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APPLICATIONS OF MATHEMATICAL PROGRAMMING TO 
GENETIC BIOCONTROL

VÁLERI N. VÁSQUEZ†, JOHN M. MARSHALL‡

†Energy and Resources Group, Rausser College of Natural Resources, University of California 
Berkeley, Berkeley, CA 94705 USA.

‡Division of Epidemiology and Biostatistics, School of Public Health, University of California 
Berkeley, Berkeley, CA 94704 USA.

Abstract

We review existing approaches to optimizing the deployment of genetic biocontrol technologies

—tools used to prevent vector-borne diseases such as malaria and dengue—and formulate a 

mathematical program that enables the incorporation of crucial ecological and logistical details. 

The model is comprised of equality constraints grounded in discretized dynamic population 

equations, inequality constraints representative of operational limitations including resource 

restrictions, and an objective function that jointly minimizes the count of competent mosquito 

vectors and the number of transgenic organisms released to mitigate them over a specified time 

period. We explore how nonlinear programming (NLP) and mixed integer nonlinear programming 

(MINLP) can advance the state of the art in designing the operational implementation of three 

distinct transgenic public health interventions, two of which are presently in active use around the 

world.
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1. Introduction.

Biological control uses living organisms to manipulate the dynamics of an unwanted 

population [12]. Historic examples include introducing foxes to regulate rabbits and 

employing entomogenous fungi to combat the spotted alfalfa aphid [35, 31]. Genetic 

biocontrol includes a subset of biological control approaches that directly alter the genes 

of a species or change the expression of certain traits, including via radiation or the artificial 
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introduction of pathogenic microorganisms [6, 39, 4, 67]. Modified individuals are then 

released into the environment to mate with their wild counterparts and either suppress or 

substitute the population of interest over the course of multiple generations. The recent 

derivation of a synthetic CRISPR-Cas9 genome editing system that allows scientists to 

create novel gene drives—a phenomenon wherein the allele of a diploid gene present in a 

heterozygote is inherited more than 50% of the time, temporally accelerating and spatially 

expanding potential results—holds great promise for the efficacy of future genetic biocontrol 

tools [10].

This paper focuses on an entomological use case of genetic biocontrol for epidemiological 

ends: the mitigation of mosquito vectors. The illnesses transmitted by mosquitoes—

including malaria, dengue fever, and the chikungunya and Zika viruses—generate massive 

human health and economic burdens, with dengue alone estimated to infect 390 million 

people and cost $8.9 billion annually [27, 35, 52]. Such numbers are expected to increase; 

escalating land-use change and global warming are growing the regions suitable for these 

arthropods [48, 15, 51, 45, 18] even as insecticide resistance rises [31, 32, 54]. Managing 

the current and future threats presented by mosquitoes requires augmenting traditional 

prevention mechanisms with the novel technologies enabled by genetic methods. However, 

it also demands a precise analytical approach to defining the operational application of such 

tools under diverse scenarios: it is this need that motivates the present work.

Currently, the design of transgenic public health interventions—their spatial layout as 

well as the timing and size of modified organism deployments—is informed by field trial 

experimentation and expert opinion [8, 46, 43]. Computational simulations can also furnish 

guidance about the potential release requirements of a given scenario [41, 66]. However, 

empirical measurement in ecology comes at great effort and with a large possibility for error. 

Meanwhile, simulation carries no guarantees of mathematical optimality. Optimal control 

has been explored as a means of optimizing the strategic implementation of both suppression 

and replacement-based genetic tools; mathematicians have succeeded in identifying, for 

example, the necessary temporal and spatial distribution to achieve specified reductions in 

wild population levels [2, 22]. But release strategies derived using optimal control have 

limited operational relevance to the domain of genetic biocontrol. Biological systems are 

complex; incorporating the multiple dimensions of information necessary to prescribe action 

for a realistic intervention program can quickly prohibit obtaining the closed-form solutions 

that characterize optimal control approaches.

Mathematical programming offers a viable alternative wherein more details may be 

accommodated and numerical solutions obtained. In section 2, following a brief review 

of the state of the art, we formulate a mathematical program grounded in dynamic 

population equations to obtain optimal intervention policies across a network. In section 

3, we share the outcomes of computational experiments applying this mathematical program 

to three genetic-based methods designed to mitigate vector-borne disease: release of Insects 

carrying a Dominant Lethal gene (RIDL), an engineered suppression technology currently 

undergoing multiple field trials; Wolbachia population replacement, a now widely deployed 

approach that in our featured example employs transfected wMel bacteria as stably inherited 

pathogen blockers; and Homing Gene Drive (HGD), a representative single-locus homing 
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replacement gene drive that has to date been strictly tested in laboratory settings. In 

section 4, we analyze these results. Each optimized release strategy accounts for the 

unique properties of the genetic system being tested, the regional temperature conditions 

under which releases are simulated, the thermal biology of both wildtype and modified 

organisms, geographic topology, and operational constraints. We close with a discussion of 

how mathematical programming may be used to enhance the epidemiological effectiveness 

of transgenic interventions while curtailing their environmental and monetary expense.

2. Methods.

2.1. Current practice in biology.

Optimal control has been explored for both suppression and replacement-based genetic 

interventions, with some works seeking to optimize these technologies as one facet of 

an integrated vector management (IVM) strategy [3, 16, 38, 36, 2, 14, 47, 1]. But this 

customary approach to optimization in the biological sciences uses continuous time models 

rather than discrete ones. It therefore involves synthesizing a function called the Hamiltonian

—an instantaneous increment of the Lagrange expression of the problem to be optimized 

over the time horizon—to find the adjoint equation for each state and solve the dynamical 

system [24].

The states in these formulations represent constraints of the minimization (or maximization) 

problem, and the adjoints can be interpreted as Lagrange multipliers associated with the 

state equations which constitute the marginal cost of violating those constraints [57]. The 

technique, as applied to deterministic ordinary differential equations in the context of 

minimization, is to solve a set of necessary conditions to be satisfied by the optimal control 

u* and corresponding state x*. Those necessary conditions are derived according to the 

inverse of the inequality in the Pontryagin maximum principle. This principle converts the 

problem into one of minimizing the Hamiltonian pointwise with respect to the controls [49].

Because the systems of interest in questions of genetic biocontrol can include multiple 

states—for example, states representing susceptible, infected, and recovered individuals, 

or states differentiating female disease vectors from their nonbiting male counterparts and 

wildtype organisms from genetically modified ones—the derivation of the Hamiltonian soon 

becomes intractable if too many such details are included [40]. Extensive reformulations or 

system simplifications are therefore necessary to apply optimal control methods to research 

questions in this domain. Unfortunately, abridging the genetic, biological, or ecological 

features included in a problem’s formulation can limit the utility of its results.

2.2. Advantages of mathematical programming.

Mathematical programming is a computational method that can be used to 

optimize the application of genetic-based vector control technologies with comparative 

comprehensiveness and ease [56]. While this subset of analytical tools—which includes 

a variety of problem classes, from linear to quadratic to second-order cone programs—is 

not conventionally used in the biological sciences, it is common to optimization efforts in 

other domains, among them engineering, management, and transportation [29]. Discretizing 
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continuous models and solving them numerically is less mathematically demanding and 

more accommodating to large state spaces. Mathematical programs are well-suited to 

hypothesis testing once the first formulation is created, enabling quick iteration via 

alternative objective functions and constraints [29]. Further, robust software libraries like 

Interior Point OPTimizer (IPOPT) available to solve them either supply the assurance of an 

optimal solution or return a statement of infeasibility.

One notable example of an integer linear program (ILP) developed for the public health 

arena seeks to spatiotemporally allocate a series of five malaria interventions alone or in 

combination and subject to budget constraints, with the objective of minimizing person days 

of infection over all timesteps [20]. This is an innovative multiyear extension of a previously 

formulated single-stage model that identifies one action (intervention or no intervention) per 

approximately 270,000 total geographic regions [19]. The work also exhibits a powerful 

pairing of ILP and ordinary differential equation (ODE) techniques: the mathematical 

program takes as inputs the outputs of a compartmental ODE model portraying malarial 

disease dynamics, such that the person days of infection can be minimized by the prescribed 

intervention(s). By including disease dynamics, the authors connect their ILP with the 

epidemiological process at the core of the public health problem for which they are 

optimizing solutions.

2.3. A mathematical program for genetic biocontrol.

The work presented here is not a top-down planning model intended to select from an array 

of available intervention types. Rather, our objective is to demonstrate how a fine-scale 

model can guide the operationalization of individual interventions using genetic tools. 

Therefore, we directly optimize the vector dynamics that underpin epidemiological patterns 

of mosquito-borne disease by using the Euler approximation method and a daily timestep to 

discretize a system of ODEs representing a mosquito population. The discretized population 

equations furnish the equality constraints of our nonlinear program (NLP). The control 

variable in the optimization problem constitutes modified individuals of the same species as 

the target vector. Operational factors enter the problem via inequality constraints on these 

control variables, e.g., bounds on the timing, size, and frequency of releases. We then extend 

the model to enable binary constraints on the spatial location and timing of interventions. 

This converts the problem into a nonlinear mixed integer program (MINLP) and permits 

optimization of the decision to realize an intervention (or not) in a particular node of the 

modelled network at a given timestep.

This approach is an advance over important optimal control efforts that are also grounded 

in vector population dynamics, or those which also employ constraints on both states 

and controls. First, our model does not exclude the juvenile periods in a mosquito’s stage-

structured life cycle that are crucial to density dependent mechanisms and environmentally 

sensitive development. Second, there is a notable distinction between constraints on the 

controls of comparable optimal control problems versus the controls of the mathematical 

program developed in this work. The former must first determine the restrictions on the 

controls that guarantee the optimal solution. While theoretically very interesting, the results 

of this process require adaptation to inform realistic operational design, and it is difficult 
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to determine the optimality—or feasibility—that might be lost in that conversion. Our 

mathematical program, on the other hand, enables a numeric search for the optimal schedule 

of interventions given operational constraints.

We augment the realism of the present problem formulation and differentiate it from earlier 

optimization efforts in the realm of genetic biocontrol by considering geography explicitly, 

that is, by defining discrete nodes that are connected via bidirectional migration into a 

network. Because alternative parameterizations can be accommodated in a straightforward 

way using mathematical programming, our model also accounts for the differences in 

dynamics that result from allowing critical data values such as mortality and maturation 

duration to respond to fluctuating daily temperatures. Additional variability enters via the 

three genetic tools examined, each of which drives different population dynamics and 

therefore leads to diverse optimal intervention strategies.

Figure 1 illustrates basic information underlying all computational experiments described 

in this work—namely temperature inputs, baseline population dynamics, and the topology 

of the network. The implementation of the NLP is detailed in subsection 2.4; the MINLP 

implementation is explained in subsection 2.7. The model is written in JuMP, the domain-

specific modeling language embedded in Julia [21, 9]. Solvers used include IPOPT, HSL-

ma86, Pardiso, Gurobi, Cbc, Juniper, and Bonmin [65, 28, 37, 11]. All code used to run the 

individual experiments draws on the GeneDrive.jl software package [58] and is accessible on 

Github [64], with resulting data outputs stored on Figshare [62, 63, 61, 59, 60].

2.4. Implementation: Nonlinear program.

The nonlinear program formulation defines sets, parameters, and decision variables of both 

biological and operational significance. Sets include the following:

• Geographic nodes (N): The spatial structure across which an intervention is 

deployed informs population dynamics according to the network layout (e.g., 

linear, circular, on a grid, etc.), the degree of connectedness between nodes, 

and the rate at which organisms disperse between discrete locations. This in 

turn affects the optimal distribution of transgenic releases necessary to achieve a 

given objective. Nodes are denoted by the index n.

• Organisms (O): An environmental benefit of genetic biocontrol is that 

interventions strictly target a particular vector species. These unique biological 

dynamics can therefore be isolated and modelled. Our model reflects the 

dynamics of the Ae. aegypti mosquito, a primary vector of dengue fever, 

chikungunya, and Zika; this is achieved via the parameterization described 

below. Organisms are defined by the index o. Because only one species is 

modelled in this work, o is not explicitly reflected in (2.1).

• Stages (S): Mosquitoes, like other hemimetabolous and holometabolous 

arthropods, are well represented by stage-structured population equations that 

subset their life cycle into juvenile and adult phases, with adults evenly divided 

between males and females. To enable temperature-sensitive development using 
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Erlang-distributed bins, each stage constitutes a uniquely sized set. The index s is 

used to model Stages.

• Genes (G): Genetic-based intervention mechanisms rely on the propagation 

of specific modifications through subsequent generations. Implementing and 

monitoring the introgression of those changes therefore requires distinguishing 

the genotypes present in a population. Each of the three interventions modelled 

here requires distinctly sized genotype sets; Wolbachia features two dimensions, 

RIDL has three, and HGD has six (considering the case of a single homing-

resistant allele). Genotypes are defined by the index g.

• Time (T): The time horizon over which a population is modelled and within 

which an intervention is implemented. All examples presented in this work 

assume a one year period in 365 daily timesteps. Time is denoted by the index t.

2.5. Parameters and state variables.

State variables E, L, and P represent the juvenile mosquito life cycle periods of egg, larva, 

and pupa, respectively, while adults are evenly divided between males and females as state 

variables m1 and F. All are indexed by genotype g and time t as well as i, with the latter 

representing the Erlang-relevant modeling artifact used to subset each stage s.

The number of eggs laid per genotype is calculated using βg and σg, which are genotype-

specific female and male fecundity and fertility parameters, and the inheritance and survival 

probability of the specified genotypes, namely Γg and Tg. The θg parameter dictates the male 

to female emergence ratio of offspring, while ηg prescribes male mating fitness. The data 

values for genetic parameterizations in the RIDL examples are derived from Carvalho et 

al. [17], while that of the Wolbachia and HGD examples are sourced from Hoffman et 

al. [33] and Gantz et al. [25], respectively [17, 33, 25]. The implementation of all three 

constructs is reflected on Github and draws from Sánchez [55]. While both RIDL and 

Wolbachia implementations reflect midrange field estimates of fitness costs on modified 

organisms, the HGD examples presume equivalent fitness between wildtype mosquitoes and 

their transgenic counterparts. Mortality rates μ and development rates q are dynamically 

calculated for each timestep according to temperature inputs using empirically calibrated 

functional forms; the same values apply to both wild and modified organisms [50]. Data 

used as temperature inputs is representative of seasonal fluctuations in a temperate location 

of the southern hemisphere endemic to Ae. aegypti mosquitoes. Logistic density dependence 

dL is implemented in the larval stage L for all genotypes per timestep in each node.

2.6. Decision variables.

The decision variables enter as the cĝ, t terms added to the equality constraint for the life 

stage appropriate to the mechanisms of a given genetic-based intervention method (adult 

males in the case of RIDL and HGD; both adult males and adult females in the case of 

1“m” rather than “M” is used to denote the fact that males are modelled as a vector rather than a matrix, and thus the capitalization of 
the variable follows convention.
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Wolbachia). Each is indexed by g to denote the genotype responsible for the biocontrol 

action (suppression or replacement) and t to specify the time of deployment.

2.7. Implementation: Mixed integer nonlinear program.

The mixed integer formulation, which takes the form of an MINLP, builds on the sets, 

parameters, and decision variables described above. It extends the problem by constraining 

the release variable Rn, t to be binary, such that the decision to deploy interventions or not in a 

particular node n of the network and timestep t becomes a binary choice.

2.8. Model.

Using these sets, parameters, and decision variables, we define the following mathematical 

program:

min
cĝ, t

s.t.

J Fn, g, t, αcĝ, t

(2.1a)

Eg, t, 1 =
s = 1

N
βgσg Γg ⊙ Tg sF t, s − Eg, t, 1 μE + qEsE ∀g, t,

(2.1b)

Eg, t, s = Eg, t − 1, s − 1 − Eg, t, s μE + qEsE ∀g, t, s = 2…sE,

(2.1c)

Lg, t, 1 = Eg, t, sE − Lg, t, 1 μLdL + qLsL ∀g, t,

(2.1d)

Lg, t, s = Lg, t − 1, s − 1 − Lg, t, s μLdL + qLsL ∀g, t, s = 2…sL,

(2.1e)

Pg, t, 1 = Lg, t, sL − Pg, t, 1 μP + qPsP ∀g, t,

(2.1f)

Pg, t, s = Pg, t − 1, s − 1 − Pg, t, s μP + qPsP ∀g, t, s = 2…sP,

(2.1g)
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mg, t = Pg, t, sPqPsP 1 − θg − mg, tμm + cĝ, t ∀g, t,

(2.1h)

Fg, t, s = Pg, t, sPqPsPθg
mg, tηg

k = 1
N mk, tηk

− Fg, t, sμF + cĝ, t ∀g, t, s,

(2.1i)

cĝ, t ≤ Rn, tDmax
day ∀t ∈ Td,

(2.1j)

cĝ, t ≥ Rn, tDmin
day ∀t ∈ Td,

(2.1k)

t ∈ Td

cĝ, t ≤ Dmax
trial .

(2.1l)

The objective function jointly minimizes the number of vector competent mosquitoes F  and 

the number of transgenic organisms c released to mitigate them, where α is a modeling 

artifact used to weight the controls with a value of e−8. We seek to reduce the count 

of females because it is the sex that obtains blood meals and is therefore responsible 

for transmitting disease. The particular goals of a given public health intervention in 

suppressing the standing genotype g using the modified genotype ĝ may differ according 

to node n or across time t; this is also influenced by the constraining set Td ⊂ T, which 

is defined as the days when releases ℛ in node n and time t are permitted. Dmax
day  and Dmin

day

denote, respectively, the maximum and minimum number of organisms released daily. To 

conduct the computational experiments featured in section 3, we study the outcome of 

two alternative versions of the function J in the objective. These are defined below. The 

sets Ni ∈ N, Gi ∈ G, and T i ∈ T  refer to the node, genotype, and time period of operational 

interest, respectively:

min
cĝ, t n ∈ Ni t ∈ T i g ∈ Gi

Fn, g, t − ψFn, g, 1
2 + cĝ, t ,

(2.2)
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min
cĝ, t n ∈ Ni t ∈ T i g ∈ Gi

Fn, g, t − γtFn, g, 1
2 + cĝ, t + ρRn, t .

(2.3)

The first implementation of the objective function, (2.2), minimizes the count of vector 

competent females in each time step from t = 200 of the simulation through the end of the 

horizon t = 365  by a factor of ψ with respect to the first day of simulation t = 1, using the 

minimum number of modified organisms cĝ. The value of ψ = 0.20 for all experiments. This 

objective assigns equal priority to all five nodes of the network.

The second version of the objective function, (2.3), minimizes the count of vector competent 

females in each time step by a factor of γt with respect to the first day of simulation t = 1, 

again while using the minimum number of modified organisms cĝ. In this case, the value 

of γ = 0.98 for all experiments. The variable Rn, t and weighting parameter ρ = e−8 are used 

to minimize the number of nodes in which releases are designated; this only impacts the 

strategies produced by the MINLP, wherein Rn, t is binary. In the featured NLP and MINLP 

examples, objective function (2.3) targets a single location (node four) rather than the entire 

network, simulating a localized outbreak that demands the design of a regional public health 

intervention strategy. It demonstrates the difference in decisions enabled by the MINLP 

versus the NLP when taking spatial structure into account.

The equality constraints in (2.1) comprise the population dynamics of the mosquito vectors 

across the five life stages, biologically bounding the feasibility of the program. Constraints 

representing nonbiological or operational limitations, such as resource availability and 

geographic reach, enter as inequality constraints on the decision variable (cĝ, t for the NLP; 

both cĝ, t and Rn, t for the MINLP) in (2.1). Because the constraints are defined on a per-node 

basis within the network, spatially explicit policies can be explored across heterogeneous 

topologies. For the experiments whose descriptions follow in subsection 3.1, Dmax
day  were 

set to 50, 000.00 modified organisms and Dmax
trial to 9e9. The same Dmax

day  and Dmax
trial values 

were used for the results shown in subsection 3.2. The minimum constraint of Dmin
day was 

additionally employed in the MINLP runs, representing the size of a single unit (containing 

box) of transgenic mosquitoes. This enforced the requirement that the binary decision Rn, t be 

contingent on making a release of an operationally realistic magnitude.

3. Experimental outcomes.

The first set of results in subsection 3.1 reflect simulations conducted using objective 

functions (2.2) and (2.3) in turn to optimize the model as an NLP; the second set of results 

in subsection 3.2 employs objective (2.3) to rerun the model as an MINLP. All outcomes 

are calculated assuming the temperature inputs, population dynamics, and five-node network 

structure shown in Figure 1. The per-individual migration rate of adult males and adult 

females is the same in both directions for all connected nodes and for all timesteps; juvenile 

stages do not migrate.
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Each computational experiment is replicated using the three different technologies, two of 

which—Wolbachia and RIDL—are being actively deployed and one of which—HGD—is 

representative of a single locus homing drive that employs CRISPR-Cas9 and remains under 

laboratory development. The decision variable cĝ, t required to model these technologies 

differs in the sex of the released organism: For RIDL and HGD, only male modified 

organisms are released. For Wolbachia, both males and females are released. In all plots 

showing results of the latter, female population dynamics for both released organisms and 

wildtypes are shown in the same panels.

3.1. Results: Nonlinear program.

First we present the outcome of applying objective function (2.2) to the NLP, with the 

left-hand panels of Figure 2 displaying the optimal schedule of modified male releases and 

the right-hand panels reflecting the corresponding female dynamics. Figure 2(d) depicts both 

modified and wildtype females.

Next, we show the results of objective function (2.3), which targets a localized outbreak in 

node 4 when employed with the NLP model. Figure 3 illustrates outcomes using the RIDL 

construct, Figure 4 using Wolbachia replacement, and Figure 5 using HGD. In each set of 

figures, we show decisions and the corresponding dynamics across individual nodes of the 

network, again with all left-hand panels featuring the optimal schedule of modified male 

releases and right-hand panels reflecting the female dynamics that are produced by those 

releases.

3.2. Results: Mixed integer nonlinear program.

Here we display the results of objective function (2.3) applied to the MINLP formulation. 

Because an initial MINLP experiment using RIDL parameters did not produce binary 1.0 or 

0.0 values for all locations and timesteps of the Rn, t variable, we established a methodology 

to postprocess results and consistently applied it to all MINLP outcomes.

Two algorithms were developed to assess the effect of different heuristic approaches; these 

are specified in the supporting information on Github and can be described generally 

as follows: For the first approach, hereafter described as heuristic “A,” the only control 

decisions that were retained in the refined policy schedule were those which met or 

exceeded the Dmin
day value. Under heuristic “B,” the only releases preserved were those 

corresponding to within 0.1 of a binary Rn, t = 1.0.

Figure 6 illustrates outcomes using the RIDL construct. Figure 7 displays MINLP results 

using Wolbachia population replacement technology.

4. Discussion.

4.1. Analysis of NLP results.

Results from the initial set of computational experiments in subsection 3.1 were generated 

employing objective function (2.2), which sought to minimize disease competent mosquitoes 

across the entire network. This produced the same optimal schedule of releases for all 5 
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nodes of the network per simulated technology. While the experimental inputs are equivalent 

aside from the parameterization reflecting choice of genetic biocontrol tool, a notably 

different intervention policy is prescribed under the RIDL, Wolbachia, and HGD scenarios. 

This outcome reflects the need for mathematical approaches that can account for the unique 

population dynamics driven by a particular transgenic technique.

Even genetic tools that employ comparable mechanisms can have distinct impacts on 

the dynamics of the standing population. For example, both the timing and magnitude 

of releases optimized for Wolbachia and HGD vary greatly as shown in Figure 2(c) 

through Figure 2(f). The difference in deployment schedules illustrate the relatively greater 

invasiveness of Wolbachia compared to HGD despite modeling assumptions that imbue the 

former with a greater fitness cost. This superior introgression enables a single release of 

infected organisms at the beginning of the simulation period to achieve more suppression 

of wildtypes than was realized by the HGD construct using deployments at the end of the 

simulation period that are larger and more frequent.

None of the simulations featured in this work is designed to emulate the results of a real 

study. However, the optimized policy output for the sole suppression method shown here, 

RIDL, broadly supports the “prophylactic” logic that has governed the implementation 

of field trials using it [5, 26, 17]. Figure 2(a) depicts a schedule of initial overflooding 

(repeated large releases) followed by a lesser rate of deployments that serve to maintain 

levels of population reduction as illustrated in Figure 2(b). Because the biological and 

operational constraints of the NLP are straightforward to iterate, alternative environmental 

inputs and the resource limitations encountered in actual field cases—including material and 

time costs—can be used to further refine this release policy, tuning it for regionally relevant 

recommendations.

The NLP results shown in Figures 3, 4, and 5 apply objective function (2.3), which 

prioritizes the minimization of disease vectors in node 4. These simulations highlight the 

utility of mathematical programming in addressing spatial questions and serve as a point of 

comparison with the MINLP results that follow in subsection 3.2. Geographic information 

such as topological layout and connectivity was also included in the first cadre of NLP 

computational experiments, but a spatially relevant objective function in the second set of 

experiments presents the opportunity to exploit these details in the design of a regional 

strategy to reduce disease risk (the count of wild adult female Ae. aegypti) at a single 

“outbreak” location (node 4).

While the specifics of the NLP release schedules under objective function (2.3) differ for 

each technology, all three examples expend fewer releases of lesser magnitude in nodes 1–3 

than in nodes 4 and 5. Independent of tool type, deployments in the first three more densely 

interconnected locations would be comparably less effective in achieving the objective. 

Because the NLP is able to accommodate details such as dispersal direction, migration rate, 

and degree of connectedness, unnecessary actions can be minimized. From an operational 

perspective, interventions guided by such outputs can stand to benefit by cutting costs in the 

form of the materials, time, and labor that might otherwise be expended to conduct a less 

targeted public health campaign. Releases do nonetheless occur in nodes 1–3 because the 
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NLP is not afforded the opportunity to entirely forgo action in those locations: to analyze the 

impact of including that optionality in the optimization, we turn to the results of the MINLP 

exhibited in subsection 3.2.

4.2. Analysis of MINLP results.

The MINLP formulation constrains the release variable Rn, t to be binary. This extension 

enables the program to waive deployments entirely in a particular location. To explore the 

potential utility of optimizing over this choice, and to furnish the opportunity to make 

a direct comparison with the NLP alternative, the MINLP simulations employ the same 

geographically pertinent objective function (2.3) that minimizes disease vectors in one 

node of the larger network. MINLPs are NP-hard, uniting the “challenges of handling 

nonlinear functions with the combinatorial difficulty of optimizing over discrete variable 

sets” [7, 42, 44]. In recent years, there has been increased attention to this class of problems, 

corresponding with significant improvements in the solution methods required to solve the 

NLP and MILP subproblems that comprise them as well as a heightened recognition that 

MINLPs are well-suited to modeling real-world questions [23].

In this work, we weigh the complexity of formulating and solving MINLPs against their 

potential for enhancing the efficiency of a genetic biocontrol intervention. The problem at 

hand is nonconvex; therefore, we are interested in the possibility of producing a high-quality 

feasible solution in the spirit of D’Ambrosio and Lodi [23], wherein “solving” does not 

imply a global outcome [23, 13]. We employ two alternative heuristics to postprocess the 

results of the MINLP and subsequently assess the effect of these refined release schedules 

on the objective function value. In Figure 6(e), Figure 6(f), Figure 7(e), and Figure 7(f), we 

also qualitatively compare the node-specific population dynamics produced by each MINLP 

policy with the outcome of the corresponding NLP.

The MINLP model includes a minimum constraint on daily deployments, Dmin
day, that is not 

used in the NLP formulation. This was designed to help “make the case” for a mixed integer 

representation of the problem, hinging the choice to make an intervention at a given time 

and location on deployments that conform to at least one unit of transgenic organisms. For 

the RIDL simulations, Dmin
day = 1,000.0 in accordance with the volume of the containing tube 

described in Garziera et al. [26]. The Dmin
day value applied to the RIDL case was infeasible 

for the Wolbachia experiments because under the present problem specifications, the highly 

invasive population replacement technology demands deployments that are individually 

smaller than this minimum release size in all but one instance.

Figures 6(a) and 6(b) depict the schedule produced for the RIDL MINLP using heuristic 

“A” for nodes 4 and 5 of the network; Figures 6(c) and 6(d) show the same for heuristic 

“B.” Both “A” and “B” criteria produced a policy of zero RIDL deployments for nodes 

1–3. Figures 6(e) and 6(f) compare the population dynamics caused by these interventions 

to those driven by the NLP schedule; the result of “A” is essentially equivalent to that of 

the NLP, and “B,” while less suppressive than the others, still succeeds in vector reduction. 

The objective values of each simulation NLP = 2.04304e5, A = 2.04305e5, B = 1.22399e6  are 

in keeping with this qualitative assessment of comparative efficacy.

VÁSQUEZ and MARSHALL Page 12

SIAM J Appl Math. Author manuscript; available in PMC 2025 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The panels of Figure 7 exhibit the outcomes of the Wolbachia experiment under each 

heuristic method; for the “A” as well as the “B” scenarios, releases were made in all 

nodes of the network. Notably, the Wolbachia MINLP did conclude with strictly binary 

values for the Rn, t variable. Because the Dmin
day used for RIDL was not applicable for this 

technology, heuristic “A” was conservatively based on Dmin
day = 1.0, drawing on modeling 

and laboratory efforts that have found that introgression, pending contextual factors, is 

possible under even extremely stringent assumptions of Wolbachia-infected female escape or 

deployment [53, 66]. The release schedules and resulting population dynamics produced by 

both “A” and “B” postprocessing approaches are highly analogous across all nodes of the 

network; these similarities are supported by the objective values they generate in the model 

NLP = 5.6993975e6, A = 5.7003275e6, B = 5.7003277e6 .

4.3. Concluding remarks.

This paper explored applications of mathematical programming, including NLPs and 

MINLPs, to three genetic biocontrol technologies designed to manage populations of 

disease-transmitting mosquitoes. The formulations presented here enabled the inclusion 

of more detail than has been tractable to accommodate using the current state of the 

art for optimization in this domain, optimal control, while offering a greater degree of 

planning-relevant precision than can be expected of expert opinion or field trial-based 

guidance. Because it can be demonstrably tailored to account for the properties of 

diverse genetic tools, geographic realities, regional ecological conditions, and resource 

limitations, this work furnishes a potential analytical approach for defining the operational 

application of novel public health intervention techniques in myriad settings. From an 

epidemiological perspective, such flexibility can help to improve the effectiveness of a 

proposed deployment campaign. From an economic perspective, utilities include the option 

to calibrate interventions to save time, money, and materials in implementation. And from 

an environmental standpoint, it becomes feasible to scope plans such that the desired public 

health goals are achieved while the potential ecological consequences of excessive releases 

are mitigated.

Simulation results in section 3 showcase these advantages. For example, we can observe 

that NLP outcomes using (2.2) point to Wolbachia being the most epidemiologically and 

economically efficient, given experimental inputs, of the genetic tools assessed. However, 

in comparing the results produced by the NLP and MINLP, respectively, under (2.3), 

we also derive practical insight into the challenges of the latter class of mathematical 

programming problems. While MINLPs promise significant opportunity for the operational 

design of genetic biocontrol interventions as demonstrated by subsection 3.2 and discussed 

in subsection 4.2, developing the formulation of these problems to exploit them more 

fully demands further algorithmic improvement to their solution methods. This is left to 

future work. However, the present effort contributes two heuristic approaches with which 

to postprocess MINLP results, enabling the juxtaposition of NLP and MINLP case study 

outcomes and the assertion that, presently, the former furnishes robust insights to guide 

domain-relevant operational design that are nearly commensurate with MINLP outputs with 

the benefit of less computational cost.
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Fig. 1. 
Panel (a) displays the annual time series of daily temperature used as model inputs for 

all experiments, while panel (b) shows the baseline, temperature-responsive population 

dynamics for Ae. aegypti females in the absence of any genetic biocontrol intervention. 

Panel (c) illustrates the structure of the geographic network across which all experiments are 

run.
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FiG. 2. 
Left-hand column panels (a), (c), and (e) show the optimized decision policy for releases of 

genetically modified organisms across three distinct technologies. Right-hand column panels 

(b), (d), and (f) display the resulting dynamics of wild females (dotted lines) and, where 

applicable, the female mosquitoes that are heterozygous (dashed lines) and homozygous 

(solid lines) for the genetic modification. Colors denote the various technologies, with RIDL 

in green, Wolbachia in yellow, and HGD in red. In panel (f), the homozygous genotype is 

HH; the heterozygote is Hh.
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FIG. 3. 
Left-hand column panels (a), (c), and (e) show the optimal schedule of RIDL releases across 

each node of the network. Corresponding right-hand column panels (b), (d), and (f) display 

the resulting dynamics of wild females (dotted lines) in those nodes.
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Fig. 4. 
Left-hand column panels (a), (c), and (e) show the optimal schedule of Wolbachia male 

releases across each node of the network. Corresponding right-hand column panels (b), (d), 

and (f) display the resulting dynamics of wild females (dotted lines) and Wolbachia female 

carriers (solid lines) in those nodes.
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FIG. 5. 
Left-hand column panels (a), (c), and (e) show the optimal schedule of HGD male releases 

across each node of the network. Corresponding right-hand column panels (b), (d), and (f) 

display the resulting dynamics of wild females (dotted lines) as well as those females that 

are heterozygous (dashed lines) and homozygous (solid lines) for the HGD modification in 

those nodes.

VÁSQUEZ and MARSHALL Page 22

SIAM J Appl Math. Author manuscript; available in PMC 2025 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 6. 
Left-hand column panels (a) and (c) show RIDL male releases for node 4 of the network 

when applying alternative postprocessing heuristics to the MINLP model results. Panel 

(e) plots the wild female population dynamics produced by these two schedules in node 

4 alongside those generated by the NLP model under the same objective function (2.3). 

Right-hand panels (b), (d), and (f) show the same for node 5.
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FiG. 7. 
Left-hand column panels (a) and (d) show the optimal schedule of Wolbachia male releases 

for nodes 1–3 of the network. The wild female dynamics that result for each of the MINLP 

postprocessing routines are shown together with NLP-generated dynamics in g. Center 

column panels (b), (e), and (h) and right-hand column panels (c), (f), and (i) show the same 

series of information for nodes 4 and 5, respectively.
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