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ABSTRACT OF THE DISSERTATION

Interactive Causality Enabled Adaptive Machine Learning

By

Yutian Ren

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor G. P. Li, Chair

The capability to adapt to dynamic environments and changes in data distribution is essential

for the development of adaptive artificial intelligence (AI) systems that can operate effectively

in the real world. Typically, adaptive learning requires an AI agent to autonomously gather

the required information (i.e., training data) from the deployed environment to adapt to

the local dynamic changes. This process falls within the broad area of semi-supervised

learning, where partial training data is not manually labeled. This is especially critical for

applications at the edge of cyber-physical systems, where available datasets are rather limited

and resources for deep learning from big data are not available. While there exist effective

semi-supervised learning methods based on feature smoothness assumptions, they become

less robust in dynamic environments where there are shifts (e.g., concept drift) in data

distribution. Recently, causality has been explored to address deployment domain shifts.

This is based on the argument that causality, especially the causal direction, is consistent

across different domains, making invariant features highly significant in adaptive learning.

This dissertation presents an interactive causality (IC) methodology, which utilizes direc-

tional and temporal causal events to facilitate the automated self-labeling of data. Interac-

tive causality refers to the temporal state transitions of causes and effects during interactive

activities, which are captured through additional observing channels. The methodology cap-
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italizes on the domain-invariant causal relationships to capture information leakage during

interactions from an additional observing channel, and is fortified by the rich domain knowl-

edge in cyber-physical system contexts. Differing from big data ML approaches, the IC

leverages the existing knowledge and experiences to create a knowledge graph with embed-

ded temporal causality among interactive nodes and directly look at the interactivity among

these nodes for adaptive learning. A theoretical foundation of the interactive causality driven

self-labeling method is discussed and compared with other traditional semi-supervised learn-

ing algorithms. The proof is derived from the theory of dynamical system which represents

the time-varying environments and the time-series data. A simulation using physics engine

and a real-world example in semiconductor manufacturing are provided to demonstrate the

effectiveness of the proposed method for adaptive learning and knowledge expansion. Over-

all, the experimental results successfully demonstrated the efficacy of our proposed adaptive

learning in reducing manual data labeling efforts and robust domain adaptation.
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Chapter 1

Introduction

1.1 Background

This generation’s Artificial Intelligence (AI) empowered by data-driven modeling and learn-

ing has reformed diverse fields with the advanced and autonomous intelligence and incubated

many promising visions for the future. Novel and powerful deep learning (DL) algorithms

nowadays, compared with the ones ten years ago, have significantly advanced in many of

the commonly seen tasks on various data types. The emergence of ChatGPT and other

generative models has improved people’s in-office productivity by distilling vast amount of

information in natural languages for users. Other than Information Technology (IT) in-

dustry, AI-empowered intelligence has begun its democratization in traditional sectors to

improve productivity and reduce cost such as in agriculture and manufacturing.

The promotion of AI in traditional fields is not as fast as in IT industry. There are many

reasons. The uncompleted transformation of digitization and informatics in these fields re-

stricts the acquisition and archive of task-oriented data used for DL training. Some novel

AI applications in these fields need additional dimensions of data beyond what has been
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established and collected in the era of Industry 3.0. The specialized domain knowledge in

the traditional fields requires AI engineers to detail the understanding of problems and ap-

plication scenarios. However, the lack of IT expertise raises the cost of problem formulation,

data collection and annotation, model development, and model and system maintenance.

Over the years before the age of digitization, traditional industries have developed their

ways to accumulate and share domain knowledge, which can be summarized as the field of

industrial engineering and operation research, but lack a standard way to share knowledge

to AI experts for AI problem formulation. These main reasons, lack of data and specialized

domain knowledge, need solutions to pave the road for pervasive AI adoption in traditional

fields.

Recently, the exploration and development of few-shot learning, transfer learning, unsuper-

vised and semi-supervised learning, and self-supervised learning aim to lower the barrier of

AI adoption by reducing the needs of manually annotated training data or enhancing the

domain adaptation and robustness of AI models in different application domains. These

methods step on algorithmic development and have shown promising results in research

fields. Some of these methods have also demonstrated effectiveness in traditional industries,

e.g., manufacturing. For example, few-shot learning is suitable for vision-based defect de-

tection in manufacturing where only limited samples are accessible. Transfer learning based

on pretrained feature extraction models can be used to adjust and adapt large models to

specific domains and applications. Most of the current methods highly depend on rich and

invariant data features that are common across domains. Drastic cross-domain variations,

such as concept drift, can make these methods less effective. In addition, while some of

the current solutions can reduce the needs of training on large amount of labeled samples,

manually labeled data are still required and the models lack a way of automatic evolution

and adaptation to local environmental changes.

Cyber-Physical Systems (CPS) represent a class of systems where the physical world and
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computational elements are deeply intertwined and interact seamlessly to achieve specific

objectives. A CPS is a complex integration of physical processes, sensors, actuators, and

computational algorithms that work together to control and monitor physical entities and

processes. These systems have the ability to sense, process, and actuate the physical world in

real-time. CPS can be found in various domains, including manufacturing, transportation,

healthcare, energy, agriculture, smart cities, robotics, and more. CPS sets a spacious stage

for AI applications in traditional industries, especially using small-scale ML models rather

than large models due to requirement of rapid response, energy efficiency, and also the

intrinsic properties for ML training. In CPS applications, large amount of datasets is usually

unavailable and ML tasks are usually less complicated than human-like generic vision or

language models. Hence, large models can be a overkill and perform even worse on relatively

simple ML tasks with limited datasets compared to traditional data processing methods. In

addition, the ever-changing scenarios in CPS require the deployed ML models be able to

autonomously adapt to the changes.

On the other hand, the needs for AI in traditional industries are different from consumer

electronics. For example, while manufacturing industry has been investing major efforts

for transformation to IT-enhanced production, the needed infrastructure and data for AI

application development do not align with the current IT infrastructure in manufacturing.

The maturity of AI is also a problem. Ad-hoc data processing and understanding of specific

domain knowledge are intensively required. This high customization of AI models for differ-

ent specific problems significantly complicates AI development in traditional industries with

less generalizability. Overall, these problems motivate the author to think about a different

paradigm of AI development targeting at the pain points.

The problem that this dissertation focuses on is that most of the current ML strategies

require a manually labeled dataset in pre- and post-deployment stages for initial training

and post-deployment drift adaptation, which significant hinders the usage of data-driven
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AI in traditional fields with less data science expertise. This dissertation approaches the

problem from a system perspective and designs an adaptive machine learning system such

that ML models can achieve autonomous learning without the needs of labor-intense manual

data collection and annotation. In the next sections, we will review the basic concepts of

related topics including data distribution shift, causality, ontology and knowledge graph,

and adaptive machine learning. These reviewed topics are close to this dissertation’s con-

centration and can provide readers with certain contexts to help on the understanding of

this dissertation. In Section 1.6, the contribution of this dissertation is outlined.

1.2 Data Distribution Shift

In ML production environments, data distribution shift is one of the major reasons that

causes deployed ML system failures in the form of less accurate prediction. Typically, a ML

model can learn a underlying data distribution from training dataset and conduct predic-

tion based on the learned distribution. However, in real-world deployment scenarios, the

underlying distribution in real world data can be different from that of the training dataset,

and the real world data distribution can be non-stationary due to unknown factors. These

problems will degrade the performance of deployed ML models and thus there is a need to

collect and label new datasets for retraining models to counter the data shifts. In general,

there are three distinct types of data distribution shifts: covariate shift, label shift, and

concept drift. Covariate shift occurs when the distribution of input data changes, but the

conditional probability of a label given an input remains constant. Label shift occurs when

the output distribution changes, but the input distribution remains the same for a given

output. Concept drift means when the input distribution remains unchanged, but the con-

ditional distribution of the output given an input shifts. In other words, with concept drift

there will be a different output for the same input.
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Data distribution shift has been a long-standing problem and many researchers have proposed

and demonstrated solutions. There are two aspects of this problem: drift detection and drift

adaptation. The objective of drift detection is to effectively monitor the data distribution

and identify harmful shifts to reduce the needs of frequent model retraining. After drift

identification, the adaptive learning will play a role to adapt existing ML models to the

drift.

In general, drift detection is based on statistical methods including three categories as sum-

marized by [91]: error rate based methods, data distribution based methods, and mulitple

hypothesis test based methods. These methods help on understanding the drift: when it

happens and the severity of drift. For instance, a classic error-rate based method, called

Drift Detection Method (DDM), applies a trained classifier to predict labels and compares

the predicted labels with available true labels within a window which generates an error rate

used with thresholding for drift alarms [40]. The data distribution based methods focus on

data itself by setting up a distance metric to quantify the similarity between the histori-

cal and new data distributions. Multiple hypothesis test based methods differ from previous

methods in that multiple hypothesis test configured in parallel or hierarchical ways. In terms

of drift adaptation, retraining models is essential to adapt models to the changed data and

thus a new dataset is needed. Currently, the drift adaptation methods focus on different re-

training ways, especially for the problem of catastrophic forgetting that will cause a machine

learning model to forget previously learned information after retraining. Therefore, careful

tuning of models and specialized retraining techniques are necessary to avoid this problem.

1.3 Causality

Causality is a fundamental concept in various fields of research, including philosophy, econ-

omy, science, and statistics. Over the years, extensive research has been conducted to under-
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stand the nature of causality, its implications, and methods for causal inference. Causality

refers to the relationship between cause and effect, where a cause produces an effect. Estab-

lishing causal relationships is essential for understanding how different factors or variables

influence each other and for making accurate predictions or interventions. Many research

topics has been highlighted in the field of causality, such as causal discovery, causal infer-

ence, counterfactual analysis, and causal machine learning. From statistical perspective,

there are two widely used causality modeling techniques, Granger Causality and structural

causal models.

Granger causality (GC) is a statistical concept and methodology used to assess the causal

relationship between two time series variables. It was developed by Nobel laureate Clive

Granger in 1969 and has become widely used in econometrics and other fields for studying

causal relationships in time-dependent data [52]. Granger causality is based on the principle

that if a time series variable X “Granger-causes” another variable Y, then the past values

of X contain information that helps predict the future values of Y, beyond what can be

predicted using only the past values of Y itself.

Structural causal model (SCM), also known as a structural equation model (SEM) or a causal

graphical model, was first proposed by Judea Pearl in late 1980s [107]. It is a mathematical

framework used to represent and study causal relationships among variables and provides a

formalized approach to understanding how variables interact with each other and the under-

lying mechanisms that generate the observed data by using Bayesian network theory. SCM

often utilizes causal graphical models, such as directed acyclic graphs (DAGs), to visually

depict the causal relationships between variables. SCM defines a do-calculus which provides

a set of formal rules for manipulating causal expressions involving interventions, counterfac-

tuals, and observational data. It allows people to make causal inferences and estimate causal

effects from observed data and knowledge about the underlying causal structure. Compared

with GC, SCM lacks the view of temporal information but utilizes probabilistic graphical
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models to process many causal variables.

Causality differs from correlation from several aspects. Causality involves a temporal order,

cause-and-effect mechanisms, interventions, counterfactual reasoning, and considerations of

confounding factors. Correlation, on the other hand, describes statistical associations be-

tween variables without specifying the direction, causality, or temporal precedence. Estab-

lishing causality requires more rigorous analysis and evidence than establishing correlation.

In order to determine causality, researchers often conduct experiments or use methods like

randomized controlled trials, where they manipulate one variable while keeping others con-

stant, to establish a cause-and-effect relationship. Such randomized controlled trials have

been widely used in medicine fields to examine the causal effects of novel treatments. There

are several data-driven causal discovery algorithms introduced to efficiently discover causal

relations and build causal graphs among many variables based on Bayesian network and

various conditional independence tests. However, such statistical causality may no faithfully

represent the physical cause and effect mechanism due to the existence of unknown con-

founders. As such, solid identification of causation is always a topic pursued by researchers.

1.4 Ontology and Knowledge Graph

An ontology model is a conceptual representation of knowledge in a specific domain. It de-

fines the concepts, entities, relationships, and properties within a domain and organizes them

in a structured and hierarchical manner. Ontology is widely used in various fields, including

artificial intelligence, knowledge representation, semantic web, and information systems. In

simpler terms, an ontology serves as a framework for presenting the characteristics of a par-

ticular subject area and illustrating their connections. It accomplishes this by establishing a

collection of concepts and categories that embody and depict the subject. In every academic

discipline or field, ontologies can be developed to manage complexity and structure data into
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meaningful information and knowledge. Ontology has been applied in many fields, such as

semantic web [60], various machine learning applications [9, 58, 112], Industry 4.0 [150, 133],

IoT [37], and cybersecurity [134]. These applications have demonstrated the effectiveness

and potential of ontologies to effectively capture the domain knowledge, enable efficient

knowledge sharing and integration, and facilitate reasoning and inference capabilities in a

domain.

A knowledge graph (KG) is a structured representation of knowledge that captures rela-

tionships between entities, concepts, and facts in a domain. It is a graph-based model that

organizes information in the form of interconnected nodes and edges, where nodes represent

entities or concepts, and edges represent relationships or associations between them. Knowl-

edge graphs are designed to capture and encode rich semantic information, allowing for

efficient storage, retrieval, and analysis of data. They enable advanced knowledge discovery,

reasoning, and inference capabilities, making them valuable tools for various applications

such as search engines, recommendation systems, and question-answering systems. Concep-

tually different from ontology models, a knowledge graph is a specific implementation or

instantiation of a knowledge representation system that utilizes a graph structure to capture

and represent information. While an ontology model provides a high-level conceptual frame-

work, a knowledge graph is a concrete instantiation of that model, representing the actual

data and relationships within a domain. Similar to ontology, KG has been widely used in

many applications. Especially, dynamic knowledge graph recently becomes popular as it is

designed to evolve and adapt to changes in the underlying data and knowledge it represents.

Dynamic knowledge graphs have been researched in many fields, such as digital twin [2],

event forecasting [29], and large language models [7]. KG is basically a way to represent

knowledge and can be utilized in various manners. It can be solely used as a knowledge

representation for computers to understand the logic among nodes. Alternatively, KG can

be used as embedding in algorithm learning as a way to propagate information over graphical

connections. The dynamicity of KG provides an additional temporal dimension to represent
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time-varying relations such as interactions, which is useful in the scope of this dissertation.

1.5 Adaptive Machine Learning

Adaptive machine learning refers to the ability of machine learning models and algorithms to

adapt and learn from new data or changing environments. It allows the models to continu-

ously update their knowledge and improve their performance over time. Due to its necessity

and practicability, many research efforts have been made in this direction. Adaptive learn-

ing is usually discussed with other similar AI concepts including continual learning, lifelong

learning, transfer learning, and online learning.

Continual learning and lifelong learning are basically the same concept referring to the

ability of a learning system or model to continuously acquire and integrate new knowledge

and skills over time while retaining previously learned information. It involves adapting

to changing environments, handling evolving data distributions, and accommodating new

tasks or concepts without significantly forgetting or overwriting previously learned ones. In

continual learning, the learning system is exposed to a stream of data or a sequence of tasks,

and it must update its knowledge incrementally to incorporate new information. The goal

is to achieve a cumulative learning process, where the system’s performance improves or

remains stable over time as it encounters new experiences.

Transfer learning refers to a machine learning technique where knowledge gained from train-

ing on one task is leveraged to improve learning and performance on a different but related

task. It involves transferring learned representations or knowledge from a source task to a

target task. In transfer learning, a pretrained model, often trained on a large and diverse

dataset, serves as a starting point. This model has already learned general patterns, features,

or representations that are useful for various tasks. Instead of training a model from scratch

9



on the target task or domain, transfer learning allows reusing parts of the pretrained model

or its learned representations to expedite and enhance the learning process on the target

task.

Online learning refers to the process of training machine learning models on data that arrives

in a sequential manner, often in real-time, and updating the model’s parameters as new data

becomes available. Unlike batch learning, where models are trained on a fixed dataset, online

machine learning adapts and learns from streaming data continuously. In online machine

learning, the model is trained incrementally as new data samples arrive, and predictions

are made in real-time or near real-time. The model’s parameters are updated dynamically,

reflecting the changing patterns and characteristics of the incoming data. This iterative

learning process allows the model to adapt to evolving data distributions, handle concept

drift (changes in the target variable or underlying relationships), and capture temporal

dependencies.

In the context of this dissertation, adaptive learning puts a focus on allowing models to

automatically modify their behavior, structure, or parameters in response to new data or

data distribution shifts, without requiring manual intervention. At the same time, it has the

potential to continuously evolve to reach higher detection accuracy in non-shifted domains

and class incremental learning. Adaptive learning can be generally categorized into semi-

supervised approach. Besides semi-supervised approaches, unsupervised domain adaptation

is also widely used. Unsupervised Domain Adaptation (UDA) [43] proposes a model archi-

tecture to jointly optimize a feature extractor and two discriminative classifiers to address

the problem of domain shift or distribution mismatch between the training data and the

target data. Since then, many novel UDA architectures are developed [89, 119, 72].
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1.6 Contributions and Dissertation Outline

This dissertation proposes a novel adaptive machine learning system based on the contextual

causal relationships embedded in interactive activities. It differs from traditional algorithmic

development to achieve autonomous domain adaptation. We focus on system-level design

incorporating the causal contexts that a machine learning task is involved in to provide

natural labels and associate data streams via learnable causal time lags. In addition, a

holistic interactive causality methodology is proposed to model and extract contextual cau-

sation from domain knowledge, conduct adaptive learning, and expand knowledge graphs.

It highlights this idea different from traditional machine learning methods where machine

learning is utilized to extract the correlation among many data sources. We propose to

use the existing domain knowledge to create a knowledge graph to represent the causality

underneath interactivity among nodes. These interactive nodes can be directly utilized for

adaptive machine learning.

In Chapter 2, the core idea of self-labeling for adaptive machine learning is introduced and

illustrated along with a theoretical proof using dynamical systems theory and a simulated ex-

periment using physics engine. The proof and experiment utilize simple causal relations and

demonstrate that the causality and interaction time based self-labeling is more robust than

traditional semi-supervised learning for countering data distribution shifts. This chapter

lays the theoretical foundation of the feasibility and superiority of self-labeling. In Chap-

ter 3, a holistic methodology including knowledge modeling for a domain is described. It

provides an answer to where to find the existing causality, how to model it, and how to gain

new knowledge given a knowledge graph. The knowledge modeling utilizes the concept of

ontology and knowledge graph to mimic how humans build up perception for a new domain.

Moreover, a more comprehensive self-labeling scheme is provided for four basic causal struc-

tures in statistical causal graphs which can be used to analyze more complex causal graphs.

A simulation with a complex causal graph is provided and the results further demonstrate
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the effectiveness of self-labeling.

Chapter 4 and Chapter 5 are about a real-world case study in semiconductor manufacturing

to demonstrate the capability of the proposed interactive causality methodology. In this

study, we aim to develop an adaptive learning system that can recognize worker-machine

interactions by using videos as inputs. Two types of machines, a manually operated one

(PlasmaTherm) and a PLC controlled one (E-beam), are selected as the testbed. Based

on the existing knowledge in machines’ standard operating procedures (SOP), the causality

between workers’ actions and machine’s responses are extracted and represented as a Finite

State Machine model. An additional observing channel, which is machines’ responses in

the form of energy consumption, is utilized to observe the causal effect of worker-machine

interactions. In Chapter 4, a contextual sensor system is developed on these two machines

to detect the state transition of each machine component and capture corresponding con-

texts. In Chapter 5, an Interactive Cyber Physical Human System (ICPHS) is proposed

and describes a three-stage methodology incorporating different human roles to develop an

adaptive model for worker-machine interactions. The experiments are conducted in a clean-

room facility when users operate machines to autonomously adapt an skeleton-based action

recognition model (graph convolutional networks) and demonstrate in a real world envi-

ronment the effectiveness of interactive causality based self-labeling. In Chapter 6, several

future directions are discussed from three aspects: theory, methodology, and applications.

It is envisioned that broad CPS applications in various fields can be developed based on this

dissertation’s work.
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Chapter 2

A Self-Labeling Method for Adaptive

Machine Learning by Interactive

Causality

2.1 Introduction

Machine learning (ML) equips substantial applications with predictive intelligence. How-

ever, for most of the ML using supervised models for reliable performance, the training set

collection and annotation consumes considerable time and labor efforts. While it is gener-

ally agreed that, similar to infant learning, certain level of supervision is beneficial, a large

dataset with complete annotation for training is not practical nor anticipated in future AI

applications.

Recent progress in semi-supervised learning and self-supervised learning has reduced anno-

tation needs while preserving the superior performance in many classic ML tasks [154, 31,

32, 10]. Current semi-supervised methods assume feature similarity or distribution smooth-
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ness across labeled and unlabeled data and rely on feature-rich data [109], which constrains

their usage with non-ideal datasets. Data distribution shifts such as concept drift and co-

variate shift can worsen semi-supervised methods’ performance after deployment in dynamic

environments [41]. Despite self-supervised learning’s advantages in learning data represen-

tation at the pretext stage, manual generation of data labels for downstream tasks is still

required[101]. These challenges motivate researching alternative methods to address them.

Recent studies have explored using causality to aid ML with domain adaptation to distribu-

tion shifts [157, 117], inspired by converse cases where ML is used for causality identification.

A plausible and compelling argument is that while data distributions can differ in different

domains due to unknown environmental dynamics, causal relationships and the causal direc-

tion in particular, are invariant across domains [120]. Motivated by the intuitive significance

of invariant features, we propose a novel and effective way of leveraging invariant causality to

address post-deployment domain shifts via automatic label generation. This is remarkably

useful in interaction scenarios associated with causal mechanisms. In static ML tasks such

as offline object recognition, interactions do not play an explicit role. However, when ML

models are deployed for real-time decision making tasks such as autonomous driving, in-

teractions between cars and pedestrians when yielding or changing lanes generate rich data

with underlying causality that can be processed for intention recognition. Causal effects,

where a change in one object’s properties can elicit a response in another, can be mutual

or unilateral, transmitting force, energy, or information to trigger observable effects. Mean-

while, the time interval between cause and effect contributes informatively to understanding

causal relationships [48, 18, 34], but receives little attention in current causality-aided ML

research.

In this study, we exploit interaction scenarios where multiple objects, domains, or humans

interact, maintaining unambiguous causal relationships, which we refer to as interactive

causality. We propose a self-labeling method to automate post-deployment data annotation
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based on temporal relationships of causal events. Our method focuses on post-deployment

data shifts where multimodality facilitates the utilization of additional effect-side observation

channels for label inference. The self-labeling method learns the time interval between asyn-

chronous causal and effect events, and uses observable effect data to self-label cause data.

This self-labeled data is used to adaptively retrain an ML model of predicting effects from

causes under unknown data shifts. The self-labeling method rests on the assumption that

the temporal relationship between causes and effects is more consistent and less subject to

domain shifts relative to input feature similarity as hypothesized in semi-supervised learning.

We utilize 1-d dynamical systems to prove that the proposed method consistently outper-

forms traditional semi-supervised learning methods under specified conditions. A computer

simulation models physical interactions upon which the self-labeling method is evaluated and

exceeds several benchmarks. Finally, we discuss the connection between the proposed method

and relevant fields. The abbreviation SSL below will refer to semi-supervised learning. Re-

lated code is available at https://github.com/yutianRen/slb_interactive_causality.

2.2 Related Work

Our work relates to two broad areas of research: (a) automatic data labeling methods and

(b) causality-inspired machine learning techniques for domain adaption. We review recent

works and backgrounds in each topic. A comparison is provided in Section 2.2

Automatic Data Labeling Methods. There are generally four widely-used measures

for automatic labeling, namely self-supervised learning, pseudo labels, delayed labels, and

domain knowledge. Pseudo labels and its variants use trained ML models or clustering

methods to generate labels for unlabeled data that is then used to retrain models, or more

recently, to jointly optimize target learning and label generation [79, 22, 11, 151, 161]. As

with other semi-supervised methods, pseudo labels rely heavily on feature similarity between
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Paper Method Advantages Limitations
[101, 32, 10] Self-supervised Good for representation learning at pretext stages. Need manual labels for downstream tasks.
[79, 22, 11, 151, 161, 17] Pseudo labels Strong theoretical assumption in quasi static environments. Tend to fail with dynamic distribution shifts.
[49, 54, 108, 99, 127] Delayed labels Focus on real data streaming scenarios with delays. Ignore the physical meaning of delays.
[56, 28, 130, 24, 8] Domain knowledge Robust and suitable for individual cases. Lack a systematic method to generalize.
[51, 50, 155, 156, 95] Causality inspired Build on strong invariant causality for knowledge transfer. Overlook temporal relationships in causality.

Table 2.1: Comparison of related methods.

labeled and unlabeled data and the distinctiveness of features across different classes. For

example, Asano et al., [11] added an equipartition constraint to maximize mutual information

between data indices and labels for pseudo labels generation. Yan et al., [151] improved

pseudo-labels by ensembling predicted probabilities of multiple randomly augmented versions

of the same sample for source-free unsupervised domain adaptation. Zhou et al., [161]

enhanced reliability of self labeling for contrastive learning by weighing on estimated feature

similarity from query and regular one-hot labels. Delayed labels refers to cases where label

feedback comes after the input data in data streams [49, 54, 108, 99]. The label latency here

coincides with the causal time interval we defined in our self-labeling method to be discussed

in later sections. Most existing works only acknowledge the delays and attempt to reduce the

delay’s impact on model learning or evaluation [53], but ignore the physical meaning of the

delay itself, which our study aims to address. Domain knowledge includes logical relations of

data, ontology, and knowledge bases, etc. [113, 100], and is typically converted to constraints

applied during model training. For example, Gupta et al., [56] automatically labeled drivers’

yield intentions by using the resultant car positions from changing lane behaviors to infer

preceding driving actions. Causality also falls within the scope of domain knowledge. We

envision that the causal relation of interactive objects, particularly causal directions, can be

extracted from existing knowledge.

Causality Inspired ML. Progress in statistical causality, such as Granger Causality (GC)

and Structural Causal Models (SCM), have formalized causality testing, representation, and

analysis with mathematical tools. Recently, ML algorithms have been used in conjunction

with statistical causal representations for the causal analysis, such as in multi-domain causal

structural learning [44], causal imitation learning [118], causal discovery [64], and causal in-
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ference by graphical models [122, 76, 85]. Schölkopf [120] looked conversely into how causality

can be used in ML, especially semi-supervised learning, to enhance robustness by leveraging

cross-domain invariant causal mechanisms. Since then, Gong et al., [51, 50] modeled the

data generation process as a causal mechanism to learn conditional transferable components

for domain adaptation. Zhang et al., [155] incorporated causal relationship into DNN design

by manipulating data features from causal variables to enhance DNN robustness. Stewart

in [130] presented an example of using logical constraints from domain knowledge to model

outputs and loss function. Most research in this field has been built on the assumption that

the generation of cause data and the causal mechanism (P (effect|cause)) are independent,

overlooking the temporality of causal relationships [83]. We approach causality from a unique

perspective where time is equally critical and informative.

2.3 Methodology and Theory

The data annotation consists of two major steps: 1) selection of data samples to be labeled;

2) generation of labels for the selected data samples. When labeling image datasets, most

time researchers will not require step 1 as images are pre-selected. However, for sensors

(e.g., cameras) capturing streaming data in dynamic environments, both steps are required

for annotation. In the proposed self-labeling paradigm, we automate both steps without

human intervention.

The self-labeling method aims at assisting ML tasks. ML tasks refer to the regular pattern

recognition tasks accomplished by supervised machine learning models. The proposed self-

labeling method involves an interaction scenario where participating objects interact and

induce effects. A 2-object interaction scenario is used as an example to illustrate the idea as

shown in Fig. 2.1. The causal relation between object o1 and o2 is unidirectional and known

a priori. The ML task is to train a model that digests the cause data of o1 to infer the effect

17



Figure 2.1: An illustration of causality-based self-labeling and the definition of interaction
time.

of o2. Two streams of sensor data from the cause and effect sides are available during model

deployment. If we view the causality from an ML perspective, the causal data are the input

features, and the effect data are the output labels. The interaction time is defined as the

time lag between corresponding cause and effect states.

The self-labeling procedure is illustrated in Fig. 2.2. Before model deployment, following the

procedure in Fig. 2.2(a) the interaction time between the data streams of two objects can

be identified. Causal relationships can come from existing knowledge or causal modeling.

An auxiliary interaction time model (ITM) infers the interaction time using the effect data.

The ITM can be trained using supervised or unsupervised methods and can be an ML,

statistical, mathematical, or physical model. As there are two data models, we designate the

primary functional ML model as the task model and the other as the ITM for distinguishing

purposes. Optionally, the task model can be pretrained during the derivation of supervision
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Figure 2.2: Proposed self-labeling workflow before and during deployment.

for the ITM with concurrent labeling for task model. During deployment, the self-labeling

is accomplished with three sub-steps: 1) when effect data is received, the ITM infers the

interaction time; 2) the effect data serves as the label or can be simply processed to generate

the label; 3) starting from the timestamp of the effect data, the system will backtrack the

period of inferred interaction time to select the corresponding segment of cause data to be

labeled. Then, we can derive multiple self-labeled data-label pairs and retrain the task model

to improve its performance.

There are several advantages to the self-labeling method. The self-labeling method belongs

to the semi-supervised category, and can considerably reduce manual annotation efforts.

After the deployment of the task model, it can achieve continual learning to correct for data
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distribution drift. In this sense, the task model is able to evolve to automatically capture

and label data from deployment environments, leading to increased real-world performance.

Moreover, using causal data to predict effect data is meaningful because of their temporal

precedence. Once the causal data is received, the expected effect can be predicted for prompt

decision making.

In addition, we propose the following conditions for the self-labeling method: 1) a situation

where object interactions happen; 2) a known or derived causal relationship during interac-

tions; 3) the interaction time needs to be dependent on the effect data for the ITM; 4) the

effect data is easier to process than the cause data. The last is not a necessary condition

but can be viewed the criterion for when applying self-labeling is beneficial and selecting the

effect observer as an alternative for observing the cause. Condition 3 critically determines

the feasibility of self-labeling and also guides the effect observer selection.

2.3.1 Proof by Dynamical Systems

As self-labeling aids in modeling time-evolving systems, we use dynamical systems (DS)

to demonstrate that the self-labeling method consistently outperforms traditional SSL that

relies on the distribution smoothness to infer labels in resolving concept drift problems. DS

use differential or difference equations to describe system states evolving with time. Many

real-world systems can be modeled as DS if the system state changes with time. In the

literature [77], the interaction of two DS is modeled as coupled differential equations. We

consider a simplified case of two interacted 1-d DS in the proof. They are represented as

ẋ = f(x) (2.1)

ẏ = y + h(x) (2.2)
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where x and y are scalar system states and serve as cause and effect respectively. f(·) defines

a vector field, and h(·) is the coupling function. When there is an unknown perturbation

in system x, the cause side will show a corresponding disturbance, changing the cause-effect

relationship. In this example, the perturbation simulates concept drift in ML and is not

considered as noise as in control theory. Instead, we regard it as the unknown factor changing

the learned relationship between inputs and outputs to validate the learning performance.

With system perturbation, the two systems become

ẋ = f(x) + d(x) (2.3)

ẏ = y + h(x) (2.4)

where d(x) represents the perturbation. We define the perturbation as being related to

system state rather than being an independent value (as a function of t). This is reasonable

as we only consider it to be a factor to change the input-output relation of an ML model

after training rather than real noise. We will discuss the d(t) case in Section 2.4.

System x and y have initial and final values represented by x1, x2, y1, y2, respectively, where

subscript 1 is initial value and 2 is final value. The systems propagate from initial to final

values during a time period that is defined as the interaction time. We define x1 as the

cause state and y2 as the effect state in x-y interaction. The ML task is to learn a mapping

between cause x1 and effect y2. We will then follow the proposed self-labeling method to

derive the self-labeled x1-y2 relation under perturbation and compare with conventional SSL

and fully supervised ways.

The derivation of self-labeled (SLB) x1-y2 relation will follow the steps: 1) without pertur-

bation, derive the relation between interaction time tif and effect state y2 used for inferring

interaction time from effect state; 2) under perturbation, use the true effect y2 to infer the

interaction time, and select the corresponding state x1 as the self-labeled xslb; 3) under per-
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turbation, derive the relation between xslb and y2. The above steps generally follow Fig. 2.2

but can be simplified. Since we need to derive the relation of y2 and xslb, we can combine

the tif and y2 relation derived from unperturbed case and the tif and xslb relation derived

from perturbed case and cancel out tif .

In the unperturbed case, we need to use the effect y2 to infer the interaction time tif .

Eqs. (2.1) and (2.2) can be solved with initial values to derive

x(t) = A−1(t+ Ax1) (2.5)

y(t) = et
∫ t

0

e−τ · h(A−1(τ + Ax1)) dτ + ety1 (2.6)

where A(x) =
∫ x 1

f(ξ)
dξ (constant is not needed in the integral) and is locally invertible on

[x1, x2]. Subscript Ax1 represents A(x1). x1 in Eq. (2.6) needs to be substituted with x2

since x1 is unknown during inference, but x2 can be regarded as a parameter. Then, letting

y(t) = y2, we can find the relation between tif and y2 to be used to infer the interaction time

as

y2 = etif
∫ tif

0

e−τ · h(A−1(τ + Ax2 − tif )) dτ + etify1. (2.7)

With perturbation, Eq. (2.7) is used to infer tif given y2. Next, we can solve Eqs. (2.3)

and (2.4) to derive the evolution function

x(t) = B−1(t+Bx1) (2.8)

y(t) = et
∫ t

0

e−τ · h(B−1(τ +Bx1)) dτ + ety1 (2.9)

where B(x) =
∫ x 1

f(ξ)+d(ξ)
dξ and is locally invertible on [x1, x2].

From Eq. (2.8), we can derive the true interaction time needed for the evolution from x1
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to x2 under perturbation, which is ttrue = Bx2 − Bx1 . Given tif and ttrue, the self-labeled

xslb = B−1(ttrue − tif +Bx1), and then we can derive the relation between tif and xslb as

tif = Bx2 −Bxslb
. (2.10)

Now we can use Eq. (2.10) to substitute tif in Eq. (2.7) and derive the y2 and xslb relation

under perturbation as

y2slb = eBx2−Bxslb · (
∫ Bx2−Bxslb

0

e−τh(A−1(τ + Ax2 −Bx2 +Bxslb
)) dτ + y1) (2.11)

which is the input-output relation learned by the ML task model using our self-labeling

method under perturbation.

Eq. (2.11) needs to compare with traditional SSL and fully supervised (FS) method. Most

traditional SSL relies on the feature similarity of input data to assign labels to unlabeled

data. In this example of interacting dynamical systems, traditional SSL methods learn a

x1-y2 relation in an unperturbed environment during the supervised stage. In a perturbed

environment, the learned x1-y2 relation is leveraged to infer pseudo labels given unlabeled

perturbed x1. Therefore, traditional SSL methods can theoretically only learn the unper-

turbed x1-y2 relation. The FS method referred to here is the ground truth relation between

perturbed x1 and y2 by training on data-labels pairs, and can be derived from Eqs. (2.3)

and (2.4). By directly solving the original and perturbed DS, we can derive

y2trad = eAx2−Ax1 · (
∫ Ax2−Ax1

0

e−τh(A−1(τ + Ax1)) dτ + y1) (2.12)

y2fs = eBx2−Bx1 · (
∫ Bx2−Bx1

0

e−τh(B−1(τ +Bx1)) dτ + y1) (2.13)
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ID f(x) d(x) f(x) + d(x) Relation

1 + + + fwd > trad > slb > fs
2 + - + fs > slb > trad > fwd
3 + - - trad > fwd > fs > slb
4 - + + slb > fs > fwd > trad
5 - + - fwd > trad > slb > fs
6 - - - fs > slb > trad > fwd

Table 2.2: Theoretical comparisons of the methods.

where subscript fs and trad represent FS and traditional SSL methods respectively.

y2slb, y2trad, and y2fs need to be compared to evaluate their relative performance. This

comparison can be done by taking derivatives to study their variation as when x1 = x2,

y2slb = y2fs = y2trad. More details can be found in the supplementary material.

Given a simplified case where h(·) is an identity map and x and y are positive systems,

the relations of (y2slb, y2trad, y2fs) and corresponding conditions are shown in Table 2.2. In

general, the assumption of positive systems is reasonable in many real-world systems. It is

observed that under certain conditions, the proposed SLB method is always better than the

traditional SSL method, as long as the perturbation does not reverse the direction of the

vector field that drives x. If h is not an identity map, the analysis needs to consider the

properties of h. When h satisfies the conditions: 1) locally h(x) ≥ 0 and h(x) monotonically

increases, or 2) locally h(x) ≤ 0 and h(x) monotonically decreases, the results in Table 2.2

are still determined. All the conditions here only need to be valid locally. For negative

systems, the relations are a mirror image of Table 2.2 as shown in supplementary Table 2.6.

With the proof showing the advantageous retrospective self-labeling, an emerging question

is the feasibility of reversely using causal data to infer interaction time for self-labeling effect

data. This cause-based self-labeling is also analyzed, and represented with the subscript fwd.

In this case, the inferred interaction time from x1 is tif = Ax2 − Ax1 . With perturbation,

the self-labeling process will start from the timestamp when x1 is received to infer forward,
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self-labeling y2 from the effect data stream. By substituting t in Eq. (2.9) with tif here, we

can derive

y2fwd = eAx2−Ax1 · (
∫ Ax2−Ax1

0

e−τh(B−1(τ +Bx1)) dτ + y1) (2.14)

which is compared under the same conditions in Table 2.2. It is observed that under con-

ditions 3 and 4, where SLB and trad relation is undetermined, fwd is always better than

trad.

2.3.2 An Example of DS

Given the proof in general forms, we provide an example of interacted DS. If h(·) is an

identity map, examples of x1-y2 relation under conditions 1 to 4 in Table 2.2 are shown in

Fig. 2.3, where x2 = 100 and y1 = 10. It can be observed that y2slb is always closer to

the ground truth than y2trad in the given range in the first row, and in the second row, the

forward self-labeling outperforms traditional SSL.

2.3.3 Connection to Discrete DS and GC

The above proof uses continuous-time DS. In practice, many systems are modeled in an ideal

discrete form of x(k + 1) = f(x(k)). When having two interacting DS, a form of coupling

is y(k + 1) = g(y(k), x(k)) [19]. In a simple linear coupling case, the system y becomes

y(k+1) = y(k)+x(k). While the above proof uses continuous DS, the conclusion still holds

for discrete DS. By quantizing the time dimension, continuous DS can be easily converted

to discrete DS. Thus, self-labeling can become closer to reality where object properties are

often digitized and classified into finite states. Finite state machines or its variants can serve

as object states modeling tools.
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Figure 2.3: An illustration of x1 and y2 (in log scale) relation of two interacting DS derived
from different methods.

Granger Causality (GC) [20] formally defines a statistical test of causal relations between two

random variables represented by two time-series data. GC is predicated on the statement

that the cause occurs before the effect. The standard GC [104] in a linear auto-regressive

model is

Yn = a0 +
L∑

k=1

b1kYn−k +
L∑

k=1

b2kXn−k + ξn (2.15)

where ξn is uncorrelated noise and n is discrete step. It defines X “Granger Cause” Y .

The GC formula is similar to coupled discrete DS where X and Y are two systems and the

order L is 1. From the GC aspect, the causal and effect data can be quantized into distinct

states, similar to discrete DS, for self-labeling. The self-labeling can also follow the form of

GC where the order can be greater than 1. In this sense, more sequential causal states are

involved and the effect state can self-label a sequence of data from the cause side.
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Figure 2.4: The designed landscape used in the simulation. Left side is the land block
categorization and right side is an example of ball falling.

2.4 Experiment Results and Discussion

In this section, we design a computer simulation of object interactions to demonstrate the

proposed self-labeling method using the TDW platform [42] based on Unity. The simulation

drops a ball at a random location and observes its interactions with a finite ground surface

region. The classical mechanical interactions between the ball and the ground include gravity,

collision, and friction. A complex landscape with hills, bumps, holes, walls, and uneven

surfaces is used in the simulation as shown in Fig. 2.4. The landscape is partitioned into

6× 6 equal-sized blocks which are divided into 4 classes depending on each block’s features.

There are 23 blocks in class 0 (flat with minimal slope), 7 blocks in class 1 (indentation that

traps balls), 6 blocks in class 2 (region contains wall), and the remainder of the simulated

area excluding the landscape belongs to class 3. It is noted that a ball falling from a random

location onto the land interacts with differing local topography. The ball can bounce and

roll on the landscape and settle on or off the landscape. The ball’s initial position is used

as the cause data as it determines the potential energy and the possible trajectories of each

ball. The effect data is defined as the ball’s trajectory upon contact with land and the
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Parameter Description Default value

k0 Initial height range for sampling [10, 15]
vi, vj Ball’s i/j axis movement speed before falling 0.05, 0.05
bounciness The bounciness of the land in [0, 1], 0.75
friction The friction coefficient of the land in [0, 1] 0.25
wi, wj, wk Wind force vector (0.5, 0.5,−0.5)

Table 2.3: Changeable Parameters in the Simulation

category of the region it settles in is used as the effect label. The ML task is to train a

model that ingests the ball’s initial position and predicts its final location category. The

added perturbation is a wind applied to the ball randomly in the air. The friction and

bounciness of each land block are adjustable to alter interactions with balls. The simulation

also includes a mechanism where the number of balls accumulated on a land block scaled by

predetermined linear coefficients will dynamically change the block’s properties, increasing

the complexity of the system. The changeable parameters in the simulation are summarized

in Table 2.3.

In this experiment, we simulate two data streams that independently sense the ball’s positions

in the air to collect cause data and on the land for effect data. The class of the ball’s final

position and its rebound number can be derived by processing the effect data stream. In

the task model, the land category is used as the label, while the 3-d coordinates of the final

position and number of rebounds are used as the input for the ITM.

The ITM uses a gradient boosting decision tree (GBDT) with 500 estimators and 0.1 dropout

rate as the regression model [73]. The task model is a multi-layer perceptron (MLP) of size

(32, 64, 128, 256, 128, 64, 32) with a ReLU after each linear layer implemented in PyTorch,

optimized using SGD with 0.0005 weight decay and 0.01 learning rate [102]. The batch size

is 128 with 600 epochs. The ITM and task model are chosen specifically for this simulation

scenario using conventional ML development methods.

Dataset. The simulation generates a single ball and drops it from a random position sampled
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from a 3-d uniform distribution where i ∈ [−6, 6], j ∈ [−6, 6], k ∈ [10, 15]. The dataset

generated by the simulation is inherently imbalanced with class distribution 2.1:4.9:3.4:4.6

in the unperturbed case and 1.1:4.7:3.2:6.0 in the perturbed case with default simulation

parameters. Therefore, a resampling is applied to balance classes, taking 1500 samples per

class and 6000 samples overall.

Nested k-fold cross validation is applied to reduce data selection bias. We partition 6000

samples into 3 outer folds with 2000 samples each, selecting one outer fold as the test set and

the remainder as training and validation sets. The remaining 4000 samples are partitioned

into 5 inner folds with 800 samples each. One inner fold is used to train the ITM and

pretrain the MLP. Then, 500 to 2500 samples from the four unused inner folds are used

incrementally as self-labeled datasets to mimic drift adaptation, and the final 700 samples

serve as the validation set. The outer and inner folds are rotated and averaged for model

evaluation. When training other SSL models for comparison, the self-labeled datasets are

used as unlabeled data.

As the interaction time inferred by the ITM can be longer than the ground truth, the initial

position to be self-labeled may not exist in the cause data stream. A mechanism is added

to resolve this issue by making the ball move horizontally before falling so that there are

corresponding ball positions to be self-labeled. The horizontal movement is controlled by

two coefficients in Table 2.3 with random direction. With default parameters, the average

R2 score on test sets of the trained ITM is 0.84 and mean absolute error is 36.4, resulting

in an average horizontal offset of 1.7, which is reasonable, as the average inaccuracy in the

inferred interaction time equates to an offset of almost one block from the ground truth

initial position.

First, we consider the experimental results of the unperturbed case shown in Table 2.4

generated with the default parameters in Table 2.3. The self-labeling method is compared

with several recent semi-supervised models implemented in TorchSSL [154] and USB [142].
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Figure 2.5: The data distributions of input and output labels. The plot shows the initial
horizontal positions of balls and the corresponding labels with wind perturbation (left) and
without (right).

As these methods were tested on image recognition datasets in the original papers, we

adapt these methods in this work to our dataset where the input data is a vector [i, j, k].

From Table 2.4, it can be observed that the self-labeling method maintains comparable

performance as other SSL methods across 5 unlabeled dataset sizes without domain shift.

The self-labeling method also shows an increasing accuracy trend with more self-labeled

data similar to the FS method, while other SSL methods do not benefit from enlarging the

unlabeled dataset.

The results with perturbation (wind) applied are shown in Table 2.5. The wind is applied at

a random time during initial 60 frames of ball falling. It is apparent from the comparison in

Fig. 2.5 between the left and right sides that the input-output mapping changes, simulating

the concept shift. For other SSL methods, the training data combines a labeled unperturbed

dataset and an unlabeled perturbed dataset with data samples identical to the pretraining

and self-labeled set used in the self-labeling method. With such perturbation, SSL methods

based solely on feature similarity and smoothness show no significant improvement. Contrar-

ily, the self-labeling method maintains higher accuracy and gradually improves in accuracy

with more data, indicating potential for lifelong adaptive learning. This experiment validates

the theoretic proof in Section 2.3.1. Moreover, this experiment uses 3-d data with complex
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500 1000 1500 2000 2500

PseudoLabel [79] 73.8 74.0 74.1 74.1 74.0
MixMatch [15] 68.3 68.0 68.0 68.1 68.3
FixMatch [124] 74.3 74.2 74.0 74.4 74.0
FlexMatch [154] 74.1 74.7 74.8 74.4 74.6
PseudoLabelFlex [154] 74.2 74.2 74.3 74.2 74.0
SimMatch [158] 72.8 72.5 72.8 72.7 72.7
SoftMatch [23] 74.7 75.0 74.7 74.5 75.0
FreeMatch [143] 74.3 74.6 74.7 74.7 74.7

SLB (no pretrain) 62.9 65.9 67.7 69.3 70.0
FS (no pretrain) 67.9 74.2 77.1 78.7 79.8
SLB (v = 0.05) 72.7 73.3 74.5 74.9 74.8
SLB (v = 0.1) 73.2 73.2 74.4 74.8 75.3
SLB (v = 0.15) 72.8 73.0 75.0 75.3 75.6
FS 75.7 77.3 79.7 80.3 81.0

Table 2.4: Model Accuracy (%) trained on unperturbed dataset

500 1000 1500 2000 2500

PseudoLabel [79] 69.1 69.1 69.1 69.1 69.0
MixMatch [15] 66.1 65.9 66.0 66.3 65.8
FixMatch [124] 68.9 69.1 69.0 68.9 69.0
FlexMatch [154] 69.4 69.3 69.4 69.6 69.7
PseudoLabelFlex [154] 69.2 69.5 69.4 69.4 69.8
SimMatch [158] 68.4 68.0 68.3 68.3 68.2
SoftMatch [23] 69.2 69.5 69.6 69.5 69.7
FreeMatch [143] 69.5 69.6 69.5 69.4 69.5

SLB (no pretrain) 64.2 67.4 69.4 71.2 72.3
FS (no pretrain) 71.1 76.1 78.0 79.2 79.9
SLB (v = 0.05) 70.8 72.4 73.5 74.3 74.4
SLB (v = 0.1) 71.1 72.2 73.3 74.2 74.5
SLB (v = 0.15) 71.4 73.0 73.8 74.2 74.8
FS 74.4 76.3 77.7 78.9 79.4

Table 2.5: Model Accuracy (%) adapted on perturbed dataset
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Figure 2.6: Test results varying other simulation parameters. The changed parameter is
listed in each plot’s title while the rest are unchanged. y-axis is accuracy (%) and x-axis is
the incremental number of SLB set. Each increment is 500 samples. (a)-(f) are unperturbed.

internal interaction mechanisms, indicating that the self-labeling method is not limited to

the 1-d case shown in the proof.

Additionally, we test the SLB method without pretraining the task model and with different

vx and vy (vx = vy) in Tables 2.4 and 2.5. Without pretraining, self-labeling has a greater

impact on accuracy. When v, the penalty for incorrect interaction time inference, is increased,

the SLB method’s performance still exceeds other SSL methods in perturbed cases even with

v = 0.15, causing an average horizontal shift of 5.0, more than 2 blocks of distance.

For further validation, more thorough experiments are conducted with different simulation

parameters as shown in Fig. 2.6 to demonstrate that regardless of simulation parameters,

the self-labeling method maintains superior performance, congruent with our theory. With

more intense perturbations, as shown in Fig. 2.6(g) and (h), the performance of other SSL

methods drops about 10% or more compared to the unperturbed case in Table 2.4, while the
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Figure 2.7: Test results with 25 increments of self-labeled datasets with 500 samples in
each increment. y-axis is accuracy (%) and x-axis is the incremental number. (a) is tested
without wind while (b) to (d) are tested with different wind magnitudes. The rest simulation
parameters are default.

self-labeling method maintains a similar accuracy to the original domain and shows potential

to improve in accuracy with more data.

Fig. 2.7 provides experimental results with 25 increments (up to 12500 samples) of self-

labeled data to further validate accuracy trends in four cases: the unperturbed case and

three perturbed cases with different wind magnitudes. Comparing Fig. 2.7(a) and Table 2.4,

the accuracy of the self-labeling method continues to improve with additional increments

of self-labeled data and rises to outperform other SSL methods. This observation further

confirms the merit of self-labeling over SSL methods, even in applications without domain

shifts. These results reveal the potential of the proposed self-labeling method to achieve

autonomous adaptive learning.
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2.5 Discussion

Dependent or Independent Perturbation. Most dynamical system analyses in litera-

ture treat perturbations as a function of time due to the assumption of independence. In the

proof, we define d(x) to keep ẋ homogeneous. From the ML perspective, the perturbation

term simulates the distribution difference between training data and real data, i.e., concept

drift. We use the same perturbation nomenclature as DS theory, but with a distinct physical

meaning. The independence of perturbation does not affect the simulation of concept drift,

given that the input-output relation is changed. For example, d can be in various forms such

as constants, piece-wise functions, or impulse functions, where the changepoint conditioned

on t can be converted to x since the boundary of interaction is defined. Supplementary

Fig. 2.9 shows an example of d(t) where the relative relations of the four methods still hold,

although more comprehensive proofs can be accomplished in the future.

Extension to n-d DS. The theoretical analysis of self-labeling in this study applies only to

1-d cases, whereas the experiment demonstrates its effectiveness with high-dimensional data.

An example of interacted 2-d DS is given in supplementary Fig. 2.10. An n-d DS is intrinsi-

cally composed of coupled 1-d state variables. Depending on the boundary definition of the

two DS and their synchronization, two interacted 1-d DS can also be viewed as a 2-d inter-

nally coupled system. Due to increased complexity and ambiguous definition of interaction

boundary [128, 129, 93], further research is needed to extend to n-d DS interactions.

In Real ML Application. In the theoretical analysis, we assume that an ML model can

ideally learn a function given inputs and outputs. In practice, however, trained ML models

may not generalize well with respect to the input range, which manifests a practical problem

in that self-labeling methods can suffer from biased input data ranges. In Fig. 2.3(a), the

self-labeled causal data range changes slightly from [0.1, 100] to [0.22, 100]. Given another

example with ẋ = x, ẏ = 2x, and d(x) = 1, xslb range changes to [3.7, 100]. This change
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in data range can marginally impair self-labeling performance in practice. Considering its

superior performance over most of the regions, the self-labeling method still owns its merit.

Connection to Control/RL. In control systems and Reinforcement Learning (RL), e.g.,

robot learning, DS and interactions are also widely discussed. RL leverages interactions

between control agents and their environments to allow agents to learn from interactive trials

with designed reward functions. Our method and RL-based control utilize both interactions

and feedback in the form of either effects or rewards caused by the interactions in the model

learning. In RL for robot-object interactions, for example, the objective is to adapt a new

robot control strategy such that the learning output will improve robot behaviors. In our

self-labeling method, the system stands away and observes interactions from two channels,

but will not interfere with interactions governed by their own dynamics. Our objective is to

adapt robust ML models for the recognition of cause or effect states without imposing any

control over agents, which delineates the interactions in self-labeling from RL.

Why Causality. Our system builds on causation rather than correlation for several rea-

sons. Causality, especially causal direction, is more consistent across domains than corre-

lation. Correlation is strongly associated with probability, while causality possesses greater

physical regularity. From a physics perspective, in the Minkowski space-time model, causal-

ity is preserved in the timelike light cone regardless of the observers’ reference frames [16],

making its invariance more theoretically sound than that of correlation. The directionality

of causation more explicitly characterizes state relations and time lags in that cause always

precedes effect, a principle leveraged in this work.

Multi-Variable Causality. In the proof and experiment, we consider the causality of two

variables. Scenarios with more than two variables complicate the causal structure, inducing

fork, collider, or confounder cases. With a collider, each cause can have a different interaction

time [18], thus more ITMs can be trained to infer each interaction time. Multiple effects can

also jointly infer interaction time and generate labels with a fork. Moreover, variables can be
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dy2trad
dx1

= −A
′

x1
eAx2−Ax1 (

∫ Ax2−Ax1

0

e−τh(A−1(τ + Ax1)) dτ + y1)+

eAx2−Ax1 (e−Ax2+Ax1h(A−1
Ax2

)(−A
′

x1
) +

∫ Ax2−Ax1

0

d(e−τh(A−1(τ + Ax1)))

dx1

dτ) (2.16)

∫ Ax2−Ax1

0

d(e−τh(A−1(τ + Ax1)))

dx1

dτ) =

∫ Ax2−Ax1

0

e−τ dτA
′

x1

d(h(A−1(τ + Ax1)))

d(τ + Ax1)
(2.17)

dy2trad
dx1

= −y1A
′

x1
eAx2−Ax1 − A

′

x1
h(x2)+

A
′

x1
eAx2−Ax1

∫ Ax2−Ax1

0

e−τ
[ d(h(A−1(τ + Ax1)))

d(τ + Ax1)
− h(A−1(τ + Ax1))

]
dτ (2.18)

separated for analysis if their corresponding state transitions can be derived and smoothed

on a temporal scale.

2.6 Appendix

2.6.1 Detailed Derivation of Theoretical Proof

In this section, we will give detailed steps of the derivation in getting the results of Table 2.2.

First, we will use y2trad as an example to clarify the steps in calculating its derivative. Given

Eq. (2.12) to derive dy2trad
dx1

, first we can directly take its derivative to get Eq. (2.16). The last

integral term inside the bracket can be converted to by using chain rule as Eq. (2.17). Then,

we can substitute Eq. (2.17) in Eq. (2.16) and reorganize the equation to derive Eq. (2.18)
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The last integral term of Eq. (2.18) is equal to

e−τh(A−1(τ + Ax1))

∣∣∣∣Ax2−Ax1

0

. (2.19)

Hence, Eq. (2.18) will become

dy2trad
dx1

= −A
′

x1
eAx2−Ax1 (y1 + h(x1)) (2.20)

Similarly, Eqs. (2.21) and (2.22) are derived. It can be observed that when x1 = x2, y2slb =

y2fs. If we view xslb same as x1, then the only difference is the last term inside bracket which

will be compared in later sections.

dy2fs
dx1

= −B
′

x1
eBx2−Bx1 (y1 + h(x1)) (2.21)

dy2slb
dxslb

= −B
′

xslb
eBx2−Bxslb (y1 + h(A−1(Ax2 −Bx2 +Bxslb

))). (2.22)

Additionally, to compare (y2trad, y2slb) we can rewrite Eqs. (2.11) and (2.12) by using inte-

gration by substitutions to make the terms under integral same, and get

y2trad = eAx2

∫ Ax2

Ax1

e−uh(A−1(u)) du+ eAx2−Ax1y1 (2.23)

y2slb = eAx2

∫ Ax2

Ax2−Bx2+Bxslb

e−uh(A−1(u)) du+ eBx2−Bxslby1. (2.24)

In the following we will use the condition 3 in Table 2.2 as an example to go through the

comparison of the relative relations of y2trad, y2slb, y2fs, y2fwd. We will still assume that h is

an identity map and positive systems.
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Compare Trad and FS. Initially, with the conditions, we can derive a series of function

properties: B(x) ≤ 0, A(x) ≥ 0, A(x) ↑, B(x) ↓, B−1(τ) ↓, B−1(x) ≥ 0. Here ↑ and ↓

represent locally monotonically increase and decrease respectively. Eqs. (2.20) and (2.21)

can be compared to derive the relative relation between y2trad and y2fs since at the boundary

of x1 = x2, y2trad = y2gt. It can be easily derived that Ax2 − Ax1 ≥ Bx2 −Bx1 by comparing

the slopes of Ax1 and Bx1 .

For Eq. (2.20), since A
′
x1

≥ 0, dy2trad
dx1

≤ 0, which means that y2trad ↓. For Eq. (2.21), since

B
′
x1

≤ 0,
dy2fs
dx1

≥ 0, which means that y2fs ↑. When x1 = x2, y2trad = y2fs, thus y2trad ≥ y2fs

in the given range.

Compare Fwd and FS. y2fwd and y2fs can be compared by using Eqs. (2.13) and (2.14).

Since Ax2 − Ax1 ≥ Bx2 − Bx1 , the integral range of y2fs is smaller than that of y2fwd. The

exponential term of y2fs is also smaller than that of y2fwd. Therefore, we can get y2fwd ≥ y2fs.

Compare Trad and Fwd. Given Eqs. (2.12) and (2.14) to compare y2trad and y2fwd, we

can observe that the only difference is the integrand. Thus only the integrand in these two

functions need to be analyzed under defined conditions. As A−1(x) ↑ and B−1(x) ↓, and

when τ = 0, A−1(Ax1) = B−1(Bx1) = x1, we can derive that when τ getting larger, A−1 goes

up and B−1 goes down. Thus for the same bounds of integration, y2trad ≥ y2fwd

Compare Trad and SLB. Given Eqs. (2.23) and (2.24) to compare y2trad and y2slb, the

differences are the integration bounds and the last exponential term. xslb can be treated

equally as x1 during comparison. Since Ax2 −Bx2 +Bx1 ≥ Ax1 , the integral bounds and the

last exponential term of y2trad are greater than those of y2slb. Given A−1 ≥ 0, we can derive

y2trad ≥ y2slb.

Compare SLB and FS. y2slb and y2fs can be compared by Eqs. (2.21) and (2.22). The

only difference is the last term in bracket. Under condition 3, Ax2 − Bx2 + Bx1 ≥ Ax1 and

A−1 ≥ 0. Thus for the bracket term, SLB is greater than FS. Since the two equations are
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positive as B
′ ≤ 0, thus Eq. (2.22) is greater than Eq. (2.21), which means that y2fs ≥ y2slb.

With the above examples of the detailed comparison under condition 3 in Table 2.2, other

comparison can be accomplished in a similar way. Note that when comparing integrals, the

sign of integrands needs to be taken into account.

Equations of the examples. The equations for the case of where f(x) = x, d(x) = x in

Fig. 2.3 are:

y2slb = x2 · log(
√

x2

x1

) + y1

√
x2

x1

(2.25)

y2trad = x2 · log(
x2

x1

) +
x2

x1

y1 (2.26)

y2fs = x2 −
√
x1x2 + y1

√
x2

x1

(2.27)

y2fwd =
x2

x1

(x2 − x1 + y1) (2.28)

The equations for the case of where f(x) = x, d(x) = −x
2
in Fig. 2.3 are:

y2slb = x2log
x2
2√
x1

+ y1
x2
2√
x1

(2.29)

y2trad = x2 · log(
x2

x1

) +
x2

x1

y1 (2.30)

y2fs =
x2
2√
x1

y1 + 2
x2
2

x1

− 2x2 (2.31)

y2fwd = y1
x2

x1

+ 2x2 − 2
√
x1x2 (2.32)

An example is given with f(x) = x, d(x) = −3x
2
to illustrate their relative relations. In this
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example, we can derive

y2slb = x2log(
x1

x2

)2 + (
x1

x2

)2 + y1 (2.33)

y2trad = x2 · log(
x2

x1

) +
x2

x1

y1 (2.34)

y2fs = −2

3
x2 +

2x1

3
(
x1

x2

)2 + (
x1

x2

)2y1 (2.35)

y2fwd = −2x2

3
(
x2

x1

)−
3
2 +

2

3
x2 +

x2

x1

y1 (2.36)

For the case of where f(x) = −x, d(x) = 2x, the equations are:

y2slb =
x2

x1

(−x1

2
+

x2
2

2x1

+ y1) (2.37)

y2trad = (y1 + x1/2)
x1

x2

− x2/2 (2.38)

y2fs = x2log
x2

x1

+ y1
x2

x1

(2.39)

y2fwd =
x1

x2

(x1log
x1

x2

+ y1) (2.40)

2.6.2 Negative Systems

When x and y are negative systems, the relative relations of the four methods are summarized

in Table 2.6 with h(·) as an identity map. It can be observed that for negative systems, the

conclusion that SLB is better than trad is strictly satisfied only under condition 9 and 10,

which is a mirror image of the conclusions with positive systems. While for other conditions

in Table 2.6 the relative performance of SLB and trad over FS is obscure, it can be observed

that the forward self-labeling method obviously performs better than traditional SSL.

In addition, the positivity of system x and y do not need to be consistent. x and y can have

different signs. In such cases, the relative relations of the four methods will depend on the

values of x and y. As in real world systems the system states are positive in many cases, the
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ID f(x) d(x) f(x) + d(x) Relation

7 + + + slb > fs > fwd > trad
8 + - + trad > fwd > fs > slb
9 + - - fs > slb > trad > fwd
10 - + + fwd > trad > slb > fs
11 - + - slb > fs > fwd > trad
12 - - - trad > fwd > fs > slb

Table 2.6: Theoretical comparisons of the methods given negative systems.
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Figure 2.8: An example of the ITM performance on dataset using the default simulation
parameters.

merit of self-labeling can play an important role in designing adaptive and continual ML.

2.6.3 Additional Examples and Experiment Illustration

Fig. 2.8 displays the ITM inference performance on the test set with default simulation

parameters in Section 4.4.

In Fig. 2.9, a DS example with d(t) is given where f(x) = x, d(t) = at, and ẏ = y+x. It can

be seen that the relative relations of the methods still hold regardless of the independence of

perturbation term. Due to the challenge in analytically solving non-homogeneous differential

equations, a rigorous proof of using d(t) will need further research.
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Figure 2.9: Examples of interacted DS when the perturbation is d(t) = at. For easier view,
in the left the differences between FS and others are plotted.

Fig. 2.10 provides a visualization of two 2-d interacted dynamical systems. It plots the input-

output relations derived from traditional SSL, FS, and SLB methods, where the propagation

of system x = (x1, x2)
T and y = (y1, y2)

T are defined as

x
′
=

1 2

1 2

x+ d (2.41)

y
′
=

1 1

1 1

y + x. (2.42)

The perturbation vector d is defined as (0, 0)T in unperturbed case and (1, 1)T in perturbed

case. The boundary of interactions are defined. In this example, the initial values of x and y

are xi and yi. The final values are xf and yf . The cause and effect in this interactive system

are xi and yf respectively. We define yi = (1, 1)T and x1f = 10 while x2f can be derived

given these constraints. As shown in Fig. 2.10, the SLB method still owns its advantage in

this example compared over other traditional SSL methods in high dimensional data.
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Figure 2.10: An example of 2D interacted DS. For easier view, the differences among the
three methods are increased by 10.
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Chapter 3

Interactive Causality Methodology

and Applications in Complex Causal

Structures

3.1 Introduction

Interactive causality based self-labeling has been elaborated and demonstrated in Chapter 2.

The core idea of self-labeling is to use causation and learnable causal time lag to associate

data streams for autonomous data annotation, which can be used to adapt machine learning

models to local environments. Compared with traditional semi-supervised methods, the self-

labeling targets at realistic scenarios with streaming data and is more theoretically sound

for countering domain shifts without the need of manual data collection and annotation.

In the self-labeling derivation in Chapter 2, we made an assumption that there is an identi-

fied causal relationship between two variables to assist the selection of additional observing

channel. A remaining question is how to find or identify a causal relationship given a machine
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learning task. Causality owns a stronger definition than correlation with less stochasticity

and thus requires more strict verification. For example in clinical research, the randomized

controlled trial is a main method to verify causal effects of medical treatments. In statis-

tics, several causal discovery methods have been developed to test conditional independence

among variables [159, 75, 86, 65], which empowers data-driven methods to explore causal-

ity only from observational data and simplifies causal discovery. While these methods are

useful, obtaining causality solely for the purpose of applying self-labeling can be expensive.

Domain knowledge is a rich source for understanding a problem and its contexts. Typically

domain knowledge is summarized by domain experts and contains rich causation. From the

perspective of ML development for real-world problems, domain knowledge is also essential

for understanding ML problems and selecting relevant data features. Therefore, we propose

to extract existing causality from domain knowledge and build a complete methodology to

enable the development of self-labeling assisted applications. Additionally, how to gain new

knowledge in the form of causation is of great interests to assist anomaly understanding and

adaptation. Newly acquired knowledge can be represented as additional nodes connected to

an existing knowledge graph and used for application development.

To answer these questions and complete the interactive causality methodology, in this chapter

we propose to extract and model causality from existing human knowledge in a domain.

A knowledge modeling framework is adopted for a domain using the concept of ontology

and knowledge graphs with embedded causality among interactive nodes. This knowledge

modeling framework emulates how humans establish perception for a domain from static

to dynamic relationships. It provides a pathway to build and model causal knowledge to

obtain additional observing channels for self-labeling. In addition, a workflow to acquire new

knowledge and expand knowledge graph is introduced utilizing the concept of interactive

causality. We use existing techniques including unsupervised pattern recognition and data-

driven causal discovery algorithms to identify new knowledge. It is confirmed that the

interactive causality can also assist knowledge acquisition leveraging temporal causal events
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Figure 3.1: A pipeline of knowledge modeling in a domain.

and provide an alternative way to grow knowledge graph.

Additionally, Chapter 2 only provides theory and simulation in a simple causal structure with

one cause and one effect variable. In this chapter we explore how self-labeling can be applied

to complex causal structures with multiple variables. The combination and manipulation of

individual interaction time is discussed in four basic cases which can be extended to complex

structures composed of basic ones. A simulation utilizing a physics engine is conducted to

show that the self-labeling is still applicable and effective with a complex causal graph.

3.2 Interactive Causality Methodology

The proposed interactive causality (IC) methodology consists of several steps for two objec-

tives: adaptive machine learning and knowledge expansion. Both objectives step on the idea

of IC and the importance and physical meaning of interaction time. As the self-labeling has

been illustrated in Chapter 2, this section will focus on the knowledge modeling for causality

extraction and knowledge graph expansion.

3.2.1 Knowledge Modeling Framework

Knowledge modeling emulates in general how humans build up knowledge towards a new

domain for accomplishing tasks as shown in Fig. 3.1. Initially given a new domain, we can

build up a static perception of the entities, attributes, and relations in this domain. Usually,
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this static perception can be transformed into a static ontology model. To accomplish a cer-

tain task in this domain, a person can utilize the static perception and develop a sequence

of steps, which can be modeled as a knowledge graph incorporating dynamic and temporal

interactions among multiple entities. Similar to daily cooking, a person unaware of cooking

can initially build up a static perception of a kitchen in terms of entities, attributes (e.g.,

functions of utensils), and connections. To cook a dish, the apprentice develops a sequence

of steps by applying the static perception, which formulates a standard operating procedure

(SOP) for a certain recipe incorporating dynamic and temporal interactions among multi-

ple entities. This human learning and knowledge acquisition paradigm can be abstracted

into multiple layers of perception and combined into the AI knowledge (i.e., data and label)

learning to substantially reduce the cost of knowledge transfer. Ontology models represent

entities, properties of entities, and relationships between entities in a domain. In manufac-

turing, the knowledge for a machine initially can be represented as a static ontology model

that describes static properties of its functions, components, connections, control logic, pro-

cess parameters, and their relationships. The static ontology model of a machine can be

utilized by engineers to develop multiple SOPs for specific processes or recipes encompassing

dynamic information. This dynamic SOP can be modeled into multiple interconnected dy-

namic causal knowledge graphs (DCKG) representing the state transitions and underlying

causality of interactive components including machines, materials, humans, environments,

and cyber space.

Fig. 3.2 provides a simple example of knowledge modeling in semiconductor manufacturing.

We can build general ontology models for materials, machines, and workers to describe their

static properties. In this example, the knowledge of a worker’s capability includes their

sensing and actuation functions, the knowledge of a machine includes its components and

connection, and the knowledge of materials (silicon wafers) is the state transformation or

chemical reactions. As required by the SOP, a worker can twist a gas cylinder or type on a

computer to operate the machine. Thus, these interactions will build up connections among
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Figure 3.2: An example of three knowledge graphs for materials, machines, and workers in
PECVD semiconductor manufacturing with interactive nodes.

the nodes in the worker’s ontology model and in the machine’s ontology model as indicated by

the red lines in Fig. 3.2. The connections also represent the underlying causality embedded

in such interactions across graphs. These interaction nodes across different knowledge graphs

build up connections between events and states that can lead to automatic association of

data streams via learnable interaction time for following self-labeling.

3.2.2 Knowledge Graph Expansion

The proposed knowledge modeling workflow only represents existing knowledge. An emerg-

ing question is how to gain new knowledge by using the interactive causality. We extend

interactive causality to add new nodes by using some existing technologies including unsu-
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pervised pattern recognition and causal discovery. A proposed workflow is shown in Fig. 3.3.

First, the data distribution shift (i.e., concept drift) caused by an unknown factor needs

to be identified by IC using interaction time as a sampling window. The concept drift can

be observed by detecting the inconsistency between inputs and outputs. In this case, given

the same input, the effect signal might be different or the interaction time may be different

induced by an unknown cause. Intuitively, humans can sense this type of anomaly by using

the causal time interval. For example, when we use a remote control to turn on a TV, we will

hit the button, wait for a few seconds, and expect screen wake-up or some sound. If after a

few seconds the expected effects do not show up, we will realize this is an anomaly and trace

back to think about what happened earlier. In this example, humans can use the causal

time lag as a way to find out the inconsistency between causes and effects. This process

can also be replicated into a workflow as shown in Fig. 3.3 (a). To match with human

intuition, the forward inference of interaction time by using cause data is utilized. The

inferred interaction time can be intentionally extended to wait for the perturbed effect fully

showing up. Then, an effect sample from the effect data stream can be selected based on the

extended interaction time to build a self-labeled data pair. Next, a data distribution measure

between the perturbed and the original dataset can be applied to find out the distribution

distance. To confirm existence of an anomaly, the distance shift needs to be greater than a

threshold. The threshold comes from an observation that the distances among a number of

sampled datasets in the unperturbed original domains are not 0 due to randomness and there

will be a variance which can be used as the threshold. By extending the inferred interaction

time, the perturbed effects can fully show up and generate a higher distribution shift than

the predefined threshold for anomaly confirmation. The logic behind this technique is that

the interaction time is related to the magnitude of effect signals. With perturbation the

interaction time changes and thus the expected effect state may show up at an extended or

shortened time.
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Figure 3.3: (a) a workflow to identify data distribution shifts by using interaction time as a
sampling window. (b) a workflow to expand knowledge graph after data shift identification.

With the domain shift identified, another workflow shown in Fig. 3.3 (b) is introduced

with the help of interactive causality to identify the unknown factor causing the shift and

expand knowledge graph. After confirmation of data shifts, unsupervised pattern recognition

algorithms, such as changepoint detection or dynamic time warping [1], can be applied on

all the available data streams in the application environment. If some repetitive patterns

are found, causal discovery algorithms, such as PC algorithm [78], can be utilized to test the

causality between found patterns and perturbed effects. Finally, new nodes representing the

found additional causes are added to the KG.
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Figure 3.4: Four basic types of causal structures defined in graphical causal model.

3.3 Self-labeling in Different Causal Structures

In Chapter 2, a basic self-labeling method on a simple single cause and single effect causal

structure is illustrated as a foundation. According to the statistical and graphical causal

theory (i.e., structural causal model), there are four basic causal structures, namely chain,

collider, fork, and confounder. Assuming there are three variables A, B, and C, Fig. 3.4

illustrates the four causal structures. We will explore how self-labeling can be applied in

these basic causal structures and extend to more complex causal graphs.

Chains can be represented as a sequence of nodes with arrows indicating the direction of

causality from causes to effects. According to Fig. 3.4 (a), B acts as a mediator by facilitating

the influence of A on C, which will not occur directly. Forks occur when a single cause

produces multiple effects as shown in Fig. 3.4 (b) where A is the common cause for effect B

and C. Colliders are situations where multiple causes (A and B) converge to produce a single

outcome (C), as illustrated by Fig. 3.4 (c). A confounder is a variable that is associated with

both the independent variable and the dependent variable in a causal model. In other words,

it is a third variable that affects both the cause and the effect, making it difficult to establish

a direct causal relationship between the two. Confounders complicate the causal analysis

and causal effect inference. These four structures cover most of the commonly seen cases of

causal relationships, thus will be discussed in this section in terms of their applications in
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self labeling.

When there are multiple variables in causality, an emerging question is how to coordi-

nate the relationships of causal time delays (i.e., interaction time) of each pair of vari-

ables for self-labeling. Additionally, the undetermined logic relations among variables (e.g.,

AND/OR/XOR) will further complicate the relational analysis for self-labeling. The causal

relationships referred to in this section are the function space that maps cause variables to

effect variables, e.g., different logic relations of A and B in a collider to generate effects. The

analysis of interaction time combination in the following does not assume specific causal

relations.

Given a chain structure, the combined interaction time from A to C can be represented as

tAC = tAB + tBC (3.1)

due to the fact that the causal effect is sequentially transmitted. Thus, the interaction time

of two pairs of variables in a chain can be directly combined for the self-labeling between A

and C. The causal logic condition among these three variables will not affect the self-labeling

as the causal effect is passed via each node.

With multiple effects in a fork structure, the effects can either individually or jointly label

the cause depending on the causal logic relations and availability of effect observers. For

example, if the logic relation is OR, either effect can be utilized as the observer for cause

variable. Given multiple effects in Fig. 3.4, the combination of individual interaction time is

represented as

tAC = max(tAB, tBC). (3.2)

The combination is taken by using maximum so that the latest effect can be captured and
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Figure 3.5: An illustration of different interaction time combinations in (a) a fork structure,
(b) a collider with transient states, and (c) a collider with steady states. Blue lines represent
the state variation of cause variables and red lines represent the state variation of effect
variables.

utilized for self-labeling. Fig. 3.5 (a) depicts an example of a fork with a steady and a

transient effect states where the combined interaction time should be max(t1, t2).

In a collider, multiple cause variables jointly affect an effect variable. Regardless of the

causal relationships, the state change of causes can be represented in steady or transient

states as shown in Fig. 3.5 (b) and (c), and the interaction time combination is different. In

the steady state case, the cause variables change states and remain steady until effect state
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change. The combination of interaction time in the steady state case can be represented as

tAC = min(tAB, tBC). (3.3)

Taking the minimum guarantees that the selected cause states will always include the in-

formative data segments. In the transient state case, the cause variables change to active

states for a short time and change back or to other inactive states before effects showing

up. The self-labeling method is required to capture the state and state transitions of each

causal variable. Hence the transient of each cause variable needs to be captured in this case.

An individual ITM for each cause-effect pair is needed to infer the individual interaction

time used for self-labeling individual cause. In terms of different logic relations among the

two causes, each cause variable can be regarded as a dimension of data used in the learning.

For example, if the logic relation between A and B is an OR function, only the self-labeled

segment of A may contain meaningful information while that of B may not. However, the

data segments of A and B can be fed into task models as two dimensions of data sources

for learning. Thus task models can still distill discriminative features to learn an OR map-

ping between the combination of data sources A and B and joint effect C. Similar learning

strategies can be adopted for other logic relations.

In the confounding structure, the confounder A affects B and C. If the self-labeled variable

pair is B and C, the confounder A will work as an additional cause. For the self-labeled pair

of A and C, variable B works as an intermediate cause that will impact the end effect. In

this case from the perspective of C to look back, A and B are regarded as two dependent

causes. Compared with the collider case, the viewpoint from end effect to its causes does

not change, thus the self-labeling scheme will remain same as the collider case.

In a more complex causal graph with multiple variables, the self-labeling scheme for the four

basic cases can be used as a tool to analyze the interaction time calculus by disentangling a
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Figure 3.6: An illustration about the categorization of final effect distance vector in the
simulation.

Figure 3.7: (a) A multi-variable causal graph used to represent the causality in the simulated
experiment. (b) A detailed causal graph with each node represented by numerical variables.

complex graph into the four basic structures. This will be explored in the future.

3.4 Simulated Experimental Results

In this section, a simulated experiment is provided to demonstrate the interactive causality

methodology for adaptive machine learning in a complex causal structure and for knowledge

graph expansion.
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3.4.1 Adaptive learning

To demonstrate the effectiveness of self-labeling in a complex causal graph, a simulation with

multiple causes is designed and evaluated. TDW with PhysX engine is used as the simulator

[42]. In this simulation, two balls are dropped at random positions and at different time

onto a flat surface of size 150 × 150. The two balls will fall onto the surface, move, and

finally settle down or reach the preset maximum simulation duration. Due to the relative

positions and the different dropping time of the two balls, collisions may happen between

the two balls to change their trajectories. We intentionally set the initial positions (in an

area of size 20 × 20) of the two balls to let them collide at a 50% chance. The final effect

is transformed into a joint effect representing a vector pointing from ball 1’s final position

to ball 2’s final position after they settle down on the land. To make the ML task still a

classification problem, this joint effect is categorized into 8 classes according to the direction

and amplitude of the distance vector. Fig. 3.6 shows a plane of the distance vector which

is partitioned into eight regions depending on angle and magnitude. The perturbation to

simulate concept drift is a wind applied randomly to change balls’ trajectories. To penalize

inaccurate interaction time inference longer than ground truth, we set the two balls to first

move horizontally with a velocity of 0.0025 before dropping. The penalty will let the balls

deviate from their initial dropping positions to account for the inaccuracy in interaction

time inference. The horizontal moving velocity is selected as a parameter for providing a

reasonable penalty. Its default value of 0.0025 will change the colliding balls’ initial positions

by around 15% and prohibit them from collision.

Given the simulation settings, a causal graph can be derived as a lumped representation of

causality between the two cause variables and one effect variable as shown in Fig. 3.7(a).

In this causal graph, we can find out two typical causal structures. The variable ball 1,

ball 2, and final effect form a collider structure. With the collision variable, there is also a

confounder structure embedded in the graph. In Fig. 3.7(b), a detailed causal graph with
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Figure 3.8: A self-labeling workflow for the multi-variable simulation.

specific variables are provided for this simulation. The machine learning task model is to use

the two balls’ initial properties to infer a class of the final joint effect. Thus self-labeling for

the two cause events needs to be accomplished by using the joint effect. As this causal graph

has two causes and each cause state is transient, two independent interaction time models

are needed for each causal pair. An interesting observation is that the collision variable will

not be involved in the self-labeling as its root causes are reachable in the graph. The holistic

self-labeling workflow for this simulation is described in Fig. 3.8. Two ITMs individually

ingest effect data and infer the interaction time for each cause to select and self-label a

cause state from each cause data stream. Then the selected cause states are combined as a

self-labeled sample used for retraining the task model.

Nested k-fold validation is stilled applied to evaluate the performance. 360 samples are used

as the increments in self-labeled dataset and there are 25 increments. Test set has 1500

samples and validation set has 600 samples. Pretraining set has 600 samples. The task
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Figure 3.9: Model learning results with different wind magnitudes or without wind. Y axis is
the accuracy in percentage. X axis is the number of increments of the self-labeled datasets.

model is a multi-layer perceptron (MLP) of size (32, 64, 128, 256, 512, 128, 64, 32) with a

ReLU and a batchnorm layer after each linear layer implemented in PyTorch, optimized by

AdamW using 0.0005 weight decay and 0.001 learning rate. The batch size is 64 with 600

epochs. Two XGBoost models are used as the ITMs for each cause (ITM 1 for ball 1 and

ITM 2 for ball 2). Using the default simulation parameters and evaluated with the perturbed

dataset, the R2 score for ITM 1 is 0.817 and its MAE is 31.2, and the R2 score for ITM 2

is 0.884 and its MAE is 24.7. The learning results are averaged over three random seeds for

dataset splits.

Fig. 3.9 shows the results compared to five other semi-supervised methods. It can be ob-

served that in the unperturbed case, the performance of self-labeling gradually exceeds other

methods with more self-labeled samples. In the perturbed cases with different wind mag-

nitudes, the self-labeling always outperforms other traditional SSL methods, which further

demonstrates its superiority in data shift adaptation given a complex causal structure. To

further validate the effectiveness, we change the penalty parameter and rerun experiments
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Figure 3.10: Model learning results with different penalty parameters (horizontal drift ve-
locity) in different wind cases. Y axis is the accuracy in percentage. X axis is the number
of increments of the self-labeled datasets.

with the results shown in Fig. 3.10. It can be observed that with much higher penalty

parameter, the performance of self-labeling degrades but still outperforms other traditional

semi-supervised approaches referring to Fig. 3.9.

In the theoretical derivation, the effect state recognizer is assumed to maintain 100% accuracy

which is relatively impractical to achieve in real-world applications. The impact of inaccurate

effect state recognizer will be quantitatively tested using the multi-cause simulation data.

Fig. 3.11 shows the experiment result where label noise from the effect state recognizer is

injected and controlled in the perturbed case with 0.5 wind magnitude. Three levels of

label noise, 2.5%, 5%, and 7.5%, are tested. It can be observed that while the accuracy

of the four cases fluctuates, the overall trend meets expectation that high label noise will

degrade the self-labeling performance. However, the performance degradation is not intense

with an average drop of 0.23% at 7.5% noise level, which demonstrates the robustness of

the self-labeling against inaccurate effect state recognizer. This experiment confirms the

applicability of self-labeling in real-world applications with error margins for the effect state

59



0 5 10 15 20 25

62

63

64

noise=0.0%
noise=2.5%
noise=5.0%
noise=7.5%

Figure 3.11: Experiment results with different label noise levels in the perturbed case with
0.5 wind magnitude. Y axis is the accuracy in percentage. X axis is the number of increments
of the self-labeled datasets. Noise level is the ratio between noisy labels and total labels.

recognizer.

3.4.2 Knowledge Graph Expansion

The demonstration of KG expansion utilizes the multi-cause simulation data. The simulation

was run ten times to generate 10 datasets in the original case without perturbation. A

regularized approximation of Wasserstein distance is applied to quantify the drift of joint

distribution of input and output as the distance measure [47, 39]. We measure the distances

among each pair of the 10 generated datasets. A mean (µd) and a standard deviation (σd)

of the distribution distances are calculated. The threshold is defined by using the mean and

standard deviation in the form of threshold = µd + aσd, where a determines the number of

σd. In this experiment, we find out µd = 1.63 and σd = 0.19. We define that a = 2.5 and

thus the threshold is derived as 2.105. The coefficient a can be selected depending on the

actual applications following the three sigma rule.

Fig. 3.12 shows the distance between the original and perturbed distribution with different

extended interaction time. The interaction time is inferred from a cause sample and then

extended with a step of 30 frames. It can be observed that the distance gradually increases
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Figure 3.12: Distribution distances between original and perturbed distances with different
extended interaction time. The red line is the defined threshold.

and exceeds the threshold, after which the data shift can be confirmed. The reason why

the distance increases is that the perturbed effects in this simulation will show up with a

longer interaction time than usual. In other words, the affected balls will gain velocity from

wind and keep moving for a longer time. Therefore, the extension of interaction time allows

the magnitude of perturbed effects to manifest, causing a larger distribution distance. This

experiment demonstrates the feasibility of using IC to simulate how humans capture such

anomalies via the variation of causal time lags.

After data shift is confirmed by using the interaction time as a sampling window, we follow

the procedures in Fig. 3.3(b) to expand the knowledge graph by extracting consistent patterns

and validate causal links. Unsupervised pattern recognition needs to be applied to all the

available data streams. As a proof of concept, in this experiment the available data streams

are only the wind magnitude and the positions of two balls. Thus a peak detector is applied to

find the consistent spikes in wind signal. Note that in real applications, there can be many

available data streams with complicated features and thus more advanced algorithms are

needed to identify consistent patterns. After the extraction of wind patterns, the Peter-Clark

(PC) algorithm is utilized as the causal discovery method to test the causality between the
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Figure 3.13: (a) shows the causal graph inferred by PC algorithm without wind. (b) is
the causal graph generated by PC algorithm with wind, where the node representing wind
magnitude is connected to the existing graph and the final effect.

found pattern and the perturbed joint effects. Fig. 3.13 shows the resultant causal graph with

and without wind by PC algorithm. It can be observed that the PC algorithm successfully

connect the nodes of winds to the existing network and the final effect, which demonstrates

the feasibility of of knowledge graph expansion by using the interactive causality.

3.5 Discussion

In this chapter, we present the entire interactive causality (IC) methodology for knowledge

modeling to extract causality and for adaptive learning in complex causal structures. IC

method includes multiple stages for knowledge modeling and applications. It can be applied

for adaptive machine learning to enhance model adaptation and assist new knowledge dis-

covery. Additional simulated experiments to quantify the impact of inaccurate effect state

recognizer are conducted. It is confirmed that the self-labeling has enough tolerance and

is robust to inaccuracy of the two auxiliary model. Theoretically, quantification of inaccu-

rate ITM and effect state recognizer can be accomplished by adding an error factor into the

equations but is challenging to reach conclusion solely based on analytical equations. It is
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envisioned that more strict evaluation of ITM and effect state recognizer can be completed

in the future.
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Chapter 4

Contextual Intelligent System in

Advanced Semiconductor

Manufacturing

4.1 Introduction

In smart manufacturing (SM), cyber physical systems (CPS) call for the enhancement of

context-awareness of manufacturing machines and factory operations by contextualizing the

sensed signals, detected events, and recognized surroundings so that it is capable of provid-

ing actionable intelligence to improve operational integrity, energy productivity, and machine

prognostics and health management (PHM) [92, 136]. To transform the data into actionable

intelligence, two popular frameworks have been proposed and conceptually implemented.

One is to leverage the data generated in current manufacturing systems and transfer them

to computing services for contextual machine learning (ML) [144, 138]. Another is to design a

context-aware system with manufacturing engineers by incorporating additional IoT sensors
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into available information from manufacturing execution systems for ML [5, 81]. However,

both frameworks have not leveraged the contextual sensing capability of workers in real time

on factory floors to complement the data generated by IoT sensors and existing manufac-

turing systems. Thus, an alternative contextual system design capable of incorporating the

intelligence of shop floor workers, i.e., human senses and knowledge/experience, in real time

is worthwhile exploring.

While systems allowing workers on the floor to input information via computers have been de-

veloped, they have not been successfully integrated into existing manufacturing systems due

to natural language inputs not compatible with data from machines. Additionally, workers

are required to proactively input readable information, but it is not well accepted by workers

due to sociological reasons according to a questionnaire [70]. These barriers motivate us to

search an alternative way of connecting workers. In fact, workers are naturally connected to

manufacturing systems through their active and reactive interactions with machines [167].

Workers’ active and reactive interactions contain meaningful context values in the form of

causes and effects. For example, workers as causes by following standard operation proce-

dures (SOP) actively operate machines and machines change states as effects. On the other

hand, machines behaving abnormally as causes result in workers reactively responding to

machine operation conditions. By understanding worker interactions in the active and reac-

tive aspects, the contextual information regarding regular operation and anomalies can be

extracted.

To understand the worker machine interactions (WMI), a methodology to reliably to capture

and confirm workers’ intended inputs via gesture recognition is proposed in this work for

capturing the time and location of happenings on the floor, which can commensurate real

time data from existing manufacturing systems. The interaction data captured on the floor

can then be used in ML for developing classifications of manufacturing conditions such

as normal operation, operator errors, and machine warnings. This set of manufacturing
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classifications can further support an existing manufacturing system in dynamically adjusting

its execution commands for the machine fault prevention, workflow optimization, and energy

productivity improvement.

The development of the WMI recognition system is based on the concept of well-established

causality between workers and machines rather than supervised ML routines of manual data

labeling and model training. A causally correlated Finite State Machine (FSM) model is

established in this study to model the timing and causal behaviors of machines and workers

during manufacturing processes. The design of FSM can leverage not only existing knowledge

and experience from workers but also documented standard operating procedures (SOP) and

machine operation manuals to extract the known causes and effects. The WMI recognition

developed from FSM at normal operation conditions offers a class of various human gestures

representing the contextual information of active healthy interactions. The anomaly detec-

tion of floor operation can then be determined when the worker reactive gestures fall out of

the norms or the machine operates out of its functional states.

Conventionally, the reliable understanding of WMI requires advanced ML models with well-

labeled dataset for training [148]. With the causality between workers and machines iden-

tified, the confirmation from the machine side as causes or effects provides an adaptive way

of capturing WMI contexts as training data. Thus, initially a reliable method of observ-

ing machine states to automatically capture the data of causally related worker interactions

becomes more applicable as the first step. The captured WMI contexts can then be used

for the ML training of WMI recognition. For situation awareness of machine operation in

the cause-and-effect method, machine states with their corresponding observable quantified

contents are needed. For example, power signatures of individual components at states of

active, idle, and off in each machine can be measured and presented as a cause of deviation

from norms for workers to react.

To illustrate the concept of the causality-inspired contextual WMI recognition system, as

66



the first step, this paper builds a contextual sensor system with a security video camera for

capturing WMI contexts in identifying causes of interaction and a power meter for observing

the effects of interaction for establishing norms of worker gestures. Conversely, it can also

use the same power meter via an energy desegregation technique in identifying the power

levels and states of machine individual components as causes to observe effects of worker

responses via video cameras. This study serves as the first step towards the causality-inspired

contextual WMI recognition system. This paper presents a case study of semiconductor

fabrication processes to demonstrate the capability to capture the sequence of contextual

machine events with WMI contexts. In addition to the use of FSM modeling for the timing

and causal behaviors of workers and machines, a novel energy disaggregation technique by

exploring the logic states of machine components and their corresponding working principles

is researched for analyzing power signals with fast-varying pulses caused by bang-bang control

at a low sampling frequency, resulting in identification of power signature of individual

components at various state. Finally, the contextual awareness of anomaly detection of

workers and machines is illustrated.

4.2 Related Work

4.2.1 Context-aware Manufacturing Systems and CPS

Context-aware manufacturing systems have become a vibrant research area recently. Sev-

eral studies focus on system-level designs by using IoT-based multi-sensor fusion and ML to

achieve context-awareness [12, 3, 141, 137]. For example, Alexopoulos et al. utilizing massive

sensor data designed a context-aware information distribution system that has visibility of

shop floor processes and provides relevant recommendation information to relevant people

[4]. In addition, the existing knowledge from humans can be provided to assist the design of a
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Ref. Year Monitoring PLC/Intrusive Submetering Technology Description Context-aware
[55] 2020 Yes Yes N/A MTConnect+Petri Net No
[140] 2020 Yes Yes N/A Combined with Digital Twin No
[30] 2020 Yes No N/A Computer vision based panel recognition No
[105] 2016 Yes Yes No Energy disaggregation with PLC control variables No
[25] 2018 Yes No No Frequency spectrum signal analysis No
[126] 2019 Yes No No Kalman Filter No
[125] 2020 Yes No Yes Supervised machine learning No
Ours - Yes No No Knowledge enhanced unsupervised way Yes

Table 4.1: A comparison with some previous work

context-aware system. Horváth conceptualized a context-driven and knowledge-driven CPS

modeling and system design methodology [61]. Emmanouilidis et al. proposed a conceptual

context-based framework for maintenance management that integrates expert knowledge to

a classification model where humans can identify unknown data or conditions and subse-

quently include the unseen information into a knowledge pool for future uses [38]. Wang

et al. leveraged the known contextual information about a CNC machine to classify the

collected data from CNC and mounted sensors into different machine states [145]. Inspired

by these previous research work, this paper further leverages the documented knowledge

from interaction-based SOP and the instrumentation working principles of machines in the

software design phase to expedite the contextual system development in CPS.

4.2.2 Machines and Their Components Monitoring

Technologies for monitoring multiple machines status have been reported using RFID [110,

63], Wireless Sensor Networks [90, 160], or interfacing with PLC [36]. On the other hand,

the component characteristics of an individual machine in real time is information of interest

for gaining its operation visibility, since in general a manufacturing machine has multiple

components (e.g., pump, heater, spindle). Drake et al. proposed a framework to characterize

the energy consumption of machines and their components in real time by utilizing one power

meter to monitor the total power of an individual machine and by analyzing its components’

power based on the prior dataset collected from operating the components in a sequential
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order [33]. Panten et al. correlated the machine condition data from PLC with aggregated

power data to identify the energy consumption of machine components in an online manner

[105]. Tan et al. correlated the production data with power consumption to monitor machine

status in real time [135]. Cheng proposed an alternative by monitoring machine operation

states through current analysis eliminating a need to interface with PLC [25]. Han et al.

discussed using non-intrusive high-frequency audio and vibration signals to classify faults of

a cutting machine [57]. In this paper, a knowledge transfer CPS is proposed to address both

machine and components monitoring. The hardware uses a combined camera and power

meter for the real time visual and energy information respectively. The software facilitates

the correlation between the finite states defined by interaction-based SOP and the real time

visual and energy information. As listed in Table 4.1 comparison with several previous

studies of using PLC or energy states [55, 140, 30, 105, 25, 126, 125], this novel approach can

be easily implemented without requiring interfacing with customized PLC, massive sensors,

and labor-intensive dataset collections for model training. Furthermore, with the correlated

SOP model and visual information from cameras, WMI contexts can be extracted effortlessly.

4.2.3 Energy Disaggregation In Machines and Their Components

With a great number of non-intrusive load monitoring (NILM) solutions for energy dis-

aggregation being developed and evaluated on residential applications in recent years [62],

researchers have begun to explore its potential in industrial sectors [59, 97]. There are typi-

cally three types of loads: single state (on/off), multi-state, and continuously varying [164].

Energy event detectors serve as major modules for the first two types to extract steady-state

features, and the third type demands high sampling rates at kHz for capturing transient and

high-order harmonics features [146, 84]. Several window-based event detectors are proposed

by studying statistical features, e.g. Chi-squared test [69], generalized likelihood ratio de-

tector [6], Teager–Kaiser energy operator [149], variance and absolute deviation[114]. Many
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of the existing energy event detectors are evaluated on kHz signals or less oscillating sig-

nals for residential appliances, whereas in this study we develop a detector on low sampling

rate signals superposed with fast-varying pulses for manufacturing equipment. Furthermore,

we explore the use of human knowledge in instrumentation designs for machine component

control such as temperature, spinning, heating, flow, etc., and their corresponding electrical

signatures for energy disaggregation. This is done by correlating a main power reading from

FSM-based SOP with electrical signatures of components to identify the power consumption

of individual components. It is of interest to note that the main power reading is a result of

context awareness of repetitive measured signals from a main power meter. While beyond the

current scope of this paper, it is worth mentioning that the same methodology can be easily

extended towards energy disaggregation of multiple machines for an entire manufacturing

floor with a single power meter.

4.2.4 Operator 4.0

In the context of Industry 4.0, several frameworks of operator 4.0 have been proposed to

empower workers’ capability, monitor workers’ behaviors, and identify operators’ new roles.

For example, Segura et al. introduced visual computing technologies to assist worker opera-

tions [166]. Zolotova et al. discussed how operators and cyber-physical production systems

interact with new trending technologies [165]. In addition, Kaasinen et al. analyzed user

expectations and worker concerns regarding the adoption of operator 4.0 technologies [71].

Cimini et al. conceptualized a human-in-the-loop framework to discuss humans’ critical

roles in interactions and enhanced decision making with manufacturing systems as a socio-

technical system [26]. In this work, the contextual sensor system will enable the real time

training of machine operation for workers, the operational fault detection, and the prevention

of occupation injuries, since the WMI are constantly under surveillance in a non-intrusive

manner.
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4.3 Contextual Sensor System Design

As depicted in Fig. 4.1, the proposed contextual sensor system is based on an FSM model

built from the SOP including workers and machines, which are correlated through state

transition functions. The system hardware consists of a visual camera and a power meter

to collect real-time data, and a contextual software to process the sensed contents to gener-

ate contextual information. The system implementation incorporates a knowledge transfer

framework that leverages human knowledge and documented knowledge to initialize the

contextual software design with these two simple sensors. A case study of a semiconduc-

tor fabrication machine is successfully demonstrated using the proposed contextual sensor

system hardware and software architecture.

4.3.1 A Contextual SOP Model and Knowledge Transfer Frame-

work

For a single manufacturing machine or workstation, the standard operation procedures (SOP)

provided by equipment vendors define a sequence of operations a worker needs to accomplish,

which can be modeled as a sequence of interactive events {e0, e1, ..., en}. The interactive

events define the actions or information a worker needs to take and the expected result a

machine will provide, which forms cause-effect pairs. The contextual information underneath

an event can be modeled as e = {x, t, P}, where x is the location, t is the timestamp, and P

represents the event properties including both sides (workers and machines). The worker and

machine status can be modeled as a Finite State Machine (FSM) respectively to represent the

consistent state transition. The SOP provides such state transition information as shown in

Fig. 4.1(a). The machine (or its component) states q can be the operation states such as off,

standby, on, and material loaded etc., and the worker states v can be operating actions. It

is worthwhile mentioning that the operation states of a machine include multiple functional
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Figure 4.1: (a) An example of the FSM-based SOP model abstraction. The SOP defines
an event-based operation sequence with worker state and machine state. Material state
is changed by machine processing via a recipe developed by human. In (b), the proposed
knowledge transfer framework in CPS. Note that this paper focuses on the worker machine
interaction only.

instrumentation modules, i.e., heating, pumping, spinning, etc., which are independently

processed by various machine components and can operate in sequence or simultaneously.

The machine states and worker states are correlated through the transition function δ defined
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by SOP as

qi+1 = δ(vi, qi), q ∈ Q, v ∈ V (4.1)

where Q and V are the predefined machine state space and worker state space from SOP

respectively. The SOP event context becomes e = {x, t, v, q}, in which the machine state

change is a result of different worker states. For example, a manually controlled machine is

turned on because a worker presses the switch a few moments ago. By using this correlated

SOP model as the basis, machine events and worker events can be detected independently

and correlated uniformly to uncover the WMI contexts. In this study, we focus on the

machine energy state determination.

In addition to the related worker and machine state transitions, materials can also transit

their states u after a worker controls a machine to process. The material state transitions can

be additive or subtractive to a part (e.g., wafer) to show shape changes, phase changes (e.g.,

metal refining from solid to liquid), or chemical reactions with byproducts. The material

state transition can also provide the contextual information similar to the WMI but is beyond

the scope of this study.

The correlated SOP model serves as the basis of the knowledge transfer framework and the

contextual sensor system. The correlated SOP model defines two entities to be measured,

worker states and machine states. In order to capture signals from both sides, a visual

camera (can be a security camera) and a power meter are selected as the hardware sensors

for the contextual sensor systems. Visual Cameras are readily available sensors and contain

meaningful contexts of workers and surroundings, which are selected to determine worker

states and side channel information from the surrounding environments and machines. On

the other side, the machine or component energy state change can be directly reflected on

the energy consumption, which is measured by a main power meter in real time.
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Based on the SOP model, a knowledge transfer framework is built to define a workflow to

transfer the implicit engineering knowledge from workers and documented prior knowledge

to the system design loop as illustrated in Fig. 4.1(b). Basically, a shop floor includes three

major elements: people, machines, and materials, among which direct or indirect interactions

occur to proceed the manufacturing processes in a way of state transitions. For example,

machines interact with materials to process a recipe (e.g., deposition, etching) for changing

product states [147]. A Worker interacts with a machine through an interface to control

process parameters, start running processes, and change the machine state. A human ob-

server is introduced in this framework to serve as a knowledge accumulator by watching

the always-happening interactions through cameras in accordance with the SOP, instrumen-

tation principles, and the sensed power signals. In fact, the human observer can be senior

process engineers and does not need to in-person watch the process since the engineer has al-

ready established their knowledge database during the long-term career. Initially, with prior

knowledge, the human observer is to acknowledge the variation of power signals by analyzing

the recent observable interaction sequence with corresponding power outputs to confirm the

relevance and consistency among SOP, power signals, and realistic human-machine interac-

tions. The observer can follow the SOP to recognize the worker state (from WMI) and thus

understand the corresponding machine state and power signals. The corresponding segment

of power signals can be attributed to a certain component or a group of them with respect to

the SOP. Finally, the obtained and summarized knowledge from this observation can be lever-

aged and transferred to boost and append the context extraction capability to the software

design process. After few iterations, a contextual sensor software can be developed to act as

an artificial human observer to recognize component state transitions from aggregated power

signals. Moreover, the knowledge of human observer can be abstracted and encoded into a

context library where several known consequences of the interaction processes and events are

stored, and which can be used as a look-up database to search for possible reasons when some

typical sequences of events are detected. The proposed knowledge transfer framework based
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on the correlated SOP avoids the submetering data collection to identify component power

signals. It is also noted that the deviation of typical sequences of events could be used to

identify anomalies of machine operation, which might be attributed to gradual performance

degradation of functioning components or undetected intrusions in cyber-attacks.

In addition, with many component state transitions being detected, the WMI videos can be

annotated in a label-free manner according to the FSM-defined state transition correlation

to train a ML model to recognize the interactions, which will be addressed by another

publication from the authors.

4.3.2 Contextual Sensor System Architecture

We applied the proposed knowledge transfer framework to develop and implement a contex-

tual sensor system on a typical semiconductor fabrication equipment, PlasmaTherm, located

in a cleanroom facility. PlasmaTherm is a PLC-controlled machine with dual chambers and

functionalities: PECVD (plasma enhanced chemical vapor deposition) and RIE (reactive ion

etching), by using the generated gas plasma. Several gases can be used to generate plasma

for different purposes. The machine is equipped with multiple instrumentation functions:

the creation of desired vacuum conditions for semiconductor processing, the generation of

plasma from gases and RF sources, the control of semiconductor substrate temperature, the

electronics for PLC and user interfaces. These instrumentation functions have correspond-

ing components: mechanical vacuum pump (roughing pump), RF generator, heater with

controller, and main body with PLC and PC etc., respectively. These components can be

in various states at each process step for different functions. The two processing chambers

are driven by the same set of components. RIE side does not require an elevated temper-

ature setting, while PECVD requires a constant elevated temperature during deposition.

The simplified and generalized SOP for the two functions is illustrated in Table 4.2 (STBY
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Figure 4.2: The hardware and software structure of the implemented contextual sensor
system. (a) shows a semiconductor processing machine, the PlasmaTherm with 4 instru-
mentation modules (see the text) with their corresponding components connections with
various power supplies. A visual camera is mounted from a near ceiling view to monitor the
entire machine. (b) outlines the data processing pipe.

stands for standby states, and low-vac represents the chamber low-vacuum states). A worker

is required to execute the SOP through the machine interface (a monitor with keyboard).

For example, at step 5 a worker operates the keyboard to choose a product recipe and hits

“RUN” button to start the process, which results in the RF state changed from standby to

on when the inflow and removal rate of gases (by vacuum pump) reach a steady state.

Fig. 4.2(a) depicts the hardware and data acquisition and transmission settings. A visual
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Step Process
PECVD RIE

Pump RF Heater Pump RF Heater
1 Set temp. on STBY on - - -
2 Vent on STBY on on STBY off
3 Load on STBY on on STBY off
4 Pump down low vac STBY on low-vac STBY off
5 Run Process on on on on on off
6 Purge & Vent on STBY on on STBY off
7 Unload on STBY on on STBY off
8 Reset temp. on STBY off - - -
9 Pump down low vac STBY off low vac STBY off

Table 4.2: A generalized SOP of PlasmaTherm with dual functions

camera is mounted to capture the real-time image stream through WiFi connection and

TCP protocol. The image size is set to be 640 × 480 with the frame rate of 10 fps. A

clip-on power meter with current transformers (CTs) are installed on the circuit breaker to

monitor the main power feed for the entire machine. The meter we used is easily installed

by clipping on the CTs to the power lines with voltage sensing wires connected to the power

lines. The meter is reconfigurable to monitor three-phase, split-phase, or single-phase load.

Since other single-phase components, e.g., PC, PLC, and valves, consume less power and

maintain insignificant power change compared with main parts, they are omitted in this

study. The power meter samples the active power signal at 1 Hz frequency and transmits

JSON-format data through MQTT, the data is stored in a local PostgreSQL database. The

developed contextual sensor software system queries the database every second to fetch the

power data and accepts the real-time image stream to process.

The data processing pipeline is illustrated in Fig. 4.2(b). There are two streams for the image

data and power data processing respectively. The power data processing stream analyzes

the main power to extract different types of power events and disaggregate them to derive

the individual component states with predicted individual signals. The details of this power

signal processing will be addressed in Section 4.4. Since the visible light emission depends on

the type of gases in use for plasma, a color detection module based on the chamber window
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Name Attr. States

Body
off on

Power (W) 0 900
Tres (s) - 1

Heater
off on

Power 0 1300
Tres - 30

Pump
off on low vac

Power 0 750 1100
Tres - - 2

RF

STBY 30W 70W 125W 175W 300W
Power 50 300 400 500 600 850

Tres(CF4) - 90 90 90 90 90
Tres(O2) - 65 65 65 65 65
Tres(SiH4) - 215 215 215 215 215

Table 4.3: PlasmaTherm power states and corresponding response time

color intensity is developed to detect the plasma gas type. With the contents of power

signatures and chamber color detected, a context capture module is developed to correlate

the contents into contexts.

Since the SOP model defines the correlation between machine states and worker states as

visible in WMI video snaps, one design aspect of the captured context is the response time

Tres between WMI and machine state transitions. The response time is common for PLC-

controlled manufacturing machines to conduct a self parameter inspection or adjustment

before a process starts. Using PlasmaTherm as an example, when a user selects the pro-

cessing recipe and hits the “RUN” button, the machine will first adjust the gas flow rate to

reach steady states for a fixed period of time after which the RF is turned on and the manu-

facturing process begins. The corresponding response time is composed of a static segment

and a transitional period depending on the gas flow. The response time for PlasmaTherm

is listed in Table 4.3, where Tres is derived from its inactive state (heater: off, pump: on,

RF: STBY) to operational (active) states. RF has three Tres distinctive on the gas type

since the gas flow rate and the time to steady states are different. In reality, since the gas

flow rate varies, Tres can be regarded as a normally distributed random variable depending
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on multiple factors (e.g., gas valve leakage, gas inventory, pressure). After several iterations

in measurements, an averaged response time over measurements is selected as Tres. If the

interaction starts at time 0, the machine state change will be recognized at time TI + Tres,

where TI is the interaction duration. Therefore, the time period (0, TI) containing WMI

contexts needs to be pinpointed.

The other design aspect of the captured contexts is to analyze the sequence of detected

events with timestamps and compare them with the context library to determine possible

consequences. For example, following the expert experience, a 30-min oxygen clean should

be conducted to clean the inner chamber before any etching or deposition process begins. If

a worker forgot to do it and failed to obtain the expected processed material, the contextual

sensor system can provide a likely cause that the oxygen clean was not performed. Moreover,

by comparing the duration or the magnitude of the low-vac state pump power signals, the

system is able to estimate the efficiency of the pump or whether the pump or valves have

unusual leakage. With the context library built upon expertise from humans and documented

knowledge, the contextual information and actionable intelligence can be supported by the

system. In this study, to illustrate the proposed framework, three predefined contexts are

abstracted from facility staff’s knowledge and SOP with reference to the event sequence: 1)

A regular operation should follow a sequence of RF on (optional O2 clean), pump low-vac,

RF on (can be multiple times), pump low-vac, and RF on (optional O2 clean), where over

60-minute continuous RF running is prohibited; 2) While it is rare that two consecutive

pump low-vac states are detected, this sequence may indicate a pump malfunction during

first low-vac state; 3) a small bump of the pump power signal during inactive pump on states

can indicate an unusual gas leakage from the enclosed chamber, valves, or pipes.
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4.4 Software Defined Sensor for Power Event Detec-

tion and Classification

In this section, the prior knowledge from SOP and the working principles of instrumenta-

tion engineering designs for functional modules are utilized to design the software defined

sensor system, which is capable of detecting power events and reporting the individual com-

ponents’ energy consumption. As illustrated in the power signal processing in Fig. 4.2(b), it

includes preprocessing, Combinatorial Optimization (CO), and post-processing. It is worth-

while mentioning that the knowledge of instrumentation principles and their corresponding

components can highlight the anticipated power waveform during normal operation.

4.4.1 Working Principles of Functioning Instrumentation Modules

and Their Components

Design of a Vacuum System. The rotary-vane vacuum pump, a type of mechanical pump,

is typically used in semiconductor fabrication equipment as the roughing pump for creation

of low vacuum. The pump is driven by a three-phase motor and its power consumption is

related to the amount of gas in the enclosed chamber according to the working principle.

When the machine chamber pressure is always low at idle states, e.g., 10 mTorr, the power

consumption of the motor is relatively constant and low. When the chamber is vented to

atmosphere for sample loading and needs to be vacuumed again, the motor load increases

abruptly, which will cause a power surge of the motor. With more gas being pumped out

and lower chamber pressure, the motor load will gradually decrease, which reduces the power

consumption to the constant level. From the prior knowledge about the working principle,

we can derive an educated guess of the pump power signature during operation.

Design of RF Plasma Generator. RF plasma generators are pervasively applied in
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semiconductor fabrication to generate reactive gas plasma for dry etch, PECVD, and inert

gas for sputtering etc. In general, a RF plasma generator includes a RF power supply, a

RF matching network and a reactor (torch) [80]. The generation of gas plasma depends on

the gas type, gas flow, pressure, temperature, humidity, and RF power [98]. One of the key

processing requirements of the generated plasma is to maintain a constant plasma power and

density to stabilize the etching or deposition process. Therefore, the power supply of the

plasma generator is designed to provide a stable power during the process and can be tuned

to control the generated plasma property. PlasmTherm has a PLC to control the process

with stable RF power using predetermined process recipes, allowing a user to select a recipe

with specific plasma power and duration.

Constant Elevated Temperature Controller. In many industrial applications, a stable

temperature control is important for product yield and thus tools are equipped with self-

regulating heaters. With thermocouples to sense temperature for a feedback control, a

heater is designed to be turned on and off when the temperature is low or high respectively

for stabilizing a preset temperature. At the beginning of ramping up the temperature from

25 °C to a user selected temperature, such as 250 °C, the heater operates at a constant

power mode until the temperature gets close to the set value. During elevated temperature

stabilization, a feedback control mode kicks in to turn the heater on and off frequently.

Compared with other instrumentation functions, the pulse-like waveform is unique for the

heater and the harmonic features can be extracted to detect such a pulse signal with higher-

order frequency components.

The knowledge from these three instrumentation function modules will be explored in the

design of data processing in software defined sensors for identification of three machine

components, i.e., pump, RF generator, and heater.
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Figure 4.3: An example with the measured raw signal going through the first-stage prepro-
cessing algorithm (based on the instrumentation functions) to show the performance. (a)
an active power signal captured from the main power meter with heater, RF and pump at
different states. (b) the signal after differential filter with signal variation being amplified.
(c) the derived signal after first-stage pre-process to remove the pulses. The red lines in (c)
indicates the detected power event from second-stage pre-process.
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Figure 4.4: An illustration of a power signal with the SW-based second-stage preprocessing
techniques to detect power events. In the middle, the two red boxes represent two windows
right before and after the power ramp with the small variance, whereas the green dashed box
represent the window capturing the edge with large signal variance. The two red windows
also capture the steady state powers and the random noise or spikes can be avoided through
comparison with steady power values.
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4.4.2 Two-stage Data Preprocessing

In order to deal with the 3 components with similar or different power events, a hybrid two-

stage algorithm is designed to pre-process the aggregated raw power signal and detect the

power events of different types in real time. There are basically two types of power events,

one for the pump, RF generator, and constant power heater with steady state features, the

other for the heater in the pulsing mode. Fig. 4.3(a) shows a raw power signal captured

from the main power meter during PECVD operation and consists of different combinations

of the pump, RF, constant power heater, and pulsing heater at different states. There is

a rather challenging case where the pump is in low-vac state and the heater turns on to

the constant power mode and then transits to the pulsing mode or vice versa, increasing the

difficulty to detect all types of power events. To overcome this challenging task, we segregate

the detection of the two event types: pulsing states based on raw signals, and steady states

based on filtered (removing the pulses) signals.

To detect the pulsing state from a raw signal, the raw signal is first partitioned into sliding

windows (SW) with a width of 20 and a stride of 1. A differential filter is applied on the

windowed signal to calculate the signal difference between adjacent timestamps, which can

be represented as Pd = Pt+1 − Pt. The frequency domain feature is calculated within the

windowed Pd by Fast Fourier Transform (FFT). The 2nd and 4th order frequency components

are extracted and a threshold (thfft) is applied to determine whether the signal includes fast-

varying pulses.

With the capability of detecting the pulsing mode, one can remove the pulsing component

and extract the remaining waveform for the steady state power event analysis. The complete

two-stage preprocessing method is illustrated in Algorithm Algorithm 1. When no pulses

are detected by FFT, the raw signal value is kept in the filtered signal. When there is a

pulse, a threshold (bound derived from the heater on-off power value in Table 4.3) is applied
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Algorithm 1: A Hybrid Two-stage Preprocessing and Event Detection
Method
Input: Praw, and predefined thresholds
Output: event type, time, steady state power, Pf

Pd = (Praw[1 :]− Praw[: −1]);
freqmag = FFT (Pd);
if freqmag > thfft then

Output pulsing heater event;
if abs(Pd[−1]) < bound then

if Praw[−1] < thmax then
Pf .append(Praw[−1]);

else
Pf .append(Praw[−1]−HeaterOnPower);

else
Pf .append(Praw[−1]);

# Second Stage;
Calculate signal Variance var on Pf ;
if var > thvar then

eventF lag = 1;
else

if eventF lag == 1 then
s = mean(Pf [0 : 2]);
if abs(s− slast > thcb then

Output event type, time, steady state power;

else
s = mean(Pf );
if abs(s− slast) > thcb then

Output event type, time, steady state power;

eventF lag = 0;

on Pd to filter the fast-varying data points. The remaining signal is compared with the

maximum possible value (thmax derived from Table 4.3) at non-pulse states to determine

whether to keep the raw value or subtract the heater on-state power from the raw value.

Then the filtered signal Pf is derived. Note that the Pf is also experienced re-sampling as

the fast-varying pulses are removed instead of filtered. Fig. 4.3(b) and (c) show an example

of signals after the first-stage preprocessing. We can observe in Fig. 4.3(c) most of pulses

are removed and the steady-state waveform including RF, pump, and constant power heater
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is preserved. There are still a few non-filtered spikes in Pf , which can be eliminated in the

second stage signal processing with a noise-tolerant feature.

The second stage of the preprocessing method is designed to detect the edges and steady

state values from Pf . We apply a sliding window with a width of 5 and a stride of 1 on Pf

as illustrated in Fig. 4.4. The signal variance of each window is calculated and a variance

threshold (thvar) is applied to filter event windows and non-event windows. This is based on

an assumption that in industrial environment power events do not happen more frequently

than the window width. Therefore, two non-event windows with steady-state power values

should be right before and after a series of continuous event windows. When the difference

between these two steady state values is greater than a threshold (thcb) that can be derived

from the minimum power difference during any possible state changes in Table 4.3, a power

event can be determined, resulting in automatically eliminating the non-filtered spikes (noise)

to enhance the robustness. In addition, a complementary checking is included to always verify

the current steady-state values during non-event windows to avoid any missing events.

4.4.3 Energy Disaggregation

The basic idea of energy disaggregation is to solve an optimization problem by using the

power signatures of each device as

Pagg(t) =
M∑

m=0

Pm(t) + e(t) (4.2)

where Pagg(t) represents the aggregated power signal, Pm(t) is the individual component

power signature, and e(t) represents the realistic power deviation from the power signature.

In this study, the components (main body, pump, RF generator and heater) of PlasmaTherm

are regarded as the individual device for disaggregation. The main body is always on and

consumes 900W power. The other component states are illustrated in Table 4.3. As process
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recipes set different RF power and processing time, the distinguishable power states include

different RF power levels.

CO is a simple and generic technique for solving such a combination problem in the energy

disaggregation field [14]. The basic idea of CO is to combine the possible power signatures

to find the closest combined signal compared with the real aggregated signal. One drawback

of the CO is that it only considers the steady state power values rather than a sequence

of power signatures, which can cause mis-classification when the power fluctuates beyond

the allowable range or several combinations of the steady-state values are similar or even

identical. In Plasmatherm example, the low-vac pump state has the same steady-state

power as the 70W RF state, which cannot be resolved by CO. To distinguish this case,

we leverage the prior knowledge about working principle differences. The power of pump

low-vac state shows a time-varying decrease while the power of RF states is stabilized. We

leverage this feature in the post-processing module to distinguish the low-vac state and the

70W RF state and to disaggregate the pump signal with this specific ramp-down waveform.

Furthermore, the deviation e(t) is distributed to individual components by considering the

instrumentation working principles and operation sequence. The SOP provides the sequence

of components being turned active and the prohibited combinations of active components.

For example, active pump and active RF are not allowed to occur simultaneously, which is

used to distribute e(t) when a component is active. By doing so, the individual component

power signal is recovered.

4.5 Experiment Results

The proposed contextual sensor system is evaluated by using PlasmaTherm and demon-

strates its capability of the power signal pre-process and machine event classification with

the WMI context extraction. In addition, we tested the disaggregation method on another
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machine (E-Beam) to further validate its performance.

4.5.1 Machine Event Detection and Disaggregation.

We tested the proposed method on three different cases: PlasmaTherm for PECVD, Plas-

maTherm for RIE, and Electron Beam Evaporation (E-Beam) tool, to show the effectiveness

of the machine event detection and disaggregation.

We deployed the contextual sensor system on PlasmaTherm to extract events without human

interventions. It is noted that the extracted events of PlasmaTherm represent the power

events of steady state transitions, including pump, RF, and constant power heater. The

pulsing mode power events will be pointed out separately since the pulsing events do not

involve WMI but are attributed to the automatic temperature control. Fig. 4.3(c) plots the

filtered signal during a PECVD process with SiH4 gas and several O2 clean involved. There

are 28 power events during this process and the software defined sensor algorithm detects

34 power events including all the 28 ground truth power events with additional 6 events.

The extra detected events do not affect the disaggregation result as they are not classified

as machine state transitions in disaggregation.

To evaluate the energy disaggregation performance, we collect the actual individual power

signals for each component as the ground truth data.Fig. 4.5 depicts a typical segment of the

machine event detection and component energy disaggregation results in PECVD case. The

specific waveform of the pump is successfully disaggregated. For the RF signals, there are

relatively small deviations between the ground truth and disaggregated data since in practice

the RF generator needs to adjust its power slightly depending on operational conditions to

maintain the generated plasma power constant. Fig. 4.5(e) displays the disaggregated signal

for the heater observing that the constant power heater signals are recovered. For the pulsing

mode heater, the proposed approach can identify the start and end of the pulses with the
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Figure 4.5: An example of the measured raw power signal during a PECVD process and its
disaggregated component signals. (a) the captured raw signal with pump, RF and heater
being active. (b) the signal after removing pulses by the first stage of preprocessing. In (c),
(d), and (e), the disaggregated component signal (in blue) and the ground truth signal (in
orange) are plotted for pump, RF, and heater respectively. Orange lines are lifted for better
views.

capability of roughly extracting the pulsing heater signal.

Fig. 4.6 illustrates an example of a RIE process performed in PlasmaTherm, where RIE does

not require elevated temperature setting but in fact heater is active for a few seconds. The

reason is that during non-PECVD processes including RIE and machine standby, the heater

temperature is set to be 23 °C close to the cleanroom temperature. When the thermocouple

detects temperature deviations (below 23 °C), it will trigger the heater to be on, resulting
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Figure 4.6: An example of a RIE process. (a) the captured raw signal with pump, RF
generator, and heater. The red lines show the detected power events. In (b), (c) and (d),
the disaggregated component signal (in blue) and the ground truth signal (in orange) are
plotted for pump, RF and heater respectively. Orange lines are lifted for better views.

in several spikes in the heater power and main power. Other spikes belong to noise from the

CTs. Without the pulsing heater involved, power events in RIE are easier to recognize than

those in PECVD. Fig. 4.6(b) and (c) show the successful disaggregation of power signals for

the pump and RF during RIE respectively.

From Feb. 19, 2021 to Mar. 24, 2021, there are 17-time PlasmaTherm usages with 15 for

RIE and 2 for PECVD. In total 103688 data points (around 29 hours) of raw signals during

active machine usages are collected from a power meter. Table 4.4 lists the usage information

during this period with time, process, the number of events (in the column, the values stand

for pump, RF, and constant power heater in order), the number of detected events, and the

number of data in active modes for each component. To provide a quantitative evaluation,
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the mean absolute error (MAE), root mean square error (RMSE), and mean percentage error

(MPE) are calculated for comparing predicted signals and ground truth signals. Table 4.4

also shows the MAE (Watt), RMSE (Watt), and MPE (%) of each usage with the average

values of all the data points. Since the heater signals have 0 values which cannot be used

to calculate MPE, MPE is omitted for the heater. In total there are 47 pump events, 67

RF events, and 11 constant power heater events, and they are all successfully detected and

classified by the proposed method with related event contexts being extracted. During each

usage, the active RF states account for most of the usage time and power consumption as

workers prefer running long-time oxygen clean before and after the process. For the PECVD

processes, even though there are in total 11 constant power heater events, in practice a user

only sets the temperature once at the beginning and the rest of the constant power heater

events are due to the temperature change when a user opens chamber to load and unload a

semiconductor wafer and thus decreasing chamber temperature sharply.

An interesting observation can be derived from Table 4.4. An average time for pumping

down during RIE can be derived which is 66.6 second. However, the mean pumping down

time of usage ID 11 is 90 second, which is significantly longer, indicating a possibility of

lower efficiency in the pump or a virtual leak in the machine. It is noted that the time

information extracted from power events with our proposed contextual sensor system, e.g.,

time for pumping down, can be used as a reference for the system to identify unusual pump

behaviors, which is of great context value in operation.

To evaluate the usability of the proposed machine event detection and disaggregation method,

we further test the contextual sensor system on an E-beam deposition tool with Pump,

Electron-gun (E-gun) and Controller as components for metal thin film deposition. This

E-Beam is chosen not to be equipped with a PLC, i.e., manually controlled. The E-gun

serves as the major processing component to provide high-voltage electron beams to melt

metal and its current is adjusted manually by a worker using a built-in current meter. A
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ID Time Process #data #evt #det. evt
Pump RF Heater

#act. MAE RMSE MPE #act. MAE RMSE MPE #act. MAE RMSE
1 02/19 10:12-11:53 RIE 5478 2, 5, 0 2, 5, 0 118 28.6 31.7 3.6 1809 11.7 40.9 13.2 41 4.5 50.3
2 02/23 13:40-16:05 RIE 7448 0, 8, 0 0, 8, 0 0 24.5 25.4 3.1 3787 16.3 40.0 13.6 51 5.9 52.5
3 02/24 11:35-12:25 RIE 2441 2, 2, 0 2, 2, 0 117 32.3 35.8 4.0 1694 10.6 34.3 7.6 14 6.9 52.4
4 02/25 09:17-10:00 RIE 2318 2, 2, 0 2, 2, 0 110 34.3 38.1 4.3 1358 15.5 35.2 10.0 18 6.8 54.4
5 03/01 10:00-14:00 PECVD 12010 6, 5, 5 6, 5, 5 542 33.5 40.6 4.2 5520 37.1 58.1 18.9 5895 367.4 596.4
6 03/10 14:14-16:14 RIE 6384 4, 4, 0 4, 4, 0 227 21.9 27.1 2.8 2411 21.2 45.1 14.9 25 4.8 47.1
7 03/11 11:18-14:15 RIE 9197 4, 5, 0 4, 5, 0 222 23.5 27.4 3.0 3758 16.2 32.7 13.2 82 2.5 31.3
8 03/11 15:06-15:21 RIE 818 2, 1, 0 2, 1, 0 115 30.3 39.8 3.7 55 14.0 48.2 17.8 5 7.4 54.9
9 03/11 15:57-17:21 RIE 4620 2, 4, 0 2, 4, 0 118 22.0 25.3 2.8 1956 17.9 46.8 13.7 31 4.3 40.6
10 03/15 09:43-11:07 RIE 4504 3, 4, 0 3, 4, 0 191 23.8 28.4 3.0 1738 17.8 36.5 14.7 41 6.5 51.3
11 03/15 11:08-12:32 RIE 4618 2, 3, 0 2, 3, 0 180 21.6 25.7 2.8 3026 17.7 39.3 10.5 37 5.8 48.1
12 03/16 11:36-13:06 RIE 4616 2, 3, 0 2, 3, 0 131 22.3 25.8 2.9 3136 15.6 34.8 8.8 41 2.7 33.6
13 03/17 13:10-15:40 PECVD 8184 4, 4, 6 4, 4, 6 275 21.3 25.7 2.7 2321 24.9 50.1 18.7 3753 165.5 367.0
14 03/19 12:48-17:18 RIE 14439 3, 5, 0 3, 5, 0 257 23.7 27.3 3.1 5015 37.6 40.1 16.5 95 5.3 54.0
15 03/22 12:12-13:50 RIE 5454 3, 6, 0 3, 6, 0 232 24.4 30.0 3.1 3000 20.3 44.7 13.9 49 4.9 45.2
16 03/23 13:05-15:37 RIE 8259 4, 4, 0 4, 4, 0 307 22.1 26.4 2.8 3662 16.7 30.9 13.1 49 4.9 45.6
17 03/24 13:21-14:14 RIE 2897 2, 2, 0 2, 2, 0 140 24.6 29.3 3.1 1629 14.4 39.5 11.5 21 6.3 51.8
18 Mean - - - - - 25.6 30.0 3.2 - 18.3 41.0 13.4 - 36.0 98.6

Table 4.4: Usage information of PlasmaTherm with detected component events results
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Figure 4.7: An example of a manually operated E-beam metal deposition tool is shown. (a)
the measured raw E-beam signal. (b) to (d) the disaggregated (in blue) and ground truth
(in orange) power signal for pump, E-gun, and controller respectively. The orange lines are
intentionally lifted by 2000 W to keep the curves apart for easier views.
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simplified SOP of E-Beam is venting, hoist up, hoist down, pumping down, turning on con-

troller, turning on E-gun, turning off E-gun and controller, venting, hoist up, hoist down, and

pumping down again. The pump controls the vacuum steps, and the controller controls the

hoists. Compared to PlasmaTherm with PLC, the processing time for E-Beam is manually

controlled by a worker meaning that more WMIs are needed to turn off any active compo-

nents as opposed to a PLC-controlled machine turning off active components automatically.

Similarly, from the knowledge of human observer and SOP regarding the WMI sequence and

measured power signals, the contextual sensor system is initialized on E-Beam. We used the

same algorithm in Section 4.4 but adjusted the threshold parameters to better accommodate

individual components. To disaggregate E-gun power signals in the post-processing module,

we applied the SOP knowledge that the E-gun will be turned on after controller is turned

on. The disaggregated power signals from the measured raw signal are plotted in Fig. 4.7.

In Fig. 4.7(d), the two spikes around 13:00 correspond to the hoist-up and hoist-down steps

for loading and unloading wafers, which are successfully detected. This experiment further

validates the effectiveness of the proposed method.

4.5.2 WMI Context Capture

Since PlasmaTherm is a PLC-controlled machine, the fabrication process can be turned off

automatically depending on the process time set by users. Only the positive leading edges,

which indicate a component transits from inactive to active modes, can trigger the WMI

context capture. There is a distinctive worker gesture difference between changing pump

state and RF state as illustrated in Fig. 4.8 that the worker tends to put their hand on

the chamber handle to push down when performing the chamber pumping down. This is

because the chamber cannot be completely sealed by its own gravity and hence requires extra

force to push down. This distinctive WMI context is useful as well. For example, when a

worker finishes the process and conducts the pumping down again to keep the chamber under
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Figure 4.8: Example images of interaction with PlasmaTherm by different users captured
through WMI context capture process. The right column shows different interaction gestures
to initiate pump or RF generator. Upright is referred as pump action and bottom right is RF
action. The upleft indicates the locations of the smart meter installation and the chamber
windows used for plasma color detection.

vacuum for protecting its integrity but he/she forgets to push down the chamber handle to

tighten the gap, the gas in the chamber cannot be vacuumed to the set pressure. With the

WMI context being captured and recognized, this information can be provided to the user

to check the machine chamber status and to avoid this incorrect operation.

4.5.3 Event Sequence Context Capture

Fig. 4.9 illustrates an example of the first type context the system can capture, which is

a typical machine usage following SOP. During this usage, a user first conducts a 30-min

oxygen clean using 300W plasma power, then opens the chamber to load a wafer and conducts

pumping down. A 70W oxygen photoresist ashing process is carried out for 1 minute in the
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RIE chamber, after which the user opens the chamber to take out the wafer and pumps down

again. At last, another 30-min oxygen clean at 300W is applied to clean the chamber for

the next user. During this operation, the component state with realistic power, the recipe

information (including gas type, running time and plasma power), and the sequence of the

operation are extracted and stored in a database. Accordingly, the WMI video clips during

each interaction are captured and saved in the local file system according to the response

time of each component and gas type.

Fig. 4.10 shows a captured example of a combination of the second and third type context

related to pump issues. After a typical RF process, a user conducts pumping down as usual

after which an irregular bump is detected by the contextual sensor system. Then, a second

pumping down is conducted again by the user. The corresponding contexts during this period

are captured. After the first pumping down, from the monitor the user noticed abnormal

pressure value and informed the facility staff. From the disaggregated pump power signal,

the bump corresponds to the abnormal pressure noticed by the user, which indicates that the

gas inside the chamber is not vacuumed to the expected pressure and the air-tightness of the

vacuum system is likely faulty. After a second-time pumping down, the pressure becomes

normal. The extracted context is saved in the database and can be used as a reference when

the same event sequence is met. One of the significances of this captured context is to be

potentially used to conduct predictive maintenance and anomaly detection in the future.

4.6 Discussion

Comparison: To further validate the efficacy of the proposed machine event detection

methods, we compared our method with some typical previous work with only the machine

event detector replaced. We further tested on more data: 80 pump events and 105 RF

events for PlasmaTherm RIE, 68 pump events, 80 E-gun events and 220 controller events
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Figure 4.9: A first type of captured context during a RIE process is illustrated. The measured
main power signal with disaggregated signals and ground truth signals are plotted. The
heater signal is absent as RIE does not need heater. 5 positive edges correspond to 5 events
with components from inactive mode to active modes. The extracted event contexts with
UNIX timestamp, machine (component) name, state and actual power, and worker state
are formulated in a JSON-format. The 5 corresponding WMI contexts are shown with the
captured timestamp.

for E-Beam, and the two PECVD usages. We considered the precision (P) and recall (R)

as the metric for the machine event classification. As shown in Table 4.5, Section 4.6, and

Table 4.7, our approach achieved better performance on all the three test cases. Particularly,

the proposed method can handle the heater pulses while other methods fail to detect the

pulsing mode heater as well as other events with heater pulses in a low sampling frequency.

This is achieved by the segregation of the heater pulses and steady state signals. Statistical
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Figure 4.10: A combination of the second and third type of contexts is captured and il-
lustrated. Between two pumping down (low-vac state), a small bump with actual power
deviates from the average of pump on state. The corresponding WMI contexts are shown.
During the anomaly occurrence, the facility staff is informed and checks the machine status.

methods are widely used for abrupt steady state changes but are not effective with the

heater pulses in this study as the statistical features of the signals are not stable. To extract

the contextual information, it is essential to extract the signal envelope and keep the signal

envelope undistorted while detecting the heater pulsing states at the same time. Because the

WMI context requires reliable detection of component state transition time and the context

96



Method
Pump RF

P R P R
GLR[6] 0.896 0.863 0.864 0.848
Chi square[69] 0.951 0.963 0.970 0.914
Rehman et al.[115] 0.950 0.950 0.981 0.971
Ours 1 1 0.99 0.99

Table 4.5: PlasmaTherm RIE Event Classification Comparison

Method
Pump RF Heater Pulsing

HeaterP R P R P R
GLR[6] 0.75 0.6 failed 0.526 0.909 not able
Chi square[69] 0.667 0.6 failed failed not able
Rehman et al.[115] 0.7 0.7 0.12 0.333 0.524 1 not able
Ours 1 1 1 1 1 1 can process

Table 4.6: PlasmaTherm PECVD Event Classification Comparison

of abnormal machine states (as the example in Fig. 4.10) requires disaggregated component-

level power signals. We further tested the wavelet thresholding to remove the heater pulses

as shown in Fig. 4.11. Compared with our method in Fig. 4.5(b), the wavelet thresholding as

well as other regular low-pass filters can remove the pulses in some regions but highly distort

the underlying signal of steady state machine components. The reason is that the pulses are

not the true noise but the result of feedback control of temperature. Sometimes the heater

stays active longer than several seconds as we can observe in Fig. 4.5, which causes that in

some regions the heater pulses can have similar frequency as the base signal. In fact, the

pulses have different frequency distributions with the true sensor noise (e.g., white noise), are

not random, and are correlated through the feedback control. In our two-stage preprocessing

method, we use the frequency analysis to identify the start and end of pulses and apply the

prior knowledge of machine components to provide thresholds for removing the pulses from

the base signal, instead of filtering the pulses in frequency domain.

Discussion: The FSM model generated from SOP defines the state transitions of machines

and workers, and the causality between worker and machine states. This model not only
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Method
Pump E-gun Controller

P R P R P R
GLR[6] 0.853 0.941 0.923 0.900 0.867 0.950
Chi Square[69] 0.958 1 0.963 0.963 0.882 0.955
Rehman et al.[115] 0.932 1 0.904 0.938 0.932 0.932
Ours 0.986 1 1 0.975 1 0.964

Table 4.7: E-Beam Event Classification Comparison
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Figure 4.11: An example of the processed raw signal by wavelet thresholding.

helps the determination of machine component states and worker states independently, but

also opens a new way of leveraging the causality to capture the contexts and further to

achieve automated data labeling for ML. This paper demonstrates the effective state detec-

tion and energy disaggregation of machine components and the context capture capability

by using the FSM-based SOP model. The prior knowledge of SOP and instrumentation

principles alleviates the requirement of data collection for supervised energy disaggregation

and the requirement of high sampling rate of power meters. The automated data labeling

can be achieved by extending this study leveraging the causality between worker actions and

machine responses defined in the FSM-based SOP model. For example, recognizing worker

gestures for interacting with machines is important for operation integrity. An ML model

for action recognition can be trained with the collected video snaps of worker interaction

moments effortlessly without any manual data collection and annotation. More importantly,

each machine can have a totally different interface requiring different gestures for worker

interactions. This automated data labeling method enabled by the proposed FSM-based

SOP model can enhance the adaptability of ML models to dynamically adjust to different
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machine interfaces during deployment. The underlying concept of the causality induced

automated labeling can easily be extended to various interactive activities between two ob-

jects in manufacturing. It brings a new angle of understanding manufacturing interactions.

Given an assembly line as an example, materials are processed by workers or machines stage

by stage with intermediate quality inspection to sense material properties. If the response

time between worker/machine-material interactions and material state transitions can be

derived, the proposed concept can be applied to use the material state change to capture

the worker/machine-material interaction contexts and environmental contexts to assist the

product quality inspection and potential automated labeling.

Furthermore, the sequence of machine component events with anomalies are extracted with

the corresponding WMI contexts. The context extracted by the proposed novel method

is important in terms of several practical applications. For example, the extracted event

contexts can be used to identify the integrity of worker and machine operation compared

with SOP at the component level. Any deviations can lead to immediate malfunctions or

unnoticed tool wear and tear accumulated to cause a serious machine breakdown in the

future. The captured anomaly contexts due to the effective disaggregation of component

signals can assist the development of prognosis applications. On the other hand, the disag-

gregated power signals with the color information from gas plasma emission can be exploited

for identifying the gas type, processing duration and plasma power level, implicating a stable

processing condition for manufacturing quality control.

Application Restrictions: The proposed context capture is based on the SOP-defined

worker and machine state domain. There are two constraints. The first constraint is that

if some unknown state occurs beyond the SOP, the system could fail in detecting the state.

A perspective is to leverage the worker intelligence and predefined worker states indicating

abnormal machine states and followed by unsupervised clustering methods to detect the

data similarity to form a new class data for the machine and worker state detection. The
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second constraint is that while this study uses power signals to successfully detect machine

responses of energy states, there are some cases that machines do not respond in a way

of energy consumption, such as the state of material loading. Other responsive sensors

for these undetected states, such as acoustic and IR sensors, can be selected to detect the

machine operation within the same cause-and-effect concept. Similarly, the corresponding

worker interactions can be captured by using these additional channels of sensors. While

these limitations may impede the application of the contextual sensor system, the proposed

remedies shed a light on new research directions for future improvement.
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Chapter 5

Interactive and Adaptive Learning

Cyber Physical Human System

5.1 Introduction

The development of advanced machine learning (ML) algorithms and hardware equips smart

manufacturing (SM) systems with ML-based cognition models and ML-based Cyber Physical

Systems (CPS) to augment insight and contextual awareness. However, typical supervised

learning for specific application scenarios demanding manually annotated data renders ML

models unable to adapt to dynamic environments and unforeseen circumstances without

additional hand-labeled datasets [139]. Despite laborious work, the collected data for a

specific manufacturing task is difficult to be reused for a new task due to technical issues

(e.g., less common data features [35]) and users’ concerns (e.g., privacy and IP [111]). Several

unsupervised or semi-supervised learning algorithms have been created to mitigate the barrier

of intensive data annotation by statistical feature and representation learning but still require

labels for downstream classification tasks [153, 162]. They generally perform worse than
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supervised methods, and can fail when data distributions are nonstationary in dynamic

environments [109]. Therefore, a methodology for establishing a ML system with adaptive

learning capabilities that broadly extend to many SM applications is of great interest and

requires more investigation.

Adaptive learning systems aimed at learning from streaming data in an ever-changing en-

vironment are gaining research attention [163]. Ideally, an adaptive learning system with

ML detectors should be automated [74], where training data can be collected and annotated

automatically without human intervention. This will be particularly valuable in manufactur-

ing environments where adaptive dynamic control offers significant advantages that would

not be available if the methods required real-time human intervention from IT professionals.

The scope of this study is focused on this important, largely unresolved challenge of SM.

During production, interactions among humans, machines, and materials are pervasive.

Much like the Industry 4.0 concept has revolutionized manufacturing via integration of in-

formation technology and operation technology, a new concept, Operator 4.0, is emerging

to address humans’ critical roles in terms of operational efficiency, adaptive feedback, and

improved productivity. While novel technologies have been proposed for reliable connections

with workers (e.g., portable devices), workers are naturally connected with manufacturing

systems through their active and reactive interactions with machines and materials. The

interactions between workers and machines contain meaningful contextual intelligence in

operation integrity, worker intention prediction, and anomaly detection of abnormal ma-

chine conditions. For example, active worker interactions performing improperly can cause

machine malfunctions, and reactive worker interactions towards abnormal machine states

engage workers’ intelligence in perceiving and managing anomalies. These practical reasons

necessitate a reliable way to detect interactions. While vision-based supervised ML models

have demonstrated effective human action recognition, the practical constraints in manufac-

turing (e.g., wide variety of machine interfaces, nonstationary worker behavior, and worker
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mobility) complicate the model generalization to cover broader and unforeseen cases. To

overcome these deployment barriers, it is essential to develop ML systems capable of evolv-

ing and adapting without human annotation to recognize ever-changing interaction gestures.

To achieve this, more research work is needed to address the challenges in: 1) adapting ML

models to unpredictable human nature and variable machine interfaces; 2) automating the

model adaptation process without human intervention; and 3) developing a generic solution

for various manufacturing environments.

To address these challenges, we propose in this paper an Interactive Cyber Physical Human

System (ICPHS) driven by the correlation underlying interactive manufacturing processes

involving workers using machines to design an adaptive human-machine interaction (HMI)

recognition model. Manufacturing interactions occur on two or more objects restricted by

compiled instructions developed by manufacturing engineers (e.g., standard operating pro-

cedures SOP), and have a mutual effect upon one another. During an interaction the action

of one object (e.g., worker) can cause a reciprocal response of the other object (e.g., machine

or material), which describes the common causal relationships among interactive objects.

By leveraging this causality among interactions, the system can collect and self-label one

object’s data by using the other object’s status for retraining and improving the ML model.

To demonstrate a real-world utility of the ICPHS, a case study in two machines, one being

fully automated with a programmable logic controller (PLC) and the other being purely

manually operated, is conducted in a multi-user semiconductor manufacturing facility. We

applied energy disaggregation techniques on power signals to detect machine state changes

in real time to self-label worker actions. The worker actions are detected by pose estima-

tion and a Graph Convolutional Network (GCN) from video data. The GCN is retrained

adaptively by the self-labeled dataset to achieve automated adaptation. The experimental

results successfully show the proposed ICPHS capability to adaptively improve accuracy and

significantly reduce data collection and labeling efforts.
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In brief, our novel contributions include: 1) We propose to use the causality of HMI to

achieve a self-labeling method for ML adaptation by conceptualizing and designing a HMI

correlation model with temporal and causal relationships to capture an interaction window;

2) Generalization to a variety of human roles and prior domain knowledge embedded in

machines or acquired from humans in ICPHS design; 3) Increased accuracy of automated

adaptive learning by leveraging the advantage of supervised learning while significantly re-

ducing human labeling efforts; and 4) Demonstration of excellent potential to achieve class

incremental learning with more interaction types being recognized through the retraining by

self-labeled data.

5.2 Related Work

To design the adaptive ICPHS, we review the relevant progress in adaptive and self-supervised

learning as well as in Cyber Physical Human Systems as a benchmark.

5.2.1 Adaptive and Self-Supervised Learning Applications

Adaptive learning solutions mostly focus on the concept drift (CD) problem that the relation

between input data and output labels changes over time [41]. Several studies have been

proposed, such as designing CD detectors to analyze data drift [66], introducing experts and

adaptive mechanisms to react with experts [13], and ensemble learning to deal with novel

class arrival [67]. Most current research in adaptive system focuses on novel algorithms to

accept new data for back-propagation demanding that labels are already available or CD

can be analyzed. However, one of critical challenges is the unpredictable CD with multiple

variants. We devise a novel method that the system can automatically label data, clean

data, and use them to retrain the model.
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A classical example of self-supervised learning was proposed in [27] that hearing mooing

and seeing cows tend to occur together. Recently, several studies applied self-supervised

techniques in representation learning by using different attributes of intrinsic data features

[106, 45] or multimodal information from environments as the self label [103]. Moreover,

several studies investigated object visual feedback for robots learning tool affordance through

robot-object interaction trials [132, 96]. Inspired by these ideas, we further focus on the

causal correlation between multiple objects involved in manufacturing interactive activities

where the data attribute of one object can serve as the supervision for the other object and

vice versa.

5.2.2 Cyber Physical Human Systems

Human factors have recently become a crucial element in CPS design for effective inclusion

and leveraging human intelligence to augment the decision making as indicated by many

conceptual CPHS designs in various fields [68, 152, 46]. Particularly, Madni et al. proposed

a conceptual adaptive CPHS where humans and CPS can mutually adapt and learn from

each other to enhance cognition [94]. While pointing out the role of CPS and human in the

adaptation process where humans serve as supervisors to assess CPS behaviors [94], they

emphasize the need to achieve automated adaptation without human supervisors. In this

paper, we design and implement such virtual supervisors for ML-based CPHS to adapt by

observing ongoing HMIs from different operation aspects.

5.3 ICPHS Methodology

The proposed ICPHS focuses on scenarios of interactive manufacturing work, where multiple

people and machines are involved. In Fig. 5.1, three phases for ICPHS design framework
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Figure 5.1: The ICPHS framework illustrating a conceptual ML design and learning workflow
for manufacturing interaction scenarios.

are illustrated, where phase 1 is a static conceptual design to develop HMI models, phase 2

is a deployment phase to acquire dynamic information from HMI to self-adapt ML models

with minimum human intervention, and phase 3 is application development to align self-

adapted models to opportunities for manufacturing predictive intelligence. Several types of

human roles are involved in the ICPHS to work collaboratively for a comprehensive evolving

ICPHS, namely system designers who are data and computer scientists from data service

providers, and onsite workers including operators, engineers and technicians from manufac-

turers. System designers undertake the tasks to design and implement the data service with

adaptive learning software. Workers interact with machines to conduct equipment operation

for production and provide necessary floor information for system designers.

Phase 1 is to accomplish a static goal of data-driven management of any generic manufac-

turing equipment by using known information from machines and human experience before

deploying sensors to acquire signals from machines and humans. This ML design princi-

ple allows extended and scalable applications to various manufacturing fields. In a factory,

workers generate human activities (HA) when interacting with machines to operate, inspect,

or repair in the form of physical movements (e.g., hand, foot, body) and functional objec-
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tives (e.g., running recipe, developing SOP, troubleshooting). Based on such knowledge and

machine manuals, possible HA gestures and orders are estimated by system designers and

modeled in the form of logic state transition. An unformed HA state detector using a vision-

based ML model ModelH with data from visual cameras is then built from selecting public

dataset resembling estimated HA. Similarly, machines are composed of multiple functional

components (e.g., heating, vacuum pumping, spindle) and generate machine activities (MA)

induced by human interactions in the form of logic operation sequences and functional tasks.

With machine manuals and basic engineering knowledge, MA are modeled as logic state

transitions and the component operation sequence can be inferred. An unsupervised MA

state detector such as energy state detector (ESD) with data from power meters, which

can be regarded as a naive classifier for energy events, is built leveraging instrumentation

principles of machine components [116]. With HA and MA models as well as inferred oper-

ation sequence, an initial H-M correlation model Φ based on the temporal relationship and

causality between HA and MA is built as the foundation of adaptive learning mechanism.

For example, a machine component is turned active because of a worker’s operation towards

a control panel a few moments earlier. Such correlation can be used to design the data

self-labeling mechanism to achieve adaptive learning. When phase 1 completes, sensors and

initial ML software are deployed at the manufacturing floor to proceed to phase 2.

In phase 2, real time video and power data are accessible through a GUI to be analyzed.

The HMI time sequence events are analyzed by field engineers to derive SOP and temporal

information for each machine. The analyzed information is transmitted to remote system

designers to refine Φ and start the automated adaptive learning. Note that for mature man-

ufacturing processes, prior developed SOP can be readily accessible at phase 1 to ease the

design of Φ and field engineer involvements. The first 3 steps at phase 2 can be iterated sev-

eral times to refine and evaluate Φ. Now, the refined adaptive learning software is ready for

tracking HA and MA and collecting real time data without the need of human intervention.

During dynamic HMI, information retrieval from two sides can be defined as main channel
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and causality observing channel, and their roles can exchange depending on tasks. Main

channel is defined as the channel to optimize its performance through self-labeling. The

causality observing channel is defined as the channel that validates events happening on the

other side involved in HMI to generate monitor signals for annotating main channel data.

Initially, the machine side is regarded as a causality observing channel to feed power signals

of individual machine to its ESD to detect current component states (e.g., on/off) of a single

machine. Based on Φ, the system knows mappings between machine state transitions and

HA with temporal sequences and responses, which are leveraged to label the corresponding

HA segment with the machine state transition information. After some duration of data

self-labeling and collection, a self-labeled HA dataset DH is generated to retrain ModelH for

better HA recognition accuracy. In addition, the self-labeling based on machine state tran-

sition can capture HA differences regarding various machine/component operation, enabling

ModelH upgrade to recognize more HA classes with more fine-grained DH . After several

rounds of adaptive retraining, a well-adapted ModelH is established. Note that this down-

ward branch for optimizing ModelH can be accomplished several times independently for

multiple machines to derive ModelH and DH for each machine. Similarly, the well-adapted

ModelH can serve as the estimator of the causality observing channel to annotate the main

channel MA because ModelH is able to recognize individual HA for operating a specific

machine component. As a result, a self-labeled MA dataset DM is established.

In phase 3, applications aligned to manufacturers’ interests can be designed with self-labeled

datasets and ML models on behalf of humans and machines. Novel ML models, such as

ModelM or advanced ModelH , can be designed or redesigned based on applications.

To achieve the adaptive learning, the correlation between humans and machines needs to be

identified and modeled as Φ. Different from human daily activities, manufacturing worker

activities generally follow assigned task schedules and machine operation manuals or pro-

cedures (i.e., SOP), which constrain the degrees of freedom of HA and MA and thus ease
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Figure 5.2: An illustration of HA and MA causal temporal relation for traceback.

model design. For operating a machine, the SOP defines a sequence of HA to follow, re-

sulting in a sequence of MA. The SOP is modeled as a series of events, where each event

contains information about location x, time t, worker state v, and machine state q. Finite

State Machines (FSM) are used to model HA and MA as states and their collaborative state

transition function δ as

qi+1 = δm(qi, vi+1, sopi+1), q ∈ Q, v ∈ V (5.1)

vi+1 = δh(vi, qi, sopi+1) (5.2)

where the machine and worker state space Q and V are predetermined from SOP, and index

i represents steps. Superscript h and m indicate human (worker) and machine respectively.

Q consists of two parts, Qreg and Qir, respectively representing normal operational states

and irregular states such as malfunctions. V involves regular worker states and predefined

worker states indicating observed irregular machine states. Eq. (5.1) and Eq. (5.2) define

the machine (or worker) state transition with feedback from worker (or machine) state and

predefined SOP respectively. Eq. (5.1) and Eq. (5.2) implicitly define vi is the cause occurred

earlier at thi and qi is the effect occurred later at tmi as a process initiated by a worker.

To capture and perceive information from HA and MA, the information leakage during

human or machine state transition is critical to identify state differences and characterize
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current states. HA observations oh during worker state transitions can be modeled as

ohi+1 = F (vi → vi+1, vi+1) +Nh (5.3)

where F is the HA observation function depending on sensor type, and Nh represents a

random variable denoting the noise independent of F . Given oh, ML models can be designed

to infer the worker state as written by

v̂i+1 = F̂ ((ohi+1−sh , ..., o
h
i+1), α) (5.4)

where F̂ is a trained ML estimator for HA, α is the learnable parameter, s is window size for

input data, and v̂ is the inferred worker state. Likewise, MA observation om during machine

state transition and statistical or ML enabled MA estimator (Ĝ) can be written as

omi+1 = G(qi → qi+1, qi+1) +Nm (5.5)

q̂i+1 = Ĝ((omi+1−sm , ..., o
m
i+1), β) (5.6)

where G is the MA observation function, q̂ is the estimated machine state, and β is the

learned parameter of Ĝ. Eq. (5.6)) defines a general formula for inferring (i+ 1)th machine

state from MA observations that can be multi-sensor fusion.

Either HA or MA can be a main or causality observing channel. For example, a worker is

main channel and a machine is causality observing channel. With the SOP being executed,

q varies through information exchange with the worker. With q̂i+1 estimated from Ĝ and

knowing the last machine state q̂i, v̂i+1 can be determined from Eq. (5.1). Consequently,

the state transition correlation can empower the self-labeling of main channel data. An

essential design parameter is the temporal relationship between human and machine state

transitions as they do not always occur concurrently. Fig. 5.2 shows an example that if the

interaction starts at time 0, the machine state change will be recognized at time TI + Tres,
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where TI is interaction duration and Tres is response time. The temporal relation is to

start from TI + Tres to pinpoint the interaction period (0, TI). To adequately cover more

informative data segment due to time variations, two values a and b, representing respectively

one-step and two-step backtracing step sizes, need to be predetermined. Since TI and Tres

normally follow Gaussian Distributions, selecting a and b as the mean can derive a minimum

expectation of duration mismatch.

5.4 Case Study in Semiconductor Fabrication

We describe a case study for the ICPHS validation in a multi-user semiconductor fabrica-

tion facility. Two types of machines, i.e., automated with PLC and manually controlled

without PLC, are selected. The former’s process can automatically transition to the next

step without HMI according to preset recipes and SOP, while the latter requires additional

HMIs for machine functional component state changes. A PlasmaTherm tool with PLC and

a manually controlled E-Beam tool are selected. A generalized SOP for them is illustrated

in Table 5.1. Each machine is equipped with multiple functional components and requires

one worker to operate through interfaces.

Fig. 5.3(a) describes the complete real time data processing pipeline. A webcam and a

three-phase power meter are deployed for each machine to collect real time videos of machine

surroundings as main channel and power signals of the entire machine as causality observing

channel. The video stream is partitioned into segments and fed into a two-step cascaded

ML models as HA estimator to recognize actions that are then associated with a given

machine based on the spatial consistency. Meanwhile, the power signal is processed to

identify machine component states. A correlation and confirmation module is included to

compare the two information streams and complete the self-labeling. Important modules are

explained as follows.
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Step
PlasmaTherm E-Beam

Pump RF Heater Pump CNTLR Hoist E-gun

Verify OK on stby off on stby off off

Temp. set on stby on on stby off off

Vent on stby on on stby off off

Load on stby on on stby on off

Pump down low-vac stby on low-vac stby off off

Run process on on on on on off on

Purge/Vent on stby on on stby off off

Unload on stby off on stby on off

Pump down low-vac stby off low-vac stby off off

Table 5.1: A generalized SOP of PlasmaTherm and E-Beam in semiconductor fab with
component state transitions

5.4.1 HA: Worker Action Recognition

To preserve worker privacy in working environments, we apply OpenPose [21] as the first

step to extract skeletons of Body25 type with 15 joints excluding the head and foot joints.

To extract features and learn representations from graph-structured skeletons, GCN is ex-

plored extensively, including multi-scale GCN (MSGCN) for capturing multi-scale structural

features from non-local neighbors [88]. We modify the GCN with multi-scale connections

and the layer-wise structure is shown in Fig. 5.3(b).

A human skeleton, composed of joints and bones, is denoted as a graph G = (V , E), where

V represents a set of N nodes (joints), and E represents the edges (bones). A graph can be

represented by an adjacency matrix A ∈ RN×N and a feature tensor X ∈ RT×N×C , where T

is frame number and C is the channel number. The multi-scale connections can capture long-

range node features and are achieved by the k-th polynomial of A. The graph convolution at

layer l+1 is achieved by X l+1
t = ϕ(

∑K
k=0 A

kX l
tW

l
k), where ϕ(·) is the activation function and

W is the learnable weight matrix which is a 1× 1 convolution layer. This can be intuitively

understood as a spatially weighted aggregation of the neighbor node features. The temporal
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graph convolution (TCN) is achieved similarly along the temporal dimension.

Three MSGCN-TCN-TCN sub-modules are stacked to formulate a complete model with

pooling layers and fully connected (FC) layer at end. The number of channels of sub-module

is set to be 96, 192, 384. The number of training epochs is 65, and the learning rate is 0.05

initially with step degradation at epoch 45 and 55. Adam optimizer is used in the training

with weight decay of 0.0005 and batch size of 32.

5.4.2 MA: Energy Disaggregation

In [116], we illustrated a method to detect and classify power events and conduct unsuper-

vised energy disaggregation as ESD. The basic idea of energy disaggregation is to solve

an optimization problem by using power signatures of individual machine functioning com-

ponents to search for possible combinations and find the closest combined signal compared

with the actual aggregated signal. In this study the goal is to disaggregate the state transi-

tion of each component from main power signal. With the developed energy disaggregation

method, the component states can be classified in real time to assist the self-labeling of

worker actions.

5.4.3 Adaptive Learning Mechanism

The GCN learning process exemplifies the first two phases of ICPHS. During phase 1 before

deployment, selected public dataset is preprocessed to pretrain the model. Next, the pre-

trained GCN is deployed as part of the main channel estimator to start the adaptive learning

journey. When new machine state is detected, the response time for the specific machine

state transition is looked up to traceback videos saved in the buffer and to automatically la-

bel the video over that duration as interaction samples with state transition information. In
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Figure 5.3: (a) Data processing pipeline of the case study. (b) The layer-wise diagram of
the implemented GCN with a ReLu and BatchNorm layer after each MSGCN and TCN.
(c) The top shows examples of 5 viewpoints from NTU dataset and 1 realistic example of
PlasmaTherm case. The bottom illustrates the rotation and projection. Red, green, yellow
lines represent x, y, z axis. The left one is the raw 3D skeleton. At the right, the black
triangle is the viewing plane determined by three vertices. The two orthogonal black lines
represent x and y coordinates on the viewing plane. Blue skeleton is the one after rotation,
and the orange skeleton is the one after projection.

addition, a rule-based post-processing filter is designed to eliminate improper video samples.

The rules for improper videos are: 1) when including two or more people in the scene due

to the difficulty of selecting the main operator with minimum errors; 2) where the worker

position is out of pre-defined regions of interest (ROI) for interaction regions or no worker

is in the scene. The post-processing filter can further reduce the label noise enhancing the

learning performance. When there is a human activity located outside of ROI and the de-

ployed GCN recognizes it as non-interaction, this period of human activity is automatically

labeled as negative samples. Until self-labeled interaction samples accumulate to a certain

amount, the GCN model continues being retrained to improve detection accuracy with no

manual labeling. The retrained model is redeployed and retrained iteratively with additional

self-labeled samples until it converges or achieves good enough accuracy.
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5.4.4 Public Dataset Preprocessing

NTU-RGB+D 120 is a large-scale dataset including 120 human daily actions with 114,480

3D skeleton samples captured from five viewpoints [87]. Fig. 5.3(c) illustrates the viewpoint

discrepancy between NTU dataset and PlasmaTherm case. Current GCN models do not

generalize so well in this case. Hence a skeleton rotation and projection preprocessing to

convert 3D skeleton features to the 2D target domain is essential to augment the similarity

between pretraining and target dataset. Shi et al. provided a coordinate translation that

parallels the x axis to the vector from “right shoulder” to “left shoulder” and the z axis

to the vector from “spine base” to “spine” [123], which can unify the five viewpoints to be

identical facing towards +y axis as shown in Fig. 5.3(c). Next, the rotated skeletons should

be projected to a 2D viewing plane. Referring to Euclidean geometry, a plane in 3D space

can be determined by three points, and to do projection an origin ro = (ox, oy, oz) and two

coordinate axes defined by normalized vectors e1 = (ex1, ey1, ez1) and e2 = (ex2, ey2, ez2),

should be selected. Given a 3D point s = (sx, sy, sz), its projection on the 2D plane is

p = (p1, p2) where p1 = e1 · (s− ro) and p2 = e2 · (s− ro). A multiplication scaling factor is

used for the projected skeletons matching to the practical data.

5.5 Experiment Results

We evaluate the proposed system on PlasmaTherm and E-Beam to demonstrate adaptive

learning capability in ICPHS. To deliver more convincing results, every evaluation result

below is averaged over 20 trainings with different seeds.
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5.5.1 PlasmaTherm with PLC

The machine interface of PlasmaTherm is a keyboard with monitor. Machine operations are

done through interacting with the keyboard. We randomly select 766 samples from NTU

dataset class 30 (typing keyboard) as positive (interaction) samples and 766 samples from

class 08, 12, 29, 33, 68, 96 as negative samples, and name it Pre-NTU dataset. Pre-NTU

dataset is then preprocessed by the rotation and projection method. To provide validation

results and achieve a fair evaluation, we build a test benchmark dataset for PlasmaTherm

with 1346 video clips (693 positive and 653 negative samples) collected from the realistic

viewpoint. The test set includes various interaction samples (keyboard operations, and

special pump operations to be addressed below) and non-interaction samples (walk around,

sit, stand, inspect, take notes, log in another computer, check cell phone) performed by 2

people. Each video in test set is 3 second and resampled to 10 fps. OpenPose is applied locally

on the test set to extract 2D skeletons. The evaluations with performance metric of precision,

recall, F1 score, and accuracy are done on the benchmark test set. During deployment, the

video streaming rate is set as 10 fps. The response time for different machine state transition

and the interaction duration are derived from the average of several test measurements.

We first compare the initialization performance pretrained with Pre-NTU before and after the

rotation and projection as illustrated in Table 5.2. Suffix p indicates preprocessing applied

and the first column (i.e., 766, 100, ...) represents the data amount per class. The viewing

plane for projection is selected based on the actual camera placement where the intersects

with -z axis, +y axis, and -x axis are 45◦, 25◦, and 65◦ respectively. The pretraining data

without preprocessing are extracted from color-XY attribute in NTU dataset. Before and

after rotation and projection, the accuracy improves by 17.5%, which demonstrates the

effectiveness of the preprocessing technique. In addition, we vary the number of Pre-NTU

data to learn how it affects the initial detection accuracy since some applications can have

initial accuracy needs, and different number of pretraining data can be chosen accordingly.
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As noted in Table 5.2, more public pretraining data do not always lead to better results since

the model tends to overfit on the pretraining data distribution resulting in a worse model

generalization.

From Apr. 8, 2021 to May 21, 2021, the system was deployed on PlasmaTherm to auto-

matically collect and label positive and negative samples. In total 139 self-labeled positive

samples are collected. Among them, 58 samples are collected because of pump operations,

5 are related to heater operations, and the rest 76 are due to RF operations. For evaluation

purpose, we manually inspected the self-labeled samples and found that 23 out of the 76 RF

samples were labeled at a wrong timing due to variations of the on-set RF operation response

time. As explained in Section 5.3, the response time variation can cause the self-labeling

mechanism failure in capturing data at a deviated timing. With the proposed automated

post-processing filter, 22 mis-labeled samples are filtered out (117 positive samples left) since

no person in the scene or people out of ROI. The label error rate for positive samples is re-

duced to 0.85%. Correspondingly, the same number of negative samples (no mis-label) are

randomly selected from self-labeled negative collection automatically.

Dataset Precision Recall F1 score Acc
766 0.648 0.887 0.738 67.1%
766p 0.829 0.910 0.860 84.6%
100p 0.843 0.912 0.869 85.7%
200p 0.865 0.926 0.889 88.1%
300p 0.852 0.952 0.897 88.7%
400p 0.840 0.965 0.895 88.1%
500p 0.834 0.900 0.858 84.9%

Table 5.2: Pre-NTU pretraining results in PlasmaTherm case

To demonstrate the adaptive learning capability, the self-labeled samples are grouped from

Apr. 8 to Apr. 22 (39 samples per class), Apr. 8 to May 6 (78 per class), and Apr. 8 to May

21 (117 per class) in order to evaluate the adaptability evolution with more data feeding in

and model retrained. We retrained the model based on the one pretrained on 100 samples as

it had achieved a relatively good initial accuracy with less possible overfitting. Table 5.3 lists
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Method Dataset Precision Recall F1 score Acc
Ours 100p (initial) 0.843 0.912 0.869 85.7%
Ours 100p+39 (04/22) 0.946 0.980 0.962 96.0%
Ours 100p+78 (05/06) 0.956 0.980 0.968 96.6%
Ours 100p+117 (05/21) 0.981 0.985 0.983 98.2%
Ours 100p+139 (unfiltered) 0.959 0.967 0.962 96.1%
Ours 766p+117 0.886 0.971 0.925 91.8%

K-means 100p+117 (05/21) 0.592 1 0.744 64.5%
P&C [131] 100p+117 (05/21) 0.858 0.942 0.899 89.0%

CrosSCLR [82] 100p+117 (05/21) 0.879 0.964 0.919 91.3%

Table 5.3: Adaptive Learning Results for PlasmaTherm case

the evaluation results after adaptive retraining. With more self-labeled data, the accuracy

improves gradually. With full 117 self-labeled data, the detection accuracy is 12.5% higher

than the initial, and it is also 9.5% higher than the highest pretraining accuracy. This

demonstrates that the proposed adaptive learning mechanism can improve its performance

and is better than using more public dataset to pretrain. A retraining experiment is also

run on the full 766 pretraining dataset with the 117 self-labeled data. It shows a relatively

worse performance with a 6.4% accuracy degradation compared to the 100 pretraining case,

but shows an accuracy improvement of 7.2% over the initial. This is attributed to the ratio

between the amount of pretraining data and that of self-labeled ones. Even though with the

rotation and projection preprocessing, the data similarity between public and practical data

is improved and consequently the accuracy improves, the public dataset is still less effective

than the self-labeled data. More pretraining data with different data distribution tend to

slow down the convergence of adaptive learning. In addition, an experiment to retrain the

model with unfiltered self-labeled samples is conducted. With noisy labels, the adaptive

learning can work to improve accuracy by 10.4%, which is 2.1% worse than the retraining

case with cleaned data.

Furthermore, we compare our method with recent unsupervised methods as shown in Ta-

ble 5.3 since our solution does not require manual labeling. While [131] and [82] are unsuper-

vised, they require a simple supervised classifier on top of their unsupervised representation
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Figure 5.4: Example images of actions towards PlasmaTherm (row 1-3) and E-Beam (row 4-
7) by different users captured and labeled through the self-labeling mechanism. Each row’s
action type is marked in red text where row 6 is split for two action types. Red circles
indicate the E-Beam panel/switch locations. Green circle highlights the pump push-down
action.

learning to classify actions. Our method also outperforms them because of the self-labeling

supervision.

Beyond the above results, we found that even though all the typing keyboard actions are

categorized to be the same interaction class, there is minor difference between the action to
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Overall
Acc

Pump
Precision

Keyboard
Precision

Non-interaction
Precision

91.4% 0.863 0.960 0.959

Table 5.4: Three-class model performance metric

start pump and RF/heater respectively on PlasmaTherm as illustrated in Fig. 5.4. Users

tend to put their left hand on the chamber handle when triggering the pump action because

the chamber needs extra force to be closed tightly, which is also required by SOP. With the

machine state transition determined, this feature can be differentiated and labeled, revealing

the potential to reach more fine-grained action recognition. An experiment is conducted to

demonstrate this potential. Among the cleaned 117 self-labeled positive samples, 58 samples

belong to pump operation and 59 samples (with 1 wrong label) belong to RF/heater opera-

tion. 58 non-interaction samples are randomly selected to build a retraining dataset with 3

classes. The 3-class model is trained based on a model trained on 100p+117 data with the

FC layer replaced. The test set used above includes 199 pump operation samples, and we

further collected 189 pump-related samples (stand/sit to push down, use one or two hands to

push down) to build a more comprehensive test set (388 pump-related interactions, 494 key-

board interactions, and 653 non-interactions) to evaluate the 3-class model. Table 5.4 lists

the overall accuracy with class-level precision, illustrating that the proposed adaptive learn-

ing mechanism can achieve class incremental learning with self-labeled samples to classify

interaction types related to different machine components without extra labeling.

Furthermore, the worker action recognition is built with a cascaded ML model. The first step

outputs, 2D skeletons, are noisy due to missing joints, wrong joint locations and jitters. Noisy

data is common in practical skeleton-based action recognition but most research in this field

focuses on training with intact skeletons. The first-step ML model can be replaced by other

2D or 3D pose estimation applications, such as Microsoft Azure Kinect, but the noisy data

issue can persist. The proposed adaptive learning method uses noisy skeletons after score-

based naive filtering to adaptively retrain the GCN. Since in practical industrial applications,
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camera locations and surroundings do not change significantly, the pose estimation errors

tend to be consistent. For example, in this study parts of the left arm are missing in some

frames because of occlusion. By injecting noisy data for training, GCN can adapt to the

noisy data and generate right results. It is significant because our approach naturally embeds

the noisy data training into the adaptive process targeting this practical issue.

5.5.2 E-Beam Without PLC

After the successful demonstration on a PLC controlled machine, next we show the results of

a manually operated E-Beam machine. The machine interfaces of the four E-Beam functional

components involve multiple control panels and switches located at different positions as

shown in Fig. 5.4. A manual machine typically requires worker interactions using various

interfaces at different locations, complicating the interaction recognition. Moreover, workers

tend to interact with the interfaces with other still gestures, i.e., stand, sit, squat or bend,

and interactions driven by hands need to be recognized with these various still gestures.

From NTU dataset, 500 samples are randomly selected from class 69, 70 as positive samples,

and 500 samples from class 8, 9, 35, 92, 96 are used as negative. To adapt to the actual

viewing angle, the projection plane is chosen as 10◦ and 80◦ for intersects with +y axis and

+x axis, respectively, and parallel to z axis. We collect 260 interaction samples (with all the

interfaces in different still gestures) and 260 non-interaction samples (sit, stand, manipulate

materials, clean chambers, watch chamber through windows, and operate other adjacent

machines) performed by 1 worker as test set for evaluation. The video streaming rate is 6

fps. Each sample in the test set is 5 second and resampled to 6 fps. The response time for

E-Beam state transition and the interaction duration are derived similarly from mean values.

The adaptive learning system is deployed from Apr. 8, 2021 to May 21, 2021 to collect and

self-label data. There are 211 positive samples (45 related to pump, 48 related to E-gun,
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Dataset Precision Recall F1 score Acc
500 0.560 0.866 0.656 57.5%
500p 0.800 0.699 0.736 75.2%

500p+141 (05/21) 0.893 0.802 0.843 85.1%

Table 5.5: Adaptive Learning Results for E-Beam

Figure 5.5: In (a), an aggregated power signal of PlasmaTherm and E-Beam including 7
components is given. Power signals for active machines are labeled in red circles. In (b), the
action classification results are given for the two machines. 1 means interaction, 0 means
non-interaction, and -1 indicates no worker in the scene.

75 related to hoist, and 43 related to controller) collected and labeled. Among them, 16

samples are mis-labeled due to the response time variation. In addition, a lot of E-Beam

usages (67 samples including 2 mis-labeled) involve tool training of a user by staff in the

scene. By applying the post-processing filter, 70 samples are automatically eliminated from

the self-labeled data, where 11 improper samples cannot be removed due to people overlap

(7 samples) or ROI selection (4 samples) in our monocular camera setup. After filtering,

there are 141 self-labeled positive samples left and correspondingly 141 self-labeled negative

samples (no mis-label) are randomly selected. The label noise level for self-labeled positive

samples is 7.8%.

Table 5.5 lists the evaluation results on E-Beam. Comparing the performance before and after

the rotation and projection, the accuracy significantly improves. With self-labeled samples

to retrain the model, the model accuracy improves by 9.9%. This result further validates

the feasibility of the proposed adaptive learning framework. It is worthwhile noting that
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the accuracy improvement in PlasmaTherm case is better than in E-Beam. Several reasons

could explain the difference. Firstly, the noise-level after post-processing filter in E-Beam

case is much higher than that in PlasmaTherm, and most of the noisy data come from two-

people overlap scenario. One way to improve is to apply camera triangulation to identify

overlap issues. Moreover, it is noted before post-processing filter that the mis-labeled ratio

of E-Beam case is less than that of PlasmaTherm case. This is because the response time

variation of manual machines comes from hardware circuitry response while that of PLC

machines is determined by both hardware and software. PLC software is designed to define

a stabilization period for process parameter check, introducing more variation on response

time than hardware circuit. It is of interest to note that the variation in response time can

form a new class of learning for determining PLC machines’ functional components operation

conditions over time as a diagnostic tool. Secondly, E-Beam interaction interfaces are more

diverse and complex than PlasmaTherm, making it a more challenging task. This can be

attributed to the intrinsic differences between PLC machines and non-PLC machines. The

third reason is that the pretraining accuracy baseline of E-Beam is not as high as that of

PlasmaTherm, suggesting a requirement for a manual operated machine to collect more

self-labeled data to reach comparable accuracy.

As we have successfully demonstrated the downward branch of labeling worker actions using

machine states, worker actions can be used as the context of machine state transition in a

multi-machine environment to assist energy disaggregation, which is the upward branch in

ICPHS phase 2. Fig. 5.5 illustrates a realistic example based on the experimental results. We

can clearly observe dense worker interactions for specific machine during its state transition,

which demonstrates the potential to achieve reverse self-labeling.
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5.6 Discussion

Compared with adaptive ML studies relying on concept drift detection, this study leverages

the unchanged causality in different domains. As argued by Schölkopf [121], the inner causal-

ity can stay unchanged, while data distributions can vary among different domains for a ML

task. Specifically, there are several performance benefits in the proposed system compared

with conventional supervised ML of action recognition and methods of concept drift detec-

tors. They are: 1) the adaptability ensures successful interaction recognition for unforeseen

cases such as new workers and new machine interfaces; 2) while some real-world drifts are

hard to predict, the unchanged causality provides a more reliable way to automatically an-

notate data; 3) the model adaptation and class increment are achieved simultaneously using

the same system.

As the ICPHS being successfully demonstrated, several potential applications for workers

and machines are proposed.

Application 1: A real time ML model for worker action recognition can be explored to prevent

human operation mistakes, such as missing or incorrect operations. Moreover, the system

can be utilized as a virtual supervisor during new worker hands-on training to reinforce new

worker’s learning.

Application 2: A real time ML model for machine activity recognition can investigate ma-

chine components’ power variation over time, which can be used as a machine prognosis

tool for identifying issues such as pumping speed decrease due to decaying pump efficiency.

Furthermore, HMI detection offers opportunities to improve machine energy efficiency by

introducing sleep mode operation during machine idling.

Moreover, the adaptive learning method enables model training at the edge by relaxing

requirements of data storage. The static training by large datasets can be replaced by a
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gradually self-labeled dataset of phase 2 at edge platforms. Additionally, this study devises

a novel method to self-label data using causal relationships, which is not constrained by

specific ML models. For instance, extra cameras can be installed to focus on specific regions

of control panels to recognize the operated buttons and hand/finger movements by other

ML models. The proposed method can work in this case to dynamically self-label data and

adapt the ML models.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation targets at a critical problem that slows down the spreading of AI in many

traditional fields. The problem is how to reduce the cost of applying AI in terms of man-

ual data collection and annotation and how to let deployed AI models adapt to the local

data distribution shifts autonomously. This problem significantly raises the barrier of AI

adoption and constrains AI’s popularity in many traditional industries. Different from con-

ventional algorithmic methods to improve ML adaptability, this dissertation transforms its

angle to a system level and first proposes to use the interactive causality and its learnable

causal time lag as a means to automatically associate real-time data streams for adapting

ML models to local data distributions. This dissertation presents and studies the new idea

in a comprehensive way from theory, methodology, to real-world application. Dynamical

system theory is utilized to prove that the proposed interactive causality based self-labeling

method is more robust on data shifts compared to traditional semi-supervised learning based

on pseudo labels generated by trained models. Theories regarding complex causal structure
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for self-labeling are proposed and certain simulations are provided to demonstrate the effec-

tiveness. From methodology perspective, a comprehensive framework utilizing the concept

of ontology and knowledge graph is presented to complete the questions of where causality

can be found and modeled, how to select interaction and observing channels, and how to

proceed with self-labeling, and how to gain new knowledge and revise knowledge graphs. It

emulates how humans build up new knowledge for a domain. A real-world study in semi-

conductor manufacturing has shown superiority of the proposed self-labeling to recognize

worker machine interaction adaptively. Overall, we believe the proposed idea opens a new

chapter in the area of adaptive AI and can be referenced by other researchers to explore

deeply in this direction.

6.2 Future Work

The future directions of this interactive causality based adaptive learning can be summarized

into three aspects: theory, methodology, and application. From the theoretical perspective,

this dissertation only provides a strict proof in 1-d case with defined systems of differential

equations. A future direction is to extend the proof to n-d with more complex and general

interaction conditions. For n-d dynamical systems, each DS is internally coupled among its

dimensions. Two interacting DS are also coupled along certain dimensions as interaction

conditions. The interactions of n-d DS are more complicated to be studied in self-labeling

scenarios. Currently, the derivation needs an integration first to solve the system of differen-

tial equations and then compare the relative relationships of the four methods (forward and

backward self-labeling, fully supervised, and semi-supervised.) A future direction is to utilize

some mathematical tools to bypass the integration step as integrals of n-d DS is challenging.

Additionally, a more comprehensive comparison between self-labeling and semi-supervised

learning can be accomplished. Another interesting topic to be explored is to theoretically
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quantify the impact of inaccurate interaction time inference and inaccurate effect state de-

tector on the model learning. This quantification will need to be integrated with generic

ML learning theory and be used as a reference for the design of interaction time model and

effect state detector.

For methodology, an influential aspect for the future is the exploration of the usage of

knowledge graph in new knowledge acquisition. The new knowledge can represent found

anomalies during deployment. This dissertation provides one way to do so by combining

existing unsupervised pattern recognition and causal discovery methods. A future idea in

this topic to mimic how humans gain new knowledge by utilizing existing knowledge to

ask questions. As we grow up, this is always the fundamental way we learn the world via

interaction. Therefore, it is expected to develop a method of expanding knowledge graph by

asking questions. Using ChatGPT as an example, most of the time human users ask questions

to GPT and expect for answers. Very limited times ChatGPT will ask clarifications to human

users. Thus asking questions is an effective means to gain knowledge. A pathway has been

conceived based on the interactive causality methodology to expand KG. Initially, we still

expect humans with different roles in different application scenarios, such as technicians in

manufacturing scenarios, to ask questions to the domain KG based on users experience and

knowledge. An algorithm with a graph search engine can be designed to explore the existing

KG for related nodes based on users questions. These found nodes can be utilized by users to

develop solutions for the asked questions. The developed solution can potentially introduce

new nodes represented by new data streams that can be added to the KG and used for future

self-labeling purpose. More advanced, this entire pathway can be automated and initiated

by AI asking questions.

In terms of applications, the proposed self-labeling has great potential in traditional fields

with limited datasets and AI expertise such as smart manufacturing and precision agricul-

ture. The multimodal nature of cyber physical systems (CPS) paves the way to explore
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pervasive applications of self-labeling. The rich multi-modal signals in CPS can be utilized

for obtaining additional observing channels. CPS involve various interactions among the

elements inside where causation can easily be found as additional observing channels. Many

manufacturing processes, such as welding and assembly, can be enhanced with adaptive AI

perception system by extracting and modeling the causation among these processes. For ex-

ample, an adaptive AI system can be designed to recognize the interactions occurred during

manual welding. The interactions involve how hands interact with welding guns (machines)

and filling rods (materials) and how welders (power level, temperature) interact with mate-

rials. Self-labeling can be applied on these interactions to enhance AI perception to avoid

human errors. In assembly, the interaction among operators, robots, and parts can be stud-

ied for self-labeling to achieve more efficient human robot collaboration with AI-enhanced

intention recognition capability.

Another field with great potential is in autonomous driving. The self-labeling technique can

be applied to enhance driving intention recognition with adaptability for many unseen situ-

ations. For example, certain vehicle behaviors can be self-labeled as intentions (causes) for

other perceivable effects. In addition, as this self-labeling requires data streams and known

causal graphs, there is a need to establish a standard metric and benchmark datasets shared

with the community. The required dataset is different from conventional static datasets such

as image recognition benchmarks and currently there is no such a public dataset available.

Therefore it is expected that a benchmark from a typical application scenario in CPS can

be established for examining various self-labeling algorithm development.

Additionally, for many of these CPS applications, a key is to model the domain knowledge

and extract causal graphs of interactive events used for self-labeling, which can potentially be

facilitated by large language models to summarize causality from inputs of natural languages.
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[71] E. Kaasinen, F. Schmalfuß, C. Özturk, S. Aromaa, M. Boubekeur, J. Heilala,
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[166] Álvaro Segura, H. V. Diez, I. Barandiaran, A. Arbelaiz, H. Álvarez, B. Simões,
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