
UC Santa Barbara
Core Curriculum-Geographic Information Science (1997-2000)

Title
Unit  045 - Non-Spatial Database Models

Permalink
https://escholarship.org/uc/item/3dj9g8m4

Authors
045, CC in GIScience
Meyer, Thomas H.

Publication Date
2000
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dj9g8m4
https://escholarship.org
http://www.cdlib.org/


Unit 045 - Non-Spatial Database Models
by Thomas H. Meyer, Mapping Sciences Laboratory, Texas A&M
University, USA

This unit is part of the NCGIA Core Curriculum in Geographic Information Science. These materials may be used
 for study, research, and education, but please credit the author,
Thomas H. Meyer, and the project, NCGIA Core
 Curriculum in GIScience.
All commercial rights reserved. Copyright 1997 by Thomas H. Meyer.

Advanced Organizer

Topics covered in this unit

This unit introduces the terms and concepts needed to understand non-spatial
databases
 and their underlying data models, including:

a motivation of the need for database management systems
an overview of database terminology
a description of non-spatial data models

Intended Learning Outcomes

After learning the material covered in this unit, students should be able
to:
explain the purpose of a database management system
list the major non-spatial data models and their features
identify the primary distinctions between the major non-spatial data models

Instructors' Notes

Full Table of Contents

Metadata and Revision History

Non-spatial Database Models
1. Motivation: Why database
management systems?

Database management systems (DBMSs) are very good at organizing and managing

large collections of persistent data.

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 1



We use DBMSs to help cope with large amounts of data because, when problems

get big, they get hard.

Consider the task of finding a particular book in a typical university
library.
Now, reconsider that same task if the library doesn’t keep the books
 arranged
in any particular order or if the library has no indexes.

Using a big collection of unorganized things is practically impossible. 
Structure
 turns data into information.
Persistence means that the data exist permanently; they do
not disappear when the
 computer is shut off.

DBMSs are like suitcases: they are somewhere to put stuff so that it’s
all in one place
 and easy to get to.
DBMSs help protect data from unauthorized access.
DBMSs help protect data from accidental corruption or loss due to:

hardware failures such as power outages and computer crashes
software failures such as operating system crashes

DBMSs allow concurrent access, meaning that a single data set can be accessed
by more
 than one user at a time

virtually all commercial database applications require the data entry staff
to have
 access to the database simultaneously.

For example, an airline reservation system cannot restrict access to the

database to a single travel agent.

concurrent data access introduces unwanted problems caused by two users

manipulating exactly the same data at exactly the same time.

These problems can cause the database to be corrupted or for a user’s
 interface
program to never complete its query.
These problems are analogous to road intersections: if there are no traffic

lights or stop signs, havoc will ensue.

DBMSs provide mechanisms to prevent concurrent access problems; these
 mechanisms
are collectively called concurrency control.

A distributed DBMS allows a single database to be split apart
such that its pieces reside
 at geographically separated sites.

this can provide performance improvements by eliminating transmitting the
data
 across a relatively slow long distance communication channel (it’s
a lot faster to
 have the database on your hard drive than to access it
across an Ethernet or via a
 modem)
this can reduce concurrency control bottlenecks by giving each user that
part of
 the database which they need rather than having all the users compete
for access
 to the whole database

DBMSs are not necessarily meant for data analysis; that is more the job
of a spread
 sheet or some other special-purpose analysis tool.

DBMSs are general-purpose tools.  It is basically irrelevant to the
DBMS what is
 stored within it.  Software design principles suggest
de-coupling domain specific
 analysis packages from the DBMS to keep the
division of labor clear.
DBMSs are very good at retrieving a relatively small portion of the database
and
 passing it along for detailed analysis by a tool designed for that
purpose.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 2



DBMSs often allow integrity constraints to be imposed on the data to insure

validity and consistency.  These rules can interfere with ad-hoc analysis
in which
 the user manipulates the data without any preconceived ideas of
how the data
 should relate to each other.
DBMSs often do not have adequate facilities to perform complicated calculations;

some have no such facilities whatsoever.

2. Fundamental Concepts and Terminology

This section presents a few common database concepts and terms.

2.1. Data

Data are facts.  Some facts are more important to us than others. 
Some facts are
 important enough to warrant keeping track of them in a formal,
organized way.
Important data are like the valuables we keep in a bank.  They are
a small subset of our
 total possessions but they are so important that
we protect them by putting them in a
 special, safe place.
“Data” is a plural.  The singular of “data” is “datum”.
"Data" is a broad concept that can include things such as pictures (binary
images),
 programs, and rules.  Informally, data are the things
you want to store in a database.

2.2. Spatial
vs. Non-spatial Data

Spatial data includes location, shape, size, and orientation.
For example, consider a particular square:

its center (the intersection of its diagonals) specifies its location
its shape is a square
the length of one of its sides specifies its size
the angle its diagonals make with, say, the x-axis specifies its
orientation.

Spatial data includes spatial relationships.  For example, the arrangement
of ten bowling
 pins is spatial data.

Non-spatial data (also called attribute or characteristic
data) is that information which
 is independent of all geometric
considerations.

For example, a person’s height, mass, and age are non-spatial data because
they
 are independent of the person’s location.
It’s interesting to note that, while mass is non-spatial data, weight is
spatial data in
 the sense that something’s weight is very much dependent
on its location!

It is possible to ignore the distinction between spatial and non-spatial
data.  However,
 there are fundamental differences between them:

spatial data are generally multi-dimensional and autocorrelated.
non-spatial data are generally one-dimensional and independent.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 3




 
These distinctions put spatial and non-spatial data into different philosophical
camps
 with far-reaching implications for conceptual, processing, and storage
issues.

For example, sorting is perhaps the most common and important non-spatial
data
 processing function that is performed.
It is not obvious how to even sort locational data such that all points
end up
 “nearby” their nearest neighbors.


 
These distinctions justify a separate consideration of spatial and non-spatial
data
 models.  This unit limits its attention to the latter unless
otherwise specified.

2.3. Database

A database is a collection of facts, a set of data.
It is like the contents of a bank's vault.

The information in a phone book is an example of a database.
Pay carefully attention to the fact that the book itself is not the database.
Rather, the database is the information stored on the pages of the book,
not the
 pieces of paper with ink on them.

2.4. Repository

A repository is a structure that stores and protects data.
Repositories provide the following functionality:

add (insert) data to the repository
retrieve (find, select) data in the repository
delete data from the repository

Some repositories allow data to be changed, to be updated.
This is not strictly necessary because an update can be accomplished by
retrieving
 a copy of the datum from the repository, updating the copy,
deleting the old
 datum from the repository, and inserting the updated datum
into storage.

Repositories are like a bank vault.  They exist mainly to protect
their contents from theft
 and accidental destruction.

Security: repositories are typically password protected, many have much
more
 elaborate security mechanisms.
Robustness: Accidental data loss is safeguarded against via the transaction

mechanism.

A transaction is a sequence of database manipulation operations.
Transactions have the property that, if they are interrupted before they

complete, the database will be restored to a self-consistent state, usually
the
 one before the transaction began.
If the transaction completes, the database will be in a self-consistent
state.
Transactions protect the data from power failures, system crashes, and

concurrent user interference.


 
An example of a commercially available repository is Kala (Simmel and Godard
1991).

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 4



2.5. Database Management System (DBMS)

A database management system is a data repository along with
a user interface
 providing for the manipulation and administration of a
database.  A phone book is an
 example of a DBMS.
Unless specified otherwise, a DBMS will hereafter be understood to be a
software
 system, a program (or suite of programs) that is run on a digital
computer.  A few
 examples of commercially available DBMSs include
Gemstone, O2, Versant, Mattise,
 Codasyl, Sybase, Oracle, DB2,
Access, and dBase.
A DBMS is like a full-service bank, providing many features and services
missing from
 the comparatively Spartan repository.

2.6.  Queries

Many DBMSs provide a user interface consisting of some sort of formal language.
A data definition language (DDL) is used to specify which
data will be stored in the
 database and how they are related.
A data manipulation language (DML) is used to add, retrieve,
update, and delete data
 in the DBMS.
A query is often taken as a statement or group of statements
in either a DDL or a DML
 or both.  Some researchers view queries as
read-only operations, no data modifications
 are allowed (Codd 1990, p.
21).
A query language is a formal language that implements a DDL,
a DML, or both. 
 Examples of query languages include SQL (Structured
Query Language), QUEL, ISBL,
 and Query-by-Example.

2.7.  Data Models

A data model is mathematical formalism consisting of two
parts (Ullman 1988, p.32):
A notation for describing data, and
A set of operations used to manipulate that data.

A data model is a way of organizing a collection of facts pertaining to
a system under
 investigation.

Data models provide a way of thinking about the world, a way of organizing
the
 phenomena that interest us.
They can be thought of as an abstract language, a collection of words along
with a
 grammar by which we describe our subject.

By choosing a language, we pay the price of being constrained to form
 expressions
whose words are limited to those in the language and whose sentence
 structure
is governed by the language’s grammar.
We are not free to use random collections of symbols for words nor can
we put
 the words together in any ad hoc fashion.

A major benefit we receive by following a data model stems from the theoretical

foundation of the model.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 5



From the theory emerges the power of analysis, the ability to extract inferences

and to create deductions that emerge from the raw data.


 
Different models provide different conceptualizations of the world; they
have different
 outlooks and different perspectives.

There is no universally agreed upon best data model so this unit presents
the most
 common ones.


 
DBMSs are seen to be composed of three levels of abstraction:

physical: this is the implementation of the database in a
digital computer.  It is
 concerned with things like storage structures
and access method data structures.
conceptual: this is the expression of the database designer’s
model of the real
 world in the language of the data model.
view: different user groups can be given access to different
portions of the
 database.  A user groups portion of the database is
called their view.

This unit is concerned mostly with the conceptual level.

  3. Common Data Models

This section presents an overview of the most common data models

3.1. Entity-Relationship
Model

The Entity-Relationship (ER) model is generally attributed to (Chen 1976).
The ER model envisions the world as comprised of entities that
are associated with each
 other by relationships.  All
of the entities of a particular type are collected together into
 entity
sets.
Entity sets and relationships can be depicted graphically in an ER-diagram.

3.1.1. Entities

Entities are distinguishable “real-world” objects such as employees, maps,
airplanes, or
 bus schedules.

“Distinguishable” means that all entities can be uniquely identified.
Entities have common attributes that define what it means to be such an
entity.
Any particular real-world object does not necessarily have a single or
best
 representation as an entity.

For any given real-world object, different modelers can choose different

sets of attributes of the object that are of interest to their particular

situation.
This results in the same object being modeled differently.


 
Entities are collected into entity sets.

Entity sets are depicted as rectangles in ER diagrams.
Their attributes are depicted as ellipses attached to the rectangles by
lines.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 6



3.1.2. Relationships

A relationship is a list of entity sets.
Notation: two entity sets A and B that stand in relationship
r is written A r B.  See
 the next bullet
for examples.


 
Types of relationships (see Figure 1.):

aggregating relationships:
one-one: if A r B and r is one-one then each
entity of B is in relationship
 with at most one entity of A and
vice-versa.

For example, if CAPTAIN commands VESSEL and commands
is
 one-one then, in our model, each vessel has at most one captain
and
 each captain commands at most one vessel at a time.

many-one: if A r B and r is many-one then each
entity of A is in
 relationship with at most one entity of B but
not vice-versa.

For example, if CREW assigned-to VESSEL and assigned-to
is
 many-one then, in our model, a vessel has many crew members but a
 crew
member is assigned to only one vessel.

many-many: if A r B and r is many-many then
each entity of A can be in
 relationship with any number of B
entities and vice-versa.

For example, if VESSEL patrols REGION and patrols
is many-many
 then, in our model, a vessel patrols many regions and
a region is
 patrolled by many ships.


 
isa (read “is a”) relationships: if A isa B then
A is a specialization of B, or,
 conversely, B is a
generalization of A.

For example, if CAPTAIN isa CREW then, in our model,
captains have all
 the attributes of crew members but not vice versa.
The isa relationship allows hierarchies to be established among
entity sets.


 
A Relationship is depicted by a lozenge with lines connecting it to the
relevant entity
 sets.

 
The Entity-Relationship model lacks an underlying formalism and is, therefore,
used
 more for general conceptualization than for creating physical models

(indeed, some authors do not acknowledge the ER model as a data model at
all).
It is not uncommon for a conceptual design to be expressed in the ER model
and
 then “translated” into another model for implementation.

3.2. The Network
Model

The network data model is based upon the concept of a structure such
as is found in
 programming languages like C or Pascal.

ER entities can be modeled as structures with the entity’s attributes corresponding

to the structure’s fields.
Entities are distinguished by their location, i.e., the “physical”
address of the

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 7



 structure that is holding them.  Thus, two structures
of identical value represent
 two separate entities.

Entity sets can be implemented as files whose records match the structures.
Relationships are created with explicit linkages (viz. pointers)
from structure to
 structure.

Codasyl is an example of a DBMS based on the network model (Olle 1978).

The network model has no formal semantics nor a high-level query language. 
Database
 manipulation was done via custom programs often written in COBOL.
Network model databases are hand-coded and, therefore, can be very efficient
in their
 space utilization and query execution times; all the relationships
are “hardwired” or
 precomputed and built into the structure of the database
itself.
The price for such performance is inflexibility and great difficulty of
use (among many
 other things).

3.3. The Relational
Model

The relational model was introduced by Codd (1970) and has been the inspiration
of an
 entire generation of database management systems that are based on
the concept of a
 relation which is a set of tuples.

3.3.1. Tuples

A tuple is a set of facts that are related to each other in some way (perhaps
only by the
 fact they’ve been put together in a set).
Each fact in a tuple is a datum whose value comes from a specified domain
(e.g., the
 domain of all integers, the domain of all character strings
of length 255 or less, etc.)

Formally, let  D1, ... , Dn be n
sets of values constituting n domains (n is usually greater

than zero but that is not strictly necessary).  A tuple t
is a set of values t = {d1, ... , dn},

such that d1 is an element of D1, ...
, and dn is an element of Dn.  The
domains are
 called attributes.

3.3.2. Relations

Formally, let D1, ... , Dn be n domains. 
A relation R is a set of tuples over the Cartesian
 product
D1 x ... x
Dn.
In English, a relation is a (possibly complete) subset of all the possible
tuples formed by
 the Cartesian product of the domains.
Since tuples are sets (of values) and a relation is also a set (of tuples),
relations are sets
 of sets.

a file is a list of records

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 8



a table is a list of rows
a relation is a set of tuples

Relations are naturally represented as tables.
Tables are not relations because relations cannot have duplicate tuples
and there is
 no such stricture on tables.  However, it is perhaps
convenient to think about
 relations as tables so long as the distinction
remains clear.
Most (if not all) commercial “relational” DBMSs violate this principle:
they allow
 duplicate tuples.

The use of relations as a data modeling tool becomes apparent when we have
a relation,
 say, “OUR_DEM” with fields {quadname, zone_code,
mappingcenter}.

It happens that the USGS has a digital elevation model named “PLACITAS
NM”
 in UTM zone 13 that was created by the Forest Service Mapping Center.
Then, the presence of a tuple in the OUR_DEM relation whose

quadname attribute has the value “PLACITAS NM” and
zone_code attribute has the value “13”, and
mappingcenter attribute has the value “FS”,

indicates that we have the Placitas DEM in our possession.

3.3.3. Tuples,
Relations and Keys

Relations are sets of tuples; consequently, no two tuples that are
elements of the same
 relation can have identical values for all their attributes. 
That is to say, there are no
 duplicate tuples in a relation.
All tuples in a relation can be distinguished by the values of their attributes.

Any set of attributes whose values necessarily uniquely identify
a tuple are said to
 be a key.

Database designers choose some attribute set to be a key for their database’s
relations.
This key is known as the primary key.

If the primary key of one table appears as an attribute of a different
relation, the key is
 known as a foreign key in the other
relation.
A key uniquely identifies its tuple.  Therefore, a tuple’s key is
often used as a surrogate
 for the entire tuple.

3.3.4. Relationships

Not surprisingly, the relational model represents relationships with relations.
Figure 2 depicts a relational database
that was designed from the ER-diagram developed
 above.

Key attributes are denoted in bold face.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 9



Aggregating relationships are represented by embedding the primary key
of one relation
 into another relation as a foreign key:

one-one: if A r B and r is one-one then
the primary key of A can be embedded in
 B or vice versa or
both.

For example, suppose CAPTAIN commands
VESSEL and that commands

is one-one.
Suppose further that cptn_name is the primary key of CAPTAIN
and
 vessel_name is the primary key of VESSEL.
Then, CAPTAIN could have an attribute commands whose value is that
of
 vessel_name for the vessel that captain commands.
It is equally reasonable to have an attribute commanded_by in VESSEL

whose value is that of name for the captain commanding the vessel.

many-one: if A r B and r is many-one
then the primary key of B can be embedded
 in A but not vice
versa.

For example, suppose CREW assigned-to
VESSEL and assigned-to is
 many-one.
Suppose further that crew_name is the primary key of CREW and

vessel_name is the primary key of VESSEL.
Then, CREW could have an attribute assigned_to whose value
is that of
 vessel_name for the vessel this crew member serves on.
However, VESSEL cannot have an attribute roster because roster
would
 have to be a set (many crew members per vessel) and the relational
model
 stipulates that all domains are atomic; no collections.

many-many: if A r B and r is many-many
then neither primary key can be
 embedded the other table.  Again,
the difficult lies in the atomicity rule for
 domains.  So, for a many-many
relationship, we must create a separate relation
 whose attributes include
but are not limited to the primary keys from A and B.

For example, if VESSEL patrols REGION
and patrols is many-many.
Suppose further that vessel_name is the primary key of VESSEL
and
 region_name is the primary key of REGION.  Then
we have a third
 relation PATROLS with
attributes vessel_name and region_name.
such relations are sometimes called join supports
such relations are no different in any way from any other relation

isa relationships are handled as the other relationships:
one-one:  Suppose CAPTAIN isa CREW.

Then there is a one-one relationship between CAPTAIN and CREW
so the
 primary key of CREW can be used as the key in CAPTAIN.
The one-one nature of this relationship indicates that the two tuples really

give details of the same entity; they are sort of like a single tuple that
has

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 10



 been split in two.

 

many-one:  Suppose we are modeling WWII combat vessels, known collectively

as "ship(s) of the line" (SOTL).  It happens that a ship design can
be used as the
 plan for many individual vessels (obviously).

The design is known as a “class” and the vessels made to that design are

said to belong to that class.

For example, the USS Missouri belongs to the Iowa class of
 battleships.

We model this relationship with a relation SOTL
which has a single tuple
 for each class of warship.  Thus, VESSEL
isa SOTL.
The SOTL relation has attributes that are common to all ships of
the line. 
 For WWII vessels, this might include attributes such as
the number of
 primary guns, size of the primary guns, etc.

The tuple in SOTL for the Iowa battleships gives information that
is
 common to all Iowa class battleships (e.g., nine 16-inch guns,
etc.).
The tuple in VESSEL for the USS Missouri holds the information

specific to that vessel including the fact it belongs in the Iowa class.
Therefore, the primary key of SOTL is embedded in VESSEL,
not
 vice versa.

Compare many-one isa relationships with one-one isa relationships.
Ullman restricts relationships to be one-one (Ullman 1988, p. 35).

3.3.5. Query Languages

Codd invented two early languages for dealing with relations: one was algebraic
and the
 other was based on first-order predicate logic (Codd 1971). 
These languages have the
 same expressive power.

Relational Algebra
“[an] algebraic notation … where queries are expressed by applying
 specialized
operators to relations” (Ullman 1988, p. 53)
see (Codd 1990, pp. 61-144) for a presentation of the relational algebra.


 
Relational Calculus

“[a] logical notation … where queries are expressed by writing logical

formulas that the tuples in the answer must satisfy” (Ullman 1988, p. 53)
see (Ullman 1988, pp. 145-160) for a presentation of the relational calculus.


 
The most common commercial query language is the Structured Query
Language, or
 SQL.

Despite its reputation as a relational query language, SQL does not fully
support
 the relational model (it includes things that are not in the model
and omits things
 that are. See (Codd 1988) and (Date 1987)).

3.3.6. Relational Database Management System (RDBMS)

A relational database management system is a DBMS based on
the relational model as

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 11



 defined by (Codd 1990).
There is no commercially available DBMS that fully implements the relational
model as
 defined by (Codd 1990).  Some are coming closer.  Not
everyone agrees that this strict
 lack of conformance is a Bad Thing.

3.3.7. Advantages
of the Relational Model

Codd (1990, pp. 431-439) presents many advantages of the relational model. 
Some of
 them are highlighted below:

 
The relational model is truly a mathematically complete data model. 
This solid
 theoretical underpinning is responsible for

ad hoc query languages whose queries can be automatically compiled,
executed,
 and optimized without resorting to programming
correctness: the semantics of the relational algebra are sound and complete
predictable: the consistent semantics enables users to easily anticipate
the result of
 a given query


 
Adaptability: making a change in the structure of the tables in the network
model
 requires programmatic making changes to all the database’s queries. 
As a result, the
 network model is inflexible in the extreme.

The relational model cleanly separates the logical from the physical model
and
 this decoupling mitigates or eliminates these problems.
Also, the relational model’s integrity constraints are very helpful in
ensuring that
 structural changes did not adversely effect the meaning of
the database.


 
Multiple views: it is straightforward to present different user groups
different views of
 the same database.

 
Concurrency: a full theory of transaction concurrency control exists which
depends
 upon the theoretical formalisms of the relational model.

This theory guarantees the correct execution of concurrent queries (indeed,
it
 defines what “correct” means!)

3.4. The Object Model

3.4.1. What
is the Object Model?

The word “object” is similar to the Entity-Relationship concept of an “entity”
although
 “object” is more general.

I recommend taking “object” in the spirit of “objects in the physical world.”
Objects are things but they are not limited to physical, tangible things. 
For
 example, data structures (e.g., a hash table) can be objects.
All objects are distinct and, like the network model, are made distinct
by an
 identifying attribute, the object ID.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 12




 
Like the other models, the object model assumes that objects can conceptually
be
 collected together into meaningful groups.  These groups are
called classes.
An object grouping is meaningful because objects of the same class must
have common
 attributes, behaviors, and relationships with other objects.

 
Unlike entity sets and relations, classes do not actually hold the objects
of that class.

Classes are purely conceptual.
There is nothing in the object model that is equivalent to either a entity
set or a
 relation (there could be but it’s not required by the model).

Like the network model, the relationships among objects are specified via
a “physical”
 link (pointer) between objects.
According to Rumbaugh et al. (1991), “The object model describes
the structure of
 objects in a system – their identity, their relationships
to other objects, their attributes,
 and their operations.”

 
The DARPA Open OODB project proposes the following as the essential features
of the
 OO data model (Blakeley 1991) and (Rao 1994, p.72):

Object identity: the ability of the system to distinguish between
two different
 objects that have the same state.  The state of an object
can be shared by several
 objects via object identity.
Encapsulation: a kind of abstraction that enforces a clean separation
between the
 external interface (behavior) of an object and its internal
implementation. 
 Encapsulation requires that all access (or interaction)
with objects be done by
 invoking the services provided by their external
interface.
Complex state: the ability to define data types whose implementation
has a nested
 structure.  The state of an object could be built from
records of primitive types,
 other objects, or [collections] of objects.
Type extensibility: the ability to define new data types from previously
defined
 types by enhancing or changing the structure or behavior of the
types.  Type
 inheritance is a mechanism used to define new types by
enhancing already
 existing behavior.
Genericity: The types of the object data model with which the object
query
 language collaborates must be generic.  That is, as a new type
is added to the
 system, it must be queriable.


 
There is no universally agreed upon object data model but The Object-Oriented

Database System Manifesto (Atkinson, et al. 1989) gives a framework
being considered
 from which to derive a standard.

 
According to Rao (1994), “The object-oriented database (OODB) paradigm
is the
 combination of object-oriented programming language (OOPL) systems
and persistent
 systems.  The power of the OODB comes from the seamless
treatment of both
 persistent data, as found in databases, and transient
data, as found in executing
 programs.”

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 13



Note that the emphasis with OODB, like the network model, is towards
 programmers,
not end users.
This point is further emphasized by the primary interface to OODBs being 

OOPLs.


 
I suggest (Booch 1994) for a good introduction to object-oriented design
and analysis.

3.4.2. Inheritance
(isa) Relationships and Typing

Many object-oriented models take classes to be a typing mechanism (for
example, Eiffel
 (Meyer 1997) and C++ (Stroustrup 1997)).
The type of an object is its class; an object is an instance
of its class.

For example, the number 2.3 is an instance of the class of rational numbers.

 
Interpreting classes to be types implies the inherent ability of users
to create their own
 data domains.

 
Inheritance can be viewed from two perspectives (Cusack 1991):

incremental:  the process of adding attributes and functions
to an existing class
 (the base class).

new attributes/functions can added to the new class that were not in the

base class.
this is a technique for code reuse.
no typing information is implied by this relationship.
for example, suppose that there is a class PERSISTENT that
has the
 functionality of automatically storing its objects in a database. 
Any class
 that inherits PERSISTENT “magically” gains the
ability to do likewise.

subtyping:  a technique for arranging class definitions
in a hierarchy satisfying the
 condition that members of the subclass are
also members of the superclass.

subtyping constitutes the isa relationship.
old attributes/functions can change type so long as the new type is more

specific (it inherited either directly or indirectly) than the original
base
 class.
old attributes/functions cannot be removed.
old functions can be provided with new implementations so long as the
 interface
to the function remains unchanged (or is changed via
 specialization as
indicated above)


 
Various object models span the gambit of inheritance relationships:

full repeated multiple inheritance (Eiffel, C++)
single inheritance (Java)
no inheritance (Actor, Ada)

3.4.3. Encapsulation

Objects encapsulate their attributes and the behaviors. 
This implies:

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 14



there is no interaction with an object that does not go through a publicly
published
 interface
objects manipulate their own state; the definition of class includes the
object's
 behavior manifested as functions and procedures.
an object’s state cannot be manipulated by anything external to
them (at least, not
 without permission).

For example, in a non object-oriented language such as C, let's say a programmer
writes
 a procedure to change the values of a structure holding the position
of a graphics
 primitive.

In an object-oriented language, the programmer creates a graphics primitive
class
 that has its positional information along with an internal procedure
that changes
 its own position.
The programmer “sends a message” to the object requesting it to change
its own
 position.

The advantage of encapsulation is that the implementation of any behavior
can be
 changed without effecting any other class in the system.  This
helps de-couple the
 classes and reduces the complexity of the system.

3.4.4. Comparison
to the Relational Model

The object model differs from the relational model in (at least) the following
ways:
The object model allows complex objects to be attribute domains; this is

prohibited in the relational model.
The only complex type available in the relational model is the relation.

The object model restricts all system entities to be objects which is a
more
 general concept than a relation (relations can be objects but not
all objects
 are relations).

The relational model allows no duplicate tuples and, consequently, entities
are
 identified by their attribute values.

The object model assumes the existence of an object ID which uniquely
 identifies
its object and is, possibly, invisible to the user.

Objects are instances of classes and classes constitute the typing system
of the
 model.

There is no concept of class-level typing in the relational model; everything

is a relation.
The relational model supports user-defined domains but this is applied
at
 the attribute level whereas, with the object model, the class is also
a type.
The equivalent in the relational world would be for relations to constitute

types, as well.

There is no generally accepted formal object model.
The relational model is well-defined, sound, and complete.

Relations hold all tuples.  There is no equivalent for objects; there
is no set or
 anything else that contains all the objects of a class.
There are many higher-order, non-programming query languages for the relational

model.  There are few equivalents for the object model (UniSQL is
an example).
The object model is aimed more at programmers than at end users; the reverse
is
 true of the relational model.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 15



4. Summary

This unit has presented many of the more common reasons why people need
and use
 database management systems.

A DBMS provides for the storage, retrieval, removal, and analysis of large

quantities of data.
A DBMS provides safety and security from accidental loss or theft of data.
A DBMS is analogous to a full-service bank:

data are like valuables,
a database is the collection of all the valuables stored in the bank,
a repository is like a vault,
a DBMS is like the entire, full-service bank.

The most common data models
Entity-Relationship (ER)

real-world things are modeled by entities.
all entities of the same type are collected together into an entity
set.
the relationships between entity sets are represented by relationships.

Network
essentially a programmer's database model
efficient but inflexible and hard to understand

Relational
its only complex data type is the relation
it is the only complete data model
aimed at users instead of programmers
relational query languages are easier to use than full-blown programming

languages
rich underlying theory
separation of implementation and design

Object-Oriented
an extension of object-oriented programming
no generally agreed upon formal data model
great freedom regarding complex data structures
inheritance
user-defined types
encapsulation

5. Review and Study Questions

5.1. Essay and Short Answer Questions

What is the difference between a spread sheet program and a database management

system?  When would you use one or the other?
Why bother with data modeling? Is there anything "wrong" with just putting
data into

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 16



 the database in whatever way seems good at the moment?
What are the strengths and weaknesses of the Entity-Relationship data model?
What are the strengths and weaknesses of the Network data model?
What are the strengths and weaknesses of the Relational data model?
What are the strengths and weaknesses of the Object-Oriented data model?
The relational model uses "value" identity, meaning that entities can be distinguished by
 examining the values of their attributes.  Neither
the network nor the object model
 follow this approach.

First: do you feel that this distinction is significant?  Why or why
not?
Second: What are the advantages and disadvantages of each approach?

Explain the distinction between aggregate and inheritance relationships.
What is a "complex" object?
It is always possible to find a primary key for any relation. 
Why?
Why are tables not relations?

5.2. Multiple-choice questions

What relationship does a particular, individual book stand in with respect
to libraries?
1. one-one
2. many-one
3. one-many
4. many-many

What relationship does a book title stand in with respect to libraries?
1. one-one
2. many-one
3. one-many
4. many-many


Choose the best or most appropriate answer(s) to the question.

6. Bibliography

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., and Zdonik,
S. (1989). 
 The Object-Oriented Database System Manifesto.  In
Proceedings DOOD ’89, Kyoto,
 December.
Blakeley, J.A. (1991)  DARPA Open Object-Oriented Database Preliminary
Module
 Specification: Object Query Module.  Texas Instruments, Inc.,
Version 3, Nov. 25.
Booch, G. (1994)  Object-Oriented Analysis and Design with Applications,
2nd ed. 
 Benjamin/Cummings Publishing Company.
Chen, P.P. (1976)  The Entity-Relationship Model – Toward a Unified
View of Data. 
 ACM TODS, 1:1.
Codd, E.F. (1970)  A Relational Model of Data for Large Shared Data
Banks.  Comm.
 ACM 13:6.
Codd, E.F. (1971)  ALPHA: A Data Base Sublanguage Founded on the Relational

Calculus.  In Proc. 1971 ACM SIGFIDET Workshop (San Diego,
Nov. pp. 11-12).

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 17



Codd, E.F. (1988)  Fatal Flaws in SQL (Both the IBM and the ANSI Versions).

Datamation, August and September.
Codd, E.F. (1990)  The Relational Model for Database Management,
version 2. 
 Addison-Wesley Publishing Company, New York.
Cusack, E. (1991)  Inheritance in Object-Oriented Z.  In Pierre
America (ed.), Lecture
 Notes in Computer Science, ECOOP ’91, European
Conference on Object-Oriented
 Programming, Springer-Verlag.
Date, C.J. (1987)  Where SQL Falls Short. (abridged) Datamation,
May 1.  Unabridged
 version, What is Wrong with SQL, available from
The Relational Institute, San Jose.
Meyer, B. (1997)  Object-Oriented Software Construction, 2nd
ed.  Prentice Hall.
Olle, T.W. (1978)  The Codasyl Approach to Data Base Management. 
John Wiley &
 Sons, New York.
Rao, B.R. (1994)  Object-Oriented Databases: Technology, Applications,
and
 Products.  McGraw-Hill, Inc., New York.
Rumbaugh, J., Blaha M., Premerlani, W., Eddy, F., and Lorensen, W. (1991)
Object-
Oriented Modeling and Design.  Prectice Hall, New Jersey.
Simmel, S.S. and Godard, I. (1991)  The KALA BAsket: A Semantic Primitive

Unifying Object Transactions, Access Control, Versions and Configurations.
In
 Proceedings of OOPSLA '91: Conference on Object-Oriented Programming
Systems,
 Languages and Applications, Nov., pp. 230-246.
Stroustrup, B. (1997)  The C++ Programming Language. 
Addison-Wesley Publishing
 Company.
Ullman, J.D. (1988)  Principles of Database and Knowledge-Base
Systems, volumes I
 and II.  Computer Science Press, Inc.

7. Reference Materials

7.1. Print References

Bancilhon, F., Delobel, C., and Kanellakis, P. (1992)  Building
an Object-Oriented
 Database System: The Story of O2.  Morgan Kaufman
Publishers.  O2 is an important
 and powerful object-oriented database
management system.  This book provides many
 interesting insights into
O2 in particular and into one approach to OODBMSs in
 general.

Booch, G. (1994)  Object-Oriented Analysis and Design with Applications,
2nd ed. 
 Benjamin/Cummings Publishing Company.  There are
many excellent titles covering
 object-oriented design and analysis; this
is just one of them.  I believe it provides an
 outstanding introduction
to the topic for both seasoned programmers and object
 newcomers alike.

Chen, P. (1977) The Entity-Relationship Approach to Logical Data
Base Design.  QED
 Publishing Co.  This is a good introductory
book by the man who is generally attributed
 as having developing the E-R
modeling approach.  It is out of print and, therefore, can
 be hard
to find.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 18



Codd, E.F. (1990)  The Relational Model for Database Management,
version 2. 
 Addison-Wesley Publishing Co., New York.  This
work is not an introductory text and
 might not be suited for beginners. 
It is, however, a must for anyone who is seriously
 interested in the relational
model either from an implementation or from a theoretical
 point of view.

Date, C.J. (1994)  An Introduction to Database Systems. 
Addison-Wesley Publishing
 Co., New York.  A comprehensive and approachable
classic that covers a broad
 spectrum of database issues.  Date covers
both relational and object-oriented databases
 with material that is suitable
for experts and beginners alike.  This book covers the
 essential core
of the relational model with special attention to practical implementation

issues, however, it is not specifically aimed at designing databases.

Hernandez, M.J. (1997) Database Design for Mere Mortals: A Hands-On
Guide to
 Relational Database Design.  Addison-Wesley Publishing
Co., New York.   This book
 is aimed, for the most part, at beginning
relational database designers.  It presents a
 platform independant
approach while avoiding lots of jargon and theory that is
 irrelevant in
the early stages.

Kim, W. (1990) Introduction to Object-Oriented Databases. MIT
Press.  Dr. Kim is a
 widely respected researcher and developer of
object-oriented theory and systems.  He is
 a pioneer in that part
of database theory which is trying to bridge the gap between the
 object-oriented
world and the relational world.

Maier, D. (1983)  Theory of Relational Databases. 
Computer Science Press.  For those
 interested in the formal underpinnings
of the relational database model, this is the book.

Meyer, B. (1997)  Object-Oriented Software Construction,
2nd ed.  Prentice Hall.  The
 Eiffel programming language
is notable for its small size, expressive completeness,
 simplicity, elegance,
and practicality.  This book presents the Eiffel language as a
 vehicle
with which to discuss software engineering.

Stroustrup, B. (1997)  The C++ Programming Language, 3rd ed. 
Addison-Wesley
 Publishing Company.  The C++ programming language is
almost ubiquitous and this
 book is the C++ Bible.  Bjarne Stroustrup
created C++ and this book represents the
 latest in a long line of texts
he has written on the subject.

Ullman, J.D. (1988)  Principles of Database and Knowledge-Base
Systems, volumes I
 and II.  Computer Science Press, Inc. 
If I were constrained to own only one title about
 database systems, these
two volumes would be it.  They cover every aspect of the topic
 from
the theory to the implementation along with the connections from databases
to
 knowledge-bases and the artificial intelligence community.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 19



Citation


To reference this material use the appropriate variation of the following
format:

Meyer, Thomas H. (1997) Non-spatial Database Models, NCGIA Core
Curriculum in
 GIScience, http://www.ncgia.ucsb.edu/giscc/units/u045/u045.html,
posted November
 10, 1997.




Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 20




 Non-Spatial Database Models (045)

Instructors' Notes

This section introduces the terms and concepts needed to understand non-spatial

databases and their underlying data models, including a motivation of the
need for
 database management systems, an overview of database terminology,
and a description
 of non-spatial data models.  After learning the
material covered in this unit, students
 should be able to explain the purpose
of a database management system, list the major
 non-spatial data models
and their features, and identify the primary distinctions
 between the major
non-spatial data models.

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 21



Unit 045 - Non-spatial Database Models

Table of Contents

Advanced Organizer
Topics covered in this unit 
Intended learning outcomes 
Instructors' notes 
Metadata and revision history

Body of unit
1. Motivation
2. Fundamental Concepts and Terminology

1. Data
2. Spatial vs. Non-spatial Data
3. Database
4. Repository
5. DBMS
6. Queries
7. Data Model

3. Common Data Models
1. Entity-Relationship Model

1. Entities
2. Relationships

2. The Network Model
3. The Relational Model

1. Tuples
2. Relations
3. Tuples, Relations and Keys
4. Relationships
5. Query Languages
6. RDBMS
7. Advantages of the Relational Model

4. The Object Model
1. What is the Object Model?
2. Inheritance Relationships and Typing
3. Encapsulation
4. Comparison to the Relational Model

4. Summary
5. Review and Study Questions
6. Bibliography

Citation




Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 22




Unit 045 - Non-Spatial Database Models

Metadata and Revision History

1. About the main contributors

author
Thomas H. Meyer, Mapping Sciences Laboratory

Texas A&M University, USA

2. Details about the file
unit title

Non-Spatial Database Models
unit key number

045

3. Key words

4. Index words

5. Prerequisite units

6. Subsequent units

7. Other contributors to this unit

8. Revision history

19 November 1997 - revised draft

Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 23



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 24



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 25



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 26



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 27



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 28



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 29



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 30



Unit 045 - Non-Spatial Database Models

Core Curriculum - Geographic Information Science
NCGIA 1997 - 2000

Page 31


	Unit 045 - Non-Spatial Database Models
	Unit 045 - Instructors' Notes
	Unit 045 - Table of Contents
	Unit 045 - Metadata and Revision History
	Unit 045 - Figures



