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Abstract 
Motivation: The ongoing expansion in the volume of biomedical data has contributed to a growing complexity in the tools and technologies 
used in research with an increased reliance on complex workflows written in orchestration languages such as Nextflow to integrate algorithms 
into processing pipelines. The growing use of workflows involving various tools and algorithms has led to increased scrutiny of software devel
opment practices to avoid errors in individual tools and in the connections between them.
Results: To facilitate test-driven development of Nextflow pipelines, we created NFTest, a framework for automated pipeline testing and 
validation with customizability options for Nextflow features. It is open-source, easy to initialize and use, and customizable to allow for testing 
of complex workflows with test success configurable through a broad range of assertions. NFTest simplifies the testing burden on developers 
by automating tests once defined and providing a flexible interface for running tests to validate workflows. This reduces the barrier to rigorous 
biomedical workflow testing and paves the way toward reducing computational errors in biomedicine.
Availability and implementation: NFTest is an open-source Python framework under the GPLv2 license and is freely available at https:// 
github.com/uclahs-cds/tool-NFTest. The call-sSNV Nextflow pipeline is available at: https://github.com/uclahs-cds/pipeline-call-sSNV.

1 Introduction
With the advent of high-throughput technologies ranging 
from, e.g. high-throughput sequencing to live-cell imaging 
and mHealth, biomedical research has seen a sharp increase 
in the speed and affordability of generating large datasets. 
The resulting ongoing expansion in data volume has been 
paralleled by a growing complexity in the tools and technolo
gies used in research. Biomedical discoveries often involve 
stitching together complex workflows of established and 
novel algorithms to sequentially process data into more re
fined forms. With the increased complexity, significant 
amounts of time and effort are drawn into the development 
and maintenance of these workflows (Dash et al. 2019, 
Cremin et al. 2022), which are often called “pipelines.”

Pipelines are often implemented through the use of work
flow orchestration frameworks built for data processing. 
These frameworks aim to minimize manual control of data 
flow from step to step and enable scalability and reproduc
ibility of analyses with support for cluster and cloud comput
ing environments. Widely used orchestration frameworks in 
computational biology include Common Workflow 
Language, Snakemake, Galaxy, and Nextflow (K€oster and 

Rahmann 2012, Di Tommaso et al. 2017, Crusoe et al. 2022, 
The Galaxy Community 2022).

This growing use of complex workflows in biomedicine 
has placed a heavy burden on software development practi
ces. Errors in any single component of the workflow, or in 
the way the individual components are stitched together, can 
dramatically change the final outputs. This can lead to 
wasted compute time, loss of precision or even spurious 
results. Novel development and a focus on producing a func
tional set of tools often takes precedence over systematic and 
automated testing. Small changes to workflows can be missed 
and undocumented, hindering reproducibility and reducing 
accuracy (Baresi and Pezz�e 2006). To avoid these errors, soft
ware engineering best practices are becoming wide-spread in 
biomedical data processing. These include standardized lint
ing (Louridas 2006), input/output standardization (Silva 
et al. 2017), and test-driven development (Janzen and 
Saiedian 2005, Patel et al. 2024).

The last of these is particularly critical, but also burden
some computationally and for developers. In the early phases 
of workflow innovation, testing is often performed manually. 
Even in later stages, when some automation is often present, 
frequent updates to individual tools can challenge the 
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capacity of teams to reliably test their workflows. For exam
ple, Picard, a set of command line tools for manipulating 
high-throughput sequencing data, and the Genome Analysis 
Toolkit, a set of tools for genome analysis, are updated and 
enhanced with new releases every couple of months. PLINK, 
used for computationally efficient whole-genome association 
analysis, goes through update cycles shorter than 1 month 
(Purcell et al. 2007, McKenna et al. 2010, Broad Institute 
2019). The lack of generalized testing frameworks for com
mon workflow orchestration languages often results in 
researchers using simple scripts in Perl, Python or Bash that 
are difficult to adapt to new workflows, or to modify to 
changing needs. As a result, workflow testing becomes even 
more limited in scope.

Nextflow is a rapidly emerging and broadly supported 
workflow orchestration framework, with implementation 
and deployment support for complex parallel and reactive 
workflows on high-performance clusters and clouds, and 
includes support for software containers and adaptability of 
common scripting languages. Thus, Nextflow facilitates scal
able and data-driven scientific workflows. To automate 
workflow testing and validation in Nextflow, we created 
NFTest. NFTest supports a wide range of Nextflow features 
and includes customizable validation options for pipeline 
results. It reduces the barrier to workflow testing, and pro
vides a path toward reducing the rate of computational errors 
in biomedicine.

2 Results
NFTest is a light-weight, customizable and easy-to-use 
method for automating testing of Nextflow workflows. With 
Nextflow offering a wide range of features such as multiple 
config files, configuration profiles, and parameter files, pipe
lines often become complex. NFTest includes support for 
these features in the definition of tests and enables automa
tion once test cases are defined, so developers no longer need 
to manually set up testing with all pipeline features for every 
development cycle. NFTest automates both test setup 
through an initialization functionality and test execution 
comprising configuration and parameter handling, workflow 
execution, and output validation. Through implementation 
of multiple comparisons and assertion methods, NFTest also 
provides a robust way to test a pipeline by making different 
assertions such as pipeline completion, MD5 checksum (with 
planned support for other checksum formats such as 
SHA512) comparison between test and expected output files, 
and custom scripts to define comparisons between files. It 
features a simple command line interface through which 
workflow testing can be implemented in three steps: initialize 
the testing framework, define parameters and test cases, and 
execute the tests.

The first step of NFTest is to initialize the test framework. 
This can be achieved simply by calling nftest init. With 
this call, NFTest will automatically set up the basic testing di
rectory structure along with generating a template through 
which test cases can be defined. For initialization, NFTest 
will create the directory for holding test files and copy tem
plates of a global configuration file and a YAML containing 
the structure for defining test cases. These files can then be 
expanded and populated to define the necessary set of test 
cases for the pipeline being tested.

The second step of NFTest is to define the parameters and 
test cases. Test cases can be defined through modification of 
the template generated during initialization to indicate the 
settings, such as Nextflow script, configuration file(s), config
uration profile(s), and assertions, for each test case and the 
Nextflow script to be tested. NFTest supports robust defini
tion for the workflow to be tested through the script, which 
can run individual processes from the pipeline, individual 
workflows from the pipeline, and the entire pipeline. 
Parameters can be defined through environment variables to 
configure options such as output and working directory 
without requiring explicit updates to the test cases on a per- 
developer basis while still reconciling settings to automati
cally identify output files for comparison and validation. 
Validation methods are also variable and customizable. The 
methods include options for no assertions for test cases 
intended to test successful pipeline completion, checksum 
assertions with md5, and custom script assertions that accept 
any script taking in two files (the actual and expected files) as 
arguments and returning a pass or fail to indicate the com
parison status between the input files.

The third step of NFTest is to execute the tests as develop
ment progresses. With test cases defined, developers can exe
cute the tests by defining user-specific parameters through 
environment variables and simply calling nftest run to au
tomatically detect the test cases and perform the testing for 
all enabled cases.

With a focus on facilitating testing of complex workflows 
that incorporate a wide range of Nextflow features, NFTest 
is designed in a hierarchical structure with test cases defined 
using two levels: global and case-specific (Fig. 1). The global 
level defines the default settings for the Nextflow temporary 
directory, global Nextflow configuration, and test output 
cleanup options. The case-specific level defines a set of test 
cases with support for additional settings that can override 
the global settings as necessary. Nextflow provides a range of 
options, including the ability to run a pipeline directly from a 
GitHub repository, multiple ways to define parameters (con
fig files and params-files), the possibility to provide multiple 
config files, and profiles to bundle enablement/disablement of 
sets of configurations. NFTest provides support for defining 
tests including any combination of these options. With com
plex workflows, a series of tests are often necessary to cover 
various use-cases and settings. To facilitate this, NFTest pro
vides the option to enable and disable certain test cases as de
fault and use the command line interface to run test cases 
that may be disabled as default without having to modify the 
test definitions. The command to run a specific subset of test 
cases, regardless of whether the cases are enabled as default 
or not, is simply nftest run “test case 1” “test case 2” 
“test case 6.”

We demonstrate the ease of testing and development with 
NFTest through implementation with two independent 
Nextflow workflows: nf-core’s sarek pipeline for germline 
and somatic variant detection from next-generation sequenc
ing data and a novel pipeline yielding integrated results from 
four different tools for somatic single nucleotide variant 
(sSNV) detection with a workflow for intersecting the result
ing variant call sets (Garcia et al. 2020). nf-core’s sarek pipe
line includes configurations using Nextflow profiles and 
specific settings for indicating output directories for any gen
erated files. NFTest includes functionality to specify the orga
nization and repository as the main script for testing, along 
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with support for defining test cases using specific profiles and 
output directory parameter names. As a demonstration, we 
defined a test of sarek using the test and docker profiles with 
specific assertions for variant calls resulting from Strelka pro
duced by the workflow. We show that developers can define 
custom assertions between files using scripts. The sarek test 
makes use of human chromosome 21 as a test sample and 
performs variant calling with Strelka2. We implemented a 
custom script to assert a match between only the variant call 
sets in the output files and not the headers of the files.

We also implemented NFTest with a novel pipeline for sSNV 
calling. The call-sSNV pipeline, implemented in Nextflow, sup
ports four SNV calling tools: Mutect2, SomaticSniper, Strelka2, 
and MuSE (McKenna et al. 2010, Larson et al. 2012, Fan et al. 
2016, Kim et al. 2018). The pipeline accepts a set of normal 
and tumor Binary Sequence Alignment/Map files and generates 
somatic variant call sets through each of the four tools (Li et al. 
2009, Danecek et al. 2011). As a final step, the pipeline also 
implements a workflow to intersect the call sets from the differ
ent callers using BCFtools (Danecek et al. 2021). With options 
for specifying combinations of tools and the different tools 
accepting different inputs, call-sSNV calls for a need for several 
test cases to ensure proper function. We implemented NFTest 
with call-sSNV (Fig. 2) to capture these cases with VCF compar
isons done on variant calls from each tool and on the intersected 
variant calls along with the associated Venn Diagram: a test 
with all tools, a test for each individual caller, a test for Mutect2 
tumor-only mode, and a test for Mutect2 multiple sample mode 
(Chen and Boutros 2011). Each of these tests demonstrates the 
end-to-end testing functionality of NFTest, with test success de
termined by pipeline success. A subsampled tumor dataset, com
prising �0.01% of the genome, from the simulated tumor data 

generated through the SMC-Het challenge was used as the test 
dataset (Salcedo et al. 2020). The test input and output files are 
available with the latest release of call-sSNV here: https://github. 
com/uclahs-cds/pipeline-call-sSNV/releases/download/v8.0.0-rc.1/ 
test_files.tar.gz.

Through testing with these data on a system with 16 CPUs 
and 32 GB of RAM, we also demonstrate the light resource 
requirements of NFTest. We ran 10 benchmarking runs of 
call-sSNV on the 0.01% of genome simulated tumor data 
from the SMC-Het challenge through NFTest and 10 runs 
without NFTest, while monitoring the percent CPU usage, 
percent RAM usage, and disk space usage. For CPU usage, 
call-sSNV alone peaked at median (IQR) 84.78% (83.84– 
84.92), while call-sSNV through NFTest peaked at 85.68% 
(85.32–86.09). For memory usage, call-sSNV alone peaked 
at median (IQR) 36.45% (33.73–37.44), while call-sSNV 
through NFTest peaked at 34.75% (34.27–37.02). With re
spect to runtime, on the test system, call-sSNV alone runtime 
was 14 min 37 s (13 min 49 s to 14 min 58 s), while call-sSNV 
with NFTest runtime was 14 min 52 s (14 min 3 s to 15 min 
22 s). As a whole, testing added �0.9% CPU overhead, no 
memory overhead (all values were within the run-to-run sto
chasticity of memory usage), and approximately 15 s (or 
1.7%) to total run time. For the simulated data used for test
ing call-sSNV, the intermediate disk usage peaked at 250 MB 
with the final outputs using 150 MB. The simulated test files 
used for testing call-sSNV require 33 MB, while the reference 
files require 30 GB. The Docker containers, once pulled from 
the container registries, require 12 GB of disk space. Testing 
results in no effect on output file size, aside from a tiny log 
file in the single-digit MB range.

Figure 1. Architecture and workflow of testing. (a) Class diagram indicating relationships between environment variables, global settings, and 
case-specific settings. (b) Workflow of execution of test cases, indicating where the scripts are run and where assertions are made.
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In addition to NFTest, nf-test is another open-source test
ing framework for Nextflow. Both NFTest and nf-test allow 
for execution and testing of Nextflow workflows, processes, 
and functions, for assertions to be made on output files, and 
for generating testing code templates. Both frameworks addi
tionally include support for snapshot testing by comparing 
test runs with existing snapshot test runs. NFTest provides 
support for tests using configuration files and Nextflow pro
files and allows for customizable comparison scripts that can 
leverage various environments and programming languages. 
Though nf-test is not published as far as we know, it is an 
open-source tool like NFTest and, as such, similarities in fea
tures may accumulate as both aim to provide a testing frame
work for Nextflow. NFTest will continue to be expanded 
with additional features such as validating outputs directly 
written to a database or cloud storage containers.

Reproducibility, and therefore testing and validation, are 
key for complex bioinformatics workflows. Workflow testing 
is difficult given the sheer scale and intricacy of data and the 
processing pipelines along with a priority set on developing 
functioning workflows. By minimizing developer program
ming effort and providing a customizable testing framework, 
NFTest paves the way toward easy testing, maintenance, and 
development of complex bioinformatics workflows with a 

range of testing assertions and feature customizability while 
minimizing extensive programming and maintenance effort 
from developers.

Acknowledgements
The authors gratefully acknowledge the ongoing support of 
all present and past members of the Boutros lab in providing 
suggestions, practical use-cases, and support.

Conflict of interest
P.C.B. sits on the Scientific Advisory Boards of Intersect 
Diagnostics Inc., BioSymetrics Inc., and Sage Bionetworks. 
All other authors have no conflicts of interest to declare.

Funding
This study was supported by the National Institutes of Health 
through awards P30CA016042, R01CA244729, R01CA2 
70108, U2CCA271894, U24CA248265, and U54HG012517; 
the Department of Defense through awards W81XWH2210247 
and W81XWH2210751; the UCLA Institute for Precision 
Health; and the UCLA Jonsson Comprehensive Cancer Center.
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