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ABSTRACT OF THE THESIS
Fairness—Preserving Empirical Risk Minimization
by

Guanqun Yang
Master of Science in Electrical and Computer Engineering
University of California, Los Angeles, 2019
Professor Vwani P. Roychowdhury, Chair

The concerns regarding ramifications of societal bias targeted at a particular identity group
(for example, gender or race) residing in algorithmic decision-making systems have been
ever-growing in the past decade. It is a common practice of machine learning models’
participation in these systems through empirical risk minimization (ERM) principle, which is
often the cause of unfairness by trading off underrepresented groups for overall performance.
Despite the importance of preserving fairness in such systems, there is hardly consensus
in defining unified fairness metrics, designing widely-applicable bias-mitigation algorithms,
and delivering interpretable models abiding by the ERM principle. The situation is made
even more grievous when non-structural data, including text, image, and audio, is involved
in these systems due to the unavailability of the well-defined identity attribute. Current
approaches attempt to tackle algorithmic bias in non-structural settings from data itself and
intermediate representation together with the inference component within models. In this
thesis, we propose to unify all three bias-mitigation operations into one streamlined machine
learning pipeline. At the same time, to provide interpretable results, the explorations will be
made while carrying out debiasing procedures, and theoretical justifications will be provided
accordingly. By ameliorating different bias-mitigation strategies through synergistic effects
and addressing model transparency issues by investigating internal representations, we show
that the proposed pipeline could provide interpretable machine learning models that embody

fairness across different identity groups in numerous non-structural data settings.
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CHAPTER 1

Introduction and Literature Review

1.1 Background

The knowledge discovery process is increasingly more relying on data-driven approaches. As
a result, algorithmic decision-making systems have cast significant influence on people’s life
due to their quantitative nature. With the rise of mobile networks, the availability of colossal
dataset and ever-increasing computation power, all of a sudden, from something as small
as how to distribute free admissions to a movie to more consequential ones like deciding
whether to grant an individual mortgage loan, a large number of decisions are automated

through data-driven protocols without even users’ awareness.

However, despite the reduced manual labor, improved efficiency and user experiences,
some societal concerns, including fairness and privacy with regard to these systems and
corresponding decisions, arise. To name a few, the algorithms used by Goldman Sachs to
approve applications for Apple cards show alarming gender inequality [Vigl9]. The resume
tracking system used by Amazon shows bias against the female, resulting in potentially
lower admission rates when male and female applicants are both qualified [Das18]. Industrial
facial recognition systems developed by Microsoft, Face++, and IBM all show a significant
disparity in accuracy across different races, where darker skin colors could cause up to 30%
performance degradation [BG18]. This list could go on while sharing the same core concern:
the machine learning algorithms we interact with on a daily basis to automate decision-

making prove to be unfair.

At the same time, as is noted in [KR19], the machine learning algorithms and underlying

empirical risk minimization (ERM) principle could probably not satisfy requirements such as
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privacy and fairness for free. As the artifacts of human inventions, despite their capacity to
work without being explicitly programmed, machine learning algorithms bearing empirical
risk minimization (ERM) principle could not resolve fairness concerns without appending
additional constraints other than minimizing empirical risk, or equivalently, maximizing

predictive accuracy.

The machine learning community, researchers from law, economics and social sciences,
and other stakeholders from the government and private sectors have recognized this chal-

lenge and initiated a series of works to tackle this problem.

1.2 Related Work

Starting from the trailblazing work by Dwork et al. in formalizing the fair machine learn-
ing problem [DHP12], researchers have previously spent extensive efforts in characterizing
bias in data and predictive results, mitigating bias in machine learning models and apply-
ing these algorithms under multiple settings, which include classification, regression, and

recommendation.

1.2.1 Fairness Metrics

The requisite to enforce fairness requirement to any algorithmic decision-making process is
to pinpoint the component to which we believe to be critical. As is observed in [KR19],
the data, learning algorithms, models given by such algorithms, and ultimate decisions (pre-
dictions) could all be questioned for potential fairness issues. However, it is not clear how
learning algorithms like gradient descent could encode human bias into the learning proce-

dure. Therefore, the categorization of fairness metrics goes into two streams.

e Bias in learned models
Zhao et al. propose to use co-occurrence frequency statistics to characterize bias am-
plification before and after training predictive models [ZWY17]. Wang et al. refine

and generalize this definition of bias amplification to a broader setting by introducing

2



the notion of information leakage, where they claim any model embodies bias amplifi-
cation whenever leakage of sensitive attributes’ information is larger than the leakage
by change under similar performance measure [WZY]. These works do not specifically
focus on bias in the machine learning pipeline but rather consider bias amplification.
This emphasis on bias amplification shifts the responsibility of fair machine learning

to the data gathering process and may better capture the dynamics of prediction.

e Bias in data and decisions
Compared to the work to characterize bias in learned models, the work towards the
definition of bias (or fairness) in data and decisions are much more abundant. As is
noted in [CR18], these definitions could be defined statistically and individually, with
the former one being practical. Some frequently used statistical definitions of fairness
include demographic parity (DP), equalized odds (EO), and statistical parity [BHJ18,
FSV19]. Despite empirical success in some applications [ABD18], the interpretation of
these metrics could be distorted when data is imbalanced. What makes things worse,

these metrics could be mutually exclusive except for degenerate cases [KMR16].

1.2.2 Bias Mitigation Strategy

Similar to the discussion of bias (fairness) metrics, current literature also focuses on miti-
gating bias in different components in the machine learning pipeline, which are called pre-

processing, in-processing, and postprocessing, respectively [BDH18].

e Preprocessing
Preprocessing algorithms is closely related to the notion of fair representation [CR18].
They try to apply a transformation to input data so that most of the task-specific in-
formation is maintained while removing sensitive information. For example, Louizos et
al. add maximum mean discrepancy regularization to variational auto-encoder (VAE)
to obtain posterior distribution that is invariant to latent variables, which preserves

the utility of resulting representation while attaining some degree of fairness [LSL15].

e In-processing



In-processing algorithms add additional fairness constraints to existing algorithms so
that the learned models could simultaneously satisfy some performance measure (for
example, accuracy) and fairness requirements. The works mentioned in Section 1.2.1

both adopt this approach [WZY, ZWY17].

e Postprocessing
Postprocessing maintains fairness by adjusting the predictive labels given by potentially
unfair models so that the adjusted label distribution could satisfy fairness requirements.
One foundational work is done by Hardt et al.. They try to adjust the output label
distribution using probabilities given by the solution of a linear program, which in turn

satisfies some fairness requirements [HPS16].

1.2.3 Application

e Classification
Most of the current works regarding fair machine learning systems focus on the setting
of classification because of the better-defined problem setup and already abundant

source of literature.

Zhang et al. try to remove or adjust the discriminatory features in the original dataset
through the insights given by the causal graph. By removing or adjusting one set of
nodes (features) within causal graphs, the preprocessed data empirically shows fairness
under the fairness measure [ZWW17]. Zheng et al. consider the sampling bias in elec-
tronic medical records (EMR) for predicting patients’ health conditions. For example,
patients only have medical tests when they feel sick and go to hospitals, which could
lead to misled interpretation for some chronic diseases. They apply the transforma-
tion of the original EMR time series using the HMM model and acquire unbiased data,

which shows high accuracy for predicting patients’ actual health conditions [ZGN17].

e Regression
Most efforts of algorithmic fairness are put in the classification setting, and relatively

less attention is on regression. One foundational work done by Berk et al. provides for-
4



mulation and corresponding metrics for fair regression, including the explicit measure
of the tradeoff between fairness and performance measure called the price of fairness
(PoF). They also give benchmarks on multiple datasets, which is conducive to future

research of fairness in regression [BHJ17].

¢ Recommendation and matching
Due to the pervasive use of recommendation and matching systems, the fairness issues

associated with such systems also raise researchers’ awareness.

In order to provide (mostly) gender-representative search results in talent acquisi-
tion, Geyik et al. deliver a system on LinkedIn by re-ranking the query results by
recruiters to satisfy some fairness constraints without statistically harming business
metrics [GAK19]. Fairness is also considered in the setting of matching submitted
papers and reviewers, Kobren et al. observe that many papers are reviewed by peo-
ple without sufficient qualification using the allocation given by conference organizers
through the maximization of some utility. By exploiting scores assigned to each re-
viewer to reflect their expertise, they add additional constraints to the original opti-
mization problem to make sure each paper is reviewed by people with sufficient relevant

experiences [KSM19].

1.3 Overview of this Work

In this work, we propose to apply the adversarial training method previously used in domain
adaptation to the mitigation of bias when non-structural data like images and texts come
into play. Importantly, we quantitatively select the particular component of the model to
apply the adversarial branch to for maximum utility. As is outlined in Figure 1.1, our main
contribution is to quantitatively select the component of interest to append the adversarial

branch in the original model Ty so that a fairness-preserving model T4 could be attained.

Throughout the text, {(x;,v:, 4;)}Y, is used for a batch of N data, where x; is the

feature, y; is the associated label, and A; stands for underlying sensitive attribute that



Data {(x;, yi, Ai)}f‘il

|

Data Preprocessing

7777777777777777777777777777777777777777777777777777777777

Clgoze sl eliss %L 1(z; A) estima- J» k «+ argmax I(z(®); A)

: 1) p(2)
1la. model T} Vi ,~~}f0r )
Vel el 1 % { o o 2. tion for each Tg(]) 7" 7, i
adversarial training 0 0

Adversarial

> Model T34

Evaluate fairness met-
rics in Ty and 7, é'*d"

Figure 1.1: Organization of the system

correspond to x;. When x; is fed into network, vanilla network Ty or the network Teadv
with adversarial branch £, a representation z is attained in the intermediate layer. When
we have representation z; and attribute A; in hand, their mutual information I(z; A4;) is

computable.

This remainder of this work is organized as follows. Chapter 2 describes the metrics
used in this work to objectively compare network performance in terms of fairness. Chapter
3 presents the technique used to capture the dynamics of bias during the training process.
Chapter 4 discusses the bias mitigation algorithm used in this work. Chapter 5 provides
comprehensive experimental evaluations in both text and image datasets in the classification
setting. Finally, Chapter 6 summarizes this work and provides some pointers for further

research.



CHAPTER 2

Characterizing Bias in Machine Learning Algorithms

As is noted in Chapter 1, there is no consensus in defining a unified fairness measure because
of the complexity of the machine learning pipeline and many of these metrics’ mutually ex-
clusive nature. This chapter presents a novel fairness metric that empirically shows appealing

properties other metrics do not have.

2.1 Demographic Parity (DP) and Equalized Odds (EO)

Demographic parity (DP) and equalized odds (EO) are two frequently used metrics in mea-
suring the fairness of the predictive results. They both ask for the parity of different identity

groups. Formally

e Demographic Parity (DP)
A classifier Tj is said to satisfy demographic parity (DP) metric when its prediction
g = 1(Ty(x) > 0.5) is independent of the attribute A. Equivalently, the value of

sensitive attribute A is uncorrelated with decision g.

Prj=1A=1] =Pr[j=1A=0]

e Equalized Odds (EO)
A classifier Ty is said to satisfy equalized odds (EO) metric when its prediction gy =
1(Ty(x) > 0.5) is conditionally independent of attribute A given the label y. This
is equivalent to equal true positive rate (TPR) and false positive rate (FPR) across

demographics A € {0,1}.

Pr [ZI}ZHA:L:I/} =Pr [:l):HA:O,y}, ye{()?l}
7



We could see that the equalized odds (EO) metric provides a more refined formulation
than demographic parity (DP) by additionally accessing the label of data. Importantly, this
enables equalized odds (EO) to depend on A through y, while previously demographic parity
(DP) forbids this dependence. This refinement provides ways to circumvent two major issues
associated with demographic parity (DP) [HPS16]. Specifically, consider the setting of job
applicants selection, where y, ¢ € {0, 1} and they stand for rejection and admission for 0 and
1, suppose binary sensitive attribute A € {0, 1}, and feature x characterizes the applicant’s

qualification for the job, then the demographic parity (DP) shows

e Unfairness for imbalanced demographics
When the distributions of A = 0 and A = 1 are skewed towards one party, demographic
parity (DP) requires the company to either reject qualified applicants or admit unqual-

ified applicants, which is not considered fair for all applicants as a whole.

e Rejection to the optimal classifier
If the optimal classifier Tg’pt is attained, it evaluates the applicant’s qualification x
correctly with probability 1 and gives the corresponding admission decision ¢. It is not

clear how classifier T, is unfair under the demographic parity (DP) metric.

However, despite its merits over demographic parity (DP), as the following example

shows, equalized odds (EO) metric is not without its flaws.

Proceeding with the setting of job applicant selection, when evaluating the fairness of

predictive results, one could compute the violation of individual metric.

Vpp =

Prlj=1/4=1] = Pr[j=14=0]]

ye{0,1}
Suppose the classifier Ty returns probability following the distribution N'(u,0.03%) with
base u; = 0.2, us = 0.6 and potential shifts depicted in Figure 2.1. An accurate classifier
could correctly distribute scores above and below threshold, which is often set to 0.5 by

default. As is shown in Figure 2.1, given labels of x (denoted "positive” and "negative”
8



in the figures), when probability Ty(x) is distributed differently, the corresponding fairness

violation vpp and vgo could not fully capture the fairness of output. Specifically,

e Failure when optimal classifier exists
When there exists a threshold (potentially differing from 0.5) that could correctly
classify all samples, the optimal classifier T, P' is attained. However, both demographic

parity (DP) and equalized odds (EO) signal unfairness.

e Failure to account for different distributions
The fairness violations for distributions except "low data separability below threshold”
are very close for both demographic parity (DP) and equalized odds (EO). A preferred
metric should provide more distribution-specific information other than fairness viola-

tion.

Note for distribution "inseparable data below threshold”, even though both fairness violation
is 0, this does not show the flaws of either of the two metrics since they should be 0 by

definition.

However, except for the two issues mentioned above, additional subtleties arise when

there are additional complications associated with data.

e Failure to take missing value into account
Suppose we would like to train a fair text classifier with respect to attribute A. We
could not anticipate each of the gathered texts includes A, which makes A a missing
value. At the same time, both the computations of demographic parity (DP) and
equalized odds (EO) require access to A. In this case, the unavailability of A makes

neither of them computable.

e Failure to extend to the case where multiple A’s are involved
The definitions of both demographic parity (DP) and equalized odds (EO) assume that
only one A needs to be addressed in the dataset. However, it is no surprise that some

datasets could include gender, race, and age simultaneously (for example, adult income



and equalized odds (EO) could be extended to this case.

dataset shown in [Koh96]). It is not clear how definitions of demographic parity (DP)

Table 2.1: Violation of demographic parity (DP) and equalized odds (EO)

Small right shift
(,ul = 04, M2 = 07)

Large right shift
(:ul = 067 Mo = 09)

Inseparable data
below threshold
(:ul = 027 M2 = 025)

Inseparable data
above threshold
(Ml = 06) Ho = 065)

Vpp

VEO

0.06800
0.06800

0.06400
0.07200

0.00000
0.00000

0.06400
0.07200

Positive
Negative
40

30

0.2 0.4 0.6

Positive
Negative

(a) Data distribution with subgroup shift (up:

0.2 0.4 0.6
Score

small shift, down: large shift)

Positive
Negative

(b) Data distribution with inseparable subgroup

(up: inseparable subgroup above 0.5, down: in-

separable subgroup below 0.5)

Figure 2.1: Four typical data distributions without missing value
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2.2 AUC-based Metric

In hope of circumventing issues presented in Section 2.1, a novel AUC-based metric is pro-
posed in [BDS19], which borrows some aspects of previous metrics while maintaining its
validity when the dataset shows skewness and missing values. At the same time, the exten-

sion of this metric is natural when multiple A’s come into play.

For a binary classification problem, suppose there are I identity groups in the dataset D

where each group is denoted as g;,i € [I], then for one particular identity group m, define

e BPSN AUC (Background Positive Subgroup Negative AUC)

BPSN AUC = AUC(D" + D, ), D¥ = D\D{

e BNSP AUC (Background Negative Subgroup Positive AUC)

BNSP AUC = AUC(D™ + D ), D~ = D\D,,

gm

e Subgroup AUC
Subgroup AUC = AUC(D; + D, )

e Overall AUC
Overall AUC = AUC(D* + D7)

Since there are I identity groups, in order to integrate metrics from all subgroups, Borkan
et.al. use geometric mean (} Som )P to all metrics except overall AUC [BDS19]. Formally,

the metric we use to evaluate our system is defined as

1 1
1 | Overall AUC + ( Z BPSN AUC,) Z BNSP AUC;)7 + ( Z Subgroup AUC,)?

The distributions in Figure 2.2 follow the setting in Section 2.1, the difference is that the
base ;3 = 0.2, uo = 0.6 here correspond to background distributions, where A is missing.
The subgroups are samples with A but shift with respect to background distributions. As
could be seen in Table 2.2, the limitations of demographic parity (DP) and equalized odds

(EO) are mostly overcome. Specifically,
11



e Threshold adaptability
When there exists a decision threshold that could make the correct classification (for
distribution ”small right shift” and "large right shift”), the AUC-based metric shows

high confidence in providing correct classification.

e Natural extension with missing value
As is shown in Figure 2.2, the AUC-based metric is designed to account for missing
values through background distributions D™ and D~. However, it is worthwhile to
note that the AUC-based metric is still valid when there are no missing values. This
makes it comparable with demographic parity (DP) and equalized odds (EO) metrics

discussed in Section 2.1.

e Distribution awareness
Contrary to fairness violation shown in Table 2.1, the results shown in Table 2.2 show
disparity across different distributions, which confirm the awareness of AUC-based

metric to distributions.

e Direct extensibility with multiple A’s
According to the formulation, the AUC-based metric could incorporate any number of

A’s into computation through g;.

2.3 Case Study: Empirical Comparison of Fairness Metrics

In order to demonstrate the ability to capture unfairness in real-world settings, this section
provides an empirical comparison of these metrics on adult income dataset [Koh96], a dataset
with multiple sensitive attributes A’s that is frequently used in the research of algorithmic

fairness.

The goal of the adult income dataset is to predict whether an individual could have an
annual income of more than 50 thousand dollars based on features like occupation, edu-
cation, investment decision, and many others. Importantly, this dataset includes multiple

sensitive attributes, including gender, race, and age. The prediction made from this dataset
12
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(a) Data distribution with subgroup shift (up: (b) Data distribution with inseparable subgroup
small shift, down: large shift) (up: inseparable subgroup above 0.5, down: in-

separable subgroup below 0.5)

Figure 2.2: Four typical data distributions with missing values

Table 2.2: AUC-based metric under different distributions

Distribution Metric
Small right shift
0.99963
(,u1 = 047 Mo = 07)
Large right shift
8o Tie 0.83886
(,U,l = 06, Mo = 09)
Inseparable data below threshold
0.86492
(11 = 0.2, pe =0.25)
Inseparable data above threshold
0.83886
(,u1 = 06, M2 = 065)
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Table 2.3: Predictive results on adult income dataset

Label y=1 y=20
Prediction yg=1 y=0 y=1 =0
Gender | Male Female Male Female Male Female Male Female
Count 1202 165 771 151 437 60 3749 2510
Accuracy 1202+1655325749+2510 — 84.31%

Table 2.4: Statistics of adult income dataset with respect to gender

(a) Full dataset (b) Validation dataset
Annul income | < 50K | > 50K Annul income | < 50K | > 50K
Male 20988 | 9539 Male 4189 1973
Female 13026 1669 Female 2570 316

may be used in applications from seemingly innocuous targeted advertising to a more con-

sequential approving mortgage loan, thus causing unfairness when classifiers fail to attain

100% accuracy.

The statistics of the label with respect to gender is shown in Table 2.4. When a Logistic
regression classifier is trained with 80% of the data, the prediction results on the 20% hold-
out set achieve 84.31% accuracy (see Table 2.3). However, as is shown in Table 2.5, the
prediction result shows unfairness from high DP violation, EO violation, and low AUC-
based metric. Furthermore, compared to DP violation and EO violation, the AUC-based

metric provides a more nuanced view about this unfairness. For example, for the "Female”

subgroup, the lower BPSN AUC and BNSP AUC than the "Male” subgroup show that the

classifier has difficulty classifying samples with different gender attributes.

14



Table 2.5: Comparison of fairness metrics of predictions made on adult income dataset

(a) Comparison of metrics

Metric Value
DP violation vpp | 0.156339
EO violation vgo | 0.156339
AUC-based metric | 0.210551

15

(b) Nuanced statistics of AUC-based metric

Subgroup Male Female
BPSN AUC | 0.326572 | 0.178786
BNSP AUC | 0.365101 | 0.161898

Subgroup AUC | 0.161898 | 0.365101
Overall AUC 0.268112
Final metric 0.210551




CHAPTER 3

Measuring Bias Dynamics through Mutual Information

Chapter 2 discuses the measurement of bias in the final predictive results. However, the
metrics introduced in Chapter 2 could not provide insights into the expression of bias during
the training process. This chapter shows that this dynamic could be captured using mutual

information.

3.1 Mutual Information

Mutual information captures the amount of information one random variable has about
another random variable or equivalently, the reduction of uncertainty of one random variable
when another random variable is given. As is shown below, zero mutual information between

two random variables indicates independence and vice versa.
I(X;Y)=H(X)-HX|Y)=0& HX)=HX|Y) e X1Y

The use of mutual information as a measure to characterize bias dynamic naturally arise from
the demographic parity (DP) introduced from Chapter 2. It requires statistical independence

between sensitive attribute A and predictive results.
Prij=1A=1] =Pr[j=1A=0]

However, as is noted in Chapter 2, there are flaws with this notion of fairness as it might not
guarantee fairness under various settings. We instead ask for the reduction of information
leakage about sensitive attribute A through the access to intermediate representation z
given by machine learning models. In the case of the neural network, the intermediate

representation z comes from each layer.
16



3.2 Mutual Information Neural Estimation

The estimation of mutual information between intermediate representation z and sensitive
attribute A involves (potentially) high dimensional vector. The accuracy of this estimation
could not be guaranteed since many of the estimation algorithms are designed for relatively

low dimensional input.

As is noted in [BBR], estimating mutual information between high dimensional random
vectors X and Z could be reduced to the maximization of the KL divergence lower bound

between joint distribution Py and produce of their marginal distributions Px ® Py

[(X,Z) = DKL(PXZHPX ®Pz)

T — I(X, Z) > supEpXZ[Tg] — 10gEPX®PZ [GTG]

Dkr(P||Q) = ;UI;EP[T] — log Egle’] %<0
S

J/

Vv
maximization of lower bound

where the function class F is replaced with neural network 71" parametrized by 6 € © in this

work.

In practice, Pxz and Py ® Py are replaced with their empirical counterparts P)(?Z) and

N
i=1

P)((n) ® Pé"), which are constructed by mini-batch samples {(zi, A;, yz)} . Given optimal

parameter é, the mutual information between X and Z is

—

I(X;Z)~=1(X;Z) =E  m[Ty] —logE

T
pil PP €]

The architecture used to compute 1(X; Z), namely StatisticsNetwork shown in Table 3.1,
is chosen to be consistent with the one presented in [BBR]. The Protocol 1 describes the

estimation process using StatisticsNetwork. Specifically,

1. Preprocessing
As the input tensor z greatly increase in dimension after it is flattened. We apply
PCA to decrease the dimension of flattened tensor z while keeping at 95% of its infor-
mation. Empirically, an image of (3,224,224) transformed by a convolution layer of
128 filters is turned into a tensor of shape (128,112,112). The flattened tensor is more
than 1.6 million dimensional while the same vector after reduction is only several hun-
dred dimensional. This operation largely improves the runtime of mutual information

evaluation with marginal performance tradeoftf.
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2. Estimation loop
A batch of N samples constitute empirical marginal distributions of {z;}¥ , and {A4;} Y,
individually and an empirical joint distribution of {z;, 4;},. In i-th of total M
estimation epochs, b samples are drawn of three aforementioned distributions, and

they are used to approximate the lower bound

b b
1 ) ) 1 I
z 7@ A0y _ - Ty (2D AW)
2 ;1 Tp(z'", AY) — log 2 ;1 e’

which is recorded in v;. The standard gradient ascent procedure is then used to improve
this lower bound. After sufficiently many epochs (by setting M a large number like

10000), the moving average of v is output as final mutual information estimation.

In order to verify the correctness of our implementation, we utilize the Protocol 1 to

compute mutual information between Gaussian random variable x; and 5 in x = [3}] ~

N([8], [,1) 7 ] ). As is shown in Figure 3.1, the estimation given by our approach is consistent

with theoretical value —1 log(1—p?) and results given by the KSG estimator, which is another

mutual information estimation algorithm commonly used in low dimensional setting [GOV].

0.8 i

Table 3.1: StatisticsNetwork architecture

§
206 /

04
]

Operation | Output dimension | Activation : :
FC (N,512) BLU -
FC (N,512) ELU Figure 3.1: Mutual information esti-
FC (N, 1) - mate between two dimensional correlated

Gaussian with varying correlation p
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Protocol 1 Mutual Information Neural Estimation (MINE)

1: procedure MINE({(z;, Ai)}jil , M, b)
2: Z Flatten(zfvzl) > (N7 dl,dQ,"') — (N7 Hz dl>
3: z + PCA(z) > (N, [L;di) = (N, k)
> reduce Z to the dimension k that attains 95% explained variance
> generally [[. d; >> k
4 v+ 0eRM
5: fori<«< 1: M do
6: N mini-batch samples constitute empirical distribution ng), PéN) and PIE‘N).
7: Draw b samples out of N mini-batch samples (empirical distributions).
(z1, AM) oo (20, A®)) ~ ng)
AN VN péN)’A(l)j... JAG) o E‘N)
8: Record the mutual information estimation at iteration ¢ in v
v; «+ Ty([z; A])
9: Evaluate the lower bound and its gradient
V() ! Eb: Ty(z%, AD) — log 1 zb: To(@DAD)
b i=1 ’ b i=1
VoV(0)
10: Apply bias correction to gradient
VoV (6) + VoV(0)
11: Update parameter for network Tj
0« 0+ VeV(0)
12: end for
13: return MovingAverage(v)

14: end procedure
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CHAPTER 4

Mitigating Bias through Adversarial Empirical Risk

Minimization

Chapter 2 and 3 provide tools to measure the bias in predictive results and their dynamics

during the training process. In the hope of improving the eventual bias measure, this chapter

shows the method to mitigate bias led by the insights of bias dynamics.

4.1 Adversarial Training of Neural Networks

Adversarial empirical risk minimization is first proposed in the study of domain adaptation

as a way to approximate H-divergence, which characterizes the amount of difference between

the source data distribution D& and target data distribution D2 captured by a particular

hypothesis class H. Formally, it is defined as

Pr [h(x=1)] — Pr_[h(x)=1]

XNDX

dy = 2sup
heH

Predlcatlve

Lo(y, 9
branch 9 — Le(y,9)

ArbltrarV layers %

-V Ladx

Gradient
reversal Jrai A = Laav(A, A)
layer R(-)

Figure 4.1: Adversarial training scheme of neural network
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In order for a model trained on the source domain to generalize well on the target do-
main, the dy has to be small [BBC07]. Ganin et al. argue that, by applying adversarial
training of the neural network, it could learn the representation that is indicative of both
source and target domain while being indiscriminate across domains [GUA]. This adversarial
training scheme provides empirically pleasing results and has successful applications in ma-
chine translation, text classification, and image classification [WXZ17], where distributional
shift and sparsity of available data are often the concerns. As is shown in Figure 4.1, the
backbone of this scheme is the novel gradient reversal layer appended at the beginning of
the auxiliary branch that predicts the auxiliary label. This architecture tries to acquire a

representation that is simultaneously

e Indicative to both source and target domain.

Since the gradient flow within the auxiliary branch follows the conventional backward
propagation protocol. After the negated gradient from the adversarial branch meets
and joins gradient flow in the predictive branch by addition. The learned representation
could still be informative to the target domain. With the combined signal transmitted
through the entire network through backward propagation, this weakens the learning
signal in the predictive branch for predicting domain labels while empowering the

overall predictive capability for target labels in the network as a whole.

e Indiscriminate across domains.

The adversarial empirical risk minimization could be seen as the modification of multi-
task learning [Rud17], where labels of related tasks (for example, sentiment analysis
and POS tagging in natural language processing) are jointly predicted on different
branches to achieve synergistic effects for individual task’s performance. With the only
difference in the gradient reversal layer, the adversarial branch reverses this synergy

and tries to reduce the discriminative power of learned representation.

Formally, the forward and backward gradient reversal layer R(-) is defined as mutually
incompatible operations

R(z) =2z, V,R= -1
21



where conventional V,R should be I rather than —1I.

4.2 Adversarial Empirical Risk Minimization Inspired by Mutual

Information

Recently, many researchers notice the potential of adversarial training in mitigating bias in
numerous tasks [AZP19, BCZ17, WZY, ZLM, AVG19]. However, most of these works follow
the original setup proposed in [GUA] and locate the adversarial branch (often a multilayer
perceptron) at the output layer. From the information-theoretic point of view, this default
choice is not backed by strong theoretical justification. Furthermore, as is evidenced by
observation in [DBC], the information expressed in the neural network does not follow a
monotonic fashion. At the same time, there is the concern of vanishing gradient in the

deep neural network, which motivates multiple auxiliary branches in Inception architecture

[SVI16].

Therefore, we propose to learn from insights given by the mutual information between
intermediate representation z and attribute A (and target y). It is then possible to avoid
the choice of adversarial branch’s location in an ad-hoc fashion. In order to quantitatively
compare the performance of our optimal location and default one, we follow the original setup
in [GUA] by choosing a simple multilayer perceptron as the architecture of the adversarial

branch (details of this architecture could be found in Chapter 5).

As is shown in Protocol 2, for each individual task, every component of interest Tg(j ) in
vanilla model T} is explored for the mutual information between representation z = Tg(j )(x)
and attribute A. Then the component with maximum mutual information is chosen as the
candidate to append the adversarial branch. The resulting network 734" is chosen to perform

specific task.
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Protocol 2 Training Protocol

1: Hyperparameters: learning rate «, batch size N, epoch K

2: procedure TRAIN({(x;, A;, yz)}ls:l)

3: Initialize network without adversarial branch Ty

4: repeat

5: Invoke Protocol 1 to each Te(j ) in Ty and acquire representation z.
6: return ]G,\A)

7: until all components {Tg(l), T0(2) e } of interests in Ty are evaluated

L —

8: Choose the component Te(j ) to apply adversarial branch to based on I(z; A)

9: Initialize network with adversarial branch T34
10: for 1: K do

11: for 1: N do

12: Forward propagation

R NN L.(y,9) < CrossEntropyLoss({yi}fil ; {@1}511)
(A e Tl

) N
Laav(A, A) < CrossEntropyLoss({A; };_, , {Az} )

=1

13: Backward propagation

0 <+ Adam(L., Lagy, 0; @)

14: end for
15: end for
16: return Fairness-preserving network T34V

17: end procedure
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CHAPTER 5

Experiments

We evaluate our adversarial empirical risk minimization (ERM) approach with text and
image datasets under the classification setting. The architecture for text and image datasets

are chosen differently, which aims to show the wide applicability of our method.

5.1 Experiment Setup

5.1.1 Datasets

The text dataset we use is Jigsaw Toxic Comment Dataset [DLS18]. Applied in the en-
vironment of toxicity comment detection in online forums, the collection of this dataset is
motivated by the observation that the vanilla predictive model could incorrectly associate
high toxicity level with particular identities that are historically underrepresented. For ex-
ample, as is shown in Table 5.1a, the non-toric comments that share the body "I am a
_ man/woman” are assigned wide range of toxicity scores, revealing the propensity of

discriminating identity groups that could be characterized as ”black”, "female”, and "gay”.

The statistics of this dataset and some text samples are shown in Table 5.1b and Table
5.1d. For each individual identity, there are consistently more non-toxic samples than toxic

ones in the dataset.

The image dataset we use is the SCUT-FBP5500 dataset [LLJ18]. This choice is moti-
vated by the report that many researchers have observed that the error of commercial face
recognition systems is strongly correlated with the darkness of skin color [BG18]. We instead

seek to extend this study and explore a similar application in evaluating facial attractiveness
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Table 5.1: Overview of dataset

(a) Predictive toxicity of vanilla model

Sentence Toxicity Score
I am a man 20%
I am a woman 41%
I am a white man 66%
I am a white woman 7%
I am a black man 80%
I am a black woman 85%
I am a gay man 57%
[ am a gay woman 66%
I am a gay white man 78%
I am a gay white woman 80%
I am a gay black man 82%
I am a gay black woman 87%

(b) Statistics of Jigsaw dataset

Identity | Non-Toxic | Toxic
Male 37799 6685
Female 46118 7311
Black 10223 4678
White 18044 7038

(c) Statistics of SCUT-FBP5500 dataset

Identity Non-Attractive | Attractive
Asian male 1000 1000
Asian female 1000 1000
Caucasian male 375 375
Caucasian female 375 375

(d) Sample of some toxic/non-toxic comment texts

Toxic

Non-toxic

Corrupt hypocrites throughout the gov-
ernment. Of the money, by the money
and for the money. Brought to you by
the jesus freaks cause birds of a feather

flock together.

Jeff Sessions is another one of Trump’s
Orwellian choices. He believes and has
believed his entire career the exact op-

posite of what the position requires.

If it walks like a duck, and quacks like
a duck....

That’s already been happening, Carl,
it’s called Fake News.

Fool.

Did Mark Shore lose his job? I have not

seen his guff for quite a while now.
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Figure 5.1: Samples of SCUT-FBP5500 dataset

and the system performance with respect to both gender and race. The statistics of this

dataset are shown in Table 5.1c.

5.1.2 Models

The network architecture in text classification is a three layer convolutional neural network,
which is outlined in Table 5.3. The architecture used for image classification is ResNet18

[HZR16], which is described in Table 5.4.

5.2 Results

5.2.1 Jigsaw Toxic Comment Dataset

As is shown in Figure 5.4, the I(z;; A), i € {1,2,3} fluctuates above 0 and no consistent
pattern could be observed from the relationship between training progress and mutual in-
formation. However, there is indeed tendency that mutual information estimate converge to

particular value with increasing number of epochs.

The change of mutual information across layers in the last training epoch is shown in
Table 5.5 and Figure 5.2. Because of their maximum mutual information across all layers,
the layer two and layer three will be chosen to append adversarial branch 24V to attain

model T34 for gender and race, respectively.
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Table 5.2: The network architecture for adversarial branch

(a) Image classification adversarial branch

Operation Output dimension | Activation
Input z (N,C,H,W) -
AdaptiveAvgPool (N,C,7,7) -
Flatten (N,49C) -

Linear (N, 100) LeakyReLU

Linear (N, 100) LeakyReLU
Linear (N,2) -

(b) Text classification adversarial branch

Operation | Output dimension | Activation
Input z (N, L,C) -
Flatten (N, LC) -
Linear (N, 100) LeakyReLU
Linear (N, 100) LeakyReLU
Linear (N,2) -
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Table 5.3: Text classification network architecture.

Operation Output dimension | Activation
Input x (N, L) -
Embedding (N, L,50) -
Layerl
CONV, POOL, BN (N, 128, 50) ReLLU
Layer2
CONV, POOL, BN (N, 128, 50) ReLU
Layer3
CONV, POOL, BN (N, 128, 50) ReLU
Flatten (N, 128 x 50) -
Linear (N, 128) ReLU
Dropout (N, 128) -
Linear (N, 2) -
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Table 5.4: Image classification network architecture

(a) ResNet18

(b) Residual block

Input z

CONV
BN
ReLU
CONV
BN

Shortcut

Output z + f(z)

Operation Output dimension | Activation
Input x (N, 3,224,224) -
Preprocessing
CONV (N, 64,112, 112) ;
BN (N,64,112,112) ReLU
MaxPool (N, 64,56, 56) -
Layerl
ResidualBlock x 2 (N, 64,56, 56) -
Layer2
ResidualBlock x 2 (N, 128,28, 28) -
Layer3
ResidualBlock x 2 (N, 256,14, 14) -
Layer4
ResidualBlock x 2 (N,512,7,7) -
Output
AdaptiveAvgPool (N,512,1,1) ReLU
Flatten (N,512) -
FC (N, 2) -
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The results of Tp and T3 are shown in Table 5.7. The improvements in the final metric
after applying adversarial training in gender and race are 2.64% and 2.93%, respectively.

Additionally, we could observe the following

e Improvement of individual metric after applying adversarial training
When applying adversarial training over gender, there is consistent improvement for
identity "Male” and "Female” for all individual metrics, including BPSN AUC, BNSP
AUC, and subgroup AUC. Comparatively, when adversarial training is applied to race,
even though the improvement is not consistent for all cases, there are indeed improve-
ments for individual metrics except BPSN AUC for identity "White” and BNSP AUC
for identity ”"Black”.

e Overall performance is not traded off for fairness
After applying adversarial training, there is no drop in overall AUC, which shows that

performance degradation is not associated with applied adversarial training branch.

Change of mutual information across layers

Table 5.5: Change of 1(z; A) with respect \\j/
to network depth in text classification \\\ ///
e
Layer | Target | Gender | Race \///
1 0.01037 | 0.00734 | 0.00277 1 3
2 0.00000 | 0.00964 | 0.00293 Figure 5.2: Change of I(z; A) with re-
3 0.00777 | 0.00798 | 0.00403 spect to network depth in text classifica-

tion

5.2.2 SCUT-FBP5500 Dataset

The Figure 5.4 shows the changes of mutual information I(z;; A) (i = 1,2,3,4), with respect
to number of epochs. Unlike previous experiment with text dataset, patterns are evident for

us to draw several insights.

e Non-monotonicity
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None of the mutual information change in a monotonic fashion. This confirms the
result reported in [DBC], where Dhar et al. also find similar non-monotonic changes

of mutual information.

e Synchronicity and asynchronicity
The mutual information estimates between target and representation across layers
change in an almost synchronous fashion, while for latent variables (race and gender),
this synchronicity is not evident. This disparity shows that representation z; is more

informative about the label than latent variables.

e Disparity of representation level for latent variables across layers
The mutual information between z; and gender is generally larger than that of race,
and it fluctuates in a much smoother way. This indicates that not all latent variables

are equivalently expressed in the neural network.

Besides these insights, we could also conclude that the layer we apply adversarial branch

f24v is layer three for race and layer two for gender.

The results of Ty and T3 are shown in Table 5.7. The improvement of the final metric
after applying adversarial training over gender and race is 5.00% and 7.43%. Note that
since the dataset is fully balanced (see Table 5.1c), then the statistics (Table 5.8) given by
prediction results also show symmetricity. For example, the BPSN AUC for identity "Male”
is equal to BNSP AUC for identity "Female”.

Besides the fact that these results still follow the observations in text classification, we

could also find

e Marked improvement for the individual metric for some identities
When we train adversarially against gender and race, the BPSN AUC shows 24.74%
and 47.79% improvement for identity "Caucasian”. The same goes with BNSP AUC for
identity ”Asian” because of the symmetricity noted before. This significant improve-
ment shows the validity of our approach against the stochasticity of neural network

training.
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e Coupled effects of latent variables
When applying adversarial training to one particular attribute A, the resulting ef-
fects do not just specialize in the attribute we apply adversarial training to, the other
attribute is also influen