subtle modification of contact propensity at chromatin loops.

Results
Sample and data collection. Molecular data was obtained from
iPSCs and their derived cardiomyocytes (iPSC-CMs) from seven
individuals in a three-generation family from iPSCORE (the iPSC
collection for Omics REsearch)28 (Figure 1a, Supplementary
Table 1). Fibroblasts from these seven individuals were repro-
grammed using non-integrative Sendai virus vectors29, from
which eleven iPSC lines were generated and subsequently dif-
ferentiated into 13 iPSC-CM samples using a monolayer-based
protocol30. From the eleven iPSC and 13 iPSC-CM samples, we
generated chromatin interaction data via in situ Hi-C2. Addi-
tionally, from these and other iPSC and iPSC-CM samples from
the same seven individuals, we integrated functional genomic
data that was generated as part of a concurrent manuscript31

(RNA-seq for gene expression, H3K27ac ChIP-seq for enhancer
activity, and ATAC-seq for chromatin accessibility; Fig. 1b; see
Methods) which also describes the differentiation efficiency and
quality of all iPSC and iPSC-CM lines used in this study. Finally,
we obtained single-nucleotide variants (SNVs) and somatic and
inherited copy-number variants (CNVs) for the seven individuals
from ~50× WGS and genotype arrays from previously published
work28,32.

Identification of chromatin loops in iPSCs and iPSC-CMs. We
characterized the 3D chromatin structure of iPSCs and iPSC-CMs
by identifying chromatin loops in each cell type genome-wide.
From the in situ Hi-C data, we obtained 1.74 billion long-range
(≥ 20 kb) intra-chromosomal contacts after aligning and filtering
~6 billion Hi-C read pairs across all 24 Hi-C samples
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(Supplementary Figure 1A, Supplementary Table 2). We per-
formed hierarchical clustering of the contact frequencies by cell
type across individuals and observed high correlations within
each cell type both by Pearson correlation, and by correcting for

Hi-C biases via HiCRep33 (Supplementary Figure 1B). To identify
a set of reference loops for downstream quantitative analyses, we
combined the Hi-C data within each cell type to obtain a com-
prehensive set of loops from high-depth data. We pooled the data
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across samples for each cell type, resulting in reference chromatin
maps with the highest resolution (~2 kb matrix resolution,
defined as the resolution at which 80% of loci have 1000 or more
contacts with any other locus2) in iPSCs and iPSC-CMs (or any
other iPSC-derived cell type) to date, and were comparable in
resolution to the Hi-C map in GM128782 (Fig. 1c & Supple-
mentary Figure 1C). As loop calling algorithms often identify
distinct loops, and are dependent on the resolution parameters
specified for their analysis34, we called chromatin loops from
these maps utilizing two algorithms (HICCUPS and Fit-Hi-C) at
multiple resolutions, identifying 17,567 loops in iPSCs (iPSC
called loops), and 19,003 iPSC-CM loops (iPSC-CM called loops;
Supplementary Data 1 & 2). We examined the overlap of the loop
calls between cell types (Fig. 2a) and found that 37.1% of the total
26,679 loops were called in both cell types (Fig. 2b). These
findings were consistent with previous studies investigating dif-
ferential presence of loops between cell types2,35. To examine
whether these loops were predominantly demarcating TADs, or
were separate from TAD structure, we also called TADs in both
cell types and examined the number of loops that had both
anchors within 25 kb of TAD boundaries. We found only 2.9% of
iPSC loops, and 5.1% of iPSC-CM loops, to have both anchors at
TAD boundaries, indicating that these loops were primarily not
demarcating TADs. These iPSC and iPSC-CM called loop sets
provide a resource for the analysis of long-range gene regulation
across the genome.

Called chromatin loop sets contain a variety of loop types. To
characterize the types of chromatin loops that comprised the loop
sets, we examined the distribution of H3K27ac and ATAC peaks,
CTCF motifs, and ROADMAP chromatin states from the most
epigenetically similar cell type31 (iPSC for iPSCs; fetal heart for

iPSC-CMs) near loop anchors. In both cell types, we found
enrichments for active and bivalent chromatin states (Fig. 2c &
Supplementary Figure 1D), H3K27ac (Fig. 2d left & Supple-
mentary Figure 1E), and chromatin accessibility (Fig. 2d middle
& Supplementary Figure 1F) from their respective cell type above
shuffled null loop sets. Additionally, we found that 45.5% of loops
had CTCF motifs at both anchors, and that across all loops,
CTCF motifs were centrally enriched at anchors (Fig. 2d right).
As seen in Rao et al.2, the vast majority of loops (85.3%) with
CTCF motifs at both anchors had inward facing CTCF motifs.
Further, 63.3% and 65.3% loops in iPSC and iPSC-CMs, respec-
tively, were within 25 kb of a CTCF ChIA-PET interaction from
GM128785. We next examined the types of chromatin states that
were statistically significantly paired together (Fisher’s exact p <
0.05) and found two subnetworks, one with active chromatin
states and the other with repressed or bivalent chromatin, which
were discrete in iPSC-CMs (Fig. 2e) and crossed over through the
bivalent states in iPSCs (Supplementary Figure 1H). This cross-
over, which was only present in iPSCs, is consistent with the role
of bivalent and polycomb chromatin in pluripotency36–38, the
role of bivalency in maintaining stem cell region connectivity38,
and with the shift of active states to bivalent and polycomb during
differentiation and chromatin rewiring39. This result suggests that
these specialized roles of bivalent and polycomb chromatin
extend to the fine-scale aspects of chromatin architecture,
including loops. We next examined the consistency of these loops
with previously identified promoter loops from promoter-capture
Hi-C (pHiC) and found 28.7% and 33.5% of iPSC and iPSC-CM
loops to be within 25 kb of a pHiC interaction in these cell types,
respectively. Together, these results indicate that the identified
chromatin loops include those with active regulatory interactions
(e.g., promoter–enhancer interactions), those with repressive
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interactions (e.g., polycomb complexes), those that are structural
(CTCF-CTCF), and those with a variety of other types of chro-
matin states (that were not significantly enriched for being paired
together) at their anchors.

Quantification of differential looping between cell types. Sta-
tistical methods for finding differential loops across conditions
remains a largely open question in the field of chromatin archi-
tecture34. We found a large proportion of loops which were dif-
ferentially called, but visually appeared to consistently form
across cell types (Fig. 3a). Thus, to determine if the chromatin
loops called in only one of the cell types specifically formed
within that cell type, or whether they were also present in the
other cell type but not called for technical reasons, we performed
a quantitative comparison of the subjects’ contact frequencies
between the iPSC and iPSC-CM using edgeR40–42. For all loops,
identified in either one or both cell types, we first compared the
total normalized contact frequency (log2 counts per million,
logCPM, obtained via edgeR) of the interactions between both
cell types. We observed that the majority of loops that were called
in both cell types (gray in Fig. 3b left) had high logCPMs in both
cell types, whereas the loops that were only called in a single cell
type (blue or red in Fig. 3b left) tended to have overall low
logCPMs and often showed highly similar contact intensities
between cell types. We did not observe, however, loops with a
high logCPM in one cell type, and a very low logCPM in the
other. These patterns were similar within subjects, suggesting that
these subtle modulations in logCPM across cell types were not
due to the combination of data across individuals (Supplementary
Figure 2). These results indicate that chromatin loops that were
called as differentially present or absent between cell types were
often of low logCPM, and were therefore likely to be incon-
sistently identified by the loop calling algorithms. Thus, the dif-
ferences in the loop sets between the two cell types were not due
to the establishment of novel loops present in only one cell type.
We therefore identified loops that showed quantitative differences
between iPSCs and iPSC-CMs by statistically comparing nor-
malized read counts across cell types at each loop identified in
either cell type (edgeR glmQLFit on trimmed mean of M values,
TMMs, q < 0.01). These CTALs were identified across a range of
logCPM levels and were distinct from those called within each
cell type (Fig. 3b right). This analysis resulted in four loop sets
(Supplementary Data 3): (1) all loops called in any cell type
(union loop set, total: 26,679), (2) loops with statistically higher
contact frequency in iPSCs (iPSC cell-type-associated loops;
iPSC-CTALs, total 2906), (3) loops with statistically higher con-
tact frequency in iPSC-CMs (CM-CTALs, total 2915), and (4)
loops that were not statistically significantly different between the
two cell types (non-CTALs, total 20,858). To determine whether
3D architecture at a compartment level contributed to these
differences, we identified A and B compartments2 and partitioned
the loops by their location in both cell types. While we found
increased contact propensity within A compartments relative to B
compartments in both cell types (Supplementary Figure 3A), the
percent of variance in logCPM explained by compartment dif-
ferences was only 0.009 (Supplementary Figure 3B). Additionally,
we found that the CTAL distribution was consistent across all
types of anchor-compartment-cell type combinations (Supple-
mentary Figure 3C). These results suggest that compartment
differences did not drive CTALs. Overall, these analyses establish
cell-type-associated loop sets for future analyses.

CTALs are associated with differentiation regulatory changes.
Previous studies which qualitatively identified cell-type-specific
loops have reported that chromatin architecture becomes more

specialized and cell type specific during development35,43,44. We
examined the physical and regulatory characteristics of iPSC-
CTALs and CM-CTALs to determine if these quantitatively-
identified loops recapitulated these same properties. We observed
that CM-CTALs were overall significantly larger (Mann–Whitney
p < 2.2 × 10−16; Fig. 3c) and more complex (i.e., shared more
anchors with one another; Mann–Whitney p < 2.2 × 10−16;
Fig. 3d) than iPSC-CTALs. Additionally, we found active chro-
matin states to be preferentially enriched at smaller (Fig. 3e) and
less complex (Fig. 3f) loops. We examined how the enrichment of
H3K27ac and ATAC-seq signals varied by CTAL status, and
found that within each cell type, CTALs of that cell type and non-
CTALs had the highest H3K27AC and ATAC-seq signal, while
CTALs of the other cell type were least enriched (Fig. 3g). These
enrichments suggest that loops with decreased contact propensity
may be less likely to be involved in gene regulation despite being
present in the cell. Next, we examined whether CTALs for each
cell type were more likely to overlap cell type specific, or cell type
shared, regulatory regions. We found iPSC-CTAL and CM-CTAL
anchors to be enriched for differential active promoters, and
iPSC-CTAL anchors to be enriched for differential active
enhancers (Fig. 3h, red). These enrichments suggest that CTALs
capture cell type specific chromatin dynamics, and are consistent
with active elements shifting to repressed elements during dif-
ferentiation and chromatin rewiring39 (as enhancers from fetal
heart tended to be present in both cell types, but enhancers in
iPSCs tended to be iPSC specific). We also observed that iPSC-
CTAL anchors which overlapped iPSC bivalent enhancers were
more likely to overlap fetal heart bivalent enhancers (Fig. 3h,
blue), but not the converse, consistent with the repression of
active regions of loops during differentiation, and specific use of
bivalent chromatin in iPSCs36,37,39. Overall, these findings show
that CTALs were enriched for cell type specific functional and
regulatory regions.

Functional characterization of CTALs. To analyze whether
CTALs recapitulated the functional differences between qualita-
tively identified cell-type-specific loops, we examined the rela-
tionship between contact propensity and eQTLs, differential gene
expression, and differential epigenetics across cell types. We first
examined whether loops which colocalize iPSC-eQTLs (pre-
viously identified from a cohort including these individuals32) to
the genes that they were statistically associated with (eGenes) had
stronger contact intensities within iPSCs than iPSC-CMs. We
found a strong enrichment (Mann–Whitney U test p ~1 × 10−293)
for increased iPSC:iPSC-CM contact frequency ratio above non-
eQTL-eGene loops (Fig. 4a), indicating that loops with higher
contact propensity in a cell type may be more likely to harbor
functional genetic variation. Next, we examined whether differ-
ential molecular phenotypes were preferentially located at CTAL
anchors. We identified differential H3K27ac peaks and genes
using ChIP-seq and RNA-seq data generated from iPSC and
iPSC-CM samples from the same seven individuals (see Meth-
ods). We obtained a total of 23,570 differential H3K27ac peaks
(DE peaks) and 5307 differential genes (DE genes) between iPSCs
and iPSC-CMs. We found that DE genes and DE peaks were
preferentially located at CTAL anchors (Fisher’s exact p < 0.05,
Fig. 4b) compared to the union loop set. Together, these results
show that CTALs (loops with quantitative differences in contact
propensity across cell types) are associated with cell-type-specific
functions, and are consistent with previous reports that used
qualitatively identified cell-type-specific loops.

Subtle looping changes are associated with gene regulation.
Next, we examined the quantitative association between contact
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propensity and differential expression, as well as the quantitative
association between contact propensity and differential H3K27ac,
across cell types. We tested whether the fold change in contact
frequency across cell types was in the direction of the cell type
with higher differential expression or H3K27ac. We found that
across the union loop set, anchors overlapping DE genes with
higher expression in iPSCs had significantly greater contact

frequency in iPSCs, and anchors overlapping DE with higher
expression in iPSC-CMs had significantly higher iPSC-CM con-
tact frequency; similar patterns were found for DE H3K27ac
peaks (Mann–Whitney U test p < 0.05; Fig. 4c left). To establish
that this association was due to the differences in contact pro-
pensity, rather than driven by loops that were differentially called
between the two cell types, we examined whether this association
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was still present within only the loops that were called in both cell
types (i.e., the intersection of iPSC-CM and iPSC called loops).
We found that the statistically increased contact frequency
(Mann–Whitney U test p < 0.05) in the upregulated cell type
remained within this set of loops, though the extent of the dif-
ferences in chromatin looping were smaller (Fig. 4c middle).
Thus, we next examined whether these differences could be
observed at non-CTALs (i.e., loops with non-significant differ-
ences across cell types) and found that these loops were still
significantly stronger in the expected direction when they over-
lapped a DE molecular phenotype at their anchor (Fig. 4c right).
These results suggest that subtle variation in chromatin looping
across cell types may be functional. Finally, to examine whether
chromatin loop contact propensity proportionally varied with the
strength of gene expression differences between cell types, we
examined the correlation between fold changes in gene expression
and chromatin loop contract frequency at loops with anchors
overlapping promoters of differentially expressed genes (Fig. 4d).
We observed a significant correlation (r= 0.158, p < 1.6 × 10−30)
between the two phenotypes; however, the magnitudes at which
the phenotypes varied were quite different, with gene expression
varying up to 250-fold, and the middle three quantiles of chro-
matin looping varying less than threefold. For these analyses, we
pooled data across the genome to measure the association
between contact frequency and gene expression, independent of a
particular locus; therefore, this analysis compares the relationship
between contact propensity and gene expression in aggregate
across the genome. As each pair of fold change measurements
between contact frequency and gene expression are from the
same locus in two different cell types, locus specific biases based
on the linear genome which affect Hi-C read depth (number of
restriction enzyme sites near the anchors, anchor GC content,
and mapping uniqueness)45 are held constant. Overall, these
results suggest that small magnitude changes in contact pro-
pensity may be functional as they are associated with large
magnitude changes in gene expression across cell types.

Haplotype-based interrogation of loops and gene regulation.
To enable the functional characterization of haplotype-specific
chromatin looping, we phased the Hi-C, H3K27ac, and RNA-seq
data to obtain haplotype-associated phenotype data (Supple-
mentary Data 4–14). We first phased the WGS genotype data for
these seven individuals using a combination of Hi-C-based
phasing and family structure, resulting in an average of 2.01 M
phased heterozygous variants per individual (Supplementary
Figure 4, see Methods). Next, we assigned informative reads from
H3K27ac and RNA expression to each individual’s maternal or

paternal haplotype using MBASED46, and then identified sig-
nificant peaks or genes with allele-specific effects (ASE; FDR q <
0.05) within each individual using a binomial test. We identified a
total of 189 ASE peaks (mean 43 per individual) in iPSCs and 618
ASE peaks (mean 119 per individual) in iPSC-CMs, and 2582
ASE genes (mean 647 per individual) in iPSCs and 2214 ASE
genes (mean 503 per individual) in iPSC-CMs.

To characterize haplotype-specific chromatin looping, we per-
formed a genome-wide analysis to identify haplotype-associated
chromatin loops with consistent significant allelic imbalance
(haplotype-associated loops; HTALs) across individuals. Within
each cell type, for each individual, we assigned informative Hi-C
contacts carrying a phased allele to each haplotype (Fig. 5a) and
examined allelic imbalance across all loops. Next, for each individual,
we identified imbalance via a Z score using a half-normal
distribution (as well as using the computational framework WASP;
see Methods and Supplementary Figure 7 for details of comple-
mentary analysis), following which we combined the p-values across
individuals with Fisher’s method for meta-analysis. This process
identified 54 total HTALs: 27 from iPSCs, and 27 from iPSC-CMs.
We first examined whether these 54 HTALs were enriched for being
CTALs of either cell type and found no significant enrichments
(Fisher exact p > 0.05). We next examined whether the HTALs were
truly cell type specific or if the sparsity of the Hi-C data statistically
limited our ability to detect allelic loop imbalance present in both cell
types. For each of seven individuals, we determined the individual’s
maternal allele ratio for each of the 27 iPSC HTALs using the iPSC
Hi-C data, as well as the maternal allele ratio using the iPSC-CMHi-
C data (Fig. 5b; Supplementary Figure 5A). We then repeated this
process at each of the 27 iPSC-CM HTALs (Fig. 5c; Supplementary
Figure 5B). For both cell types, we found the maternal allele ratios to
be highly correlated with the other cell type across all individuals
(0.73 < Pearson’s r < 0.97), which suggests that loop imbalance was
consistent across both cell types. As we observed that the maternal
allele frequencies were highly correlated across cell types, to increase
power for these analyses, for each of the 26,679 chromatin loops in
the union set, we pooled contacts for each individual across their
corresponding iPSCs and iPSC-CMs. We observed a median of 50
informative contacts per individual per loop, which corresponds to
100% power to identify HTALs with an allelic imbalance ratio of
70% or higher with α= 0.02 in an individual (Supplementary
Figure 5C), or at α= 2 × 10−5 when all samples display similar
imbalance and are combined with Fisher’s method meta-analysis.
Within each subject, a mean of 6.08% of all chromatin loops showed
significant imbalance at p < 0.05 (Z score on a half-normal
distribution; see Methods), slightly higher than the statistically
expected 5% by chance; however, only a mean of 0.1% (26.6) were

Fig. 4 Quantitative variation in chromatin loops is associated with differential gene expression and H3K27ac across cell types. a Scatter plot showing iPSC
vs. iPSC-CM contact frequencies in counts per million (CPM) for all union loops. The black line indicates the y= x function. Background points indicate
iPSC-CTALs (blue), CM-CTALs (red), and non-CTALs (gray). Overlaid on this are points indicating iPSC eQTL-eGene containing loops (teal). The boxplot
in the lower right corner of the scatter plot shows the fold change between iPSC and iPSC-CM CPMs at non-eQTL loops (gray) or eQTL loops (teal).
Positive values indicate a loop had higher CPM in iPSCs, and negative values indicate a loop had higher CPM in iPSC-CM. The p-value was calculated from
a Mann–Whitney U test. b Barplot showing the percent of CTALs (green) or union loops (blue) which overlap differentially expressed genes or H3K27ac
peaks. P-values were found via a Fisher’s exact test on the underlying counts of differentially expressed genes or peaks between union loops and CTALs.
c Boxplots (all four quartiles shown via lower whisker, lower half of box, upper half of box, and upper whisker; lines indicate median; outliers not shown) of
the log2(fold change) of contact frequency at chromatin loops, with positive indicating higher contact propensity in iPSCs and negative indicating higher
contact propensity in iPSC-CMs for all loops (i), loops called in both cell types (ii), or non-CTALs (iii) with anchors overlapping differentially expressed
genes or H3K27ac peaks with higher expression or counts in iPSCs (blue), higher expression or counts in iPSC-CMs (red), or not overlapping a DE gene or
peak (gray). P-values were calculated via a Mann–Whitney U test. d Boxplot (all four quartiles shown via lower whisker, lower half of box, upper half of box,
and upper whisker; lines indicate median; outliers not shown) showing the log2(fold change) of chromatin loop frequency for chromatin loops overlapping a
differentially expressed gene, binned by the log2(fold change) of the gene. For both expression and chromatin looping, positive indicates stronger counts in
iPSCs, and negative indicates stronger counts in iPSC-CMs. The Pearson correlation and p-value shown were calculated on the raw underlying data
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significant under FDR q < 0.05 in each individual (Fig. 5d). To
identify HTALs which were consistently imbalanced across
individuals, we again combined associations using a Fisher’s method
meta-analysis for each loop, and identified 7.49% of chromatin loops
as HTALs at p < 0.05, indicating that consistent allelic imbalance
occurs more frequently than by chance. However, only 114 HTALs
were significant after multiple testing corrections at FDR q < 0.05
(equivalent to p < 2 × 10−5), showing that even with the increased
power by using the combined cell type data, the majority of loops
had small allelic differences (Fig. 5e). In comparison, we observed
slightly fewer HTALs (N= 89) with the WASP analysis; however,
the majority (83/89, 93%) were found in both sets. These results and
power indicate that while we may not detect all small haplotype

differences (i.e., those with imbalance < 70%), large haplotype
differences in chromatin looping occur infrequently.

HTALs are associated with imprinting and CNVs. We next
examined whether the 114 genome-wide significant HTALs were
statistically more likely to be a specific type of loop, or overlap
genomic features previously shown to be associated with differential
chromatin looping (imprinted genes2,5 and somatic and inherited
CNVs20,47; Supplementary Table 3). We first hypothesized that
chromatin loops that were variable across cell types may be more
variable in general, and thus HTALs would be more likely to be
CTALs. We compared the proportion of the 114 HTALs that were
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also iPSC-CTALs, CM-CTALs, iPSC called, or iPSC-CM called
loops to the corresponding proportion of union loops. However, we
found no significant differences for any association (p > 0.05 for all
tests; Fig. 6a). We next examined whether a particular type of loop
was enriched within HTALs (i.e., CTCF loops, promoter–enhancer
loops; see Methods), and found no significant enrichment (FDR q >
0.05); together, these results indicate that loops which varied
between haplotypes were not more likely to be a specific type of
loop. We next compared the distribution of genomic features
known to cause large allelic differences within HTALs and the
union loop set (Fig. 6b). We observed that, compared to the union
loop set, HTALs were statistically more likely to contain imprinted

genes (HTAL: 10.5%; all: 2.7%; Fisher’s exact p= 5.8 × 10−5), and
somatic (HTAL: 7.0%, all: 1.0%; Fisher’s exact p= 1.8 × 10−5) and
inherited (HTAL: 27.2%, all: 18.3%; Fisher’s exact p= 2.03 × 10−2)
CNVs previously identified in these samples32. To examine whether
these trends held across all levels of imbalance significance, we
quantified the extent of association of each genomic feature with
chromatin loop allelic imbalance as a function of HTAL p-value.
For imprinted genes, as the p-value threshold increased, the odds
ratio increased almost log-linearly, whereas CNV overlap increased
but to a lesser extent (Fig. 6c). We next examined the distribution of
the types of CNVs contained within loops by examining the subset
of loops which contained any number of only a single type of CNV
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(Deletion or Duplication, Fig. 6d). While we found deletions to be
enriched above duplications within union loops (Binomial p=
2.41 × 10−257), we found no significant enrichment within HTALs.
Thus, while CNV type was not associated with allelic imbalance,
loop detection may be affected by CNV presence. The observed
pattern of enrichment in deletions is consistent with linearly closer
loci having increased Hi-C contact propensity (as deletions reduce
the linear space between loci) thereby increasing contact frequency
and loop detection power; conversely, duplications increase linear
distance and thus decrease contact frequency and loop detection
power. Thus, it is unclear how much of this enrichment is due to a
technical artefact induced by increased power at deletions. Overall,
these results confirm previous reports which suggested that genetic
imprinting2,5 may be a strong driver allelic imbalance, and suggest
that CNVs may have smaller effects on allelic imbalance in chro-
matin looping.

Regulatory genetic variants and contact propensity. We next
examined whether HTALs were enriched for functional allele-
specific differences by quantifying the enrichment for containing
an ASE gene or ASE H3K27ac peak at their anchors, or for being
a promoter–enhancer (PE) or eQTL-eGene loop. We found ASE
peaks to be enriched at HTAL anchors, and also being a PE loop
to be enriched (Fisher’s exact p < 0.05; Fig. 6e). Notably, despite
the increased percentage of eQTL-eGene loops in HTALs, as only
7 eQTL-eGene loops were HTALs (585 eQTL-eGene loops in

total), this increase was non-significant. To determine whether
regulatory genetic variation was associated with these differences,
we excluded the effects from imprinting and CNVs, and exam-
ined these associations across a range of imbalance thresholds
(Fig. 6f). The removal of imprinted regions and CNVs greatly
attenuated the association, and resulted in a loss of significance
for the two molecular phenotypes and PE loop status over almost
all ranges of imbalance significance. These results suggest chro-
matin loops vary across haplotypes much more subtly (i.e., allelic
ratio < 70%) than gene expression or H3K27ac, and where var-
iation is larger, it is mainly driven by imprinting and/or CNVs.
Additionally, these results show that large allelic imbalances in
chromatin loops are primarily restricted to those located in
imprinted regions or associated with copy-number variation, and
that regulatory genetic variants are not associated with large
changes in contact propensity.

Haplotypes, contact propensity, and gene regulation. As we
observed that subtle differences in contact propensity were
quantitatively associated with large differential regulation of gene
expression across cell types (Fig. 4d), we investigated if similar
small-scale changes in contact propensity across haplotypes were
associated with gene expression and regulation differences. We
first compared the general variability of chromatin loops
(excluding imprinted regions and CNVs) across cell types
(Fig. 7a) to the variability across haplotypes (Fig. 7b). We found
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that more chromatin loops varied to a larger degree across cell
types than across haplotypes: ~35% of loops exhibited a log2 fold
change of 0.5 (1.4-fold) or higher across cell types, whereas only
~5% of loops showed a similar fold change across haplotypes
(Fig. 7c). This result suggests that haplotype-associated differ-
ences are considerably smaller than cell-type-associated differ-
ences. We therefore examined whether the association between
contact propensity and gene expression, or contact propensity
and H3K27ac, was significant and proportionally consistent
across cell types and haplotypes. Across cell types and haplotypes,
we found a positive and highly significant correlation (Pearson
correlation; cell type: p= 2.36 × 10−30, haplotype p= 6.76 × 10−4,
Fig. 7d) between gene expression fold change and chromatin loop
fold change, and between H3K27ac fold change and loop fold
change (Pearson correlation; cell type: p= 6.6 × 10−211; haplo-
type: p= 4.63 × 10−5, Fig. 7e). Similar to the cell type analyses
(Fig. 4d), we found the range at which gene expression and
H3K27ac fold changes occurred to be larger than the range at
which loop fold changes occurred. These consistent associations
between the cell type and haplotypes analyses, as well as the
consistent magnitude differences between looping and molecular
phenotype, suggest that large differences in gene expression and
H3K27ac are associated with small differences in chromatin loop
contact propensity. Additionally, as the association between gene
expression and contact propensity was consistent across haplo-
types, these results suggest that genetic variation could exert
effects on gene expression through small modulation of contact
propensity.

Discussion
Here, we generate a resource of phased genotypes, Hi-C, and
molecular phenotype data in two cell types for seven individuals
who are a part of a three-generation family, and use this data to
perform an in depth, genome-wide, functional examination of
changes in contact propensity across cell types and haplotypes.
These chromosome-length haplotypes, and accompanying phased
data, will enable future studies examining long-range interactions
between multiple genetic variants on the same chromosome.
Additionally, these Hi-C maps are the highest-resolution maps
for human iPSCs and iPSC-CMs currently available and are thus
an important resource for the prioritization of functional variants
and their potential gene targets in these cell types.

We performed quantitative comparisons of contact frequency
across cell types and haplotypes to identify differences in chro-
matin looping, and integrated these differences with quantitative
measures of differential expression and H3K27ac to examine the
functionality of contact propensity. These analyses revealed a
proportional association between contact frequency and gene
expression/H3K27ac, which surprisingly linked the phenotypes
across different magnitudes of variability: extremely subtle
changes in contact frequency were associated with large differ-
ences in gene expression and H3K27ac. If contact propensity at
loops is a fundamental regulator of gene expression, differences in
contact propensity would be expected to be associated with
similarly sized differences in gene expression regardless of the
environment in which the differences occurred (i.e., across cell
type, haplotype, or experimental conditions). As we observed a
consistent relationship between the two, we believe these data
indicate that contact propensity is a mechanism involved in
regulating gene expression, similar to enhancer activity or tran-
scription factor binding strength. Notably, as we identified a non-
directional correlation, contact propensity may either affect, or be
affected by, gene expression and/or regulation.

While the mechanisms underlying changes in contact pro-
pensity are currently unknown, there are several reasonable

hypotheses. Previous studies showing that the physical 3D
structure of the genome can be reconstructed from contact fre-
quency via polymer physics models26,48–51 suggest that differ-
ential contact propensity could result from changes in spatial
proximity. The fact that CTCF and Pol2 ChIA-PET show similar
profiles to Hi-C data5 suggest that differences in protein binding
near loop loci could also affect contact propensity. Finally, as we
found associations between contact propensity and H3K27ac,
regulatory chromatin activity could modulate contact propensity.
Future studies examining these mechanisms could provide
insights into the biological processes underlying differential
contact propensity and gene regulation.

The identification of specific causal variants associated with
differential contact propensity is likely to be challenging, as we
did not find a large number of HTALs with strong effects outside
of imprinted and copy-number variable regions. As the effects of
imprinting are parental in nature, rather than genetic, it is
necessary to search outside of these regions for causal regulatory
variants. In non-imprinted regions, if we interpolate the asso-
ciation between gene expression and contact propensity, the
linear model would suggest that a gene with 98% ASE would be
expected to be associated with a loop imbalance of only ~52%.
This minute difference in loop imbalance provides a possible
explanation for why we did not observe HTALs associated with
gene regulation or ASE, but found a quantitative association
between Hi-C signal and functional phenotypes overall. Addi-
tionally, it suggests that high coverage would be needed to
identify HTALs outside imprinted regions. Thus, for the valida-
tion of specific variants, or identifying loop QTLs, future studies
should consider using an unbiased targeted loop capture assay
with higher sensitivity and targeted coverage than Hi-C, such as
sequence-based pHi-C, and perform quantitative analyses using
these data.

Finally, our work provides some insight into the
ongoing question of whether changes in chromatin looping cause
changes in gene expression, or if changes in gene expression
cause changes in looping1,2,27,35,43,52–55. It has been established
that the creation of new chromatin loops can alter gene expres-
sion56, however, is has been less clear whether altering gene
expression results in meaningful changes in chromatin
loops35,52,57. Evaluating whether chromatin loop changes are
meaningful requires an understanding of the scale at which
functional changes in chromatin loops occur. As our findings
suggest that subtle changes are functional, we believe these dis-
cordant interpretations could have arisen from studies either not
being sufficiently powered to detect small effects, or from dis-
counting small changes as nonfunctional. Our work therefore
provides a foundation for future studies to quantitatively examine
how changes in contact propensity elicit changes in expression
(or vice versa) and suggests that studies designed to detect small
magnitude changes in chromatin loop variability may be needed
to delineate the relationship between chromatin loop imbalance
and gene expression.

Methods
Subject enrollment. The seven individuals used in this study were recruited as part
of the iPSCORE project28. We have complied with all relevant ethical regulations
for work with human participants, and informed consent was obtained. iPSCORE
recruitment was approved by the Institutional Review Boards of the University of
California, San Diego and The Salk Institute (Project no. 110776ZF), and consent
forms were received from each subject. Subject information including sex, age, and
ethnicity were collected during recruitment (Supplementary Table 1). Skin biopsy
was performed to obtain fibroblasts for iPSC reprogramming, and blood samples
were collected for whole-genome sequencing.

iPSC derivation and iPSC-CM differentiation. Cell line derivation and differ-
entiation were performed as described in Benaglio et al.31. From the seven
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individuals, fibroblast samples from skin biopsies were reprogrammed using non-
integrative Cytotune Sendai virus (Life Technologies)29 following the manu-
facturer’s protocol. Each independent reprogramming resulted in one or more
iPSC clones of the subject. At passages 12–13, genomic integrity of at least one
iPSC clone per subject was assessed using Illumina HumanCoreExome arrays, and
pluripotency of iPSCs was assessed for most clones in this study by flow cytometry
of the pluripotency markers SSEA4 and TRA-1-8128. iPSCs of each clone were
harvested between passages 12 and 40, resulting in a total of 38 iPSC samples used
in this study (Supplementary Data 15). Each iPSC clone was then used to generate
multiple independent iPSC-CM differentiations using a monolayer protocol30,
resulting in a total of 27 iPSC-CM samples used in this study. Among these iPSC-
CM samples, 11 of them were subjected to purification via 4 mM sodium L-lactate
at day 15 after the start of differentiation and collected at day 2558; one iPSC-CM
sample was subjected to lactate purification at day 11 and collected at day 16; the
rest of the iPSC-CM samples were not subjected to lactate purification and col-
lected at day 15 (Supplementary Data 15). Across all molecular assays detailed
below, lactate purified and non-lactate purified iPSC-CM samples showed similar
profiles; we therefore combined data across the two protocols. Single-nucleotide
variants (SNVs) and copy-number variants (CNVs) of these individuals were
obtained from ~40× WGS from iPSCORE28 through dbGAP and phs001325.v1.p1,
and from DeBoever et al.32.

Hi-C data generation. For each of the 11 iPSC and 13 iPSC-CM Hi-C samples, we
performed in situ Hi-C on 2–5 million cells. Hi-C libraries were prepared using
in situ Hi-C2. Cells were crosslinked at a final concentration of 1% formaldehyde
and quenched using 200 mM glycine. Crosslinked cells were then lysed and nuclei
were digested with 100 U MboI overnight at 37 °C. Next, fragmented ends were
biotinylated for 90 min at 37 °C, and the sample was diluted and proximity ligated
for 4 h at room temperature. Crosslinks were reversed by the addition of SDS,
ProteinaseK, and NaCl, and allowed to incubate overnight at 68 °C. Samples were
then purified by ethanol precipitation, resuspended in 100 µL 1× Elution Buffer,
fragmented using a Covaris S2 instrument, and size selected using AmpureXP
beads. Subsequently, biotinylated ligation junctions were pulled down using T1
Streptavidin beads. Hi-C libraries were prepared using streptavidin beads by per-
forming end-repair, dA-tailing, and adapter ligation, following which PCR
amplification and purification was performed. The resulting libraries were
sequenced on an Illumina HiSeq 4000 machine to obtain 150 bp paired-end reads.

RNA-seq data generation. RNA-seq data was obtained from Benaglio et al.31.
Specifically, total RNA was isolated using the Qiagen RNAeasy Mini Kit from
frozen RTL plus pellets, including on-column DNAse treatment step. RNA was
eluted in 60 µl RNAse-free water and run on a Bioanalyzer (Agilent) to determine
integrity. Concentration was measured by Nanodrop. Illumina Truseq Stranded
mRNA libraries were prepared and sequenced on HiSeq2500, to an average of 40 M
100 bp paired-end reads per sample. RNA-seq reads were aligned using STAR59

with a splice junction database built from the Gencode v19 gene annotation60.
Transcript and gene-based expression values were quantified using the RSEM
package (1.2.20)61 and normalized to transcript per million bp (TPM).

ChIP-seq data generation and peak calling. H3K27ac data was obtained from
Benaglio et al.31. For H3K27ac, 2 × 106 fixed cells were lysed in 60 µl of MAGnify™
Chromatin Immunoprecipitation System Lysis Buffer (Thermo Scientific) and
sonicated using Bioruptor 200 (Diagenode) for 35–45 min of 30 s on/30 s off cycles.
H3K27ac antibodies (Abcam ab4729, lots GR183922-2 (1.75 µg) or GR184333-2 (1
µg)) were coupled for 2 h to ProteinG Dynabeads (Thermo Scientific), and used for
overnight chromatin immunoprecipitation in IP buffer (1% Triton-X, 0.1% DOC,
1× TE, 1× Roche Complete Proteinase Inhibitor tablets (RCPI)). Beads were
washed five times with washing buffer (50 mM Hepes pH 8, 1% NP-40, 0.7% DOC,
0.5 M LiCl, 1 mM EDTA, and 1× RCPI) and once with TE buffer. DNA was eluted
and reverse crosslinked overnight in elution buffer (10 mM Tris-HCl pH 8, 1 mM
EDTA, 1% SDS) at 65 °C. DNA was purified using Qiagen MinElute PCR Pur-
ification kit, quantified by Qubit (Thermo Scientific) and submitted to library
preparation and barcoding using KAPA Hyper Library preparation kit (KAPA
Biosystems). Libraries were sequenced on an Illumina HiSeq2500 or a HiSeq4000
to an average of 35 M 100 bp paired-end reads per sample.

ChIP-seq reads were mapped to the hg19 reference using BWA62. Duplicate
reads, reads mapping to blacklisted regions from ENCODE, reads not mapping to
chromosomes chr1-chr22, chrX, chrY, and read pairs with mapping quality Q < 30
were filtered. Peak calling was performed using MACS263 (‘macs2 callpeak -f
BAMPE -g hs -B --SPMR --verbose 3 --cutoff-analysis --call-summits -q 0.01’)
using pooled BAM files from all iPSC or iPSC-CM samples and with reads derived
from sonicated chromatin not subjected to IP (i.e., input chromatin) from a pool of
samples used as a negative control.

ATAC-seq data generation and peak calling. ATAC-seq data was obtained from
Benaglio et al.31. Specifically, the ATAC-seq protocol has been adapted from
Buenrostro et al.64. Frozen nuclear pellets of 5 × 104 cells each were thawed on ice,
suspended in 50 μL transposition reaction mix (2.5 μL Tn5 transposase in 1× TD
buffer, Illumina Cat# FC-121-1030), and incubated for 30 min at 37 °C. Reactions

were purified using Qiagen MinElute kit, eluted in 10 μL water and amplified using
the KAPA real-time library amplification kit (KAPA Biosystems) with barcoded
adaptors. PCR reactions were terminated after 10–13 cycles and purified using
AmPure XP beads (Beckman Coulter). Samples were size selected using SPRIselect
beads (Beckman Coulter) to a size range of 150–850 kbp and sequenced on an
Illumina HiSeq2500 to an average depth of 30 M 100 bp paired-end reads.

ATAC-seq reads were aligned using STAR to hg19 and filtered using the same
protocol as for ChIP-seq. In addition, to restrict the analysis to regions spanning
only one nucleosome, we required an insert size no larger than 140 bp, as we
observed that this improved sensitivity to call peaks and reduced noise. Peak calling
was performed using MACS2 on merged BAM files of iPSC and iPSC-CM meta-
samples with the command ‘macs2 callpeak --nomodel --nolambda --keep-dup all
--call-summits -f BAMPE -g hs’, and peaks were filtered by enrichment score (q <
0.01).

Creation and analysis of Hi-C contact maps. For each sample, Hi-C reads were
first aligned to human reference genome hg19 using BWA-MEM (version 0.7.15)62

with default parameters. Forward and reverse reads from the paired-end data were
aligned independently to allow for identification of split reads that represent
ligations between two genomic loci due to spatial proximity2. Paired-end reads
were then reconstructed, processed, and filtered using the Juicer pipeline65,
resulting in the removal of unmapped reads, abnormal split reads (split reads that
cause ambiguous positioning of the contact), read pairs within the same restriction
enzyme fragment, low mapping quality read pairs (MAPQ < 30), and duplicate
reads. Subsequently, read pairs that were less than 2 kb apart were removed to
avoid self-ligated fragments. These filtered read pairs (contacts) were subsequently
used to generate chromatin contact maps for each sample via Juicer. To create Hi-C
contact maps on a per individual basis, contacts were pooled across all samples of a
particular cell type for each individual, and to create maps of iPSC and iPSC-CM,
contacts were pooled across individuals within the respective cell type. These
processes resulted in a set of binary.hic files, which were utilized to obtain raw and
Knight-Ruiz (KR)66 normalized counts as well as normalization vectors of contact
frequency matrices via Juicebox command line tools67 at various resolutions used
throughout this study.

Correlation of Hi-C contact maps between samples. The KR normalized contact
matrices of each sample were retrieved from the.hic files at 1 Mb using Juicebox67.
The contact matrices were then vectorized in order to calculate Pearson correlation
between each of the samples in R. Hierarchical clustering analyses of the Pearson
correlation were performed in R using hclust with default settings and (1− Pearson
correlation) as dissimilarity height. HiCRep was run using the default parameters
on chromosome 22 as suggested by the documentation33.

Identification of chromatin loops. Chromatin loops in iPSC and iPSC-CM were
called using both Fit-Hi-C68 and HICCUPS2,67 as summarized in Supplementary
Figure 6A. For Fit-Hi-C, loops were called in meta-fragment resolutions that each
contained a fixed number of consecutive restriction enzyme (RE) fragments, ran-
ging from 10 to 30 RE fragments. Loop calling procedures for each resolution are
summarized in Supplementary Figure 6B. First, significant interactions (FDR q <
0.01) were identified through jointly modeling the contact probability using raw
contact frequencies and KR normalization vectors with the Fit-Hi-C algorithm
(Step 1). Next, the output of Fit-Hi-C was pruned by requiring that: (1) the
interaction itself was significant; and (2) for each anchor of the interaction, three of
the five immediately upstream or downstream bins from the opposing anchor were
significant (Step 2). We then merged high-confidence interactions within 20 kb
using pgltools69 (Step 3), discarded interactions that did not have any other
interactions within 20 kb, and retained the most significant call at each interaction
event (Step 4).

For HICCUPS, loops were called using fixed-size bin resolutions from 5 to 25
kb at 1 kb bin-size intervals using parameters summarized in Supplementary
Table 4. Briefly, default parameters of peak size (p) and window size (i) were used
to call loops at 5 and 10 kb resolutions provided by HICCUPS67, and parameters
for other resolutions were chosen by linearly scaling the parameters with respect to
the resolution chosen. Specifically, for 6, 7, 8, and 9 kb resolutions, the values of
these two parameters were interpolated from the 5 and 10 kb values, and rounded
to the closest integer. For resolutions >10 kb, the default 10 kb parameters were
used. Following loop calling, as performed by Rao et al.2, for resolutions from 5 to
10 kb, loops within 20 kb were merged using pgltools. For resolutions above 10 kb,
loops within twice the size of the anchor were merged using pgltools. At each
merging event, the loop call with the most statistical significance provided from
HICCUPS output was retained.

Loop calling techniques are known to be technically variable34. We found many
loop calls from both Fit-Hi-C and HICCUPS that were located at random points
throughout the Hi-C matrix far off the diagonal (Supplementary Figure 1C). We
thus developed a procedure to remove these loop calls by examining the number of
resolutions at which the loop was identified. We intersected loop calls across all
resolutions within each calling method, retaining the highest-resolution call at each
intersection event, and filtered out loops present in less than three or seven
resolutions for HICCUPS or Fit-Hi-C, respectively. The loops retained in these
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filtered sets visually appeared to best represent the underlying Hi-C data
(Supplementary Figure 6C). Next, we compared how these filtered sets overlapped
with promoter-capture HiC70 or the Rao et al. loop set and found that using these
filtering criteria resulted in a higher overlap with the retained loops
(Supplementary Figure 6D), suggesting that this filtering strategy removed spurious
loop calls. After this filtering, while we found a large number of loops that
overlapped between Fit-Hi-C and HICCUPS (Supplementary Figure 6E), many
loops were unique to only one caller (Supplementary Figure 6F). We therefore
intersected the loops across calling methods, retaining the loop with the smallest
total anchor size at each intersection event (Supplementary Figure 6G). Overall,
this process retained the smallest resolution loop call for all loops present in either
three HICCUPS or seven Fit-Hi-C resolutions, and resulted in the iPSC called and
iPSC-CM called loop sets.

Identification of TADs. To identify TADs, we utilized the HMM method from
Dixon et al.10 with the Hi-C matrix at 40 kb resolution as recommended. To
determine the percent of loops that were at TAD boundaries, we paired TAD
boundaries sequentially in the file to create a pgl format file, and then used pgltools
intersect to find the percent of loops with both anchors at TAD boundaries.

Identification of compartments. Chromatin compartments were called for each
cell type via Juicer command line tools using the corresponding .hic files where the
first PC of the normalized contact frequency matrices were extracted at 1 Mb
resolution. The signs of the PC eigenvectors were used to stratify each chromosome
into two arbitrary compartments. To determine the activity status of the two
compartments on each chromosome, we counted the number of reads from (1)
RNA-seq, (2) H3K27ac ChIP-seq, and (3) ATAC-seq aligned to each of the 1-Mb
bins from all available samples for each cell type, averaged the read counts across
all samples for each assay in each cell type, and assigned the compartment with
higher average read counts from all the three assays as the active compartment (A)
and the other compartment as inactive compartment (B). While most of the time
all three assays had consistent compartment activity calls, chr21 of iPSC and chr22
of iPSC-CM had inconsistent calls, where we assigned the compartment activity
based on the majority of assays.

Creation of the union loop set. To create the union loop set, we used pgltools
merge to find all loops from the iPSC call set and iPSC-CM call set with both
anchors within 20 kb. This process led to merge events of 1, 2, or 3 loops, which
were resolved as follows: (1) if there was only one loop present within 20 kb (i.e.,
only one loop set had a call), this loop was retained, (2) if there were two loops
present within 20 kb, the loops were merged by pgltools merge, (3) if there were
three loops present, pgltools closest was used to identify which two loops were
closest together; these two loops were merged, and the third loop was retained as its
original call.

Identification of CTALs. After filtering contacts with Juicer, raw contact fre-
quencies for union loops were obtained by intersecting the filtered read pairs from
the 11 iPSC and 13 iPSC-CM Hi-C samples with the union loop set using pgltools
coverage. These raw contact frequencies were used as input in edgeR42, normalized
to remove library size bias using trimmed mean of M values (TMM), and com-
pared between the 11 iPSC and 13 iPSC-CM samples using quasi-likelihood F-test.
By comparing Hi-C read coverages at the same genome loci in two cell types, the
linear genome biases that are known to affect Hi-C are held constant (restriction
enzyme cut site frequency, GC content, and mappability)45. The significant dif-
ferential loops were determined by FDR adjusted q < 0.01.

Creation of null loop sets for functional comparisons. As chromatin loops, and
genome annotations such as chromatin states, are highly structured and depend on
genomic distance both between their own anchors and other chromatin loops, we
used permutation to test for functional enrichment within chromatin loops and at
loop anchors. We generated 1000 null loop sets for both the iPSC called and iPSC-
CM called loop sets to use for statistical analysis, as genome-wide background
levels of genomic traits may not accurately represent a true random distribution of
paired-genomic loci. The null loops were generated for each chromosome by (1)
removing the gap regions on the human reference genome obtained from UCSC
genome browser (https://genome.ucsc.edu/) and updating the loop positions
according to this no-gap-genome; (2) sliding the loop positions on the no-gap-
genome for a consistent random distance d such that 2 Mb < d < chromosome
size - 2 Mb for each null set; and (3) gap regions were added back to the genome,
null loop positions were updated back to hg19. In step 2, when loop positions
moved beyond the chromosome size after rotation, loops were instead moved to
the beginning of the chromosome. Null loops with anchors overlapping a gap
region were removed (an average of 0.5% loops were removed in each cell type).

Distribution of motifs and tag frequencies at anchors. The findMotifsGenome.
pl script from HOMER (v4.7) was used to determine enriched motifs at loop
anchors, using the entire size of the anchor as the search space. The HOMER script
annotatePeaks.pl was used to identify the distribution frequencies of CTCF motifs,

H3K27ac ChIP-seq reads, or ATAC-seq reads in each set of loop anchors with a
bin size of 500 bp and a window size of 50 kb using all bam files for the respective
molecular phenotype simultaneously.

Determining enrichment of chromatin states at loop anchors. For each of the
ROADMAP tissues71, the core 15-chromatin-state models were obtained as BED
format from http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.
html#core_15state, and the states were separated into their original 200 bp bins. To
determine the enrichment of each chromatin state at a loop anchor, we compared
the proportion of 200 bp bins in the state of interest on the loop anchor, to the
genome-wide background level of the bins via Fisher’s exact test. A significance
level of p < (0.05/15) was considered significant.

Identification of differential peaks and genes. To identify differential H3K27ac
peaks and genes, we first used featureCounts72 to obtain the number of reads for
each assay from each gene as annotated in gencode v19, or from each peak
identified by merging all the H3K27ac data together. Next, we used DEseq2
v1.10.173 with default parameters to identify differential peaks and genes with a
log2(fold change) > 2 and an FDR corrected q-value < 0.05.

Enrichment of cell type specific regulatory regions at CTALs. To determine if
cell type specific regulatory regions were enriched at CTALs, for each cell type, we
first split the union loop set into CTALs and non-CTALs. Next, we examined
whether the proportion of CTALs overlapping a cell type specific regulatory region
was statistically larger than the proportion of non-CTALs. For example, to test
whether iPSC-CTALs were more likely to harbor an iPSC-specific active promoter,
we restricted the analysis to loops overlapping an iPSC active promoter, and tested
whether the proportion of loops overlapping an iPSC-specific active promoter was
higher within CTALs than non-CTALs. For all analyses, we used Roadmap E020
(iPSC) for iPSCs, and Roadmap E083 (fetal heart) for iPSC-CMs. We defined an
anchor as overlapping a cell type specific regulatory region as an anchor which
overlapped the region in the tested cell type (E020 for iPSC-CTALs and E083 for
CM-CTALs), but did not overlap the region in the other cell type (E083 for iPSC-
CTAL comparisons, E020 for CM-CTAL comparisons).

Phasing genomes. To obtain accurately phased genotypes for each sample, we
performed initial phasing using the Hi-C data, and then subsequently utilized
family structure to identify, and fix or remove, haplotyping errors (point errors).
We first determined the initial phased genotypes for each individual, at each site at
least one individual was heterozygous, by analyzing the HiC data with Haploseq74.
Next, as Haploseq only identifies heterozygous sites, we filled in missing genotype
data with unphased genotypes from iPSCORE WGS variant calls for these indi-
viduals (Supplementary Figure 3A). To determine the corresponding parental
haplotype for each child haplotype (parent–child haplotype combination), we
identified the average concordance between each child haplotype, and each of the
four parental haplotypes, in 1Mb bins chromosome by chromosome, and identi-
fied the best matching parent–child haplotype combination for each child chro-
mosome. Within each parent–child haplotype combination, we identified meiotic
recombinations within the parent so that we could identify and fix point errors
across the genome (Supplementary Figure 3B). We identified recombinations by
finding the extreme points from the following scoring function: for a given child
haplotype C1, haplotypes from a single parent PH1 and PH2, and N heterozygotic
sites across the genome in the child,

Score ¼
XN

i¼1

1 if Ci ¼ PH1i and Ci≠PH2i
�1 if Ci ¼ PH2i and Ci≠PH1i

0 otherwise

8
><

>:
ð1Þ

We then split each parent–child haplotype combination into crossover blocks at
each crossover position so that each child SNV could be compared to both
matching parental haplotypes simultaneously, and fixed switch errors according to
Mendelian inheritance. Additionally, if any member of the family was unphased at
the site, we phased these variants to follow Mendelian inheritance, generating
switch error free genotypes (Supplementary Figure 3C). After phasing each trio
individually, we re-evaluated Mendelian inheritance across all seven individuals,
and removed any sites where Mendelian inheritance was violated, as these indi-
cated genotyping errors in one or more individuals.

Identification of genome-wide imbalanced chromatin loops. To identify
haplotype-associated chromatin loops (HTALs), we phased contacts from each
chromatin loop in the union loop set across cell types, and identified allelic
imbalance that was statistically significant at a genome-wide threshold. We first
identified all contacts within 25 kb of a loop, kept those containing at least one
heterozygous SNV, and discarded those with no heterozygous SNVs. Next, using all
BAM files for each individual (11 iPSC BAMs across seven individuals, and 13
iPSC-CM BAMs across seven individuals), we assigned contacts to their matching
haplotype when all heterozygous SNVs matched a single haplotype, and discarded
other contacts. We did not remap reads with WASP as (1) the alignment scores
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from the single end bams do not reflect the true mapping scores of the Hi-C
contact due to the highly chimeric nature of Hi-C reads, and (2) the insert size that
appears from normal paired-end mapping of Hi-C reads, and thus cannot be
filtered by WASP. At each loop, we then calculate a Z score via a binomial
approximation to a normal distribution from the greater and lesser allele counts,
always using the greater allele as the test variable, and then calculated a p-value
from a half-normal distribution for each person to account for the imbalance
values being > 0.5 by definition. When comparing Hi-C counts across haplotypes,
biases known to affect Hi-C read depth are held constant as the genomic loci are
held constant (see Methods section ‘‘Identification of CTALs’’ for details). To
obtain a single p-value for imbalance of each loop, we use Fisher’s method to obtain
a meta-p-value across all seven individuals. Finally, to identify genome-wide sig-
nificant HTALs, we use the Benjamini-Hochberg FDR correction to obtain a q-
value, and identified loops with a q-value <0.05 as genome-wide significant HTALs.

To identify HTALs with a beta-binomial test, we utilized the combined
haplotype scripts from WASP. First, we created a CHT input file using the
haplotype counts for each loop. Next, we passed these files to fit_as_coefficients.py
to calculate the binomial overdispersion parameters. Finally, we obtained p-values
for each individual separately from combined_test.py with the option –as_only.
These p-values were combined via Fisher’s method and both the combined and raw
p-values were used for downstream analyses. This analysis resulted in the
identification of 89 HTALs, 83 of which were contained in the half-normal HTAL
set (93%). We repeated the analyses from Fig. 6 using these results and observed
similar enrichment patterns to the half-normal approach, but found stronger
enrichments at imprinted loci (Supplementary Figure 7).

Calculation of power to detect HTALs. To determine the power to identify
chromatin loop imbalance at different allelic imbalance fractions, we calculated Z
scores as above using parameters for numbers of contacts (ranging from 5 to 100 in
steps of 5), allelic imbalance fractions (from 0.55 to 0.95 in steps of 0.05). We then
calculated the power from a half-normal distribution using alpha thresholds ran-
ging from 1 × 10−x to 9 × 10−x for any integer 2 ≤ x ≤ 6 within each individual. We
then calculated the alpha threshold from a meta-p-value obtained from combining
seven individuals displaying the same imbalance via Fisher’s method.

Chromatin state enrichments at HTALs. To examine whether any pairs of
chromatin states were enriched at opposing HTAL anchors, we annotated all
HTAL anchors with the chromatin states they overlapped (with iPSC or fetal-heart
chromatin states) via pgltools intersect1D. Next, we used a Fisher’s exact test for
each pair of states (125 pairs total) to compare the proportion of HTALs with the
states at their anchors to the proportion of non-HTALs. Finally, to correct for
multiple testing, we performed FDR correction on the p-values.

Loop set enrichments at HTALs. To examine whether any loop sets (CTALs, cell
type called loops, CTCF ChIA-PET interactions, or pHiC interactions) were
enriched for HTALs, we annotated HTALs by the loops they overlapped via
pgltools intersect. Next, we used a Fisher’s exact test for each loop set to test for
enrichment of the loop set within HTALs relative to non-HTALs.

ASE gene and peak identification. To identify genes and peaks exhibiting
genome-wide significant allele-specific expression (ASE) from RNA-seq or ChIP-
seq data, within each cell type, for each individual, we pooled all samples by cell
type, applied WASP75 to reduce reference allele mapping bias, used MBASED46 (R
package version 1.4.0) to obtain allelic ratios and p-values for each gene and peak
for each individual, and identified significant genes or peaks as those with an FDR
corrected q-value < 0.05.

Chromatin loop set and genomic feature enrichment for HTALs. To identify
chromatin loops containing imprinted genes or CNVs, we utilized the pgltools
findLoops function to create a bed file from the union loop set, and then used
bedtools76 intersect function to obtain all loops containing the genomic char-
acteristic. To identify ASE genes overlapping chromatin loop anchors, we utilized
pgltools intersect1D function. To identify eQTLs polymorphic in the family with
eGenes connected by a chromatin loop, we created a set of all eQTL-eGene pairs
with empirical p < 0.05 from DeBoever et al.32 in the PGL format, and utilized
pgltools intersect to find loops within 20 kb of the eQTL-eGene pair. For each
genomic feature, we performed a Fisher’s exact test across multiple chromatin loop
imbalance p-value thresholds to determine if the genomic feature was enriched in
HTALs over the union loop set. To obtain a p-value threshold HTAL set, we
filtered all chromatin loops to those exhibiting allelic imbalance with a p-value less
than or equal to the threshold.

CNV type analyses. To measure enrichment of CNV types within union loops
and HTALs, we identified all CNVs from DeBoever et al.32 present in these
individuals (1767 deletions and 1045 duplications). We then identified all loops
which contained CNVs of the same type using pgltools findloops and intersect1D.
Finally, to obtain p-values, we used a binomial approximation to a normal

distribution, and tested for an enrichment in duplications above the genome-wide
rate (µ= 0.37: the fraction of detected CNVs that were duplications).

Concordance between loop and molecular phenotype imbalance. To examine
the relationship between molecular phenotype (RNA-seq and H3K27ac ChIP-seq)
allelic imbalance and chromatin loop imbalance, we compared allelic differences in
molecular phenotype data to chromatin loop imbalance frequencies in iPSC-CM
data. We first removed chromatin loops containing imprinted genes or CNVs.
Next, for each union chromatin loop, we utilized the aforementioned allelic
imbalance data; for each molecular phenotype, we pooled the iPSC-CM reads from
all samples for each individual, applied WASP75 to reduce reference allele mapping
bias, and used MBASED to obtain major allele frequencies of each gene/peak. We
then identified the most imbalanced SNV in each gene/peak, and used the SNV’s
phase to determine the maternal allele frequency of the gene/peak. We then con-
verted maternal allele frequencies to fold changes by dividing the maternal allele
frequency by the paternal allele frequency for both molecular phenotypes, and the
chromatin loop data.

Data availability
All genomic data are available through dbGAP accessions phs000924 (Hi-C, RNA-seq,
CHiP-seq, ATAC-seq) and phs001325 (whole-genome sequence SNV and CNV
genotypes). Processed data files are available through GEO entry GSE125540. Data for
Figure 2d, e, g, h; Supplementary Figure 2G; 4C, D; 6B, C, D, E; and 7D, E are in the
Source Data File; all other figures can be created from the processed data in
Supplementary Data files 4–14. Code for correcting switch errors using family structure
is available at https://github.com/billgreenwald/HiC-Family-Phaser.
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