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ABSTRACT
Using calcium imaging to understand function and learning in layer 2/3 of cerebral cortex
by
Kelly Bryn Clancy
Doctor of Philosophy in Biophysics
University of California, Berkeley 2014
Professor Daniel Feldman, Chair

Sensory information is encoded with sparse spiking in rodent sensory cortex, but the
organization and functional basis of this sparse code is not well understood. | conducted two
studies to characterize function and learning in the cortex. In the first study, | used population
calcium imaging to study the circuit-level factors underlying sparse coding in layer (L) 2 of
mouse somatosensory cortex. Whisker deflection elicited low-probability spikes in small,
shifting neural ensembles spanning multiple cortical columns. Neurons within a column-sized
imaging field were tuned heterogeneously to many different whiskers, contrary to standard
models of somatotopy. A spectrum of whisker-evoked response probability existed across
neurons that correlated strongly with spontaneous firing rate. This correlation indicates that a
major component of responsiveness is independent of experimental stimulus choice. The
distribution of responsivity was skewed, indicating the existence of a small population of highly-
responsive neurons. Highly-responsive neurons included pyramidal cells and interneurons, and
individual whisker deflections were primarily encoded by a small, stable population of highly
responsive cells. L2 neurons projecting to motor (M1) and secondary somatosensory (S2) cortex
differed in whisker tuning and sparseness, suggesting these intermingled populations send
disparate information to their targets. Thus, sparse coding in L2 reflects heterogeneous sensory
tuning, low average response probability across neurons, a skewed distribution of inherent
responsiveness that includes a small number of more-active neurons, and functional
specialization of S1 output streams.

In order to test whether the large pool of unresponsive neurons observed might be
important in learning, | developed a novel type of brain-machine interface (BMI) based on
calcium imaging in the intact cortex. In this BMI task, the mouse learned to use voluntary
modulations of neural activity to control a device. The BMI design allowed for direct control
over the relationship between neuronal activity and behavioral output. We trained mice to
operantly control an auditory cursor using spike-related calcium signals recorded with 2-photon
imaging in motor and somatosensory cortex. Mice rapidly learned to modulate activity in layer
2/3 neurons, evident both across- and within-sessions. Learning was accompanied by striking
modifications of firing correlations within spatially localized networks at fine scales (10-100
microns). We found that less-active neurons, and even silent neurons, could dramatically up-
modulate their firing to successfully learn the task. Neurons in a ‘cloud’ around the BMI-
controlling neurons initially exhibited task-related activity, which dampened out as the animal
honed in on the specific cells controlling the device. This suggests an economization of activity,
which may be reflective of the sparse firing strategies in the cortex.

These studies both point to the existence of a gradient of activity in cortical neurons in
L2/3, which can nevertheless be volitionally manipulated by learning. Neurons in L2/3 of rodent
somatosensory cortex had unexpectedly divergent tuning, organized in a salt-and-pepper



fashion. The reliability of their responses depended mainly on intrinsic, stimulus-independent
responsivity, and more minimally on tuning and downstream targets. However, even extremely
inactive neurons could be induced to modify their firing dramatically by coupling their activity
to reward. The network rapidly learned to minimize the number of neurons necessary to

perform the task, suggesting that an economizing impetus might be at work in superficial
cortex.
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INTRODUCTION

With the evolution and expansion of the neocortex came a great leap in animal
intelligence. The neocortex, a thin sheet of neurons comprising the exterior of the
mammalian brain, integrates sensory and internal information in order to drive decisions and
behavior. Information from peripheral sensory receptors is sent to distinct, spatially organized
cortical areas for processing. The cortex is further divided into six layers, comprised of
genetically specific excitatory and inhibitory cell types. This six-layered structure and basic cell
types and connectivity within- and across-layers are ubiquitous among almost every cortical
area, suggesting that different areas utilize canonical circuitry. In general, layer (L) 4 appears
to be the major input layer, receiving information from the sensory periphery via the
thalamus. L2/3, comprising most of the superficial swath of cortex, is a major output layer
and remains plastic throughout adulthood. Representations of sensory features in L2/3 can
grow or shrink depending on sensory input, a process known as map plasticity (Feldman,
2005).

Rodents, a nocturnal creature, are thought to rely heavily on somatosensory
information, particularly from their whiskers. Using their whiskers, rodents can estimate
distance in a gap-crossing task, distinguish textures and macroscopic shapes, and follow
navigational cues (Morita et al., 2011; Jenkinson et al., 2000; Knutsen et al., 2006).
Information from each of the ~30 contralateral whiskers on the face are thought to be
processed in discrete cortical patches, known as barrel columns. This feature makes the
rodent vibrissal somatosensory cortex (vS1) a favorite system for studying cortical coding. It’s
also ideal for plasticity studies, thanks both to this orderly mapping as well as the ease of
manipulating whisker input. Cortical columns, most prevalent in higher mammals, represent
orderly subdivisions of a sensory area wherein similarly tuned neurons are spatially clustered.
They were once thought of as functional units of computation, however, as barrel columns
are the only columns evident in mouse and rat cortex, it’s unclear whether this columnar
structure has any real functional role in cortical processing (Mountcastle, 2007).

Understanding how somatosensory information is processed by cortex is essential for
relating sensory input to behavior. A number of insights into cortical coding have been made
possible by recent technological advances in neural recordings, particularly calcium imaging in
vivo using two-photon microscopy (Denk et al., 1990). In calcium imaging, a calcium-sensitive
fluorescent indicator is introduced to a population of neurons, either by bulk-loading with a
cell-membrane permeant dye (Stosiek et al., 2003), or by inducing the expression of a
fluorescent protein (Tian et al., 2009). A spike in the cell creates an influx of calcium marked
by a dramatic increase in the brightness of the indicator, followed by an exponential decay.
This method, coupled with two-photon microscopy, enables researchers to record relatively
deep in intact brains, allowing the visualization of activity in an entire local network.
Additionally, different cell populations can be tagged genetically or with neural tracers in
order to record activity in a high-throughput manner from a specific population of cells.
Calcium imaging, however, is limited by scan rates, slow calcium dynamics, low signal to noise
during single spike events, and bleaching or cytotoxicity of the calcium indicator (Looger &
Griesbeck, 2012). These caveats primarily limit our ability to detect single spikes and recover



spike trains from high firing rate neurons.

Recent calcium imaging studies in rodents have revealed an unexpected heterogeneity
of tuning in L2/3 of multiple sensory areas—primary visual cortex, auditory cortex and (most
surprisingly, given its columnar nature) somatosensory cortex all exhibit salt and pepper
tuning in superficial layers. Perhaps rodent cortex is just too small to support more orderly,
cortical column-like spatial organization, despite the fact that ‘minicolumns’, thought to be
the fundamental building blocks of cortical columns, are present in rodents. Mountcastle was
the first to invoke the minicolumn, a vertical structure formed by migration of neurons from
the germinal epithelium along radial glial cells (Horton and Adams, 2005). It was thought that
a column is formed by many functionally similar minicolumns bound by short-range
horizontal connections. In rodents, clonally related cells do maintain similar tuning (Li et al.,
2012), but there is a lack of clustering into larger, functionally similar domains. While
connections appear to be made preferentially between functionally similar neurons (Harris
and Mrsic-Flogel, 2013), there is a significant amount of randomness as well (Ko et al., 2011).
Perhaps the column is not a canonical unit of computation, but an epiphenomenal structure
for minimizing wiring in relevant connections, and thus only appears in the cortex of larger
mammals with more cortical ‘real estate.” It might be informative to search for columns in
larger rodents (e.g., capybara, guinea pigs) and the smallest primates (e.g., pygmy marmoset)
in order to see whether functional columns organically form (or fail to form) depending on
available cortical space.

It would also be interesting to relate the smoothness of tuning to cortical depth, as we
know there is a more crystalline organization of tuning in L4. It's been surmised that layers 2
& 3, usually lumped together, represent different processing streams, especially in mice—
perhaps, again, reflecting some form of economization for the sake of space. While rats have
septa between their barrel columns that appear to code for complex interactions and multi-
whisker dynamics, mice lack these septa, and so perhaps such computations are primarily
performed in L2, which is known to receive significant multi-whisker input from L5 (Bureau et
al., 2006). This may also explain the relatively low response rates recorded in L2: previous
calcium-imaging studies have mapped responses to single deflections of individual whiskers,
but perhaps cells are truly coding for more complex whisker interactions. Unexpectedly,
longitudinal studies have also indicated that the tuning of individual cells is not stable over
days (Margolis et al., 2012), but this may only reflect noise in unreliable responses to a sub-
optimal stimulus. By determining the best stimuli for driving reliable L2/3 responses and
pairing this stimuli set with more sensitive calcium indicators, we should better understand
this strange phenomenon.

In addition to the heterogeneity of tuning in superficial cortex, calcium imaging has
revealed new insights about the responsivity of neurons. Early extracellular recordings in
cortex led researchers to believe that the brain was incessantly active, and that neurons fired
spikes robustly at rates of tens of hertz or more. This, along with other evidence, underpinned
the view that time-averaged firing rates, rather than individual spikes, might be the relevant
information-carrying signal in the brain. Yet a discrepancy became apparent: extracellular
recordings in cortex and hippocampus typically yield data from about 10% of the theoretical
maximum number of neurons from which they should have be able to record, suggesting
there was a ‘dark matter’ problem in neuroscience (Shoham et al., 2006). Because



extracellular electrodes can only record from active neurons, less- or non-active cells are
essentially invisible to such methods. It was suggested that tissue compression and damage
from electrode insertion might render local neurons less active, but with the advent of less-
invasive recording techniques, it has become apparent that much of the cortex is indeed
incredibly quiet (de Kock, et al., 2007; de Kock, et al., 2009; Brecht, 2003).

Calcium imaging studies, in conjunction with less-biased recordings like cell-attached
and whole cell recordings in vivo, have made it clear that a large population of neurons
appear to spike rarely, or never. In S1, responses are binary: a neuron will respond to a
stimulus with either 0 or 1 spikes. This underscores the importance of single spikes, rather
than rate coding, in cortical computations. There are a number of computational and
metabolic benefits to minimizing the spikes needed to represent a stimulus, known as ‘sparse
coding’ (Olshausen and Field, 2004). As spikes are metabolically costly, it makes sense that
neural systems might be optimized to encode information with the minimum of spikes.
Sparse coding strikes a balance between a dense code, which requires few neurons but fail to
reliably distinguish between subtly different stimuli, and a grandmother cell code (the logical
extreme of a sparse code), which require a huge population of neurons, each narrowly tuned
for an incredibly specific parameter (e.g. one’s grandmother).

However, it’s not simply that a small number of spikes are distributed among the
population—in the traditional sparse model, cells are heterogeneously tuned for salient
features, but otherwise have relatively homogenous response properties including similar
maximal firing rates to optimal stimuli (Olshausen and Field, 1996). Instead, across many
different brain areas and behavioral states, there appears to be a gradient of activity, wherein
the majority of spikes are elicited from a minority of neurons (Buzsaki and Mizuseki, 2014).
There does not appear to be distinct populations of active and silent cells, but rather a long
tail of more responsive cells in a skewed distribution. By fluorescently tagging more active
cells using GFP coupled to c-fos, an immediate-early gene, researchers have determined that
these more active cells are preferentially interconnected (Yassin et al., 2010). In addition, the
more responsive L2/3 cells receive stronger excitatory drive from L4. Thus, they not only have
privileged access to the network, but they preferentially share this information with each
other. Unlike tuning, a neuron’s identity as high- versus low-responsive seems to be stable
over days of adult experience (Margolis et al., 2013). It would be interesting to study when
this network becomes established in a developing animal—whether these cells are in some
way genetically determined, or whether this more-active network organically forms as initially
equally-connected cells battle in a winner-take-all scenario.

This skewness appears to be a ubiquitous feature of the brain. Across many scales, the
distribution of physiological and anatomical features follow a skewed distribution. Spine head
size, axonal calibres, local field potentials, firing rates, synaptic strengths and the connectivity
profiles of neurons all follow log-normal distributions (Buzsaki and Mizuseki, 2014). What is
the advantage of this organization? It would be metabolically costly to maintain a large pool
of neurons that rarely or never spiked, unless they played some important role. Perhaps the
existence of a small, preferentially connected subset of neurons represent a network for
making fast decisions or detections, i.e. that something happened, whereas the remaining
population effectively code for (slower) discriminations, and contribute precision as to what
happened. By tagging the more-active network with cFos-Cre and expressing neural silencers



like halorhosopsin, we might better understand the role of the more active network in
different behaviors.

It’s also been argued that the silent neurons might serve as a ‘reserve pool’ for plasticity
(Barth & Poulet, 2012). One study which tracked their fate over the course of a plasticity
manipulation suggests this might be true (Margolis et al., 2012), but more work is still needed.
Another interesting avenue of future work would be to investigate whether silent cells can be
‘trained’ to become more high-active cells by coupling their activity to a behaviorally salient
stimulus. In one study discussed below, we trained mice to control a brain machine interface,
which gave us direct control over which cells learned a task. By coupling the activity of a
particular cell or group of cells to reward, we found animals could learn to volitionally
modulate firing patterns, and that we could induce much higher firing rates in even non-
spiking cells. Further work using this technique would be invaluable to elucidate how, exactly,
such volitionally-induced changes in excitability are elicited.

It might be that the unexpectedly low responsiveness observed in rodent cortex reflects
the anesthetic state, but even awake, behaving animals display low firing rates (O'Connor et
al., 2010b). Response rates are, however, also locomotion dependent (Niell et al., 2010), and
a number of studies have reported that some fraction of cells in a given cortical area code for
a different sensory modality (Yaka et al., 1999). Additionally, we found that animals could be
trained to exert volitional control over the firing of neurons, even in S1. Finally, tuning and
responsiveness can be influenced by experience (fear conditioning, environmental
enrichment, cross-modal plasticity). It’s becoming clear that neurons in primary sensory
cortices are not purely driven by information impinging from distant peripheral sensors.
Neural activity is dictated by a number of many non-sensory related signals, reflecting fear
memories, internal and external states, and even volitional control: there is much more state-
dependence on cortical computations in primary sensory areas than was expected.

Novel tools, including calcium imaging, have yielded a great number of insights into the
computations performed by the cortex. Fractured tuning, low response rates, and strong
volitional modification are all unexpected features of the neural code in rodent S1. While it no
longer seems that neural circuitry is necessarily interchangeable between different sensory
cortical areas, there is still something fundamental about the kinds of computations each area
performs: likely it is function, and not form, that is preserved.



I. STRUCTURE OF THE SPARSE SPIKE CODE IN LAYER 2 OF MOUSE SOMATOSENSORY CORTEX
INTRODUCTION

Individual whisker stimuli evoke few action potentials in rodent somatosensory (S1)
cortex, an example of sparse sensory coding. Layer (L) 2/3 is particularly sparse, with single-
neuron whisker responses being mostly binary (0 or 1 spikes) and strikingly unreliable (mean
response probability [Pr] ~0.1 per deflection), yielding low firing rates during whisker
behavioral tasks. Moreover, Pr is highly skewed across L2/3 neurons, with most neurons
having very low Pr (<0.1) to deflection of the columnar whisker, and only ~10% of neurons
having higher Pr (~0.2-0.6) and generating most whisker-evoked spikes. How this code is
organized and implemented in L2/3 circuits remains unclear.

Multiple factors can generate sparse spiking, including heterogeneous sensory tuning,
inherently low responsiveness among similarly tuned neurons, and subcircuits with varied
responsiveness. In classical sparse population coding, sparse firing is due to heterogeneous
sensory tuning among otherwise equivalent pyramidal cells, each of which responds strongly
and reliably to its optimal stimulus. This causes sensory stimuli to activate a small, stable
subset of neurons. Alternatively, sparse spiking may derive from inherently low trial-to-trial Pr
among similarly tuned neurons, resulting in a small, shifting ensemble of spiking neurons
across trials. This may be a primary factor in S1, where Pr is low, whisker somatotopic tuning
is largely homogeneous within each cortical column, and tuning for other whisker parameters
is relatively broad. The skewed Pr distribution in S1 may reflect either sensory tuning for the
applied stimuli, or a spectrum of inherent responsiveness across pyramidal cell subclasses,
interneuron classes or processing streams.

We investigated the relative importance of these factors in generating sparse spiking in
mouse S1, focusing on L2, where spiking is sparsest. Prior studies of L2 population coding
measured neural responses only to the column-associated whisker or one neighbor. However,
substantial paralemniscal and cross-columnar input to L2 could confer heterogeneous
whisker tuning, sparsening population activity. We used 2-photon calcium imaging with
Oregon Green BAPTA-1 AM (OGB-1 AM) to characterize whisker responses in L2 of
anesthetized mice. Stimulating 9-15 whiskers, we observed highly heterogeneous whisker
tuning among co-columnar neurons. By measuring Pr to each neuron’s individually
determined best whisker and spontaneous activity, we found a prominent spectrum of
inherent responsiveness across neurons. Whisker tuning and Pr differed between S2- and M1-
projecting neurons. Whisker tuning and low Pr both contributed to sparse coding, with
different levels of sparseness across different S1 output streams.

RESULTS
Population ca* imaging in S1

We imaged whisker-evoked activity in dense populations of L2 neurons in mouse S1 by
bolus injecting the calcium indicator OGB-1AM into a functional whisker-related column (C1-3,
D1-3, or E1-2) identified by intrinsic signal imaging. Activity was measured using 2-photon
imaging in 20-50 neurons in a ~160 x 160 um field (about the size of an anatomical whisker
column), at 120-180 mm depth corresponding to L2. Whisker stimuli were single, independent
deflections of 9 or 15 neighboring whiskers in a square array (Figure I-1A-E). Discrete calcium
events corresponding to spikes or spike bursts were identified from DF/F traces by non-



negative deconvolution. The sensitivity of spike detection was calibrated by simultaneous cell-
attached recording (n = 15 cells) (Figure I-1F). Deconvolution detected 55% of single spikes
(within 140 ms, a single imaging frame) and 90% of spike doublets, with a false positive rate of
0.05 Hz.

We measured OGB-derived Ca** events for all neurons in each imaging field during
whisker stimulation and interleaved epochs of spontaneous activity. For each neuron, we
qguantified whisker-evoked response probability (Pr) and identified the principal whisker (PW)
as the whisker that evoked the highest Pr. The most common PW across neurons in an imaging
field was designated the field best whisker (FBW). Post-hoc reconstruction of imaging field
location relative to the anatomical barrels in layer 4 showed that FBW identity matched
anatomical barrel identity in the imaging field center in 6/6 cases (Figure 1-2).

Highly divergent whisker tuning in a single cortical column

In classical extracellular recording studies in rats, >80% of barrel column neurons are
tuned to the anatomically matched whisker. However, this likely omits low-responsive cells,
which are the majority of cells in L2. In addition, it is unclear if the same tuning would occur in
mouse L2, which receives extensive paralemniscal and cross-columnar input. We measured
whisker tuning to 9 or 15 whiskers (50-150 repetitions each), unlike prior studies that used only
1-2 whiskers. L2 neurons showed remarkable local heterogeneity in somatotopic whisker tuning,
measured as mean Pr to each sampled whisker. Figure I-3A shows an example imaging field in
which D2 was the FBW, but that contained numerous strongly responsive neurons tuned to E1,
E2, D1, D2, D3, C1, and C2 whiskers. Other example fields are shown in Figure I-4. Divergent
tuning was also observed with the genetically encoded calcium indicator GCaMP6f (example
field, Figure 1-3D-F). Significance of tuning was verified by calculating 95% confidence intervals
for Pr for each whisker, assuming Poisson statistics (Figure 1-4). While many cells were driven by
the PW significantly more than any other whisker, other cells responded equally to several
neighboring whiskers (Figure I-4). Tuning heterogeneity was also evident in average DF/F traces
without deconvolution (Figure 113C and F, Figure I-4B).

We quantified the diversity of whisker tuning across all imaging fields (1659 neurons,
assayed with either 9 whiskers [46 fields, 24 mice], or 15 whiskers [5 fields, 3 mice]). 25% of
neurons (422) were tuned to the FBW, 11% to same-row, adjacent-arc whiskers (181), 12% to
same-arc, adjacent-row whiskers (195), and 11% to adjacent-arc, adjacent-row (“diagonal”)
whiskers (185). 19% were tuned to more distant whiskers, and 22% of neurons were
unresponsive to all presented stimuli (defined as Pr < 0.05) (Figure I-5A-B).

Whisker receptive fields of individual neurons were narrow, on average, with immediate
surround whiskers evoking 38 + 3% Pr compared to the PW (Figure |-5C). Whisker tuning of
entire imaging fields (compiled across all cells) was much broader, with whiskers immediately
adjacent to the FBW evoking 65 + 5% Pr compared to the FBW (Figure I-5D). To compare tuning
width statistically, we calculated whisker selectivity index (WSI), defined as Pr to the best
whisker (for one neuron or the entire field) divided by the average Pr to immediately
neighboring whiskers. WSI was significantly greater for single neurons than for fields (p=5.9e-16,
KS test) (Figure I-5E). Thus, local fields are composed of individual neurons with narrow,
somatotopically heterogeneous whisker tuning.

To test whether co-tuned neurons are functionally related in other ways, we measured



the correlation between calcium event trains for pairs of neurons during spontaneous activity
periods. Pair-wise correlations fell off with distance between neurons; however, neurons tuned
to the same PW showed higher correlations than neurons tuned to different PWs (Figure 1-6).
This finding is similar to results in visual and motor cortex, and suggests that co-tuned neurons
are organized into distinct subnetworks.

Size and columnar organization of the ensemble activated by each whisker

From each cell’s Pr to the FBW and nearby whiskers, we calculated the average size and
columnar organization of the L2 neuron ensemble activated by each whisker (Figure 1-7). In
each local field, 25%, 6%, 5.5% and 2.8% of cells were tuned to the FBW, or to one immediately
adjacent row, arc, or diagonal whisker, respectively. The set of neurons co-tuned to one
whisker (here called the tuning ensemble) is therefore distributed across columns. Because
most neurons exhibited weak non-zero responses to multiple surround whiskers, the minimally
responsive ensemble to each whisker (defined as all neurons with Pr > 0.05) was much larger,
with 58%, 44%, 41%, and 41% of neurons being at least minimally responsive to the FBW or
immediately adjacent row, arc, or diagonal whisker. However, Pr was very low for most neurons,
even for the PW (analyzed in detail below). Because of this, the single-trial spiking ensemble to
each whisker (defined as the number of neurons that spike, on average, to each whisker
deflection) was much smaller: only 6.8%, 5.1%, 4.9%, and 4.8% for these whiskers (Figure I-7A).
Because we detected only 55% of single spikes (Figure I-1F), the true size of the spiking
ensemble may be 9-12% of L2 neurons.

These results are replotted in Figure I-7B to schematize the tuning, minimally responsive,
and spiking ensembles in L2 across multiple S1 columns in response to a single rostral deflection
of the center-column whisker under our anesthesia conditions. All three ensembles are spread
across multiple cortical columns, with the single-trial spiking ensemble being much smaller than
the minimally responsive ensemble, and only partly overlapping with the tuning ensemble
(because spikes are evoked in neurons with peak tuning to nearby whiskers). This
representation ignores variations in Pr with distance from column center, and mapping of
direction tuning.

Skewed distribution of more-responsive and less-responsive neurons

Pr to the FBW (Prgw) was low, and skewed across the L2 neuron population: mean Pregw
was 0.09 (Fig. I-8A, solid curve), and 35% of neurons were unresponsive to FBW, defined as
Pregw < 0.05. This confirms prior studies that showed weak whisker responses in L2/3 with a
small tail of more responsive neurons. Responsiveness of each neuron to its individually
determined PW (Prpy) were somewhat stronger: mean Prpy was 0.12, and only 16% of neurons
were unresponsive (Figure I-8A, dashed curve). Thus, Pr was 33% greater when assayed with
the individually determined best whisker, but was still quite low overall. The Prpy distribution
remained skewed after subtracting spontaneous firing rate (Fig. I-8A, bars). All remaining
analyses report Prpyw with spontaneous firing rate subtracted.

Impact of column-specific tuning on P,
The factors that underlie the skewed distribution of P, in S1 are unclear. We first tested
whether neurons tuned to different PWs within the same imaging field had systematic



differences in P,. Neurons with high Prpy were only slightly more likely to be tuned to the FBW
than neurons with low Prpy (Figure 1-8B). High Prpyw neurons were more narrowly tuned as
measured by WSI, and narrowly tuned neurons thus had slightly higher Prpy (Figure I-8C-D).
Only whisker-responsive neurons were included in this analysis. Thus, tuning to the column-
specific whisker vs. other whiskers only modestly impacted Prpy.

Spontaneous firing rate strongly predicts P,

S1 may contain subnetworks of inherently more active neurons, independent of stimulus choice.
To test this idea, we compared Prpyw with spontaneous activity rates, which are not determined
by experimental stimulus choice. Spontaneous rates were stable across hours of imaging (2677
cells in 51 animals, t-test early versus late mean spontaneous rate, p=0.83), and did not appear
to be affected by epochs of stimulation. We observed a broad range of spontaneous activity
rates (Figure 1-9A), and found that spontaneous rate was strongly correlated with Prpy (Figure I-
9B, R?=0.32, p < le-16). Cells with high Prpyw were also more responsive to non-PW whiskers
(Figure 1-9C, R?=0.69, p<le-14), consistent with a generally more responsive subset of neurons.
Prpw Was not correlated to SNR, ruling out an artifact of OGB loading or imaging noise (Figure I-
9D, R°=0.02, p=1.5e-13). On the population level, cells with high spontaneous rate dominated
the population of high Prpy cells (Figure 1-9E), as observed in Al. The correlation between
spontaneous rate and Prpy was also significant for raw DF/F and for unthresholded
deconvolved data (Figure I-10). Thus, a spectrum of inherent responsiveness exists in L2,
independent of stimulus choice.

High P, cells include both pyramidal cells and interneurons

High Prpw cells may be interneurons, which have substantially higher spontaneous firing
rates than pyramidal cells in L2/3. High Pr neurons in our dataset are unlikely to be fast-spiking
(FS) interneurons, because the high firing rate of these cells obscures discrete spike-evoked
calcium events that would be detectable by the deconvolution method. To test what fraction of
high Prpw neurons are interneurons, we imaged whisker-evoked responses in GAD67-GFP
heterozygous mice, which label all interneurons with GFP (Figure I-11). Only 3 whiskers were
stimulated in these experiments. Interneurons showed significantly higher spontaneous event
rates than GFP-negative neurons (putative pyramidal cells) (p=0.002, KS test), and showed a
non-significant trend for higher Prpy (p=0.08). However, the high Prpy population included both
putative pyramidal cells and interneurons (Figure I-11E-G).

Tuning and sparseness differ between M1- and S2-projecting neurons

Sparse coding may vary across different functional streams within S1, including pyramidal
cell subclasses that project to different targets, consistent with functional specialization of
different output neurons. Output targets of L2 of S1 include primary motor cortex (M1) and
secondary somatosensory cortex (S2), with only modest overlap (1-10%) between these
populations. To compare whisker tuning and sparse coding between these populations, we
labeled M1-projecting (M1p) neurons or S2-projecting (S2p) neurons in separate experiments
by injecting the retrograde tracer CTB-Alexa594 into either M1 or S2. After allowing time for
CTB transport, we imaged in S1 and recorded activity from M1p or S2p neurons and unlabeled
neurons (the latter represent both neurons that do not project to M1/S2 and an unknown



fraction of unlabeled M1p/S2p neurons) (Figure I-12). M1p neurons (Figure |1-12A) had similar
Prpw to unlabeled cells (Figure 1-12B, p=0.3, KS test) but were more broadly tuned (Figure I-12C,
p=0.04), as reported previously. M1p neurons were equally likely to be tuned to the FBW as
unlabeled neurons (p=0.3, binomial test, Figure 1-12D).

In contrast, S2p neurons (Figure I-12E) had significantly higher Prpy than unlabeled
neurons (Figure 1-12F, p=0.009, KS test) and were more narrowly tuned (Figure 1-12G, p=0.04).
S2p neurons were more likely to be tuned to the FBW than unlabeled or M1p neurons (Figure I-
12D, p=0.02, binomial test). These results differ from a prior study in which S2p neurons did not
differ in Pr or relative response to 2 whiskers (FBW and one neighbor). When we restricted our
analysis to these 2 whiskers, these effects were not significant. Thus, S2p neurons differed only
when a broader range of tuning was considered. M1p and S2p neurons did not differ in
spontaneous firing rate. Overall, the projection target of L2 cells had a measurable effect on a
neuron’s place in the Prpy distribution (Figure I-12H).

Inter-areal projections may be bottlenecks for the flow of information in cortical sensory
processing, comparable to narrow cables in data networks. Theoretical analysis suggests that
projections with fewer axons may require greater data compression (denser spike coding) to
preserve information compared to projections with more axons. To test this idea, we compared
axon number and coding sparseness in the S1I->M1 and S1->S2 projections. To determine the
relative number of axons on each projection, we made a single focal injection of AAV2.9-CAG-
Flex-tdTomato-WPRE-bGH virus into S1 of Drd3-Cre mice, which express Cre largely in L2/3
pyramidal neurons. tdTomato was expressed strongly in L2/3 pyramidal neurons at the S1
injection site (Figure I-13A), with 10% off-target expression in L5 pyramidal cells. In each mouse
(n =3), we counted the number of tdTomato-labeled axons entering S2 and M1 (235 £ 22 and
463 * 29 axons, respectively). The within-mouse S2p:M1p axon ratio (originating from the same
S1 injection site) was 0.50 + 0.06 (Figure 1-13D). To compare coding sparseness between these
projections, we examined the coding of FBW deflection in each column by S2p and M1p
neurons. Population sparseness was calculated using a well-established metric, Sy, which is
related to the proportion of highly responsive cells within the population. S, ranges from near
0% (a dense code) to 100% (a sparse code). Across all L2 neurons (i.e. the same dataset as Figs.
[13-9), S, for FBW deflection was 0.45. M1p neurons and unlabeled neurons in M1p- and S2p-
labeled mice were similarly sparse (0.41-0.42). S2p neurons showed significantly less sparse
coding (S, = 0.29; p=0.02 vs. unlabeled neurons in the same experiments, KS test, Figure S5E).
This likely reflects the higher Prpy and greater proportion of FBW-tuned neurons among S2p
neurons (Figure 1-12). Thus, the projection with fewer axons (S2p) exhibited denser spike coding,
suggesting that differences in Pr between M1p and S2p neurons may partially reflect distinct
data compression requirements related to axon number on these projections.

DISCUSSION

Sparse sensory coding is common in rodent sensory cortex, but the structure of the sparse code
and its basis in sensory tuning, low inherent responsiveness, and circuit-level specializations are
not well understood. We combined 2-photon OGB-1 calcium imaging with deflection of many
whiskers to study sparse coding in whisker column-sized imaging fields in S1. Due to the
relatively slow dynamics of calcium dyes, calcium imaging is not ideal for reporting rapid firing



rates (e.g. fast-spiking interneurons), but is well suited to report spiking of L2/3 pyramidal cells.
The organization of the L2 population code was not clear from prior cell-attached recordings
(due to small sample size) or extracellular single-unit recordings (due to bias against low-spiking
neurons). Prior population calcium imaging studies identified important features of L2 coding
but did not address tuning to more than one non-columnar whisker.

We found that whisker somatotopic tuning in L2 was highly diverse locally, with salt-and-
pepper organization at the microscopic level but somatotopically correct mean tuning at the
population (columnar) level, consistent with a prior study that measured responses to 2
whiskers. Response probability to each neuron’s individually determined best whisker was low
(mean: 0.12) and skewed with a small tail of more-responsive neurons, also consistent with
prior studies. Prpyw was predicted strongly by spontaneous firing rate but only weakly by tuning
properties, indicating that a substantial component of responsiveness is independent of
stimulus choice. Higher-responsive neurons included both interneurons and pyramidal cells.
Whisker tuning and Pr varied between M1p and S2p neurons, with S2p neurons encoding the
column-specific whisker using a denser spike code than other cells. Thus, sparse coding in L2
reflects combination of heterogeneous sensory tuning, low inherent responsiveness organized
in a skewed spectrum across neurons, and functional specialization across S1 output streams.

Heterogeneous whisker tuning in single S1 columns

In rodent visual and auditory cortex, maps of sensory features are smooth on the macroscopic
(column) level, but at the microscopic level neurons tuned for different features are intermixed
in a salt-and-pepper organization. Similar salt-and-pepper somatotopy was known in S1 for
relative tuning to two whiskers. Using 9-15 whiskers, we found marked heterogeneity of
whisker tuning, with only 25% of L2 neurons tuned to the column best whisker, 34% tuned to
adjacent and diagonal whiskers, and 19% tuned to distant, non-adjacent whiskers (Fig. 3). Thus,
the set of neurons co-tuned for one whisker was scattered sparsely across multiple columns
(Fig. 4).

Extracellular single unit recordings in rats show that > 80% of L2/3 neurons are tuned to
the column-associated whisker. Heterogeneous whisker tuning in mouse L2 may derive from
prominent paralemniscal L5a input and cross columnar input, similar to septa-related columns
in rats. Despite local tuning diversity, average tuning across all local neurons matched expected
somatotopy for the whisker column, confirming the prior results with 2 whiskers. Thus
somatotopic tuning precision in L4 appears to decrease in the projection to L2, consistent with
integration with paralemniscal and cross-columnar inputs and similar to auditory cortex.
Direction tuning is another source of tuning heterogeneity in L2/3, but was not studied here.

The skewed Pr distribution reflects a spectrum of inherent responsiveness

We found that low average Pr was the major factor generating the sparse, shifting set of
neurons in response to a single whisker deflection. Prior studies demonstrated a skewed
distribution of Pr across L2/3 neurons, with most neurons having low Pr, and a small population
of high-Pr neurons generating most whisker-evoked spikes. However, whether Pr variation
reflected tuning to the applied whisker stimulus, or instead reflected a spectrum of inherent
responsiveness across neuron classes, was unclear. We found that Pr to each neuron’s
individually determined best whisker (Prpy) was also skewed. Prpy correlated weakly with
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tuning properties (Fig. 5) but strongly with spontaneous firing rate (Fig. 6), as in auditory cortex.
Thus, a substantial component of responsiveness is independent of stimulus choice. More
active cells included both interneurons, as expected, and also many pyramidal cells (Fig. 7).
These results are consistent with the existence of a more active subclass of pyramidal cells that
receive greater excitation from the local network.

The point representation of a whisker in L2

Based on our data, we define three distinct whisker-related neuronal ensembles: the tuning
ensemble (the set of neurons with peak tuning for a whisker), the single-trial spiking ensemble
(the average set of neurons that spike to one whisker deflection), and the minimally responsive
ensemble (the complete set of neurons with non-zero Pr; that is, the full set of neurons that
may spike over a large number of deflections). All three ensembles are distributed sparsely
across several columns, due to heterogeneous whisker tuning (Fig. 4). Low Pr causes the single-
trial spiking ensemble to be a small, shifting subset of the minimally responsive ensemble.
Because neurons are not tuned purely to single whiskers, the single-trial spiking ensemble
includes many neurons outside the tuning ensemble. These findings predict that decoding of
whisker identity from L2 population activity will be more efficient if population activity is
sampled from within tuning ensembles, rather than within anatomical columnar modules. This
is distinct from L4 of S1, where homogeneous whisker tuning minimizes information loss when
pooling within columns.

Specializations of S2 and M1 output pathways

Cortical pyramidal neurons projecting to distinct long-range target areas can exhibit specialized
sensory tuning and firing patterns. In S1, M1p and S2p pyramidal cells differ in sensory tuning,
intrinsic biophysical properties, recruitment during different behavioral tasks, and dynamics of
whisking- and contact-related spikes. By receptive field mapping across many whiskers, we
found that S2p neurons were more narrowly tuned than other neurons, were more likely to be
tuned to the column-related whisker, and had higher Prpy. In contrast, M1p neurons were
more broadly tuned to multiple whiskers (Fig. 8), as in a prior study. M1p and S2p neuronal
identity modestly predicted a neuron’s position on the Prpy distribution (Fig. 8).

Theoretical work suggests that area-to-area projections containing few axons may
constitute information bottlenecks that require data compression for effective information
transmission. Such compression may take the form of a denser spike code. We found that the
S2p projection contains roughly half as many axons as the M1p projection, and that
correspondingly, S2p neurons code for FBW deflection more densely than M1p neurons—that
is, FBW deflection drives a stronger spiking signal among S2p neurons than M1p neurons (Fig.
S4). This is consistent with the recent finding that S2p neurons exhibit stronger, more sustained
spiking during active touch than M1p neurons, and are more synaptically excitable. Thus, S2p
and M1p subpopulations send different whisker information, coded with different degrees of
sparseness, to their target areas.

SUMMARY
Sparse coding in L2 of S1 reflects a combination of locally heterogeneous whisker tuning, low
inherent response probability, a skewed spectrum of responsiveness across neurons, and
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specializations between S2 and M1 output streams. These factors cause single whisker
deflections to elicit sparse spikes in small, shifting ensembles of L2 neurons spanning many
cortical columns. This sparse, somatotopically divergent code is a substantial transformation
from L4, where Pris higher and the large majority of neurons are tuned for the column-
appropriate whisker. While somewhat stronger spiking is expected in awake animals, the
functional contribution of the large number of low-responsive neurons remains unclear. Some
may be tuned to multiwhisker or other complex input, while others may be a reserve pool to be
recruited during plasticity, or in specific behavioral tasks by association with reward.

METHODS

All procedures followed ACUC and NIH guidelines. Male mice (P30-45) were used (n = 38
C57BL/6J, 4 GAD67-GFP, 3 Drd3-Cre). GAD67-GFP mice were provided by Yuchio Yanagawa,
bred with C57BL/6J mice, and heterozygotes offspring were used for experiments.

Surgical preparation, intrinsic imaging, and OGB bulk loading

Mice were anesthetized with urethane (1.2 g/kg) and chlorprothixene (0.08 mg), and
anesthesia was maintained with supplemental urethane as needed. A stainless steel head
holder and imaging well was affixed over S1 (1 mm posterior, 3 mm lateral to Bregma). The
location of D1-3 whisker columns was mapped through the intact skull using intrinsic signal
optical imaging, as in. A1 mm craniotomy was made.

For OGB-1 bulk loading, 50 ug OGB-1 AM (Life Technologies) was dissolved in 5 uL of 20%
Pluronic F127 in DMSO (Teflabs), and then diluted 10-20 fold in buffer (in mM, 150 NaCl, 2.5
KCI, 10 HEPES). This solution was pressure ejected (3 PSI, 1-5 min) from a 3 um tip pipette at
250 um below the pia, centered in the intrinsic signal response area of one whisker. Surface
blood vessels were used for alignment. The pipette was removed and dye was allowed to load
for ~1 hour before imaging. Typically, cells within ~250 um radius were loaded. A glass coverslip
was mounted via a locking ring to minimize brain pulsation.

GCaMP6 injection

For GCaMP6 experiments, P22-25 mice were anesthetized using isoflurane, placed in a
stereotax with body temperature maintained at 37°C, and a small craniotomy was opened over
S1. 150 nL of recombinant viral vector (AAV2.9 Syn.GCamp6f.WPRE.SV40; University of
Pennsylvania Vector Core) was delivered 300 mm below the pia using a Nanoliter injector. The
scalp was sutured and the animal recovered. 2-3 weeks later, calcium imaging was performed
under urethane/chlorprothixene anesthesia, as described above. Data from gCaMP6 mice were
not included in the OGB population data, and were solely used to confirm heterogeneous
whisker responses in L2/3.

2 photon calcium imaging and whisker stimulation

Imaging was performed with a Moveable Objective Microscope (Sutter, Novato CA) and
Chameleon Ultra Ti:Sapphire mode-locked laser (Coherent, Santa Clara CA). OGB-1 and Alexa
594 were excited at 800 nm, and GCaMP6f and GFP were excited at 920 nm. Red and green
emission were separated Chroma HQ 525/50 and 575/50 filters and detected with Hamamatsu
photomultiplier tubes (H10770PA-40). Using a Nikon objective (16x, 0.8 NA), movies (100 sec,
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7.23 Hz frame rate, 128 x 512 pixel frame size) were collected using Scanlmage. Each field was
imaged for 80-120 minutes, interleaving spontaneous and stimulus-evoked epochs. 1-6 fields
were imaged per mouse.

Whiskers were deflected using a 3 x 3 or 4 x 4 array of calibrated piezoelectric actuators,
each attached to a single whisker. Single rostrocaudal deflections were used (42 amplitude, 4-
ms ramp and return, 100-ms hold, delivered 3 mm from skin). Stimuli were delivered at 3-5 s isi,
interleaved across whiskers.

In GAD67 mice, GFP-labeled neurons were identified after separating GFP and OGB
fluorescence by subtracting an image with 920 nm excitation (peak GFP excitation) —an image
with 800 nm excitation (peak OGB1 excitation). This subtraction was only used to identify GFP+
neurons, and was not carried through the DF/F calculation.

Imaging data analysis

Any movies with large transients induced by breathing or heartbeat artifacts were discarded
from analysis. Movies were corrected for slow drift in the x-y plane using TurboReg in Imagel.
Although TurboReg requires that any motion in the preparation is slower than the frame rate,
because the animals were anesthetized, our main source of motion was slow drift in the tissue.
We tested the stability of our imaging as follows. In a randomly selected subset of data, 5 fields
from 5 animals, we selected 2-3 bright astrocytes for reference. We tracked the centroid of
these astrocytes frame by frame, and used this to estimate instantaneous transients from
differences in this value. The maximum distance between the centroid from one frame to the
next never exceeded 1.2 pixels, and therefore was highly unlikely to affect the motion correct
algorithm. Over the course of an entire imaging session, the slow drift averaged 7.3 pixels per
hour, or 2.0e-4 pixels per frame. Any frames with severe z-motion were excluded from analysis.

Regions of interest (ROIs) were manually selected in Imagel to include all neuronal somata
that appeared in all movies. All other analysis was performed in Matlab. Traces of relative
fluorescence change, DF/F, were calculated for each ROI. DF/F= (Fi-FO)/FO, where Fi is the
instantaneous fluorescence value of a cell in one frame, and FO its average fluorescence value
over the preceding 4 seconds. Positive deconvolution was used to estimate the instantaneous
probability of Ca** events, which was thresholded to extract an event train for each cell. The
event threshold was determined based on cell-attached recordings (n=15 neurons, Fig. 1F).
Spontaneous event rates were determined from deconvolved event trains. Because the whisker
stimulation was 110 ms, and spikes can occur up to 50ms after whisker deflection, we
considered any event with 2 frames after the whisker stimulus onset to be a stimulus-evoked
response. Reported Pr values are whisker-evoked Pr — spontaneous event rate, unless specified
otherwise.

Astrocytes were excluded from the analysis based on their extreme brightness and, as
they preferentially take up OGB1. In a subset of experiments, we included 1um of
sulforhodamine in our OGB solution to selectively label astrocytes. We found that astrocytes
were clearly identifiable by their brightness, morphology and calcium dynamics.

Signal-to-noise ratio (SNR; Fig. 6D) was calculated by dividing the average AF/F over all
detected events by the standard deviation of baseline. To assess the significance of whisker
tuning, we calculated 95% confidence interval (Cl) by simulating Poisson-distributed responses
to each whisker, based on mean P, and actual number of stimulus presentations. Whiskers
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whose 95% Cl overlapped with the PW were considered equally responsive (red x’s in Figure I-3
and I-4). For population analysis, neurons with Prpy < 0.05 were considered unresponsive. Only
responsive neurons were included in analyses of tuning width or PW identity.

Population sparseness, Sy, was calculated after as S; = (1—{[2'\']:1 Pry/N]* / ENj=1
[Per/N]})/ (1-1/N), where N is the number of neurons and Pr; is Pr for neuron j.

Cell attached calibration of spike detection

OGB-1 loaded neurons were patched under 2-photon guidance, using a recording pipette (3 um
tip, 3-5 MQ) filled with fluorescent HEPES-buffered Ringers (in mM: 126 NaCl, 20 HEPES, 2.5 KCl,
2 CaCl2, 1.3 MgS04, 14 D (+)Glucose, 50 Alexa-594; pH 7.3, 290 mOsm). A loose seal
configuration was obtained, and spike-associated currents were measured in voltage clamp
mode with holding potential adjusted to maintain a holding current of 0 pA. Spikes from the
loose seal recording were collected simultaneous to OGB imaging with Ephus software. Spike
times were binned to match imaging frames and compared to the calcium event train
determined from deconvolution of the OGB signal.

Histological localization of imaging fields relative to anatomical barrels

In a subset of experiments, imaging fields were localized relative to anatomical boundaries of
whisker-related barrel columns. To do this, low-power images of the calcium imaging field and
surrounding surface blood vessels were obtained on the 2-photon microscope. The brain was
then removed, fixed with 4% paraformaldehyde, and flattened. 150-um thick tangential
sections were cut, preserving the surface blood vessels, and stained for cytochrome oxidase
activity to reveal L4 barrels. Barrel boundaries were projected onto the surface vessel map,
which was then aligned to the low-power images of the calcium imaging field.

Retrograde tracer injection

P22-25 mice were anesthetized with isoflurane, placed in a stereotax, and body temperature
was maintained at 37°C. S2 was localized via intrinsic signal imaging through the intact skull. S2
appeared as a strong intrinsic signal focus lateral to S1, typically at ~1.2 mm caudal, 4.2 lateral
to Bregma. M1 was targeted stereotaxically at 1.0 mm rostral, 0.7 mm lateral to Bregma. A
small craniotomy (~0.5 mm) was opened over either M1 or S2. 200 nL of CTB-Alexa594 (10
ug/uL in phosphate-buffered saline; Life Technologies, C-22842) was injected via a glass pipette
(tip diameter 40-60 um) 500 mm below the pia. Injection was performed using a Nanoliter 2000
(WPI) at 20 nL/min for 10 min, with a 10 min pause before pipette withdrawal to prevent
backflow. The scalp was sutured and the animal recovered. Calcium imaging was performed in
S15-12 d later to allow tracer transport.

Relative number of S1-> M1 and S1->S2 axons

L2/3 pyramidal cells in S1 were labeled with cytosolic tdTomato by injecting 0.1 mL of AAV2.9-
CAG-flex-tdTomato-WPRE-bGH viral vector (UPenn Vector Core) into S1 of Drd3-Cre mice (Allen
Brain Institute, KI196 strain) at P30. After 3 weeks, mice were perfused and the brain cut
coronally (50 mm sections). In S1, 91% of tdTomato-labeled neurons were L2/3 pyramidal cells
and 9% were L5 pyramidal cells. Labeled axons projected to M1, S2, perirhinal cortex and
contralateral S1, which are known cortical targets of S1. We counted S1->M1 and S1->S2
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axons as they crossed planes marking the S1-M1 and S1-S2 boundary (dashed lines in Figure |-
13), using a 63x objective and epifluorescence microscope. The S1-M1 plane was 1.5 mm from
midline, perpendicular to the cortical surface, and spanned from 1 mm rostral to 2 mm caudal
of Bregma. The S1-S2 plane was 4 mm from midline, perpendicular to the cortical surface, and
spanned from 1 to 2 mm caudal of Bregma. Axons traveling in the white matter were excluded,
as visual analysis suggested that they passed M1 and S2 for more distant targets. Axon numbers
were summed across all sections, and the number of M1p and S2p axons (originating from the
same S1 injection) were compared within individual mice.
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Figure I-1. Ensemble calcium imaging in S1 in vivo

(A-B) Intrinsic signal imaging of D2 whisker response area through intact skull, used to target
OGB1-AM dye injection. (C) Example imaging field loaded with OGB1-AM. (D) Whisker
stimulation during imaging. (E) AF/F traces for 4 neurons labeled in (C). Gray lines, individual
whisker deflections. Right half of traces show spontaneous activity epoch. (F) Calibration of
calcium imaging sensitivity for one neuron. Bottom, AF/F trace. Middle, deconvolution output
showing instantaneous probability of a Ca’* event, thresholded to yield a calcium event train
(red). Top, simultaneous cell-attached recording of spikes. See also Figure S1.
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Figure I-2. Anatomical localization of imaging fields, related to Figure 1.

(A) Low magnification 2-photon image of OGB1-AM loaded cortex showing surface blood
vessels. (B) The same blood vessel configuration found in a flattened, CO-stained, histological
section. Boxes show locations of two imaging fields, with FBW of E1 and D2, respectively. (C)
Positions of 3 imaging fields from the same mouse as in (A-B) projected onto the L4 barrel map
in CO-stained sections from that animal. The CO image is a montage over several histological
sections. Each anatomical barrel is marked with its whisker identity, and the FBW for each
imaging field is shown in bold.
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Figure I-3. Heterogeneous whisker tuning among L2 neurons

(A-C) Example imaging field in a D2 barrel column. (A) All neurons, with color indicating PW.
(B) Tuning curves for the 9 most responsive neurons. Grey contours denote 25, 50 and 75% of
maximum Pr. Crosses mark PW and all whiskers with statistically indistinguishable P, from the
PW. (C) Mean whisker-evoked AF/F for 5 most responsive neurons. (D-F) Example field in D1
column imaged with GCaMP6f. Conventions as in (A-C). See also Figure S2.
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Figure I-4. Heterogeneous whisker tuning in two additional imaging fields

(A) Whisker tuning curves for all neurons in one field. The field best whisker was C1. Shading
shows 95% confidence interval for mean P,, assuming Poisson statistics. X’'s show all whiskers
with P, statistically indistinguishable from the PW. Blue X’s, C1 whisker. The PW for each cell
(the whisker that evoked maximum P,) is shown in red. (B) Whisker tuning for the twelve most
responsive cells in another field. The FBW was C2. Grey contours denote 25, 50 and 75% of
Prpw. X’s show PW and all other whiskers with statistically indistinguishable P,. Blue contour
encloses whiskers evoking > 75% of maximum peak AF/F (without deconvolution). The close
agreement of blue and grey contours shows that heterogeneous whisker tuning is not an
artifact of the deconvolution method.
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Figure I-5. Quantification of tuning heterogeneity

(A) Number of neurons tuned to different whiskers, across all fields. (B) Fraction of population
tuned to different whiskers. (C) Average single-cell tuning curve. Responses were centered
around the individual cells’ PW and responses normalized to PrPW. Bars show SEM. (D) Average
single-field tuning curve (calculated across all cells in a field). Responses were centered around
the FBW. (E) WSI for individual cells vs. fields, showing that individual neurons are more
narrowly tuned than fields. This analysis only includes cells with Prpy 2 0.05.
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Figure I-6. Co-tuned neurons show correlated spontaneous firing

Mean pair-wise correlation during spontaneous activity periods, for neurons that share the
same PW, or neurons with different PWs. Correlation values fell off rapidly with distance
between cells. Correlations were greater for co-tuned neurons than differently tuned neurons
at distances < 100 mm.
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Figure I-7. Point representation of one whisker in L2 of S1

(A) Grey bars indicate the population of neurons in a single column that are minimally
responsive to a given whisker (Pr 2 0.05). Dotted lines indicate the population that is tuned to a
given whisker; black lines indicate the population that spikes to a single whisker deflection. (B)
Schematic representation of single whisker deflection in L2 over multiple columns. Deflection of
whisker corresponding to outlined barrel column elicits sparse spiking across a large number of

columns.

22



)

(on

Py
Pr,,, — Spontaneous Rate
c
§ 0.4 / 0.03 8 04 % of cells
= Py 002 kS tuned to FBW
203 0.01 8-03 Tuned to:
é 0 a — FBW
5 02f [ 04 602 — £ 110w
'5 :- .g —+larc
ol .. 2547 calls, 43 mice 501
i : \ i
0 0
0 0.2 04 0.6 0 0.2 04 0.6
Pr Prpw
C d
1
& — HighWslI(1101)
5038 203
b X — Low WSI(1026)
% 06 Prpy > 0.09 (384) §
B 0.4 0.05 < Pry, < 0.09 (1743) =
4 %P <0.001 §
€ 02 g
A i
0
2 4 6 8 10 0 0.2 04 0.6
Broad Narrow Proy
tuning = Wil tuning

Figure I-8. Effect of column-specific whisker tuning on P,

(A) P, distribution across all imaged cells. Black curve, Prggw (not corrected for spontaneous
firing). Dashed curve, Prpw (not corrected for spontaneous firing). Histogram bars, Prpw
corrected for spontaneous firing. White bar, unresponsive neurons (Prpyw < 0.05). Inset shows
tail of high-responsive neurons for Prpy and Prew. (B) Effect of PW identity on Prpy. Histogram
bars show entire population, reproduced from (A). Colored curves show subsets of neurons
tuned for FBW or nearby whiskers. Black curve, fraction of cells tuned to FBW as a function of
Prpw. (C) High Prpw neurons are more narrowly tuned than low Prpw neurons. (D) Effect of
tuning width on PrPW. Histogram, entire population reproduced from (A). Blue and black
curves, high-WSI (narrowly tuned) and low-WSI (broadly tuned) neurons.
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Figure I-9. The whisker-evoked response spectrum correlates with spontaneous activity

(A) Histogram of spontaneous firing rates. (B) Correlation between Prpy and spontaneous firing
rate, calculated by rank within the imaging field for each neuron. Only data from fields with >
30 cells are included to ensure adequate sampling of response properties in each field. (C) Same
as (B) but for P, to each neurons 2" best whisker. (D) SNR and Prpy are not correlated. Inset,
SNR calculation. (E) Effect of spontaneous firing rate on Prpy. Histogram bars show entire
population, reproduced from Figure 5A. Black and red curves, neurons with lowest and highest

guartile of spontaneous activity. See also Figure S4.
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Figure I-10. Further evidence that whisker responsiveness correlates with spontaneous
activity.

(A) PW-evoked DF/F amplitude was correlated with DF/F averaged across spontaneous epochs.
Correlation was performed on rank DF/F within the imaging field. Only fields with > 30 cells
were included. (B) The correlation between PW-evoked P, and spontaneous P, does not
depend on event thresholding. The panel shows PW-evoked deconvolution algorithm output
(without thresholding) vs. average algorithm output across spontaneous epochs. Correlation
was performed on rank within the imaging field. Only fields with > 30 cells were included.
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Figure I-11. Responsiveness of interneurons vs. pyramidal cells in GAD67-GFP mice

(A-C) Example imaging field showing GFP-labeled interneurons (A, imaged at 920 nm), OGB-1
dye loading (B, imaged at 800 nm), and (C) the overlay. (D) AF/F traces for 4 neurons indicated
in (C). Magenta traces are interneurons. (E-F) Cumulative distributions of Prpy and
spontaneous firing rate for interneurons and putative pyramidal cells. (G) Distribution of Prpy
for interneurons and putative pyramidal cells (curves), overlaid on Prpy for all neurons (bars,
replotted from Fig. 5A).
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Figure I-12. S2p and M1p pyramidal cells differ in responsiveness and tuning

(A) CTB-Alexa594 injection site in M1 (left) that labeled M1p cells in S1 (magenta cells in middle
and right panel, visible among green OGB-1 labeled neurons). Right is an example imaging field
in S1. (B-C) Cumulative distributions of Prpyw and WSI for M1p and unlabeled neurons. (D)
Fraction of each population that were tuned to the FBW. (E) CTB-Alexa594 injection site in S2,
and S2p cells (magenta) in S1. (F-G) Cumulative distributions of Prpy and WSI for S2p unlabeled
neurons. (H) Prpy distribution for M1p and S2p neurons overlaid on the distribution for all

neurons. Bars are reproduced from Fig. 5A. See also Figure S5.
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Figure S5. Axon number and coding density in S2p and M1p projections.

Figure I-13. Axon number and coding density in S2p and M1p projections.

(A) AAV2.9-flex-tdTomato injection site (asterisk) in S1 in a Drd3-Cre mouse, showing tdTomato
expression in S1 pyramidal cells. 90% of labeled cells were in L2/3, and 10% were in L5. Lines
show medial and lateral boundaries of S1. (B) Example section showing tdTomato labeled
axons leaving S1 and entering S2. Dashed line, S1-S2 border plane at which crossing axons were
counted. Axons traveling in the white matter (wm) were not counted. (C) Example section
showing tdTomato labeled axons leaving S1 and entering M1. Dashed line, S1-M1 border plane
at which crossing axons were counted. Axons traveling in white matter (wm) were not counted.
(D) Quantification of number of S1->M1 and S1->S2 axons (n = 3 mice). (E) Population
sparseness (Sp) for FBW-evoked responses among different populations of L2 neurons. ‘All data’
represents all L2 neurons from Figs. 3-6. The two ‘unlabeled’ bars denote non-retrogradely
labeled neurons in M1p cases and S2p cases, respectively.
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Il. VOLITIONAL MODULATION OF OPTICALLY RECORDED CALCIUM SIGNALS DURING
NEUROPROSTHETIC LEARNING

Introduction

Brain-machine interfaces (BMls) have gained great momentum as a therapeutic option for
patients with limb loss or immobility (Carmena et al., 2003; Hochberg et al., 2012; Nicolelis,
2001; Wodlinger et al., 2013). In addition, BMI tasks provide a powerful approach to study
sensorimotor learning, as they enable arbitrary mapping between neuronal activity, behavioral
output, and reward (Green and Kalaska, 2011). Recent work used BMI to demonstrate network
adaptations in response to output perturbations (Jarosiewicz et al., 2008), including specific
functional changes in output-relevant neurons (Ganguly et al., 2011; Koralek et al., 2013).
However, traditional BMIs based on spatially sparse electrode recordings lack fine-scale spatial
information about local networks. To address this issue, we developed a BMI task in awake,
head-restrained mice using 2-photon calcium imaging to record activity from every neuronin a
small field of view (150 by 150 microns). We used this novel calcium-based BMI paradigm
(CaBMI) to probe fine-scale network reorganization in cortical layer (L) 2/3 of both primary
motor (M1) and somatosensory (S1) cortices during BMI learning.

Results

We trained ten mice expressing the genetically-encoded calcium indicator gCaMP6f in
L2/3 of M1 or S1 to modulate neural activity in response to auditory feedback (Figure Il-1a,
Methods). This task was adapted from one used previously with electrode-based recordings
(Koralek et al., 2012). Each day, two ensembles containing 1-11 neurons each were chosen to
control the task (Figure II-2a). The ensembles opposed each other, such that increased activity
in one ensemble (“E1”) above its baseline increased the pitch of the auditory feedback, while
increased activity in the other ensemble (“E2”) decreased the pitch. Reward was delivered
when a high-pitched target was reached within 30 sec of trial initiation (hit). Incorrect trials (no
target within 30 s) were signaled with white noise.

Mice learned the task rapidly (Figure 1I-2b), with initial rapid improvement (1-3 days)
followed by slower improvement (4-8 days). Mice performed above chance level after 1 day of
training (Figure II-2b, shaded region, N=10 mice, p=0.0036 on day 2, t (8)=4.07). Similar learning
occurred using M1 or, more surprisingly, S1 (Figure lI-1 b-c). Hit rate increased significantly
within each daily session (Figure 11-1d, N=72 sessions, 10 mice, p=2.6x10’5, t (43)=4.7, R?>=0.34).
Mice reached a criterion performance level (50% hits) faster across days of training (Figure II-
1e, N=8 days, 10 mice, p=0.0247, t (6)=2.98, R*=0.596), suggesting that within-session learning
occurs faster as between-session learning progresses. As seen previously (Koralek et al., 2012),
performance was not impaired by lidocaine injection into the contralateral mystacial pad (N =4
mice, p=0.876, t (3)=0.17), and gross movements were absent preceding target hits, indicating
that performance does not rely on natural movement and that neural activity, particularly in S1,
is not driven by whisker reafference (Figure 11-3).

We next asked whether these modulations were sensitive to the action-outcome
contingency (Hilario et al., 2007). After mice successfully learned the task, we ceased rewarding
target hits and instead delivered rewards under a variable interval schedule (contingency
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degradation). Mice quickly ceased responding (Figure 1l-2c-d; N=5 mice, p=0.0089, t (4)=4.76).
When reward was reinstated using the same E1 and E2 ensembles, mice again performed at
normal levels (Figure 1l-2c; N=4 mice, p=0.791, t (3)=0.289). Thus, performance was sensitive to
reward contingency, suggesting the behavior is goal-directed (Dias-Ferreira et al., 2009). Post-
hoc analysis of imaging data showed that E1 activity increased during task performance and
decreased during degradation (Figure II-2d, Figure ll-4a). On a separate day, we performed a
contingency reversal (N=3 mice) in which E1 and E2 identities were reversed from one day (day
CR1) to the next (day CR2), requiring mice to reverse ensemble activity patterns to obtain
reward (Figure 1l-5a). Early during CR2, E2 in one example mouse showed clear bursting activity
(consistent with its identity as E1 on CR1), and E1 showed little activity (consistent with its
identity as E2 on CR1). This pattern quickly reversed as the mouse learned the new contingency
(Figure 11-5a). We compared the hit rate on CR2 in one animal to a simulated hit rate based on
the E1/E2 identity and transform algorithm from day CR1. The simulation showed initially high
performance that then dropped to zero, indicating that this mouse initially performed
according to the learned CR1 transform, but quickly adapted to the new CR2 transform (Figure
[I-2e). Across all mice, the ratio of E1/E2 activity increased during CR2 (Figure 1I-5b),
demonstrating that mice learn to flexibly up-modulate E1 over E2. Together, these data indicate
that mice can modulate calcium signals in a contingency-dependent manner, and that these
modulations can be applied to arbitrarily chosen cells.

We next investigated neural changes during learning. Mean DF/F increased for E1 cells
over the course of individual sessions (Figure II-4a; N=20 time points, 10 mice, p=1.17x10‘11, t
(18)=15.09, R°=0.927), decreased during subsequent contingency degradation (Figure 1l-6a;
N=20 time points, 5 mice, p=0.0029, t (18)=-3.44). In contrast, mean DF/F did not significantly
change for E2 cells (Figure 11-6b, c; p=0.234, p=0.13, respectively). This may reflect a bias toward
volitional increases, rather than decreases, of L2/3 activity.

Calcium imaging detects activity even in neurons that are rarely active, which are
numerous in L2/3 (Barth and Poulet, 2012; O'Connor et al., 2010b). These cells are
undersampled by extracellular recordings and are often neglected in BMI studies (Shoham et
al., 2006). There was a 30-fold range of baseline spontaneous activity across L2/3 cells (Fig. II-
4b). We found the most dramatic increases in task-related activity in E1 cells with initially low
baseline (Figure Il-4b, t-test of low vs. more-active E1 cells, N=72 cells, p=8.05e-8, t (70)=5.99).
Low-baseline E2 cells tended to decrease their activity during task-engagement slightly more
than high-baseline cells (Figure 1l-4b, t-test of low vs. more-active E2 cells, N=78 cells, p=0.02, t
(76)=-2.37), though mean activity remained unchanged (Figure lI-6b). Thus, task learning
preferentially recruited low-active E1 neurons to become more active. These neurons clearly
contributed to learning, because learning occurred normally when all E1 cells had low or zero
baseline activity (Figure 11-7a, N=46 sessions, 10 mice, p=0.83, t (44)=1.56), suggesting a role for
“silent” L2/3 neurons in learning (Barth and Poulet, 2012). We also found that within multi-cell
E1l ensembles, multiple cells increased fluorescence around hits, including low- and zero-
baseline cells, and so performance was not carried by single neurons (Figure 11-7b).

To examine higher-level network dynamics during learning, we first calculated mean
cross-correlation histograms time-locked to the occurrence of large fluorescence events in
either E1 or E2 (“output cells”; Methods). Output cells developed coordinated, synchronous
activity with other cells in the same ensemble (Figure ll-4c,d). E2 also developed a tendency to
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spike before E1 (Figure ll-4c, d), likely reflecting a strategy of bursting E2 for trial initiation,
followed by bursting of E1 for target achievement. This coordinated activity was not present in
non-output cells that were simultaneously imaged (Figure ll-4c,d; “indirect cells”). This
prompted us to investigate correlations between cells over the course of individual sessions.
Correlations between output cells in the same ensemble increased significantly during the
session (N=5 time points, 10 mice, p=0.0198, t (3)=4.55, R?=0.874), while correlations between
indirect cells did not (Figure II-4e; N=5 time points, 10 mice, p=0.138, t (3)=2.01), and this
enhancement was observable in individual animals (Figure 11-8a). Output cells also became
more correlated over days of training, even though neural composition of ensembles changed
(Figure 11-8b N=8 days, 10 mice, p=0.011, t (6)=3.59). This is analogous to increased correlations
of functionally-related cells during motor learning (Komiyama et al., 2010) and could reflect
millisecond-precision coupling that has been demonstrated with electrodes (Ben Engelhard et
al., 2013).

We next examined how fine-scale (~10-100 microns) spatial organization of ensembles
impacted learning. Performance did not vary systematically with distance between output
ensembles (measured by E1 and E2 centroids) (N=71 sessions, 10 mice, p=0.95, t (69)=0.056),
but did vary with size of ensembles: animals performed better with fewer neurons, suggesting
that it was difficult to maintain coordinated control over large ensembles (Figure 11-9).
Additionally, high baseline correlations between ensembles predicted worse performance
(Figure 11-10).

Learning was accompanied by interesting dynamics within local networks surrounding the
output ensembles. For each indirect cell, we calculated the correlation between its mean
fluorescence and a moving average of the animal’s instantaneous hit rate. We found that
activity in indirect cells near E1 (<50 um away) was significantly more correlated with hits than
activity in distant indirect cells (>100 um away; Figure 1l-4f, N=251 cells, 10 mice, p=0.048, t
(249)=1.98). Finally, we calculated mean target-related modulations in indirect cells for early
and late epochs within daily sessions. Early in sessions, indirect cells increased DF/F around hits
compared to late in sessions (Figure 1l-4g, t-test early vs. late modulations, 437 cells, 5 mice,
p=3.94e-4, t (436)=3.57). This was evident in cells close to E1 compared to distant cells (t-test
early vs. late modulations in close cells, 172 cells, 5 mice, p=0.001, t (171)=3.32; t-test early vs.
late modulations in distant cells, 265 cells, 5 mice, p=0.08, t (264)=1.72). Thus, early in the
session mice up-modulate activity in a local network surrounding E1 cells (Ganguly et al., 2011),
but as the session progresses this target-related modulation in indirect cells disappears, such
that mainly output cells exhibited task-related increases in activity. This suggests that mice are
able to hone in on individual output cells during learning and precisely modulate these cells for
efficient target achievement. Even late in sessions, indirect neurons that were more highly
spontaneously correlated with E1 cells, and therefore more likely to be embedded in the same
local sub-network (Harris and Mrsic-Flogel, 2013), exhibited increased activity during task
engagement compared to cells with low spontaneous correlations with E1 (Figure 1I-11a; N=851
cells, 10 mice, p = 2.35e-5, t (849)=4.26). Indirect neurons that were more highly spontaneously
correlated with E2 cells exhibited decreased activity during task engagement compared to cells
with low spontaneous correlations with E2 (Figure 11-11b; N=851 cells, p = 0.015, t (849)=-2.6).
Given the rapid falloff of spontaneous correlations with distance, such fine-scale effects might
be undetectable by electrode-based methods (Figure 1l-11c). This spatial restriction in activity is
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similar to sparsening of cortical representations during classical conditioning (Gdalyahu et al.,
2012).

To the best of our knowledge, our results represent the first demonstration that mice can
volitionally modulate calcium dynamics in L2/3 of M1 and S1, and the use of imaging enabled
dissection of learning-related network modifications during BMI with unprecedented spatial
resolution (~10-100 um). Importantly, this novel paradigm provides a powerful tool for
investigating the spatial extent of functional and structural plasticity during neuroprosthetic
learning.
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Methods

All animal procedures were performed in accordance with UC Berkeley Animal Care and Use
Committee regulations. 6 C57BL/6J and 4 CD1 male wild-type mice were used in these
experiments, ranging in age from postnatal day 30-45. Animals were housed with a 12h dark —
12h light reversed light cycle. All behavioral tests were performed in the same cohort of
animals.

Surgery

Mice were anesthetized using isoflurane (2% vol isoflurane/vol 02) and placed in a stereotaxic
apparatus. Body temperature was maintained at 37°C using a feedback-controlled heating pad
(FHC, 40-90-8D) and a small incision was made in the scalp. The skull was cleaned and a steel
headplate was affixed over M1 (1 mm rostral, 1 mm lateral to Bregma) or S1 (1 mm caudal, 3
mm lateral to Bregma) using Metabond dental cement (Parkell, S380). A 3 mm craniotomy was
opened over M1 or S1, and 200 nL of AAV2.9 Syn.GCamp6f.WPRE.SV40 (Chen et al., 2013b)
(University of Pennsylvania Vector Core) was injected 250 um below the pia using a Nanoliter
2000 injector (World Precision Instruments). The tracer was delivered using a pulled glass
pipette (tip diameter 40-60 um) at a rate of 40 nL/minute. The pipette was left in the brain for
10 minutes after completion of the injection to prevent backflow. After the pipette was
removed, the brain was covered with silicone oil (Sigma product # 181138) and a glass coverslip
was affixed to the skull with dental cement, as previously described (Holtmaat et al., 2012). We
allowed 2 weeks for recovery and gCaMP6f expression.

Two-Photon Imaging

In vivo imaging was performed with a Moveable Objective Microscope (Sutter) using a
Chameleon Ultra Ti:Sapphire mode-locked laser (Coherent, Santa Clara CA) tuned to 900 nm.
Photons were collected with a Hamamatsu photomultiplier tube (H10770PA-40) using a Nikon
objective (16x, 0.8 NA). Animals were head-fixed on a custom-made spring mounted imaging
platform and placed under the 2p microscope. This setup allowed them to run freely, and their
movements were recorded by an accelerometer fixed to the underside of the platform. Frames
of 128x512 pixels (~160 x 160 mm) were collected at 7.23 Hz using Scanlmage software
(Pologruto et al., 2003) at 130-180 um below the pia. The same imaging fields were used every
day, localized by landmarks in the surface blood vessels. Imaged fields were stable over the
course of training, and because the cortex was stabilized by a snugly fitting coverslip, only
severe movements caused motion artifacts. Motion correction for slow drift in the imaging field
was performed manually. Any period of gross movement during the task that caused cells to
move out of their ROIs resulted in poor task performance, as DF/F of E1 was reduced. In this
sense, mice were punished for excessive movement and seem to have learned to remain still
during the task (Figure ll-4c).

Behavioral Task

Two ensembles of 1-11 single cells each were chosen for inclusion in the “output” population.
Cells with bright nuclei, indicating over-expression, were excluded, as were cells with many,
poorly separable calcium events, an activity pattern indicative of fast-spiking interneurons. No
other selection criteria were used to partition the recorded cells into each ensemble. We also
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ensured that many cells with good signal were included in the indirect population to enable a
proper comparison. The cells assigned to the output population were changed on some days.

Ensemble activity was measured as mean DF/F for all component neurons. Fluorescence values
from these ensembles were binned in 200 millisecond bins and entered into an online
transform algorithm that related neural activity to the pitch of an auditory cursor. By
modulating activity in these ensembles, rodents controlled the pitch of the cursor. The
modulations that we required of the mice were calibrated daily based on a baseline recording
session of roughly 2 minutes. Next, 10-15 minutes of spontaneous baseline activity was
recorded to assess chance levels of performance. Fluorescence values were smoothed by a
moving average of the past 3 time points. Changes in the frequency of the auditory cursor were
binned in quarter-octave intervals to match rodent psychophysical discrimination thresholds
(Han et al., 2007). Mice then had to modulate calcium dynamics in these neuronal ensembles to
move the cursor to a high-pitched target tone that was associated with a 10% sucrose solution
reward. A trial was marked incorrect if a target was not achieved within 30 seconds of trial
initiation. A trial was self-initiated when E1 and E2 activity returned to baseline levels (either by
decreased activity in E1 or increased activity in E2), which reset the tone to its starting pitch.
Chance levels of performance (grey shaded region in Figure II-1 b & c, Figure 1I-2b) were
determined by running the animal on the task without reward or auditory feedback. Hits
resulted when spontaneous fluctuations were large enough push the decoder to the target
frequency. Failure to hit a target in 30 seconds resulted in a miss. The chance region represents
the mean chance performance and s.e.m., pooled over all animals and all days.

Regions of interest (ROIs) were extracted from recorded neural data in real time. These ROIs
were entered into custom routines in MATLAB (Mathworks, Natick, MA) that translated
fluorescence levels into the appropriate feedback pitch and played the pitch on speakers
mounted on 2 sides of the imaging platform. Frequencies used for auditory feedback ranged
from 1-24 kHz in quarter-octave increments. When a target was hit, a MATLAB-controlled Data
Acquisition board (National Instruments, Austin, TX) triggered the operant box to supply the
appropriate reward to rodents. Each daily training session lasted 48+2 min (7114 trials).

Data Analysis

All analyses were performed with custom written routines in MATLAB (Mathworks, Natick,
MA). Recorded movies were spatially aligned using the dftregistration routine in MATLAB
(Guizar-Sicairos et al., 2008). Regions of interest were manually selected to include the soma of
neurons that appeared consistently throughout all recorded movies. Fluorescence traces were
extracted from each ROl and data is presented as the relative change in fluorescence, AF/F.

No statistical methods were used to pre-determine sample sizes but our sample sizes are
similar to those generally employed in the field.

For analyses of behavioral performance during the contingency degradation (Fig 1c), the first 10
trials of a session were removed before calculating performance to exclude the transition
period and reflect the animal’s performance once the animal had fully learned the new reward
contingency.

For all sliding window analyses, sessions were divided into an equal number of bins to
determine the window size, and the step size was a fraction of this window size.
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For the data plotted in Figure lI-4g, mean z-score values during task engagement were binned
by distance from E1 or E2 centroid. The first bin included all cells from 0-50 mm from the
centroid of the output ensemble (“close” cells), the second bin included all cells 50-100 mm
from the output ensemble, and the final bin including all cells 100+ mm from the output
ensemble. “Distant” cells included all cells at a distance of greater than 50 mm from the E1
centroid. We include data from 3 days late in training from 5 animals where 20 or more indirect
cells were apparent in the field.

For the cross-correlation histograms, fluorescence traces from output cells were z-scored and
values above 3 standard deviations were considered an event. The first time point in which
fluorescence values crossed this threshold during each event was used for time-locking.
Fluorescence values in other populations of cells were then averaged around these indices.

In all cases, multiple comparisons were controlled for using the Bonferroni correction.
Differences between groups were tested with T-tests. To evaluate trends over time, we tested
whether the slope of a fitted linear regression was significantly different from zero. All
statistical tests were two-tailed.

For testing the activity modulations for low vs. more-active cell groups in Figure lI-4b, the high
active group included cells with spontaneous event rate greater than the median spontaneous
event rate, the low active group included cells with spontaneous event rate less than the
median.

Data distributions were assumed to be normal, but this was not formally tested. Data collection
and analysis were not performed blind to the experimental conditions. Randomization was not
performed, as the experiment primarily involved within-animal comparisons and there were
not multiple experimental cohorts.
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Figure 1I-4. Local network reorganization accompanies neuroprosthetic learning. a. Mean
fluorescence increases in E1 cells over the course of a session. b. E1 cells with low baseline
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suppress their activity evenly. Note logarithmic scale. c. Activity in E1, E2 and indirect cells time-
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events in E2 cells. e. Correlations increase between output cells (cyan) during the session, with
no similar increase in correlations between indirect cells (black). f. Indirect cells near output
cells have more task-related activity than those far from output cells. Circles are individual cells,
bars indicate s.e.m. g. Early in a session (solid lines), target-related modulations in indirect cells
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decrease with distance from E1 cells (blue) and increase with distance from E2 cells (green).
Later in the session (dashed lines) there are no significant modulations in indirect cells,
regardless of distance from output cells. Shaded areas represent 95% confidence intervals.
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a. Behavioral performance plotted against the makeup of E1. In 40 sessions, E1 was composed
of a mix of more- and less-active cells (defined as cells in the lowest quintile of spontaneous
activity rates). In 6 training sessions, E1 was solely comprised of low-active cells, and in 4 cases
all cells in E1 had zero baseline activity (filled circles); in three cases the animal still performed
the task above chance. Performance in both conditions was significantly better than chance (t-
test, high- and low-active ensembles, p=2.2e-15, t (38)=11.69; low-active ensembles, p=0.02, t
(5)=3.7). b. Analysis of the contribution of individual E1 cells to learned modulation of E1
ensemble activity. Fluorescence modulations around hits were calculated for each E1 cell, and
normalized to the sum of modulations in the entire ensemble. Each cell’s relative contribution
to these modulations was then averaged over the entire training session, and plotted against
the number of cells in the E1 ensemble. A bimodal distribution of contributions around 0 and 1
would suggest the task were carried solely by one cell in an ensemble. If all cells contributed
equally, the distribution would peak around 1/N (red curve), where N = number of cells in the
ensemble. The animals appear to use a combination of both strategies. Less-active neurons (in
blue) contributed to hits in a manner indistinguishable from more-active neurons.
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activity late in session a. Indirect cells that were more spontaneously correlated with E1 cells
(highest quintile of spontaneous correlations, >0.1) increase activity during task performance
more than cells that were initially weakly, or anti-, correlated (t-test, p = 2.35e-5, t (849)=4.26).
Horizontal bar indicates mean, vertical bar indicates standard deviation. b. Indirect cells that
were more spontaneously correlated with E2 cells (highest quintile of spontaneous
correlations, >0.17) show reduced activity during task perfomance compared with less-
correlated cells (t-test, p = 0.01, t (849)=-2.6). Horizontal bar indicates mean, vertical bar
indicates standard deviation. c. Spontaneous correlations between L2/3 neurons in mice fall off
rapidly with short distances (binned mean shown in red, S1 and M1 data pooled).
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