
UCLA
UCLA Previously Published Works

Title
NFTest: automated testing of Nextflow pipelines

Permalink
https://escholarship.org/uc/item/3dj5x0wt

Journal
Bioinformatics, 40(2)

ISSN
1367-4803

Authors
Patel, Yash
Zhu, Chenghao
Yamaguchi, Takafumi N
et al.

Publication Date
2024-02-01

DOI
10.1093/bioinformatics/btae081

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dj5x0wt
https://escholarship.org/uc/item/3dj5x0wt#author
https://escholarship.org
http://www.cdlib.org/

Genome analysis

NFTest: automated testing of Nextflow pipelines
Yash Patel 1,2,†, Chenghao Zhu1,2,3,†, Takafumi N. Yamaguchi 1,2,3, Yuan Zhe Bugh1, Mao
Tian1,2,3, Aaron Holmes 1,2, Sorel T. Fitz-Gibbon1,2,3, Paul C. Boutros 1,2,3,4,5,�

1Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, United States
2Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, United States
3Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, United States
4Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, United States
5Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States
�Corresponding author. Department of Human Genetics, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States.
E-mail: pboutros@mednet.ucla.edu (P.C.B.)
†Equal contribution.
Associate Editor: Peter Robinson

Abstract
Motivation: The ongoing expansion in the volume of biomedical data has contributed to a growing complexity in the tools and technologies
used in research with an increased reliance on complex workflows written in orchestration languages such as Nextflow to integrate algorithms
into processing pipelines. The growing use of workflows involving various tools and algorithms has led to increased scrutiny of software devel
opment practices to avoid errors in individual tools and in the connections between them.
Results: To facilitate test-driven development of Nextflow pipelines, we created NFTest, a framework for automated pipeline testing and
validation with customizability options for Nextflow features. It is open-source, easy to initialize and use, and customizable to allow for testing
of complex workflows with test success configurable through a broad range of assertions. NFTest simplifies the testing burden on developers
by automating tests once defined and providing a flexible interface for running tests to validate workflows. This reduces the barrier to rigorous
biomedical workflow testing and paves the way toward reducing computational errors in biomedicine.
Availability and implementation: NFTest is an open-source Python framework under the GPLv2 license and is freely available at https://
github.com/uclahs-cds/tool-NFTest. The call-sSNV Nextflow pipeline is available at: https://github.com/uclahs-cds/pipeline-call-sSNV.

1 Introduction
With the advent of high-throughput technologies ranging
from, e.g. high-throughput sequencing to live-cell imaging
and mHealth, biomedical research has seen a sharp increase
in the speed and affordability of generating large datasets.
The resulting ongoing expansion in data volume has been
paralleled by a growing complexity in the tools and technolo
gies used in research. Biomedical discoveries often involve
stitching together complex workflows of established and
novel algorithms to sequentially process data into more re
fined forms. With the increased complexity, significant
amounts of time and effort are drawn into the development
and maintenance of these workflows (Dash et al. 2019,
Cremin et al. 2022), which are often called “pipelines.”

Pipelines are often implemented through the use of work
flow orchestration frameworks built for data processing.
These frameworks aim to minimize manual control of data
flow from step to step and enable scalability and reproduc
ibility of analyses with support for cluster and cloud comput
ing environments. Widely used orchestration frameworks in
computational biology include Common Workflow
Language, Snakemake, Galaxy, and Nextflow (K€oster and

Rahmann 2012, Di Tommaso et al. 2017, Crusoe et al. 2022,
The Galaxy Community 2022).

This growing use of complex workflows in biomedicine
has placed a heavy burden on software development practi
ces. Errors in any single component of the workflow, or in
the way the individual components are stitched together, can
dramatically change the final outputs. This can lead to
wasted compute time, loss of precision or even spurious
results. Novel development and a focus on producing a func
tional set of tools often takes precedence over systematic and
automated testing. Small changes to workflows can be missed
and undocumented, hindering reproducibility and reducing
accuracy (Baresi and Pezz�e 2006). To avoid these errors, soft
ware engineering best practices are becoming wide-spread in
biomedical data processing. These include standardized lint
ing (Louridas 2006), input/output standardization (Silva
et al. 2017), and test-driven development (Janzen and
Saiedian 2005, Patel et al. 2024).

The last of these is particularly critical, but also burden
some computationally and for developers. In the early phases
of workflow innovation, testing is often performed manually.
Even in later stages, when some automation is often present,
frequent updates to individual tools can challenge the

Received: 25 October 2023; Revised: 18 January 2024; Editorial Decision: 3 February 2024; Accepted: 8 February 2024
The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(2), btae081
https://doi.org/10.1093/bioinformatics/btae081
Advance Access Publication Date: 10 February 2024
Applications Note

https://orcid.org/0000-0003-3113-7010
https://orcid.org/0000-0003-1082-3871
https://orcid.org/0000-0002-1012-7879
https://orcid.org/0000-0003-0553-7520
https://github.com/uclahs-cds/tool-NFTest
https://github.com/uclahs-cds/tool-NFTest
https://github.com/uclahs-cds/pipeline-call-sSNV

capacity of teams to reliably test their workflows. For exam
ple, Picard, a set of command line tools for manipulating
high-throughput sequencing data, and the Genome Analysis
Toolkit, a set of tools for genome analysis, are updated and
enhanced with new releases every couple of months. PLINK,
used for computationally efficient whole-genome association
analysis, goes through update cycles shorter than 1 month
(Purcell et al. 2007, McKenna et al. 2010, Broad Institute
2019). The lack of generalized testing frameworks for com
mon workflow orchestration languages often results in
researchers using simple scripts in Perl, Python or Bash that
are difficult to adapt to new workflows, or to modify to
changing needs. As a result, workflow testing becomes even
more limited in scope.

Nextflow is a rapidly emerging and broadly supported
workflow orchestration framework, with implementation
and deployment support for complex parallel and reactive
workflows on high-performance clusters and clouds, and
includes support for software containers and adaptability of
common scripting languages. Thus, Nextflow facilitates scal
able and data-driven scientific workflows. To automate
workflow testing and validation in Nextflow, we created
NFTest. NFTest supports a wide range of Nextflow features
and includes customizable validation options for pipeline
results. It reduces the barrier to workflow testing, and pro
vides a path toward reducing the rate of computational errors
in biomedicine.

2 Results
NFTest is a light-weight, customizable and easy-to-use
method for automating testing of Nextflow workflows. With
Nextflow offering a wide range of features such as multiple
config files, configuration profiles, and parameter files, pipe
lines often become complex. NFTest includes support for
these features in the definition of tests and enables automa
tion once test cases are defined, so developers no longer need
to manually set up testing with all pipeline features for every
development cycle. NFTest automates both test setup
through an initialization functionality and test execution
comprising configuration and parameter handling, workflow
execution, and output validation. Through implementation
of multiple comparisons and assertion methods, NFTest also
provides a robust way to test a pipeline by making different
assertions such as pipeline completion, MD5 checksum (with
planned support for other checksum formats such as
SHA512) comparison between test and expected output files,
and custom scripts to define comparisons between files. It
features a simple command line interface through which
workflow testing can be implemented in three steps: initialize
the testing framework, define parameters and test cases, and
execute the tests.

The first step of NFTest is to initialize the test framework.
This can be achieved simply by calling nftest init. With
this call, NFTest will automatically set up the basic testing di
rectory structure along with generating a template through
which test cases can be defined. For initialization, NFTest
will create the directory for holding test files and copy tem
plates of a global configuration file and a YAML containing
the structure for defining test cases. These files can then be
expanded and populated to define the necessary set of test
cases for the pipeline being tested.

The second step of NFTest is to define the parameters and
test cases. Test cases can be defined through modification of
the template generated during initialization to indicate the
settings, such as Nextflow script, configuration file(s), config
uration profile(s), and assertions, for each test case and the
Nextflow script to be tested. NFTest supports robust defini
tion for the workflow to be tested through the script, which
can run individual processes from the pipeline, individual
workflows from the pipeline, and the entire pipeline.
Parameters can be defined through environment variables to
configure options such as output and working directory
without requiring explicit updates to the test cases on a per-
developer basis while still reconciling settings to automati
cally identify output files for comparison and validation.
Validation methods are also variable and customizable. The
methods include options for no assertions for test cases
intended to test successful pipeline completion, checksum
assertions with md5, and custom script assertions that accept
any script taking in two files (the actual and expected files) as
arguments and returning a pass or fail to indicate the com
parison status between the input files.

The third step of NFTest is to execute the tests as develop
ment progresses. With test cases defined, developers can exe
cute the tests by defining user-specific parameters through
environment variables and simply calling nftest run to au
tomatically detect the test cases and perform the testing for
all enabled cases.

With a focus on facilitating testing of complex workflows
that incorporate a wide range of Nextflow features, NFTest
is designed in a hierarchical structure with test cases defined
using two levels: global and case-specific (Fig. 1). The global
level defines the default settings for the Nextflow temporary
directory, global Nextflow configuration, and test output
cleanup options. The case-specific level defines a set of test
cases with support for additional settings that can override
the global settings as necessary. Nextflow provides a range of
options, including the ability to run a pipeline directly from a
GitHub repository, multiple ways to define parameters (con
fig files and params-files), the possibility to provide multiple
config files, and profiles to bundle enablement/disablement of
sets of configurations. NFTest provides support for defining
tests including any combination of these options. With com
plex workflows, a series of tests are often necessary to cover
various use-cases and settings. To facilitate this, NFTest pro
vides the option to enable and disable certain test cases as de
fault and use the command line interface to run test cases
that may be disabled as default without having to modify the
test definitions. The command to run a specific subset of test
cases, regardless of whether the cases are enabled as default
or not, is simply nftest run “test case 1” “test case 2”
“test case 6.”

We demonstrate the ease of testing and development with
NFTest through implementation with two independent
Nextflow workflows: nf-core’s sarek pipeline for germline
and somatic variant detection from next-generation sequenc
ing data and a novel pipeline yielding integrated results from
four different tools for somatic single nucleotide variant
(sSNV) detection with a workflow for intersecting the result
ing variant call sets (Garcia et al. 2020). nf-core’s sarek pipe
line includes configurations using Nextflow profiles and
specific settings for indicating output directories for any gen
erated files. NFTest includes functionality to specify the orga
nization and repository as the main script for testing, along

2 Patel et al.

with support for defining test cases using specific profiles and
output directory parameter names. As a demonstration, we
defined a test of sarek using the test and docker profiles with
specific assertions for variant calls resulting from Strelka pro
duced by the workflow. We show that developers can define
custom assertions between files using scripts. The sarek test
makes use of human chromosome 21 as a test sample and
performs variant calling with Strelka2. We implemented a
custom script to assert a match between only the variant call
sets in the output files and not the headers of the files.

We also implemented NFTest with a novel pipeline for sSNV
calling. The call-sSNV pipeline, implemented in Nextflow, sup
ports four SNV calling tools: Mutect2, SomaticSniper, Strelka2,
and MuSE (McKenna et al. 2010, Larson et al. 2012, Fan et al.
2016, Kim et al. 2018). The pipeline accepts a set of normal
and tumor Binary Sequence Alignment/Map files and generates
somatic variant call sets through each of the four tools (Li et al.
2009, Danecek et al. 2011). As a final step, the pipeline also
implements a workflow to intersect the call sets from the differ
ent callers using BCFtools (Danecek et al. 2021). With options
for specifying combinations of tools and the different tools
accepting different inputs, call-sSNV calls for a need for several
test cases to ensure proper function. We implemented NFTest
with call-sSNV (Fig. 2) to capture these cases with VCF compar
isons done on variant calls from each tool and on the intersected
variant calls along with the associated Venn Diagram: a test
with all tools, a test for each individual caller, a test for Mutect2
tumor-only mode, and a test for Mutect2 multiple sample mode
(Chen and Boutros 2011). Each of these tests demonstrates the
end-to-end testing functionality of NFTest, with test success de
termined by pipeline success. A subsampled tumor dataset, com
prising �0.01% of the genome, from the simulated tumor data

generated through the SMC-Het challenge was used as the test
dataset (Salcedo et al. 2020). The test input and output files are
available with the latest release of call-sSNV here: https://github.
com/uclahs-cds/pipeline-call-sSNV/releases/download/v8.0.0-rc.1/
test_files.tar.gz.

Through testing with these data on a system with 16 CPUs
and 32 GB of RAM, we also demonstrate the light resource
requirements of NFTest. We ran 10 benchmarking runs of
call-sSNV on the 0.01% of genome simulated tumor data
from the SMC-Het challenge through NFTest and 10 runs
without NFTest, while monitoring the percent CPU usage,
percent RAM usage, and disk space usage. For CPU usage,
call-sSNV alone peaked at median (IQR) 84.78% (83.84–
84.92), while call-sSNV through NFTest peaked at 85.68%
(85.32–86.09). For memory usage, call-sSNV alone peaked
at median (IQR) 36.45% (33.73–37.44), while call-sSNV
through NFTest peaked at 34.75% (34.27–37.02). With re
spect to runtime, on the test system, call-sSNV alone runtime
was 14 min 37 s (13 min 49 s to 14 min 58 s), while call-sSNV
with NFTest runtime was 14 min 52 s (14 min 3 s to 15 min
22 s). As a whole, testing added �0.9% CPU overhead, no
memory overhead (all values were within the run-to-run sto
chasticity of memory usage), and approximately 15 s (or
1.7%) to total run time. For the simulated data used for test
ing call-sSNV, the intermediate disk usage peaked at 250 MB
with the final outputs using 150 MB. The simulated test files
used for testing call-sSNV require 33 MB, while the reference
files require 30 GB. The Docker containers, once pulled from
the container registries, require 12 GB of disk space. Testing
results in no effect on output file size, aside from a tiny log
file in the single-digit MB range.

Figure 1. Architecture and workflow of testing. (a) Class diagram indicating relationships between environment variables, global settings, and
case-specific settings. (b) Workflow of execution of test cases, indicating where the scripts are run and where assertions are made.

NFTest 3

https://github.com/uclahs-cds/pipeline-call-sSNV/releases/download/v8.0.0-rc.1/test_files.tar.gz
https://github.com/uclahs-cds/pipeline-call-sSNV/releases/download/v8.0.0-rc.1/test_files.tar.gz
https://github.com/uclahs-cds/pipeline-call-sSNV/releases/download/v8.0.0-rc.1/test_files.tar.gz

In addition to NFTest, nf-test is another open-source test
ing framework for Nextflow. Both NFTest and nf-test allow
for execution and testing of Nextflow workflows, processes,
and functions, for assertions to be made on output files, and
for generating testing code templates. Both frameworks addi
tionally include support for snapshot testing by comparing
test runs with existing snapshot test runs. NFTest provides
support for tests using configuration files and Nextflow pro
files and allows for customizable comparison scripts that can
leverage various environments and programming languages.
Though nf-test is not published as far as we know, it is an
open-source tool like NFTest and, as such, similarities in fea
tures may accumulate as both aim to provide a testing frame
work for Nextflow. NFTest will continue to be expanded
with additional features such as validating outputs directly
written to a database or cloud storage containers.

Reproducibility, and therefore testing and validation, are
key for complex bioinformatics workflows. Workflow testing
is difficult given the sheer scale and intricacy of data and the
processing pipelines along with a priority set on developing
functioning workflows. By minimizing developer program
ming effort and providing a customizable testing framework,
NFTest paves the way toward easy testing, maintenance, and
development of complex bioinformatics workflows with a

range of testing assertions and feature customizability while
minimizing extensive programming and maintenance effort
from developers.

Acknowledgements
The authors gratefully acknowledge the ongoing support of
all present and past members of the Boutros lab in providing
suggestions, practical use-cases, and support.

Conflict of interest
P.C.B. sits on the Scientific Advisory Boards of Intersect
Diagnostics Inc., BioSymetrics Inc., and Sage Bionetworks.
All other authors have no conflicts of interest to declare.

Funding
This study was supported by the National Institutes of Health
through awards P30CA016042, R01CA244729, R01CA2
70108, U2CCA271894, U24CA248265, and U54HG012517;
the Department of Defense through awards W81XWH2210247
and W81XWH2210751; the UCLA Institute for Precision
Health; and the UCLA Jonsson Comprehensive Cancer Center.

Figure 2. Workflow and testing of somatic SNV calling pipeline. (a) Somatic SNV calling pipeline flowchart through Mutect2, SomaticSniper, Strelka2, and
MuSE algorithms culminating in intersection workflow. (b) Set of tests implemented for call-sSNV pipeline covering different inputs and algorithms. (c)
Example intersection diagram of consensus variants; assertions are made to ensure the same diagram is produced through NFTest.

4 Patel et al.

Data availability
No new data were generated or analysed in support of
this research.

References
Baresi L, Pezz�e M. An introduction to software testing. Electron Notes

Theor Comput Sci 2006;148:89–111.
Broad Institute. Picard Toolkit. Broad Institute. GitHub repository.

2019. https://github.com/broadinstitute/picard.
Chen H, Boutros PC. VennDiagram: a package for the generation of

highly-customizable Venn and Euler diagrams in R. BMC
Bioinformatics 2011;12:35.

Cremin CJ, Dash S, Huang X et al. Big data: historic advances and emerging
trends in biomedical research. Curr Res Biotechnol 2022;4:138–51.

Crusoe MR, Abeln S, Iosup A et al. Methods included: standardizing
computational reuse and portability with the common workflow
language. Commun ACM 2022;65:54–63.

Danecek P, Auton A, Abecasis G et al.; 1000 Genomes Project Analysis
Group. The variant call format and VCFtools. Bioinformatics 2011;
27:2156–8.

Danecek P, Bonfield JK, Liddle J et al. Twelve years of SAMtools and
BCFtools. Gigascience 2021;10:giab008.

Dash S, Shakyawar SK, Sharma M et al. Big data in healthcare: manage
ment, analysis and future prospects. J Big Data 2019;6:54.

Di Tommaso P, Chatzou M, Floden EW et al. Nextflow enables
reproducible computational workflows. Nat Biotechnol 2017;
35:316–9.

Fan Y, Xi L, Hughes DST et al. MuSE: accounting for tumor heteroge
neity using a sample-specific error model improves sensitivity and
specificity in mutation calling from sequencing data. Genome Biol
2016;17:178.

Garcia M, Juhos S, Larsson M et al. Sarek: a portable workflow for
whole-genome sequencing analysis of germline and somatic variants
[version 2; peer review: 2 approved]. F1000Res 2020;9:63.

Janzen D, Saiedian H. Test-driven development concepts, taxonomy,
and future direction. Computer 2005;38:43–50.

Kim S, Scheffler K, Halpern AL et al. Strelka2: fast and accurate calling
of germline and somatic variants. Nat Methods 2018;15:591–4.

K€oster J, Rahmann S. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics 2012;28:2520–2.

Larson DE, Harris CC, Chen K et al. SomaticSniper: identification of
somatic point mutations in whole genome sequencing data.
Bioinformatics 2012;28:311–7.

Li H, Handsaker B, Wysoker A et al.; 1000 Genome Project Data
Processing Subgroup. The sequence alignment/map format and
SAMtools. Bioinformatics 2009;25:2078–9.

Louridas P. Static code analysis. IEEE Softw 2006;23:58–61.
McKenna A, Hanna M, Banks E et al. The genome analysis toolkit: a

MapReduce framework for analyzing next-generation DNA se
quencing data. Genome Res 2010;20:1297–303.

Patel Y, Beshlikyan A, Jordan M et al. PipeVal: light-weight extensible
tool for file validation. Bioinformatics 2024. https://doi.org/10.
1093/bioinformatics/btae079.

Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am J
Hum Genet 2007;81:559–75.

Salcedo A, Tarabichi M, Espiritu SMG et al.; DREAM SMC-Het
Participants. A community effort to create standards for evaluating
tumor subclonal reconstruction. Nat Biotechnol 2020;38:97–107.

Silva LB, Jimenez RC, Blomberg N et al. General guidelines for biomed
ical software development. F1000Res 2017;6:273.

The Galaxy Community. The Galaxy platform for accessible, reproduc
ible and collaborative biomedical analyses: 2022 update. Nucleic
Acids Res 2022;50:W354–1.

NFTest 5

https://github.com/broadinstitute/picard
https://doi.org/10.1093/bioinformatics/btae079
https://doi.org/10.1093/bioinformatics/btae079

	Active Content List
	1 Introduction
	2 Results
	Acknowledgements
	Conflict of interest
	Funding
	Data availability
	References

