
UC Irvine
ICS Technical Reports

Title
Towards discovery, specification, and verification of component usage

Permalink
https://escholarship.org/uc/item/3dk2w0nh

Authors
Liu, Chang
Richardson, Debra J.

Publication Date
1999-05-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dk2w0nh
https://escholarship.org
http://www.cdlib.org/

SLBAR .

(1.3

1^.

Towards Discovery, Specification, and Verification of
Component Usage

Chang Liu, Debra J. Richardson

Department of Information and Computer Science
University of California, Irvine, Irvine, CA 92697

{liu, djr} (Sics.uci.edu

Technical Report UCI-ICS-99-22

May 14,1999 Noticei This Material

may be protected
by Copyright Law
(Title 17 U.S.G.)

Abstract

Additional problems of software testing arise when applications
under test are developed in the component-based approach. Component
misuse is one of them. The component misuse problem occurs when a
component is used in a way that differs from the component producer's
expectation. This paper explores the cause of the component misuse
problem and proposes a technique to discover, specify, and verify
component usage. This technique utilizes regular expressions as the
formalism to deal with component usage. This research is part of the
software retrospector effort, which aims at a better testing solution for
component-based software.

UBRARY

University of California
IRVINE

Chang Liu, Debra J. Richardson

1. Introduction

The component-based software development approach [Szy98] brings us many
benefits, including lower development cost, shorter time-to-market, higher quality, etc.
However, these benefits come with a price, inckding increased difficulty in component
production, application composition, and both component and application testing.

It is more difficult to produce a reusable component than a non-reusable one,
because the component writer must think about all potential future use of the component,
not just the most immediate use. For example, Boehm recognized that the cost of
producing areusable software component is 50% higher than its non-reusable counterpart
if the reusable component is tobereused across multiple product lines [BS92].

It is also more difficult to compose an application from off-the-shelf components
than from custom-built ones, because the interface ofa COTS component is fixed when it
reaches component users. DeLine found that component packaging mismatch is a
significant problem [Del99]. Batory and Geraci found that component composition is a
challenge and needs special design rules [BG97].

Testing component-based software has many pitfalls not typical of traditionally
developed applications. Weyuker identified several complications of component-based
software testing, including testing "without source code and access to the personnel and
expertise used to create the component" [Wey98]. There are several reasons: COTS

, . components typically are delivered without source code. How can application builders be
iiS:; :li sum to fuse ;the};cbmponents correctly? COTS components should have been rigorously

I 9F? yet the apphcation testers have no wayof knowing if theyhave and
de^ee. How can they assure the quality of COTS components? Using traditional

WH J)I^kTbb^(jtesting;(or even white-box testing, if by chance COTS components' source
/ ; ;Codq |are jayailflplf) loses some potential productivity gains of employing high-quality

COTS cbinpbhehfs. Why should they be tested again? COTS components may have been
rigorously tested but are not shipped with test code. If application testers want to take
advantage of already-tested COTS components, where can they find information about
what has been tested and what has not and how can they reuse that information in testing
the application?

The goal of the component-based approach is to reuse everything that has been
done for a component, namely design, coding, debugging, and testing effort. Yet when a
COTS component is delivered, typically what arrives is binary object code and a few
undefined documents. Design and testing documents are typically not delivered with the
component and thus cannot be reused.

Component usage is another piece of information that is missed in delivery.
Component writers design a component according to certain component usage
assumptions. Correct usage is critical to successful composition of the component with
the rest ofthe application, yet, expected component usage is never explicitly specified. It
may beexpressed in the form of source code comments, component interface comments,
and sample programs that use the component. It is difficult, however, to understand the
expected usage of a component expressed in these ways unless it is a very simple
component. Thus, misuse of reusable components happens often. Currently, the main
means of detecting component misuse is through testing and debugging, which is very

Chang Liu, Debra J. Richardson 3

expensive. The difficulty of detecting misuse of reusable components is another obstacle
to the component-based approach. We need a better spiution to make the component-
based approach more appealing.

This paper discusses the component misuse problem and presents a potential
solution. In Section 2, we describe in detail the component misuse problem. An example
is used to illustrate the problem. Our solution to this problem, which is a technique for
discovery, specification, and verification of component usage, is presented in Section 3.

Our work on component usage is a part of the software retrospector research effort
[LR98]. Software retrospectors are software entities that reside in software components
and store testing-related information to assist software testing of component-based
application software. The information stored in a retrospector includes component usage
information, test execution history and results, and test coverage. The x:omponent usage
specification described in this paper is the part of a software component fetrospector that
describes valid and/or unacceptable usage information.

2. The Component Misuse Problem
The component misuse problem occurs when a component is used in a way that is

different from what the component producer expects. Component misuse does not
necessarily always end up with application failures. However, it does affect the clarity of
application architecture and frequently does cause application failures.

We use a list traverse example to illustrate the component misuse problem.
Suppose we have a guarded linked list component. A guarded linked list always has a
guard at the beginning of the list so that the value of the list pointer is never NULL. It has
a group of functions to provide the traverse capability to its users. Let us borrow C++
syntax to describe the interface of the traverse functions of this component. The interface
description is in Figme 1.

Chang Liu, Debra J. Richardson

class GuardedLinkedList {

Bool init();
Bool next();

getCurrent();Item

T;

Figure 1. Interface of the component GuardedLinkedList

Just based on function names, a component user can guess some usage
information from this interface definition: "init()" is used to prepare for a traverse;
"nextO" is used to traverse to the next item; "getCurrentO" is used to getthe current item
for further processing. It is not clear, however, exactly how these functions should be
used together. One possible implementation is to use "init()" to move an intemal traverse
pointer to the first item in the logical list (not the guard) so that users can use
"getCurrentO" to access it. Later, "next()" cm be used to move the pointer to the next
item sothatusers canuse "getCurrentO" to getaccess to it. A possible usage of such a list
is shown in Figure 2.

void traverse()
{ , ^

Item * p;
if (T.initO == TRUE)

do

{

p = T.getCurrent() ;
... // process the item pointed by "p"

} until (T.next0==FALSE);
}

Figure 2. One possible usage of GuardedLinkedList

While the above implementation is intuitive, there could be others. Another
possible implementation is to use "init()" to move the intemal traverse pointer to the
guard instead of the first logical item in the linked list. In this case, the "next()" should
be called before users can use "getCurrentO" to access the first item. An example of
using the traverse component under this assumption is shown in Figure 3.

Chang Liu, Debra J. Richardson

Void traverse()
{

Item * p;
if (T.initO == TRUE)

while (T.next0==TRUE)
{

}

p = T.getCurrent();
... // process the item pointed by "p"

}

Figure 3. Another possible usage of GuardedLinkedList

Clearly, while the program shown in Figure 2 is correct under the first usage
assumption, it will suffer the component misuse problem if the implementation uses the
second usage assumption. And vice versa for the program shown in Figure 3.

Now let us look at a real life example with a similar component. YACL (Yet
Another Class Library) is a class library in C++ [Sri96], which has an iterator class that
provides traverse functionality for other classes. The interface of the iterator class is
shown in Figure 4. Just like the hypothetical example discussed above, the usage
assumption is not clear from this interface specification, and the author did not document
expected usage. We can figure out one acceptable usage pattern, however, by looking at
the piece of sample code shown in Figure 5. This sample code, embedded in comments
in an unrelated YACL source file, shows a usage of the iterator. It explains that
Reset (), More () are designed to be conveniently used in the FOR statement of the C++
language. Still it is unclear whether or not the program in Figure 6 is correct. The only
way to figure this out is by looking at the component source code (which is at best
expensive and at worst impossible since the code is not usually available in the
component-based approach) or by experimenting with the component (which is even
more expensive and unreliable). Even worse, if the component user simply assumes the
wrong usage and is not aware of other possible usage assumptions, component misuse
can only be detected by testing and debugging (and then only by chance).

Chang Liu, Debra J. Richardson

Template <class T>
Class yACL_BASE CL_Iterator; public CL_Object {
Public:

~CL_Iterator() {} ;
virtual void Reset () = 0;
// Reset the iterator to the beginning. (Pure virtual.)
virtual bool More () = 0;
// Return TRUE if there are more elements to be returned.
// (Pure virtual.)
virtual const Tt Next () = 0;
// Return the next element.. (Pure virtual.)

},

Figure 4. An iteratorclass (Exactcxccrptfrom YACL 1.6)

// CL_StringIntMapIterator iter (myMap);
// CL_StringIntAssoc assoc;
// for (iter.Reset 0; iter.More();) {
// assoc = iter.Next 0;
II II Process the pair "assoc" here....
// } .

Figure 5. Comments that explains usage assumption about the
iterator (Exact excerpt from YACL 1.6)

CL_StringIntMapIterator iter (myMap);
CL_StringIntAssoc assoc;
for (iter.Reset 0; iter.More();) {

processl(iter.Next())
process2(iter.Next())
processl(iter.Next())

}

Figure 6. Anotherpossible usage of the iterator

The iterator class is simple. It has only three functions. In a more complex
situation with more functions and more subtle relationships among those functions, it is
necessarily more difficult todiscover and correct misuse of a component.

YACL is just a class library. It does not utilize any advanced component
technology. However, none of the component technologies we have now solve the
component misuse problem. We still rely on software testing and debugging to locate
misuse in component-based approach.

At the heart of the component misuse problem is the inability for a component
provider to explicitly specify component usage and the absence of a formal mechanism to
guarantee the correct usage of a reusable component. The more internal states and the
more interdependencies among interface functions a component has, the more difficult it
is to use the component and to locate and correct component misuses by testing and
debugging.

In summary, the component misuse problem can occur even in simple examples.
The component provider assumes certain relationships among component functions.

Chang Liu, Debra J. Richardson 7

These relationships are not explicitly advertised in the interface signature specification.
Additional documentation in the forms bf sample prograrris or informal descriptions are
the usual ways to implicitly and informally communicate these assumptions to component
users. The availability and accuracy of these communications, however, are not
guaranteed.

3. Discover, Specify, and Verify Component Usage
We propose to solve the component misuse problem by explicitly defining

component usage in a usage specification language and then verifying correct usage. We
choose regular expressions [ASU86] as the underlying formalism to specify component
usage because we feel that the expected usage of a component can be exactly described as
a string over an alphabet that consists of the functions in the interface of that component.

We do not want to burden component providers by making usage specification
mandatory. Instead, we first try to discover component usage from sample programs
provided with that component. Section 3.1 has the description of our component usage
discovery technique.

In the mean time, we want to allow and encourage component providers to
explicitly describe vahd and/or unacceptable component usage. This is because the
component usage discovery algorithm can not discover all valid usage. It also does not
have the ability to tell what is a typical usage since it does not have the knowledge of the
meaning of an example. Nor is it possible to discover unacceptable usage from examples.
Section 3.2 describes in detail the language we propose for component usage
specification.

With the component usage specification from either derived usage discovery or
explicit usage specification, we are now equipped to attack the component misuse
problem. We propose both static and dynamic verification techniques to detect
component misuse. Component usage verification is described in Section 3.3.

3.1 Component Usage Discovery
During the development of reusable components, component producers inevitably

write sample code to either experiment with and/or test their components. These test
driver-like sample programs embody important usage assumptions. If we are able to
discover component usage from this sample code, we can get component usage
information without requiring any extra effort from component producers.

We intend to obtain component usage information "for free" by analyzing sample
code that uses a component and producing a component usage specification as regular
expressions. The regular expressions are defined over an alphabet that consists of the
interface functions of the component under analysis. For the example component in
Figure 1, the alphabet is [init, next, getCurrent}. If a function name is overloaded, each
signature is treated as a different member of the alphabet.

To be able to focus on semantically related functions, we introduce the notion of
function groups. A function group is a subset of the interface of a component. Functions
in a function group are related in certain aspects but are unrelated to other functions with
regard to those particular aspects. By definition, a component could have more than one
function group. Component producers can define a list of related functions as a function

Chang Liu, Debra J. Richardson 8

group before component usage discovery so that the discovery algorithm can focus only
on these functions and produce more meaningful and more readable usage specifications.
For agiven component, component producers could define more than one function group.
Function groups are not disjoint. The default function group consists of all functions in
the component interface. For each function group, a regular expression will be discovered
as an acceptable usage specification.

The component usage algorithm is shown in Figure 7. For the sake of algorithm
description, let us assume C++ class-like mechanisms are used as to construct
components. The usage discovery algorithm takes as input the component under analysis
C, a function group FG, and a sample program P that uses C. Assume P has only one
procedure and contains no GOTO statements. USAGE refers to the usage of function
group EG of component C.

Let The the set of all variables in P.

Let DEF(t,FG) be the set of all simple statements' in P that use one or more
functions in EG to assign a value for variable r 6 F.

For each variable t e T and each definition d g DEF(t,C), a regular expression
defining usage within the sample program P will be discovered. Each statement .y
reached by the definition d is examined in syntactic orders (i.e., textual orderin the source
code), where d reaches s if there is a path from the statement immediately following d to
s such that d is not redefined [ASU86]. A regular expression RE is used to record the
discovery as the algorithm proceeds.

With these assumptions, the algorithm in Figure 7 can discover component usage
and record the result in USAGE.

' Asimple statement is anything other than acompound statement such as ablock, branch, or loop.

Chang Liu, Debra J. Richardson

USAGE = 0

for each variable teT and for each definition d e DEFiX,C) loop
RE = the use 2Xd

For example, if the use is "r.funcio", the function (letter) "fund" is
concatenated to RE. Let us describe this as RE = RE fund. A use "r.fund () +
t.func2 ()" results in RE = RE fund func2.

for each statement s reached by d loop
• if 5 is a simple statement that assigns a value to t (it is the end of the reaching

definition d) exit loop.
• if ^ is a simple statement that does not use t or functions in EG, do nothing.
• if 5 is a simple statement that uses t and functions in EG, concatenate this use to

RE (as in the step taken at the definition d above).
• if 5 is a branch statement, assume without loss of generality that the statement is

if (Expression) { Left} else { Right}.
Suppose using this same algorithm, the regular expression discovered from
Expression, Left, and Right with regard to d are RE.Expression, RE.Left, and
RE.Right respectively, then the branch statement results in RE = RE
RE.Expression (RE.Left IRE.Right).

• if 5 is a loop statement, let us assume without loss of generosity that the statement
is

do { Body } until (Expression)
Suppose using this same algorithm, the regular expression discovered from Body
and Expression with regard to d are RE.Body and RE.Expression, then the loop
statement results in RE = RE (RE.Body RE.Expression)+.

end loop
USAGE = USAGE u RE

end loop

Figure 7. Component usage discovery algorithm

This component usage discovery algorithm can discover obvious component
usage from straightforward sample code. If applied on the sample code in Figure 2, it
produces this regular expression: "init (getcurrent next) +". For Figure 3, the
result is "init next (getCurrent next)*".

There are a number of shortcomings of this algorithm:
First, the complexity of this algorithm is exponential in the size of the sample

code under analysis.
Second, GOTO statements, which will make the scope of def points hard to

control, are not allowed.

Third, there are cases in which the algorithm is not able to discover the usage
because it lacks the ability to resolve pointer aliases. For example, for the pieces of code
in both Figure 8 and Figure 9, the ideal usage specification discovered should be "fl f2".

Chang Liu, Debra J. Riehardson 10

but {fl, f2} will be discovered instead. In Figure 8, {fl, 12} is discovered because for
variable "p", the i/e/point at line 1 generates "fl", while the cle/point at line 3 generates
"f2". In Figure 9, {fl, f2) is discovered because "fl" is discovered for variable "p" and
"fZ" is discovered for variable "pp". In general, the algorithm does not expect variables
thatholdreference to the component underanalysis to change value.

1 p = pp = a pointer to the component under analysis;
2 p->fl();
3 P = pp;
4 p->f2{);

Figure 8. An example of problematic code

1 p = a pointer to the component under analysis;
2 p->fl();
3 pp=p;
4 pp->f2();

Figure 9. Another example of problematic code

Fourth, the algorithm assumes that in the sample program, all related uses of
component under analysis are located withiii one procedure or function. This is a serious
limitation. Future support for multi-procedure programs is possible. For example, an
inlining technique might be able to handle some inter-procedural discovery, although
recursion may be problematic.

Despite these problems, we feel that many sample programs are straightforward
and within the effective range of this algorithm. For complex usage that can not be
automatically discovered from sample code, the component producers can explicitly
specify component usage, as described in the next section.

3.2 Component Usage Specification
Componentproducers best know valid componentusage. With a little extra effort,

the usage of a component canbe described in the form of regular expressions.
Component producers can specify three types ofusage, as shown in Figure 10:

• The first type is desirable usage, which is recommended usage by component
producers. This is the best way to use the component because it is designed this way.

• The second type is acceptable usage, which describes all legitimate usage of a
component. Any usage other than this may cause unexpected result.

• The third type is typical incorrect usage. Although any usage not recognized by the
"acceptable" regular expression is wrong, it is beneficial for component producers to
be able to define "typical incorrect" usagb and specifically point out common
mistakes to warn future component users. It is not necessary to specify all
unacceptable usages.

Chang Liu, Debra J. Richardson

UsaaeOf CL_Iterator Is
Desirable: (Reset (More Next)* More)* ;
Acceptable: (Reset (More+ Next)* [More])*;
Typical Incorrect: (Reset Next (More [Next])*)+;

End

Figure 10. Usage specification of component
(underlined words are keywords)

"CL Iterator"

11

The usage specification in Figure 10 basically says that the usage exemplified in
Figure 5 is the most desirable usage. It is acceptable, however, if a component user calls
"MoreO" repeatly before calling "Next()". A common error that the component producer
wants users to avoid is using "Next()" right after "ResetO", as described by the regular
expression after keyword "Typical Incorrect".

Function groups are defined implieitly by each individual regular expression. By
definition, functions that do not appear in a regular expression are not related to the group
of functions that are used in the regular expression and thus their usage is not restricted
by this particular regular expression. For this reason, component producers may specify a
list of regular expressions instead of a single regular expression to describe any of the
three usage types.

The usage specification in Figure Ifi can be embedded into source' code so that it
is easier to keep the usage specification up-to-date. This is shown in Figure II. If the
component is to be delivered without source code, the usage speeification should be
extracted from source code and delivered as a separate document. In cases when separate
component specifications are maintained and delivered, usage specification can be
embedded in component specifications, too.

The syntax of the component usage specification language is described in Figure
12.

//UsageOf CL_Iterator Is
// Desirable: Reset (More Next)* More
// Acceptable: Reset (More+ Next)* More
// Typical Incorrect: Reset (Next More)*
/ / End

template <class T>
class YACL_BASE CL_Iterator: public CL_Object {
public:

~CL_Iterator() {};
virtual void Reset () = 0;
// Reset the iterator to the beginning. (Pure virtual.)
virtual bool More () = 0;
// Return TRUE if there are more elements to be returned.
// (Pure virtual.)
virtual const T&; Next () = 0;
// Return the next element. (Pure virtual.)

}

Figure 11. Component usage specification can be embedded into
source code as comments

Chang Liu, Debra J. Richardson

Usage-spec ;
"UsageOf" component-name "Is"
["Desirable" regexp-list]
["Acceptable" regexp-list]
["Typical" "Unacceptable" regexp-list
"End"

component-name:
NAME

regexp-list :
// empty

regexp-list regexp ";"

regexp

letter

regexp +

regexp *

(regexp)

[regexp]

regexp | regexp

regexp regexp

letter :

func-name

// zero or more occurrence

// one or more occurrence

// optional

//or

"\"" func-name "\""

func-name "(" arg-list ")"
// so that overloaded functions can be distinguished

func-name :

NAME

Figure 12.Syntax of thecomponent usage specification language

12

3.3 Component Usage Verification

Component usage verification works with a component usage specification to
automatically verify the usage ofapplication software that uses that component.

There are two ways to verify component usage. First, static verification using the
usage discovery algorithm presented in Section 3.1 is the most obvious approach. This
works when the application under verification uses the component in a straightforward
way and does not have structures that the algorithm can not handle (such as those pointed
out in Section 3.1). Using the static approach, we only have to check if the usage
discovered can be recognized by any regular expression in the specification and inform

Chang Liu, Debra J. Richardson 13

component users of the result. If it is recognized by a "Desirable" regular expression, it is
a good use. If an "Acceptable" regular expression but not a "Desirable" one recognizes it,
it is a legitimate use. If it is recognized by a "Typical Incorrect" regular expression, it is a
use that the component producer specifically designated as unacceptable and told
component users to avoid.

For the component GuardedLinkedList, shown in Figure 1, if the specification in
Figure 13 specifies its usage, the static component usage verification algorithm can find
out that the program in Figure 2 is wrong and the program in Figure 3 is correct.

UsaaeOf GuardedLinkedList Is

Desirable: (init (next getCurrent)* next)*;
Acceptable: (init (next [getCurrent])*)*;
Typical Incorrect: (init getCurrent (next [getCurrent])*)+;

End

Figure 13. Usage specification of component "CL_Iterator" (underlined
words are keywords)

Static verification verifies component usage only by program analysis. No test
execution is needed. Static verification is precise given the specification.

In cases when the usage discovery algorithmis not able to discover-usage from the
application under analysis, dynamic usage verification is necessary. Dynamic usage
verification is similar to software testing; the application is executed with test data. The
difference is, whenperforming dynamic usage verification, a wrapperof the componentis
used to capture all component function calls. The function call sequence is then verified
against the component usage specification.

If the program in Figure 2 is tested by test inputs such that the statements inside
the loop are only executed once, the function call sequence captured by the wrapper of
component GuardedLinkedList is "(init getCurrent next)". This will be recognized
by the "Typical Incorrect" regular expression in the usage specification in Figure 13, thus
detecting a wrong use of the component GuardedLinkedList.

Dynamic usage verification works with any application using a component and is
a complement to the static verification approach. This approach, however, is imprecise;
sophisticated test data selection is critical to the effectiveness and efficiency of dynamic
usage verification.

When checking a discovered usage or a captured function call sequence against a
usage specification, incomplete sentences are always allowed except for "Typical
Incorrect" usage. This is because a program could terminate at any time, and thereby
terminate interaction with a component at any time.

4. Future Work, Related Work, and Summary
We have not yet fully implemented the ideas presented in this paper. The most

important future work is to implement the usage discovery tool, the usage speeification
parser, and the usage verification analyzer.

We would also like to experiment with more sophisticated components where
more subtle interdependencies among interface functions are critical to the successful use

Chang Liu, Debra J. Richardson 14

of the components. Generally, a component with more internal states, such as network
socket communication components, has more interdependencies among interface
functions. We would like to find such real components from publicly available sources to
demonstrate that component usage specification works better than sample code or
documentation, especially in complicated cases.

For components with overloaded functions, the usage specification might be a
little long since all the argument types have to be included as part of the letter in the
alphabet. Macro mechanism can be included in the specification language to make it
more readable in this situation.

Many problems arise when the component-based approach becomes a major
development method. The difficulty of expressing, understanding, and verifying
component usage are among them. We propose to use regular expressions to explicitly
specify component usage, to use program analysis technique to discover and statically
verify component usage, and to use test execution of the wrapped component with the
application to dynamically verify component usage. The specification we developed for
the iterator example shows that usage specification can clearly communicate subtle usage
requirements. However, we must still develop supporting technology and study more
complicated examples to show the practicality of this approach.

A number of researchers are working to attack the problems of component-based
software. DeLine tried to use "flexible packaging" to avoid the "packaging mismatch"
problem [Del99]. While this technique helps fitting different types of component
together, it does not help guarantee that components are used in an expected way. Batory
and Geraci developed a technique to validate transformational component composition
using "design rule checking" [BG97]. There are also other researchers working on
component-based software testing. Rosenblum, for instance, is exploring test adequacy of
component-based software [Ros97].

Our approach to component-based software testing problem is to allow software
components to carry testing and usage information with them so that testing activities are
more informed and therefore more effective. The mechanism that we designed for this
purpose is called retrospectors [LR98]. The work on componentusage presented here is a
part of the retrospector effort.

Chang Liu, Debra J. Richardson 15

References

[ASU86] A. Aho, R. Sethi, J. Ullman, Compilers - Principles, Techniques, and Tools,
Addison-Wesley, 1986

[BG97] D. Batory and B.J. Geraci. "Composition Validation and Subjectivity in
GenVoca Generators", IEEE Transactions on Software Engineering,
23(2):67-82, February 1997.

[BS92] B.W. Boehm and W.L. Scherlis. "Megaprogramming", in Proceedings of the
DARPA Software Technology Conference 1992, pp. 63-82, Los Angeles,
CA, April 1992.

[CPRZ89] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, "A Formal
Evaluation of Data Flow Path Selection Criteria", IEEE Transactions on
Software Engineering, November 1989.

[Del99] Robert DeLine, "Avoiding packaging mismatch with Flexible Packaging."
To appear in Proceedings of the International Conference on Software
Engineering, Los Angeles, California, 1999.

[LR98] Chang Liu, Debra J. Richardson, "Software Components with
Retrospectors", International Workshop on the Role of Software
Architecture in Testing and Analysis, Marsala, Sicily, Italy, July 1998.

[Ros97] D. Rosenblum, Adequate Testing of Component-Based Software. Technical
Report, UCI-ICS-97-34, University of California, Irvine. August, 1997

[Szy98] C. Szyperski, Component Software - Beyond Object-Oriented Programming^
Addison-Wesley. 1998

[Sri96] M. A. Sridhar, Building Portable C++ Applications with YACL, Addison-
Wesley, 1996

[Wey98] Elaine J. Weyuker, "Testing Component-Based Software: A Cautionary
Tale", IEEE Software Volume 15 Number 5, September/October 1998.

UBRARY

nlveraity of California
IRVINE

