
UCLA
UCLA Electronic Theses and Dissertations

Title
Controlled Pattern Formation in a Reaction-Diffusion System: A Novel Application of Non-
Linear Model Predictive Control to Distributed Parameters Systems

Permalink
https://escholarship.org/uc/item/3dp220cr

Author
Schuler, Alejandro

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dp220cr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Controlled Pattern Formation in a

Reaction-Diffusion System:

A Novel Application of Non-Linear Model Predictive

Control to Distributed Parameters Systems

A thesis submitted in partial satisfaction of the requirements for the degree

of Master of Science in Mechanical Engineering

by

Alejandro Schuler

2013

ABSTRACT OF THE THESIS

Controlled Pattern Formation in a

Reaction-Diffusion System:

A Novel Application of Non-Linear Model Predictive Control to

Distributed Parameters Systems

by

Alejandro Schuler

Master of Science in Mechanical Engineering

University of California, Los Angeles, 2013

Professor Chih-Ming Ho, Chair

In this work, we examine the application of open-loop non-linear model predictive control

(NMPC) to a specific partial differential equation (PDE) reaction-diffusion system. Instead

of attempting to stabilize a particular state, we focus only on reaching the desired state at a

given time. This problem is motivated by applications to in-vitro synthesis of tissues whose

formation is governed by reaction-diffusion models. The PDE model is discretized into a finite

set of nonlinear ordinary differential equations using finite-elements, after which a NMPC

algorithm is used to derive the desired control actions. Results for one- and two- dimensional

systems demonstrate the feasibility of the approach, but also highlight a dependency on the

number of actuators and computational power.

ii

The thesis of Alejandro Schuler is approved.

Panagiotis D. Christofides

James S. Gibson

Chih-Ming Ho, Committee Chair

University of California, Los Angeles

2013

iii

for Allegra

and for my parents,

Nathalie & Carlos

Lorraine & Craig

iv

Contents

1 Introduction and Motivation 1

2 Problem Statement 3

3 Model Discretization 5
3.1 Flux-Controlled One-Dimensional Finite Element Scheme . 5
3.2 Two-Dimensional Distributed Control Finite Element Model 7

4 Model Predictive Control 10

5 Conclusion 17

6 Code 18
6.1 1dopt . 18
6.2 d1constraints . 22
6.3 d1cost . 22
6.4 garfinkelFEmodel . 23
6.5 gs (1D) . 26
6.6 zohsamp . 27
6.7 2dopt . 28
6.8 d2constraints . 32
6.9 d2cost . 33
6.10 garfinkelFE2D . 34
6.11 gs (2D) . 38

v

List of Figures

1.1 Result of Garfinkel et al. 2

3.1 Uncontrolled 2D Simulation Results . 9

4.1 1D Controlled Result 1 . 12
4.2 1D Controlled Result 2 . 13
4.3 1D Controlled Result 3 . 13
4.4 1D Controlled Result 4 . 14
4.5 1D Controlled Result 5 . 14
4.6 2D Controlled Result: Single Actuator . 15
4.7 2D Controlled Result: Multiple Actuators . 16

vi

Chapter 1

Introduction and Motivation

Pattern formation during the development of organisms is a process that has long interested biologists.

What are the processes that lead to the creation of the multitude of patterned structures that exist in the

natural world, such as the stripes and spots of animal coats, or the branching morphology of trees, blood

vessels, and lungs? How is it that these intricate structures arise from a relatively homogeneous starting

point such as a zygote or seed?

These questions caught the attention of Alan Turing, who was the first to propose that a coupled system

of partial differential equations describing the dynamics of two chemical agents (“morphogens”) interacting

and diffusing could be enough to explain the phenomenon of stripe and spot formation[2]. The concept

behind reaction-diffusion models is normally that one chemical serves as an activator and the other as an

inhibitor; the activator promotes production of itself and of the inhibitor, whereas the inhibitor decreases

production of the activator. Letting the inhibitor diffuse more quickly than the activator allows it to have an

edge over the activator in a “global” sense, whereas the activator tends to dominate “locally” wherever it is

being produced. Plotting the concentration of one or both of the agents in the space results in a pattern of

spots or stripes. Notably, this pattern emerges naturally over time if the system starts in a state where both

chemicals are distributed evenly in the domain, but with minor random perturbations- a situation analogous

to what we see in biological development.

More recently, the work of Garfinkel et al. [1] proposed a specific two-agent model based on the exper-

imental reaction dynamics of two hypothesized morphogens for vascular mesenchymal cells. They tested

simulations based on their model against experiments in which they added inhibitor to cells grown in culture

to verify that their model qualitatively behaves in the same manner as the process of interest. By doing so,

1

Figure 1.1: Garfinkel et al. varied the amount of an inhibiting morphogen added to their cell cultures,
resulting in qualitatively different patterns. On the right, similar conditions are simulated in silico,

demonstrating that their model captures the phenomenon [1].

they also proved that the addition of the inhibitor changed the pattern which was produced.

This work will focus on the possibility of controlling the formation of a particular pattern in Garfinkel’s

reaction-diffusion system. By manipulating the system at certain points in space and time, we will attempt

to drive it towards a preselected pattern. To derive the necessary manipulation, we will use an open-loop

model predictive control (MPC) [3] scheme. This approach is similar to work undertaken by Dubljevic et al.

[4] [5] [6], in which theoretical and computational results for MPC implementation on parabolic PDEs are

discussed. These works, however, are focused on deriving stabilizing controllers, while the problem we wish

to address here concerns forcing the system to arrive at a desired non-equilibrium state at a given time.

2

Chapter 2

Problem Statement

The model is as follows: ∀x, t ∈ Ω× [0, tf],

∂A

∂t
= ρ∇2A+ γ

[
A2

(1 + kA2)B
− cA

]
+ uA(x, t)

∂B

∂t
= ∇2B + γ(A2 − eB) + uB(x, t)

The Garfinkel Model

A(x, 0) = A0, B(x, 0) = B0 Initial Conditions

∇A(x ∈ ∂Ω, t) · n∂Ω = 0, ∇B(x ∈ ∂Ω, t) · n∂Ω = 0 Zero flux on the domain boundary

y(x, t) = Ψ(A(x, t), B(x, t)) Pattern, or output

(2.1)

where D, γ, k, c, and e are constant parameters which are determined experimentally, x is a general

position vector, n∂Ω is a vector normal to ∂Ω and y(x, t) is defined as the pattern generated by the state

of the system A(x, t), B(x, t) at time t. As an example of y, dark pigmentation in an animal coat could be

produced in a particular location only if the level of activator is over a certain threshold; a form of y for this

case might be: y(x, t) = H(A(x, t)−Athreshold) where H is the Heaviside step function.

Our goal is to find the ”best” functions uA(t), uB(t) which will drive the system from y0 to ydes, and so

we wish to find a u(t) to minimize

J =

∫
Ω

φ(x)[y(x, tf)− ydes(x)]2dx+ ν

∫ tf

t0

∫
Ω

ψ1(x)u1(x, t)2dxdt+ ν

∫ tf

t0

∫
Ω

ψ2(x)u2(x, t)2dxdt (2.2)

3

where φ(x) is a weighting function representing the relative importance of the correctness of the pattern

at a particular location, ψi(x) are weighting functions penalizing ui differently depending on the position

of the control application, and νi are weights emphasizing the relative importance of uA to uB and to the

pattern error y − ydes.

4

Chapter 3

Model Discretization

3.1 Flux-Controlled One-Dimensional Finite Element Scheme

In order to use MPC algorithms[3] to find the desired control, we must have a finite-state, discrete-time

approximation of (2.1). To this end, we take our system of partial differential equations (2.1) and discretize

it spatially into a finite number of ordinary differential equations (ODEs) using a finite element scheme.

The resulting ODE system is then discretized temporally into a discrete time (DT) model. The states of

the ODEs associated with an finite element model describe the time evolution of the concentrations of the

morphogens at specific points in space along the domain. This is a practical advantage of a finite element

scheme because the resulting state variables could be directly measurable in an experimental setting.

We express the Galerkin weak form of the 1D model (with control terms removed) over a single element

x ∈ [xaxb]

∫ xb

xa

wi(x, t)
T

 −ρ[∂xxA]− gA(A,B) + ∂tA

−∂xxB − gB(A,B) + ∂tB

 dx = 0, wi(x, t) =

 wiA(x, t)

wiB(x, t)


Where w is an arbitrary weight function and the functions gX(·) are the nonlinear terms

gA(A,B) = γ

[
A2

(1 + kA2)B
− cA

]
, gB(A,B) = γ(A2 − eB) (3.1)

5

Integrating by parts,

0 =

∫ xb

xa

dwi
dx

 ρ∂xA

∂xB

 dx+

∫ xb

xa

wi

 ∂tA− gA

∂tB − gB

 dx+ wi(xa)

 ρ∂xA(xa, t)

∂xB(xa, t)

− wi(xb)
 ρ∂xA(xb, t)

∂xB(xb)


(3.2)

Which is the desired standard weak form of the PDE. We now use the ansatz

wj(x) = Lj and

 A(x, t)

B(x, t)

 ≈ m∑
i=1

 Li(x)Ai(t)

Li(x)Bi(t)

 (3.3)

and the linear interpolation functions

L1 =
xb − x
xb − xa

= 1− ξ L2 =
x− xa
xb − xa

= ξ (3.4)

in order to construct an approximative system of ODEs. With some manipulation of (3.2-3.4)we obtain

the following ODE system for each element

0 =
1

he



ρ −ρ 0 0

−ρ ρ 0 0

0 0 1 −1

0 0 −1 1





A1

A2

B1

B2


+
he

6



2 1 0 0

1 2 0 0

0 0 2 1

0 0 1 2


d

dt



A1

A2

B1

B2


+



ρ∂xA(xa)

−ρ∂xA(xb)

∂xB(xa)

−∂xB(xb)


−he



GA1

GA2

GB1

GB2


(3.5)

where he = xb−xa is the length of the element. In this construction, the flux terms cancel for all interior

nodes such that the flux vector will only be nonzero on the node at x = L, where ρ∂xA(L) = uA(t) and

∂xB(L) = uB(t). The vector of terms GXi requires more attention since it is, strictly speaking, a nonlinear

vector function of A1, A2, B1, and B2. Expressed analytically by combining (3.1-3.5),

GAi(A1, A2, B1, B2) =

∫ 1

0

Liγ

[
(A1L1 +A2L2)2

[1 + k(A1L1 +A2L2)2](B1L1 +B2L2)
− c(A1L1 +A2L2)

]
dξ

GBi(A1, A2, B1, B2) =

∫ 1

0

Liγ[(A1L1 +A2L2)2 − e((B1L1 +B2L2)]dξ

(3.6)

The first of these expressions (GAi) is tedious to evaluate analytically and so we continue by evaluating

6

GA1 and GA2 numerically. The second integral (for GBi) simplifies nicely to

GB1(A1, A2, B1, B2) =
γ

12
(3A2

1 + 2A1A2 +A2
2 − 4eB1 − 2eB2)

GB2(A1, A2, B1, B2) =
γ

12
(A2

1 + 2A1A2 + 3A2
2 − 2eB1 − 4eB2)

(3.7)

We have now arrived at the desired ODE approximation of the system. We define X as a vector formed

from the Ai’s and Bi’s and assemble the elemental matrices (3.5) appropriately to yield a global ODE system

of the form

0 = KX +MẊ +Q−G(X) (3.8)

where Q contains the flux (controlled) terms. This system is converted to discrete time by marching

forward from the initial conditions using an implicit Euler scheme

Xt+∆t =

(
1

∆t
M +K

)−1(
1

∆t
M

)
︸ ︷︷ ︸

T

Xt +

(
1

∆t
M +K

)−1

︸ ︷︷ ︸
P

[G(Xt)−Qt+∆t] (3.9)

Xt+∆t = TXt + PG(Xt)− PQt+∆t (3.10)

where we have made use of the approximation G(Xt+∆t) ≈ G(Xt) in order to avoid a costly iterative

solution procedure.

3.2 Two-Dimensional Distributed Control Finite Element Model

The construction of a two-dimensional finite-element model follows conceptually from the methods used

to derive the single-dimensional model. The Galerkin weak form is given by

0 =

∫
Ω

dwi
dx

 ρ∂xA

∂xB

+
dwi
dy

 ρ∂yA

∂yB

 dxdy +

∫
Ω

wi

 ρ∂tA− gA − uA

∂tB − gB − uB

 dxdy +

∮
∂Ω

wiqds (3.11)

where the gi terms are defined in (3.1). Using (3.4) and linear triangular finite elements we obtain the

matrix equation

0 = KeXe +MeẊe + Ue −Ge(Xe) +Qe (3.12)

7

For Xe
i =

Ai
Bi

 and interpolation functions Li,

Ke
ij =

∫
Ω

(
dLi
dx

dLj
dx

+
dLi
dy

dLj
dy

)ρ 0

0 1

 dxdy
Me
ij =

∫
Ω

LiLj

1 0

0 1

 dxdy
(3.13)

Gei =

∫
Ω

LigA
LigB

 dxdy
Uei =

∫
Ω

LiuA
LiuB

 dxdy
Qei =

∮
∂Ω

LiqA
LiqB

 ds
(3.14)

The matrices in (3.13) are evaluated analytically while the matrices in (3.14) are evaluated numerically

using quadrature. After global assembly, application of an implicit Euler scheme yields

Xt+∆t = TXt + PG(Xt) + PUt+∆t − PQt+∆t (3.15)

where T and P are defined as in (3.9). Along with (3.10), this is the approximation of (2.1) that we will

use in the proceeding analysis to compute the optimal controls to generate desired patterns.

This scheme was implemented in MATLAB[7] on a 20 by 20 square domain meshed[8] into triangles with

sides of average length 0.7. Unless otherwise noted, all simulations were run using parameters ρ = 0.005,

c = 0.01, kp = 0.65, e = 0.02, and γ = 100. Simulations were run to a final time of tf = 3s with a time step

∆t = 0.05s. A reproduction of the results of Garfinkel et al[1] is shown in figure 1.1.

8

(a) Initial Condition: y(x, 0) (b) Inhibitor Added Once (c) Reaction Rate Slowed

(d) Control Case: y(x, tf) (e) Inhibitor Added Continually (f) Reaction Rate Accelerated

Figure 3.1:
Simulation results showing areas of the domain for which the concentration of A is greater than the
equilibrium value Ass = 1.11031. In other words, a plot of the function y(x, t) = H(A(x, t)−Ass).

(a) The randomly generated initial condition: A(x, y) ∼ N (Ass, 0.02Ass). (d) System state at tf with no
perturbation or forcing. A stripe-like pattern is visible. (b) The value of B(x, y) is artificially increased
once by 1 at t = 0.1s. The result y is shown at tf and the pattern appears spot-like. (e) The value of
B(x, y) is artificially increased continually by 0.4 at each time step. The result y is shown at tf and the

pattern appears spot-like. (c) The result at tf of the unperturbed dynamics using γ = 50. The
characteristic size of the pattern features is increased. (f) The result at tf of the unperturbed dynamics

using γ = 200. The characteristic size of the pattern features is decreased.

9

Chapter 4

Model Predictive Control

The basic idea of an open-loop MPC scheme is the use of the knowledge of the system’s dynamics to

optimize the future behavior of the system [9]. Standard applications of MPC involve resolving the optimal

control problem at varying intervals and pushing the solution horizon forward in time. In this way, only

the temporally immediate control is ever actually applied to the system, ”closing the loop” in a sense. In

this application, we focus only on solving the optimal control problem at the initial time and applying the

entire computed control sequence to the system. An open-loop implementation is an obvious choice for the

problem at hand because we do not mean to stabilize the system at the desired pattern, only to achieve a

resemblance at the terminal time, at which point we assume the system can be ”frozen”. For a time span

t(i) = (i− 1)∆t : {1, ... N} 7→ [0, tf], restating (2.2) in a the discretized context of (3.10) and (3.15): we seek

to find a vector sequence U to...

minimize : J = (Y (XN (U))− Ydes)Φ(Y (XN (U))− Ydes) +

N∑
i=1

UiRUi

with respect to : U ∈ RU

where : Xi+1 = TXi + PG(Xi) + PUi+1 − PQi+1

(4.1)

XN is written as XN (U) to emphasize its sole dependence on U from a uniform initial condition. This

formulation of the optimization problem is known as recursive discretization and is efficient in regard to

keeping the optimization variable as small as possible and eliminating constraints [9]. On the other hand,

this type of optimization can be slow to converge because no information is provided in the optimization

10

variable about the reference trajectory. To improve performance, we use a so-called shooting method[10]

which adds a vector s of length rs to the optimization variable as well as a constraint to the problem. The

entries in s represent the values of some of the system’s states at particular instances in time. Specifically,

for a time index ζ : {1, ... rs} 7→ {1, ... N} and a state index ι : {1, ... rs} 7→ {1, ... nstates},

sj = Xζ(j),ι(j) (4.2)

Using (3.15) and (4.1-4.2), the optimization problem now becomes

minimize : J = (Y (Xtf (U))− Ydes)Φ(Y (Xtf (U))− Ydes) +

N∑
i=1

UiRUi

with respect to : {U, s} ∈ RU × Rrs

subject to : sj =
[
TXζ(j)−1 + PG(Xζ(j)−1) + PUζ(j) − PQζ(j)

]
ι(j)

(4.3)

This formulation allows information about the reference trajectory to be embedded into the initial guess

for the optimization variable s0. Because the system is complex and only the desired terminal state is known

a priori, it is the only usable point of reference. In our case, we postulate that the relevant output is the

state of the activator, A, so we let Y (Xt) = Xt,ι(A) = At where ι(A) refers to the indices of Xt corresponding

to the states At. The initial guess should therefore be s0 = yref with ζ(·) = N and ι = ι(A). Furthermore,

we let Φ = I ∗ 105 and R = I to emphasize the importance of the accuracy of the result over the control

cost and we apply a zero-flux boundary condition: Q = 0 to the two-dimensional system. The problem (4.3)

becomes

minimize : J = 105 × ||AN − Ydes||+
N∑
i=1

||Ui||

with respect to : {U, s} ∈ RU × Rrs

subject to : s = [TXN−1 + PG(XN−1) + PUN]ι(A)

(4.4)

In the flux-controlled one-dimensional system, we have the equivalent:

11

minimize : J = 105 × ||AN − Ydes||+
N∑
i=1

||Ui||

with respect to : {U, s} ∈ RU × Rrs

subject to : s = [TXN−1 + PG(XN−1)− PQN]ι(A)

(4.5)

The above are solved in MATLAB[7] using fmincon() with cost and constraint functions each of which

call upon the finite element simulation to provide trajectories X based on U for each iteration.

(a) Desired concentration profile at tf and actual result (b) Result of the optimization of the applied controls

Figure 4.1: Results of the control optimization for the single-dimensional boundary-flux-controlled system.
Unless otherwise stated, all results are of the 25-node simulated system driven from a steady state initial
condition A(x, 0) = Ass, B(x, 0) = Bss with physical parameters: ρ = 0.005, c = 0.01, k = 0.65, e = 0.02,
γ = 10, ∆t = 0.2. Controls are zero-order held over two timesteps in order to reduce the size of the

optimization problem.

As is evident in figures 4.1-4.4, the optimization of boundary-flux controls for the single-dimensional

simulation successfully achieved a qualitative replication of the desired concentration profile of the activator

given a ”simple-looking” reference profile. Figure 4.5 demonstrates that the same optimization algorithm

fails to drive the system to a more complex state. This is intuitively due to the fact that the reaction terms in

the system overpower diffusion and that the nature of the reaction is local. Controls influencing the system

at given locations, therefore, will only affect the system locally. Mathematically speaking, it is also possible

that the system is not differentially flat[11], although the proof would be nontrivial and will not be explored

here.

There is a possibility that the generated controls are not at a true optimum and that using a better seed

12

(a) Desired concentration profile at tf and actual result (b) Result of the optimization of the applied controls

Figure 4.2: See caption for Figure 4.1

(a) Desired concentration profile at tf and actual result (b) Result of the optimization of the applied controls

Figure 4.3: See caption for Figure 4.1

in the optimization algorithm would produce a better result. This hypothesis is unlikely, however, given

that each optimization was run several times with a variety of randomized initial guesses. In each case,

the result converged closely to the reported optimal control. Furthermore, several optimizations which used

the stochastic optimization algorithm CMA-ES[12] (instead of the gradient-based fmincon()) also produced

results convergent with those from fmincon().

The shortcomings are more evident in the results for the distributed control of the two-dimensional

simulation. Figures 4.6 and 4.7 show the sensitivity of the result to the desired concentration profile and

the placement of the control point (where the activator and inhibitor can be added or removed from the

13

(a) Desired concentration profile at tf and actual result (b) Result of the optimization of the applied controls

Figure 4.4: See caption for Figure 4.1

(a) Desired concentration profile at tf and actual result (b) Result of the optimization of the applied controls

Figure 4.5: See caption for Figure 4.1

system). The use of more than a small number of control points is both prohibitively time-consuming in

the optimization and experimentally infeasible. Theoretically, however, increasing the number of control

points and intelligently distributing them would yield improved results, which is consistent with the results

of Dubljevic et al. [5].

14

Figure 4.6: Reference and resulting terminal concentration profiles using a single centered control point.
Results are of the simulated system with characteristic element size of 0.2, driven from a steady state
initial condition A(x, 0) = Ass, B(x, 0) = Bss with physical parameters: ρ = 0.005, c = 0.01, k = 0.65,

e = 0.02, γ = 200, ∆t = 0.2. Controls are zero-order held over two timesteps in order to reduce the size of
the optimization problem.

15

Figure 4.7: Reference and resulting terminal concentration profiles using four evenly spaced control points.
Results are of the simulated system with characteristic element size of 0.2, driven from a steady state
initial condition A(x, 0) = Ass, B(x, 0) = Bss with physical parameters: ρ = 0.005, c = 0.01, k = 0.65,

e = 0.02, γ = 200, ∆t = 0.2. Controls are zero-order held over two timesteps in order to reduce the size of
the optimization problem.

16

Chapter 5

Conclusion

An open loop MPC scheme has shown partially effective in generating controls to drive Garfinkel’s

reaction-diffusion system to a desired terminal activator concentration profile. Although simple patterns can

be generated, the controlled creation of interesting concentration profiles is out of reach without a practically

excessive number of actuation points.

17

Chapter 6

Code

6.1 1dopt

Executes a single run of the optimization for the single-dimensional flux-controlled system with the

specified parameters. Sets up a finite element model object garfinkelFEmodel and defines anonymous

functions based on d1constraints(), d1cost(), and garfinkelFEmodel.fullsim() which are called by

fmincon(). Displays results.

% Parameter Setup

clear all

clc

Ass = 1.110305545592924; Bss = 61.638920228753065;

%A t = A xx = B t = B xx = 0. Does not depend on gamma or rho

rho = 0.01/2; c = 0.01; kp = 0.65; e = 0.02; %model params

D = 1; gamma = 10;

udim = 4; %number of controls: A'(0,t) and B'(0,t)

d1model = garfinkelFEmodel; %initialize model object

d1model.params = [gamma,c,kp,e,rho,D]; %parameters

d1model.dt = 0.2; %simulation time step

L = 0.25; N =25; %length of domain, number of nodes

d1model.nodes = linspace(0,L,N); %domain

d1model.setup;

18

% I N I T I A L C O N D I T I O N S

% A0 = Ass*(1+0.02*randn(size(d1model.nodes)));

% B0 = Bss*(1+0.02*randn(size(d1model.nodes)));

A0 = Ass*ones(size(d1model.nodes));

B0 = Bss*ones(size(d1model.nodes));

%

% T I M E P A R A M E T E R S

tf = 10; %final time

tsim = 0:d1model.dt:tf; %simulation time vector

MPCstep = d1model.dt*2; %frequency of control application

nsteps = length(0:MPCstep:tf)−1; %how many dt's we have

%

% REFERENCE S I G N A L

yref = 0.01*sin(d1model.nodes*2*pi/L)' + Ass; %squiggle

%

%NEXT TRY SQUIGGLE

% OPTIMIZATION S E T U P

sdim = length(A0); %number of shooting nodes: I only care about what A looks like

xi = nsteps*ones(sdim,1); %times of shooting nodes (in dt's): final time

ind = 1:2:length([A0 B0]);%which states the shooting nodes refer to, in this case, A

s0 = yref; %initial guess for the shooting nodes is the target final state

mysys = @(U) d1model.fullsim4controls(A0,B0,U,tf); %outputs [X,As,Bs,tout].

mycost = @(z) d1cost(z,yref,nsteps,mysys,MPCstep,d1model.dt,tf,udim); %F(z) (to be minmized)

mycons = @(z) d1constraints(z,xi,ind,nsteps,mysys,MPCstep,d1model.dt,tf,udim);

%G(z) (constraint G = 0)

zsize = udim*nsteps+sdim;

Aeq = zeros(zsize);

19

beq = zeros(zsize,1);

A = []; b = [];

lbu = −1*ones(udim*nsteps,1); ubu = −lbu;

lbx = zeros(sdim,1); ubx = inf*ones(sdim,1);

%lb = [lbu ;lbx]; ub = [ubu ;ubx];

lb = []; ub = [];

u0 = 0*randn(udim,nsteps);

z0 = [u0(:)' s0'];

%

% TRIAL R U N

name = '17'; %12 on are same settings different shapes

need = (matlabpool('size') == 0);

if need

matlabpool open 4

end

options = optimset('Display','iter','UseParallel','always');

tic;

z = fmincon(mycost,z0,A,b,Aeq,beq,lb,ub,mycons,options);

toc

%

% P L O T T I N G

uopt = vec2mat(z(1:udim*nsteps),udim)'; %pull u from z

[Uopt,˜] = zohsamp(uopt,nsteps,MPCstep,d1model.dt,tsim); %get the ZOH version of u

[U0,˜] = zohsamp(u0,nsteps,MPCstep,d1model.dt,tsim); %get the ZOH version of u

[˜,Aopt,Bopt,˜] = mysys(Uopt);

yrefpattern = step pattern(yref);

Apattern = step pattern(Aopt(:,end));

20

figure(3); clf;

title('Result')

subplot(3,1,1); plot(d1model.nodes,yref);

legend('Reference');

subplot(3,1,2); plot(d1model.nodes,Aopt(:,end),'r');

legend('Result');

subplot(3,1,3); plot(d1model.nodes,yrefpattern);

hold on; plot(d1model.nodes,Apattern,'r');

legend('Reference','Result');

figure(5);clf;

subplot(2,1,1);

title('Control');

plot(tsim,Uopt);

subplot(2,1,2);

title('Original Guess');

plot(tsim,U0);

cd Images

h=figure(3);

figure(3);

saveas(h,[name ' Result'],'fig'); %name is a string

h=figure(5);

figure(5);

saveas(h,[name ' Control'],'fig'); %name is a string

cd ..

% d1model.viewsim(Aopt,Bopt);

%

%

% yref = Ass + 0.0005*(humps(linspace(0,1,25))'−50);%desired terminal output state

% yref = Ass −(0.01*(d1model.nodes−d1model.nodes(round(end/2))).ˆ2 − 0.001)'; %up hump

% yref = (0.01*(d1model.nodes−d1model.nodes(round(end/2))).ˆ2 + Ass − 0.001)'; %down hump

%

%

21

% figure(6)

% plot(d1model.nodes,yref)

6.2 d1constraints

Calculates the difference between the optimization variable s and A(x, tf), therefore returning the de-

viance from the continuity constraint in (22). Calls zohsamp() and garfinkelFEmodel.fullsim().

function [c,ceq] = d1constraints(z,xi,ind,nsteps,sys,MPCstep,dt,tf,udim)

tsim = 0:dt:tf;

u = vec2mat(z(1:udim*nsteps),udim)'; %pull u from z

s = z(udim*nsteps+1:end); %pull s from z

[U,˜] = zohsamp(u,nsteps,MPCstep,dt,tsim);

[x,˜,˜,˜] = sys(U); %get the system trajectory based on u

ceq = zeros(size(s));

for j = 1:length(s)

ceq(j) = s(j) − x(ind(j),xi(j)+1); %continuity constraint,

%xi(j)+1 because xi(j) = 0 should go to x(1)

end

c = −1;

6.3 d1cost

Calculates the cost of the trajectory and control based on (22). Calls zohsamp() and

garfinkelFEmodel.fullsim().

function J = d1cost(z,yref,nsteps,sys,MPCstep,dt,tf,udim)

tsim = 0:dt:tf;

u = vec2mat(z(1:udim*nsteps),udim)'; %pull u from z

22

[U,sampledindices] = zohsamp(u,nsteps,MPCstep,dt,tsim); %get ZOH of u to apply to system

[˜,As,˜,˜] = sys(U); %get the system trajectory based on u

y = As; %can change this later with some function y = output(x)

ysamp = y(:,sampledindices); %sample from output at MPCstep rate

% ypattern = step pattern(ysamp); %H(A) PATTERN COST

% yrefpattern = step pattern(yref);

ypattern = ysamp; %COST BASED ON CONTUNIUM

yrefpattern = yref;

R = 1*eye(udim);

Q = 0*eye(length(ysamp(:,1)));

F = 1*eye(size(Q));

J = 0; %initialize cost

for t = 1:nsteps

dy = (ypattern(:,t)−yrefpattern);

J = J + dy'*Q*dy + u(:,t)'*R*u(:,t);

end

J = J + (10ˆ3)*dy'*F*dy; %terminal state cost

6.4 garfinkelFEmodel

Finite element object containing garfinkelFEmodel.fullsim() which executes a simulation of the sys-

tem defined by the properties of the object.

classdef garfinkelFEmodel < handle

properties

params

dt

nodes

end

23

properties (SetAccess = private)

NN % X+ = LL*X + NN*G(X) − NN*U+

LL

nel %number of elements

LM %degree of freedom connectivity

h %element lengths

end

methods

function [] = setup(obj)

rho = obj.params(5); D = obj.params(6); %diffusion ratio, global diffusion

numnode = length(obj.nodes); %number of nodes

obj.nel = numnode −1; %number of elements

obj.h = obj.nodes(2:end) − obj.nodes(1:end−1);

EC = ones(2,obj.nel−1); %initialize connectivity matrix

for el = 1:1:obj.nel %generate connectivities of elements

EC(:,el) = [el el+1];

end

ID = ones(2,numnode); %initialize ID

for node=1:numnode

ID(:,node)=[2*node−1,2*node];

%fill in ID AKA name the degrees of freedom: X = [A1 B1 A2 B2 A3 B3 A4 B4...]'

end

obj.LM = ones(4,obj.nel); %initialize LM

for el=1:obj.nel

nodeNames = EC(:,el); %find the nodes of the element and get their numbers

obj.LM(:,el)=[ID(:,nodeNames(1));ID(:,nodeNames(2))]; %fill in LM

end

% Build Element Stiffness and Mass Matricies

k = ones(4,4,obj.nel); %initialize stiffness matricies

m = k; %initialize mass matrix

for elNum=1:obj.nel

m(:,:,elNum) = obj.h(elNum)*(1/6)*[2 0 1 0; 0 2 0 1; 1 0 2 0; 0 1 0 2];

24

%elemental masses

k(:,:,elNum) = (1/obj.h(elNum))*D*[rho 0 −rho 0; 0 1 0 −1; ...

−rho 0 rho 0; 0 −1 0 1];

%elemental stiffnesses

end

K = zeros(2*numnode); %initialize K

M = K; %initialize M

for elNum=1:obj.nel %global matrix assembly

for row=1:4

for col=1:4

K(obj.LM(row,elNum),obj.LM(col,elNum)) = ...

K(obj.LM(row,elNum),obj.LM(col,elNum)) + k(row,col,elNum);

M(obj.LM(row,elNum),obj.LM(col,elNum)) = ...

M(obj.LM(row,elNum),obj.LM(col,elNum)) + m(row,col,elNum);

end

end

end

%time stepping matrices

obj.NN = (M/obj.dt + K)\eye(size(K)); %save some computation in the loop

obj.LL = obj.NN*M/obj.dt';

end %sets up the finite element matricies

function [Xnext] = xstep(obj,X,u) %this is just an optimized version of step()

G = zeros(2*(obj.nel+1),1); %initialize G

U = G;

for elNum = 1:obj.nel %find G(X(t)) reaction term

G(obj.LM(:,elNum)) = G(obj.LM(:,elNum)) ...

+ obj.h(elNum)*gs(X(obj.LM(:,elNum)),obj.params);

end

U(1:2) = obj.params(6)*[obj.params(5)*u(1);u(2)];

%interleave UA and UB to form U. UA is multipleid by rho, whole thing by D

Xnext = obj.LL*X + obj.NN*(G − U); %diffusion + reaction + control

Xnext(isnan(Xnext)) = 0; Xnext(Xnext<0) = 0; %limit nonsense

end

function [X,As,Bs,tout] = fullsim(obj,A0,B0,U,tf) %full sim through tf. %U = [UA ; UB]

tout = 0:obj.dt:tf;

X = zeros(2*length(A0),length(tout)); %initialize state history

25

X0 = [A0(:)';B0(:)']; X(:,1) = X0(:);

%interleave A,B to form X = [A1 B1 A2 B2 A3 B3 A4 B4...]'

for t = 1:(length(tout)−1) %the number of timesteps

X(:,t+1) = xstep(obj,X(:,t),U(:,t)); %U = [UA ; UB]

end

As = X(1:2:end,:); Bs = X(2:2:end,:);

end

function [] = viewsim(obj,As,Bs)

figure(1), clf; figure(2), clf;

for frame = 1:length(As(1,:))

figure(1); plot(obj.nodes,As(:,frame));

figure(2); plot(obj.nodes,Bs(:,frame));

end

end

end

end

6.5 gs (1D)

Evaluates the nonlinear term G(X). Called by garfinkelFEmodel.fullsim().

function [g] = gs(X,params)

A1 = X(1); B1 = X(2); A2 = X(3); B2 = X(4); %unpack X

gamma = params(1); c = params(2); kp = params(3); e = params(4); %unpack params

%calculate nonlinear terms in the equation for B

GB1 = (gamma*(3*A1ˆ2 + 2*A1*A2 + A2ˆ2 − 4*B1*e − 2*B2*e))/12;

GB2 = (gamma*(A1ˆ2 + 2*A1*A2 + 3*A2ˆ2 − 2*B1*e − 4*B2*e))/12;

%set up variables

dx = 0.25;

x = 0:dx:1;

L1 = 1−x; L2 = x;

A = A1*L1 + A2*L2; B = B1*L1 + B2*L2;

%calculate the integrands for the nonlinear terms in A

26

GA1i = L1.*(A.ˆ2./((1 + kp*A.ˆ2).*B) − c.*A);

GA2i = L2.*(A.ˆ2./((1 + kp*A.ˆ2).*B) − c.*A);

%limit nonsense

GA1i(isnan(GA1i)) = eps; GA2i(isnan(GA2i)) = eps; % 0/0 = 0

%calculate nonlinear terms in the equation for A

GA1 = gamma*trapz(x,GA1i);

GA2 = gamma*trapz(x,GA2i);

%put them all in a vector in the proper order

g = [GA1; GB1; GA2; GB2];

6.6 zohsamp

Takes a zero-order hold of the control for application to the system.

function [U,sampledindices] = zohsamp(u,nsteps,MPCstep,dt,tsim)

sampledindices = zeros(1,nsteps);

for step = 1:nsteps

sampledindices(step) = round(step*MPCstep/dt);

%find the sampled time steps in y. round not floor because MPCstep = n*dt

end

udim = length(u(:,1));

U = zeros(udim,length(tsim)); %implement a zero order hold of U over tsim

counter = length(u);

controltimes = fliplr(sampledindices);

controltimes(1) = length(tsim);

for i = controltimes

for row = 1:i

U(:,row) = u(:,counter);

end

counter = counter − 1;

end

27

6.7 2dopt

Executes a single run of the optimization for the two-dimensional distributedly controlled system with

the specified parameters. Sets up a finite element model object garfinkelFE2D and defines anonymous func-

tions based on d2constraints(), d2cost(), and garfinkelFE.fullsim() which are called by fmincon().

Displays results.

% Parameter Setup

clear all

clc

Ass = 1.110305545592924; Bss = 61.638920228753065;

%A t = A xx = B t = B xx = 0. Does not depend on gamma or rho

L = 10; %domain size/2

l = 0.1*2*L; %characteristic mesh size

rho = 0.01/2; c = 0.01; kp = 0.65; e = 0.02; %model params

D = 1; gamma = 200;

simdt = 0.2;

fd = @(p) drectangle(p,−L,L,−L,L);

[p,t]=distmesh2d(fd,@huniform,l,[−L,−L;L,L],[−L,−L;−L,L;L,−L;L,L]);

d2model = garfinkelFE2D;

d2model.params = [gamma,c,kp,e,rho,D];

d2model.dt = simdt;

d2model.nodes = p;

d2model.els = t;

d2model.setup

% I N I T I A L C O N D I T I O N S

A0 = Ass*(1+0*randn(length(d2model.nodes),1)); %steady states

B0 = Bss*(1+0*randn(length(d2model.nodes),1));

%

28

% T I M E P A R A M E T E R S

tf = 5; %final time

tsim = 0:d2model.dt:tf; %simulation time vector

MPCstep = d2model.dt*2; %frequency of control application

nsteps = length(0:MPCstep:tf)−1; %how many dt's we have

%

% REFERENCE S I G N A L

yref = Ass −0.01 + mvnpdf(d2model.nodes,[0,0],[20 0; 0 5]); %middle dot

%yref = Ass −0.01 + 4*mvnpdf(d2model.nodes,[0,0],[100 0; 0 5]); %horizontal stripe

%

% C O N T R O L P O I N T S

% cpoints = [0 5*(tand(6) − tand(30)); −5 −5*tand(30); ... triangle

% 0 0; 5 −5*tand(30)]; %this has to be [x y; x y; ...]

% cpoints = 5*[1 1; −1 1; 1 −1; −1 −1]; %square

cpoints = [0 0]; %center point

npts = length(cpoints(:,1)); %number of target points to control

myones = ones(length(d2model.nodes(:,1)),1);

UvecID = zeros(1,npts*2);

for pt = 1:npts

dnodes = d2model.nodes − myones*cpoints(pt,:); % node coords − point

distances = dnodes(:,1).ˆ2 + dnodes(:,2).ˆ2; % dxˆ2 + dyˆ2

[˜,cnode] = sort(distances);

UvecID((2*pt−1):(2*pt)) = [2*cnode(1)−1 2*cnode(1)];

%find the state vector indices for that node

end

udim = 2*npts; %each point has a B and an A control

%

% OPTIMIZATION S E T U P

costtype = 'continuous'; %pattern or continuous cost grading for state

29

sdim = length(A0); %number of shooting nodes: I only care about what A looks like

xi = nsteps*ones(sdim,1); %times of shooting nodes (in dt's): final time

ind = 1:2:length([A0(:);B0(:)]);%which states the shooting nodes refer to, in this case, A

mysys = @(U) d2model.fullsim(A0,B0,U,UvecID,tf); %outputs [X,As,Bs,tout].

mycost = @(z) d2cost(z,yref,nsteps,mysys,MPCstep,d2model.dt,tf,udim,costtype,Ass);

%F(z) (to be minmized)

mycons = @(z) d2constraints(z,xi,ind,nsteps,mysys,MPCstep,d2model.dt,tf,udim);

%G(z) (constraint G = 0)

s0 = yref; %initial guess for the shooting nodes is the target final state

u0 = 0*randn(udim,nsteps); %initial guess for the controls

z0 = [u0(:) ; s0(:)]; %initial optimization variable

%

% TRIAL R U N

name = 'cmaes1';

algo = 'cmaes';

need = (matlabpool('size') == 0);

if need

matlabpool open 4

end

switch algo

case 'cmaes'

tic;

z = mycmaes(mycost,u0(:),0.5);

toc

case 'fmincon'

options = optimset('Display','iter','UseParallel','always');

tic;

z = fmincon(mycost,z0,[],[],[],[],[],[],mycons,options);

toc

end

30

%

% P L O T T I N G

uopt = vec2mat(z(1:udim*nsteps),udim)'; %pull u from z

[Uopt,˜] = zohsamp(uopt,nsteps,MPCstep,d2model.dt,tsim); %get the ZOH version of u

[U0,˜] = zohsamp(u0,nsteps,MPCstep,d2model.dt,tsim); %get the ZOH version of u

[˜,Aopt,Bopt,˜] = mysys(Uopt);

figure(3); clf;

title('Result')

subplot(2,2,1); fig = gcf();

view2Dplot(d2model.nodes,yref,fig);

title('Reference')

subplot(2,2,2); fig = gcf();

view2Dplot(d2model.nodes,Aopt(:,end),fig);

title('Result')

subplot(2,2,3); fig = gcf();

view2Dpatt(d2model.nodes,yref,fig,Ass+0.005);

subplot(2,2,4); fig = gcf();

view2Dpatt(d2model.nodes,Aopt(:,end),fig,Ass+0.005);

figure(5);clf;

title('Control');

subplot(2,1,1);

plot(tsim,Uopt(1:2:end,:));

leftlabel = repmat('at (',npts,1);

rightlabel = repmat(')',npts,1);

legend([leftlabel num2str(cpoints) rightlabel]); title('A Controls');

subplot(2,1,2);

plot(tsim,Uopt(2:2:end,:));

legend([leftlabel num2str(cpoints) rightlabel]); title('B Controls');

31

figure(6); clf

title('Control Application Points');

plot(cpoints(:,1),cpoints(:,2),'ko','linewidth',3);

axis([−L L −L L]); axis square;

cd Images

h=figure(3);

figure(3);

saveas(h,[name ' Result'],'fig'); %name is a string

h=figure(5);

figure(5);

saveas(h,[name ' Control'],'fig'); %name is a string

h=figure(6);

figure(6);

saveas(h,[name ' Control Points'],'fig'); %name is a string

cd ..

% d2model.viewsim(Aopt,Bopt);

6.8 d2constraints

Calculates the difference between the optimization variable s and A(x, tf), therefore returning the de-

viance from the continuity constraint in (21). Calls zohsamp() and garfinkelFE2D.fullsim().

function [c,ceq] = d2constraints(z,xi,ind,nsteps,sys,MPCstep,dt,tf,udim)

tsim = 0:dt:tf;

u = vec2mat(z(1:udim*nsteps),udim)'; %pull u from z

s = z(udim*nsteps+1:end); %pull s from z

[U,˜] = zohsamp(u,nsteps,MPCstep,dt,tsim);

32

[x,˜,˜,˜] = sys(U); %get the system trajectory based on u

ceq = zeros(size(s));

for j = 1:length(s)

ceq(j) = s(j) − x(ind(j),xi(j)+1); %continuity constraint,

%xi(j)+1 because xi(j) = 0 should go to x(1)

end

c = −1;

6.9 d2cost

Calculates the cost of the trajectory and control based on (21). Calls zohsamp() and

garfinkelFE2D.fullsim().

function J = d2cost(z,yref,nsteps,sys,MPCstep,dt,tf,udim,type,cutoff)

tsim = 0:dt:tf;

u = vec2mat(z(1:udim*nsteps),udim)'; %pull u from z

[U,sampledindices] = zohsamp(u,nsteps,MPCstep,dt,tsim); %get ZOH of u to apply to system

[˜,As,˜,˜] = sys(U); %get the system trajectory based on u

y = As; %can change this later with some function y = output(x)

ysamp = y(:,sampledindices); %sample from output at MPCstep rate

switch(type)

case 'pattern'

ypattern = step pattern(ysamp,cutoff); %H(A) PATTERN COST

yrefpattern = step pattern(yref,cutoff);

case 'continuous'

ypattern = ysamp; %COST BASED ON CONTUNIUM

yrefpattern = yref;

end

R = 1*eye(udim);

33

Q = 0*eye(length(ysamp(:,1)));

F = 1*eye(size(Q));

J = 0; %initialize cost

for t = 1:nsteps

dy = (ypattern(:,t)−yrefpattern);

J = J + dy'*Q*dy + u(:,t)'*R*u(:,t);

end

J = J + (10ˆ5)*dy'*F*dy; %terminal state cost

6.10 garfinkelFE2D

Finite element object containing garfinkelFE2D.fullsim() which executes a simulation of the system

defined by the properties of the object.

classdef garfinkelFE2D < handle

properties

params %list of parameters

dt %timestep

nodes %Nx2 list of coordinates of each node. nodes(n,:) = [nx,ny]

els %(aka EC) nelx3 list of nodes in each triangular element. els(elem,:) = [n1 n2 n3]

end

properties (SetAccess = private)

areas %(det(J))

NN

LL

nel

LM

Jins %inverse Jacobians of each element transformation to master element

end

methods

function [] = setup(obj)

rho = obj.params(5); D = obj.params(6); %diffusion ratio, global diffusion

34

numnode = length(obj.nodes); %this will return the long dimension

obj.nel = length(obj.els);

obj.areas = zeros(obj.nel,1); %a list of areas of each element. Ae = areas(e)

obj.Jins = cell(obj.nel,1); %initialize same as areas

for el = 1:obj.nel

coords = obj.nodes(obj.els(el,:),:); %[x1 y1;x2 y2;x3 y3]

J = [coords(1,1) − coords(3,1), coords(1,2) − coords(3,2); ...

coords(2,1) − coords(3,1), coords(2,2) − coords(3,2)];

%jacobian: J = [x1 − x3, y1 − y3; x2 − x3, y2 − y3];

obj.areas(el) = det(J)/2; %area of the triangles

obj.Jins{el} = J\eye(2);

end

ID = ones(2,numnode); %initialize ID

for node=1:numnode

ID(:,node)=[2*node−1,2*node];

%fill in ID AKA name the degrees of freedom: X = [A1 B1 A2 B2 A3 B3 A4 B4...]'

end

obj.LM = ones(6,obj.nel); %initialize LM

for el=1:obj.nel

obj.LM(:,el)=[ID(:,obj.els(el,1));ID(:,obj.els(el,2));ID(:,obj.els(el,3))];

%fill in LM

end

k = cell(obj.nel,1); %initialize elemental stiffness matrix

m = k; %initialize elemental mass matrix

for el = 1:obj.nel

dL1 = obj.Jins{el}*[1;0]; dL2 = obj.Jins{el}*[0;1]; dL3 = obj.Jins{el}*[−1;−1];

dLs = [dL1 dL2 dL3]; ke = zeros(6); %all dLi/dx and /dy. Initialize ki

for i = 1:3

for j = 1:3

value = dLs(1,i)*dLs(1,j) + dLs(2,i)*dLs(2,j);

ke(2*i−1:2*i,2*j−1:2*j) = [rho*value 0; 0 value]; %build elemental k

end

end

k{el} = D*2*obj.areas(el)*ke;

%Since ki(x,y) is a constant, the integration is just multiplication by area

m{el} = 2*obj.areas(el)*(1/24)*[2 0 1 0 1 0; 0 2 0 1 0 1; 1 0 2 0 1 0; ...

0 1 0 2 0 1; 1 0 1 0 2 0; 0 1 0 1 0 2];

35

end

K = zeros(2*numnode); %initialize K

M = K; %initialize M

for el=1:obj.nel

for row=1:6

for col=1:6

ke = k{el}; me = m{el};

K(obj.LM(row,el),obj.LM(col,el)) =

K(obj.LM(row,el),obj.LM(col,el)) + ke(row,col);

M(obj.LM(row,el),obj.LM(col,el)) =

M(obj.LM(row,el),obj.LM(col,el)) + me(row,col);

end

end

end

obj.NN = (M/obj.dt + K)\eye(size(K)); %save some computation in the loop

obj.LL = obj.NN*M/obj.dt';

end

function [Anext,Bnext] = step(obj,A,B,uA,uB)

%steps one timestep forward. Written to accomodate distributed control

X = [A(:)';B(:)']; X = X(:); %interleave A,B to form X = [A1 B1 A2 B2 A3 B3 A4 B4...]'

G = zeros(size(X)); %initialize G

for elNum = 1:obj.nel %find G(X(t)) reaction term

G(obj.LM(:,elNum)) = G(obj.LM(:,elNum)) ...

+ obj.h(elNum)*gs(X(obj.LM(:,elNum)),obj.params,obj.areas(elNum));

end

U = [uA(:)';uB(:)']; U = U(:);

%interleave UA and UB to form U. UA is multipleid by rho, whole thing by D

Xnext = obj.LL*X + obj.NN*(G+U); %diffusion + reaction + control

Anext = Xnext(1:2:end); Bnext = Xnext(2:2:end);

end

function [X,As,Bs,tout] = fullsim(obj,A0,B0,U,UvecID,tf)

%full sim through tf. UA, UB are vectors of size tout.

tout = 0:obj.dt:tf;

X = zeros(2*length(A0),length(tout)); %initialize state history

Up = X; % initialize all applied controls at all times as 0

36

X0 = [A0(:)';B0(:)']; X(:,1) = X0(:);

%interleave A,B to form X = [A1 B1 A2 B2 A3 B3 A4 B4...]'

for i = 1:length(UvecID) %Bulid Up: all zeros except the rows which are controlled

Up(UvecID(i),:) = U(i,:);

end

for t = 1:round(tf/obj.dt) %the number of timesteps

G = zeros(size(X(:,t))); %initialize G

U = G;

Upt = Up(:,t); %Fetch the applied controls at time t

for el = 1:obj.nel %find G(X(t)) reaction term and U control

G(obj.LM(:,el)) = G(obj.LM(:,el)) ... %calculate G

+ gs(X(obj.LM(:,el)),obj.params,obj.areas(el));

U(obj.LM(:,el)) = U(obj.LM(:,el)) ...

+ us(Upt(obj.LM(:,el)),obj.areas(el));

%find how each node feels the applied U field

end

Xnext = obj.LL*X(:,t) + obj.NN*(G+U); %diffusion + reaction + control

Xnext(isnan(Xnext)) = 0; Xnext(Xnext<0) = 0; %limit nonsense

X(:,t+1) = Xnext;

end

As = X(1:2:end,:); Bs = X(2:2:end,:);

end

function [] = viewsim(obj,As,Bs,Ass,Bss)

figure(1), clf; figure(2), clf;

x = obj.nodes(:,1); y = obj.nodes(:,2);

xmax = max(x); xmin = min(x); ymax = max(y); ymin = min(y);

dx = (xmax − xmin)/100; dy = (ymax − ymin)/100;

[X,Y] = meshgrid(xmin:dx:xmax,ymin:dy:ymax);

for frame = 1:length(As(1,:))

Ag = griddata(x,y,As(:,frame),X,Y);

figure(1); contourf(X,Y,Ag,[Ass Ass]);

title({['max − min = ' num2str(max(As(:,frame)) − min(As(:,frame)))], ...

['mean value:' num2str(mean(As(:,frame)))]});

37

Bg = griddata(x,y,Bs(:,frame),X,Y);

figure(2); contourf(X,Y,Bg,[Bss Bss]);

title({['max − min:' num2str(max(Bs(:,frame)) − min(Bs(:,frame)))], ...

['mean value = ' num2str(mean(Bs(:,frame)))]});

end

end

end

end

6.11 gs (2D)

b Evaluates the nonlinear term G(X). Called by garfinkelFE2D.fullsim().

function [g] = gs(X,params,area)

A1 = X(1); B1 = X(2); A2 = X(3); B2 = X(4); A3 = X(5); B3 = X(6); %unpack X

gamma = params(1); c = params(2); kp = params(3); e = params(4); %unpack params

x = [0.5 ; 0 ; 0.5]; y = [0 ; 0.5 ; 0.5]; %quadrature points

L1 = x;

L2 = y;

L3 = 1 − x − y;

A = A1*L1 + A2*L2 + A3*L3;

B = B1*L1 + B2*L2 + B3*L3;

gA = gamma*(A.ˆ2./((1 + kp*A.ˆ2).*B) − c.*A);

gB = gamma*(A.ˆ2 − e*B);

g = 2*area*1/3*[L1'*gA ; L1'*gB ; L2'*gA ; L2'*gB ; L3'*gA ; L3'*gB];

%numerical integration

end

38

Bibliography

[1] A. Garfinkel, Y. Tintut, D. Petrasek, K. Bostrom, and L. L. Demer, “Pattern formation by vascular

mesenchymal cells,” PNAS, 2004.

[2] A. Turing, “The chemical basis of morphogenesis,” Philosophical Transactions of the Royal Society of

London, 1952.

[3] Camacho and Bordons, Model Predictive Control. Springer Verlag, 2004.

[4] S. Dubljevic, P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Predictive control of diffusion-reaction

processes,” American Control Conference, 2005. Proceedings of the 2005, 2005.

[5] S. Dubljevic and P. D. Christofides, “Predictive output feedback control of parabolic partial differential

equations (pdes),” Industrial and engineering chemistry research, 2006.

[6] S. Dubljevic, P. D. Christofides, and I. G. Kevrekidis, “Distributed nonlinear control of diffusion-reaction

processes,” International journal of robust and nonlinear control, 2004.

[7] MATLAB, version R2012b. Natick, Massachusetts: The MathWorks Inc., 2012.

[8] P. Persson and G. Strang, “A simple mesh generator in matlab,” SIAM Review, 2004.

[9] Grune and Pannek, Nonlinear Model Predictive Control Theory and Algorithms. Springer, 2011.

[10] Stoer and Bulirsch, Introducation to Numerical Analysis. Springer Verlag, 1980.

[11] P. M. M. Fliess, J. L. Lvine and P. Rouchon, “Flatness and defect of non-linear systems: introductory

theory and examples,” International Journal of Control, 1995.

[12] N. Hansen, The CMA Evolution Strategy: A Comparing Review. Springer, 2006.

39

