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Chaotic Dynamics of Inner Ear Hair 
Cells
Justin Faber  1 & Dolores Bozovic1,2

Experimental records of active bundle motility are used to demonstrate the presence of a low-
dimensional chaotic attractor in hair cell dynamics. Dimensionality tests from dynamic systems theory 
are applied to estimate the number of independent variables sufficient for modelling the hair cell 
response. Poincaré maps are constructed to observe a quasiperiodic transition from chaos to order with 
increasing amplitudes of mechanical forcing. The onset of this transition is accompanied by a reduction 
of Kolmogorov entropy in the system and an increase in transfer entropy between the stimulus and the 
hair bundle, indicative of signal detection. A simple theoretical model is used to describe the observed 
chaotic dynamics. The model exhibits an enhancement of sensitivity to weak stimuli when the system 
is poised in the chaotic regime. We propose that chaos may play a role in the hair cell’s ability to detect 
low-amplitude sounds.

The auditory system exhibits remarkable sensitivity, for it is capable of detecting sounds that elicit motions in the 
Å regime, below the stochastic noise levels in the inner ear1. Fundamental processes that enable this sensitivity 
have still not been fully explained, and the physics of hearing remains an active area of research2.

Mechanical detection is performed by hair cells, which are specialized sensory cells essential for the hear-
ing process. They are named after the organelle that protrudes from their apical surface, and which consists 
of rod-like stereovilli that are organised in interconnected rows. Incoming sound waves pivot these sterovilli, 
modulating the open probability of mechanically sensitive ion channels, and thus transforming motion into ionic 
currents into the cell3,4. In addition, hair cells of several species exhibit oscillations of the hair bundle, in the 
absence of a stimulus5,6. These oscillations were shown to violate the fluctuation dissipation theorem and are 
therefore indicative of an underlying active mechanism7,8. The innate motility has been proposed to play a role in 
amplifying incoming signals, thus aiding in the sensitivity of detection. While their role in vivo has not been fully 
established, spontaneous oscillations constitute an important signature of the active processes operant in a hair 
cell, and provide an experimental probe for studying the underlying biophysical mechanisms6.

The dynamics of an active bundle have been described using the normal form equation for the Hopf bifurca-
tion9,10. Several studies have furthermore proposed that a feedback process acts on an internal control parameter 
of the cell, tuning it toward or away from criticality11,12. With the inclusion of dynamic feedback, the theoretical 
models required three state variables, a dimension that is sufficient to support a chaotic regime, according to 
the Poincaré-Bendixson theorem. Numerical simulations indeed predicted a small positive Lyapunov exponent, 
indicative of weak chaos in the innate bundle motion12. Another numerical study that explored a 12-dimensional 
model of hair cell dynamics showed the presence of chaos and proposed that the sensitivity of detection to very 
low-frequency stimuli would be optimal in a chaotic regime13.

The presence of chaos may help to explain the extreme sensitivity of hearing, as it has been shown in nonlinear 
dynamics theory that chaotic systems can be highly sensitive to weak perturbations14. In the present manuscript, 
we therefore explore experimentally whether innate bundle motility exhibits signatures of chaos15. Since estab-
lishing the dimensionality of the system is crucial for accurate modelling of this remarkable mechanical detector, 
we apply a dimensionality test to estimate the number of state variables required to describe the dynamics of an 
auditory hair cell. Further, we examine the effect of an applied signal on the chaoticity of bundle motion. For this 
purpose, we construct Poincaré maps of the oscillator, subject to varying amplitudes of external forcing, and test 
for signatures of torus breakdown. We quantify the degree of chaos by computing the Kolmogorov entropy asso-
ciated with the spontaneous and driven oscillation of a hair bundle. As a measure of the sensitivity to external per-
turbation, we compute the transfer entropy from the signal to the oscillatory bundle. Finally, we present a simple 
theoretical model that reproduces the quasiperiodic and chaotic dynamics that were observed experimentally. We 
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use the theoretical model to demonstrate that a system poised in the chaotic regime shows an enhanced sensitivity 
to weak stimuli.

Results
Dimensionality Test. A useful technique for estimating the dynamical dimension, dL, of a time series relies 
on the reconstruction of the phase space using delayed coordinates. It has been shown that this delayed-coordi-
nate map from the original dL-dimensional smooth compact manifold M to dE  is diffeomorphic, provided that 
dE > 2dA, where dA is the box-counting dimension of the original attractor, and dE is the embedding dimen-
sion16–18. Frequently, a lower embedding dimension is sufficient to fully unfold the attractor, but it is necessary 
that dE ≥ dL

19,20. In finding the optimal embedding dimension, we set an upper bound on the dynamical dimen-
sion of the original dynamics. From the original time series x(t), we construct the vector,

τ τ τ= + + ... + −X x t x t x t x t d[ ( ), ( ), ( 2 ), , ( ( 1) )], (1)E
��
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where tn is the time of the nth observation. These unit vectors point in the direction of local flow on the attractor. 
For deterministic systems, neighbouring unit vectors are nearly parallel if the attractor is densely sampled, and if 
the time series is not dominated by stochastic processes. The flow therefore becomes smooth when the embed-
ding dimension is high enough to fully unfold the attractor. The smoothness of this reconstructed phase space can 
be quantified by finding the average angle that each unit vector (Equation 2) makes with its nearest neighbour19,22. 
Starting with one embedding dimension, we calculate the average angle among all unit vectors, then increase the 
embedding dimension, and repeat the calculation. The average angle either plateaus or reaches a minimum when 
using the optimal embedding dimension. The latter case arises when stochastic processes continue to perturb the 
smoothness in higher dimensions, after the deterministic component has been fully unfolded, thus leading to a 
gradual increase in the average angle.

For a spontaneously oscillating hair bundle (Fig. 1), the phase space fully unfolds between three and six 
dimensions (Fig. 2a). As a control, we perform the same analysis on a surrogate data set, generated from the orig-
inal data as follows. We multiply each Fourier component by a random phase, creating a stochastic signal with the 
power spectrum and the autocorrelation function identical to those of the original data set. The surrogate data 
set does not yield a minimum similar to the original data, and the flow along phase space trajectories is much less 
smooth. We obtained consistent results using an alternate method, referred to in literature as the false nearest 
neighbour test23 (see Supplementary Fig. S3). Further, we performed a direct test for determinism22 and found 
a statistically significant difference between the hair bundle oscillation recordings and their surrogate data sets 
(see Supplementary Fig. S2). These results indicate that, although stochastic processes are present in our system, 
there is an underlying low-dimensional attractor. Further, up to six differential equations should be sufficient to 
describe the dynamic behavior of an active hair cell bundle.

Correlation Dimension. The fractal dimension of an attractor reflects the space filling capacity of its trajec-
tories. The correlation dimension provides a similar measure and is frequently used to estimate the fractal dimen-
sion of a system that is contaminated by noise24,25. The correlation dimension can never exceed the number of 
degrees of freedom of the dynamical system, and hence yields a lower bound. To measure the correlation dimen-
sion, the phase space is reconstructed using the delayed-coordinate technique (see section on dimensionality 

Figure 1. (a) Position of a driven hair bundle (top) and spontaneously oscillating hair bundle (bottom). The 
positive direction corresponds to the direction of channel opening. Red and black traces correspond to the 
stimulus waveform and the hair bundle response, respectively. The small red dots depict how the time intervals 
are calculated for the Poincaré maps. The schematic image of a hair cell (left) describes the bundle of stereovilli 
protruding from the cell body. The large red dot depicts the location of probe attachment to the hair bundle. (b) 
Reconstructed attractor of the hair cell system without stimulus, using delayed coordinates (τ = 20 ms).
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test). Hyperspheres are constructed that are centred on each of the phase space points. The correlation sum is 
defined as

∑≡ Θ − | − |
→∞ =

C r
N

r X X( ) lim 1 ( ),
(3)N i j

N
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where Θ is the Heaviside step function, and Xi
��

 is the vector from the origin to the location of the ith point in 
reconstructed phase space. The correlation sum is a function of the hypersphere radius, and for small values of r, 
should obey the power law,

∝ νC r r( ) , (4)

where ν is the correlation dimension. To extract ν from the data, we plot C rlog( ( )) versus rlog( ) and find the slope 
of the linear regime. We repeat this for an increasing number of embedding dimensions, until a plateau occurs in 
the values of ν. This plateau onset is expected to occur when the embedding dimension exceeds the correlation 
dimension26. This plateau never occurs for a time series dominated by stochastic processes. Integer values of ν 
imply a non-chaotic attractor while non-integer values of ν are indicative of a chaotic attractor.

In Fig. (2b), we observe a plateau in the correlation dimension, which occurs at a value between 4 and 5. A 
correlation dimension between 4 and 5 is consistent with our previous results, which indicate that hair bundle 
dynamics contain between 3 and 6 degrees of freedom. Further, the non-integer correlation dimension suggests a 
chaotic attractor in the hair cell dynamics. We compare these results to two controls. The first is a surrogate data 
set generated by shuffling the phases of the Fourier components of the raw data. The second is telegraphic noise 
generated by solving the Langevin equation in a quartic well potential (see Supplementary Fig. S1). The plateau 
in correlation dimension does not occur for either of these stochastic data sets. When a sinusoidal stimulus of 
approximately 10 pN was applied to the bundle, the correlation dimension showed a plateau near 2, consistent 
with torus breakdown.

Poincaré Maps. The Poincaré map provides a powerful tool for observing the dynamics of a nonlinear sys-
tem in a lower dimensional space. For a perfectly periodic signal, the map takes the form of a single point. A 
quasiperiodic attractor is one whose trajectories densely fill the surface of a torus. The Poincaré map then com-
prises a ring-like structure which represents a cross section of this torus. The occurrence of trajectories that fall 
off the surface of this torus indicates a quasiperiodic transition to chaos via torus breakdown27–31. Stochastic and 

Figure 2. (a) Average angle between neighbouring flow vectors as the embedding dimension is varied. The angles 
are calculated for a 1 minute recording of a typical spontaneously oscillating hair bundle, obtained at 1 kHz sample 
rate, resulting in 6 × 104 data points. Data were filtered with a low-pass filter to remove high-frequency, stochastic 
processes. The cutoff frequency was set to 100 Hz, sufficiently above the dominant frequency of the hair bundle 
(~20 Hz). To maintain a densely-filled phase space, data were not sub-sampled upon filtering. (b) Slopes of the 
extracted linear region vs. embedding dimension for estimation of the correlation dimension. All data sets plotted 
are of length N = 1.8 × 105, unless otherwise specified. “•” and “○” represent raw hair bundle data without stimulus 
and corresponding phase-shuffled surrogate data, respectively. “▲” represents raw hair bundle data during the 
torus breakdown, at stimulus amplitude of ~10 pN (N = 2.9 × 104). “☆” and “□” represent results obtained from a 
numerical simulation of a limit cycle with and without 10% additive noise, respectively. “⬦” represents a numerical 
simulation of telegraphic noise. The inset displays the linear regime, in a log-log plot, of the correlation sum vs. 
hypersphere radius, averaged over 100 reference vectors for embedding dimensions 2 (left) to 10 (right), computed 
for the raw hair bundle oscillation data.
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high-dimensional processes yield a cloud-like Poincaré map that has no internal structure. The presence of a 
chaotic attractor could therefore be obscured by the presence of noise.

Poincaré maps are most commonly constructed by strobing a measured time series at a constant rate32. 
However, this method would not be appropriate for analyzing hair bundle motion, due to the nearly bimodal 
distribution of bundle positions. As can be seen in Fig. (1a), a typical oscillation approximates a square wave with 
a varying local period. Hence, to construct Poincaré maps from our recordings, we follow an alternate approach, 
developed in33. We determine the discrete time series, [In], where subsequent elements are the time intervals 
between the steepest rising flanks of consecutive bundle oscillations. We then plot the nth versus the (n + 1)th 
point of the series to obtain the Poincaré map. As the series constitutes an observable in phase space, embedding 
theory can be applied18. Poincaré maps constructed for the motion of a hair bundle subject to sinusoidal stimuli 
at varying amplitudes of forcing are shown in Fig. (3).

At low stimulus amplitudes, and in the absence of stimulus, the Poincaré maps form a cloud-like structure. 
At higher stimulus amplitudes, a ring structure emerges from the cloud. Consecutive points within the sequence 
migrate around the edge of the ring, rather than crossing over the centre, indicative of a quasiperiodic behavior. 
The point density of this ring was found to be significantly distinguishable from surrogate data sets generated by 
randomizing the order of the elements in [In]. When the stimulus amplitude is increased above approximately 
15pN, the hair bundle follows the stimulus, causing the ring structure to collapse onto a point. This quasiperiodic 
transition was observed only when the stimulus frequency was below the resonance frequency of the hair bundle.

To test whether the observed quasiperiodic transition corresponds to torus breakdown, a line is drawn from the 
centre of the ring to each point in the sequence, and the angle formed by these lines and the abscissa is computed. This 
series of angles yields a circle map, θn + 1 = f(θn). When chaos arises from a quasiperiodic transition via torus break-
down, points fall off the surface of a 2-torus, since chaotic dynamics can be described by no fewer than three state var-
iables. As a result of the torus breakdown, the map, f, becomes noninvertible (multiple θn + 1 values for a given θn) and 
ceases to be a function34. As seen in Fig. (3b), the map is non-invertible for a weak stimulus. It approaches an invertible 
map when a stronger stimulus is applied to the bundle, indicating the disappearance of low-dimensional chaos.

We note that quasiperiodic transitions to chaos exist in multiple forms, reported in different dynamical sys-
tems. In our measurements of hair bundle motion, the ring structure in the Poincaré map and the non-invertible 
circle map together indicate the torus-breakdown route to chaos. The data therefore collectively show that a cha-
otic attractor exists in the weak stimulus regime, in which the Poincaré map exhibits a cloud. To test the robust-
ness of this analysis, we performed numerical simulations of purely stochastic systems, as well as non-chaotic 
systems with superposed stochastic processes, and verified that they do not show signatures of torus breakdown 
(see Supplementary Figs S9 and S10).

We repeated the above experiments at different frequencies of the imposed drive. For stimulus frequencies 
near the hair bundle’s natural frequency, the Poincaré maps transition directly from a cloud (chaos) to a point 
(limit cycle), bypassing quasiperiodic dynamics (see Supplementary Fig. S4). For stimulus frequencies above the 
hair bundle’s resonance frequency, the hair bundle exhibits a flicker between 1:1 and 2:1 mode-locking, over a 
range of forcing amplitudes (see Supplementary Fig. S6).

Complexity and Entropy. An additional test for the presence of low-dimensional chaos in a nonlin-
ear system can be obtained from measurements of the permutation entropy and statistical complexity35–38. 
Beginning with a time series, [x1, …, xN], we take sub-chains of length d, ([xi, …, xi + d − 1]). There are d! possible 

Figure 3. (a) Poincaré maps representing oscillations of hair bundles driven by a sinusoidal stimulus below the 
resonance frequency ( 2

3 0ω ω∼ ). Blue lines connect consecutive points in the series. The uncertainty associated 
with interval measurements is approximately 15 ms (standard deviation). (b) Angles formed by vectors from the 
centre of the ring to each point in the Poincaré map (inset). “ ” and “•” represent data obtained for stimulus 
amplitudes of 9 pN and 12 pN, respectively.
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permutations of amplitude ordering within the sub-chain (d! different states). A data set of length N produces N 
− (d − 1) sub-chains. The probability distribution, P, of these states is used to calculate the normalized Shannon 
entropy, H(P),

∑= −
=

=
S P p p( ) ln( )
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where Pe is the probability distribution of maximum entropy (with all states equally probable).
All possible probability distributions are confined to a specific region in the complexity-entropy plane. Jointly, 

the two measurements allow one to determine whether a chaotic attractor or stochastic noise dominates the 
dynamics of a system. The lower part of the complexity-entropy region (low-complexity) is occupied by probabil-
ity distributions of stochastic signals, while the high-complexity region is occupied by probability distributions 
of signals with low-dimensional chaos. We apply this test to our measurements of spontaneously oscillating hair 
bundles (Fig. 4a). We selected d = 5, which yields 120 (i.e. 5!) possible states. Similar results were obtained for 
d = 4 and d = 6.

Sub-sampling is a useful technique for extracting a low-dimensional chaotic process from a signal contam-
inated by noise. A purely stochastic process is hardly affected by sub-sampling; if a chaotic attractor is pres-
ent in the system, however, it may emerge in the sub-sampled data39. Recordings of hair bundle oscillations 

Figure 4. (a) Complexity-entropy diagram for the spontaneously oscillating hair bundle in Fig. (2). For all data 
sets, “■” and “▲” represent fully sampled and sub-sampled data sets, respectively. Blue and teal colours 
represent raw hair bundle oscillation data and phase-shuffled surrogate data, respectively. Red represents the 
time series of a numerical simulation of the normal form equation for the supercritical Hopf bifurcations, 
driven by noise. Orange represents the corresponding phase-shuffled surrogate data set of this Hopf oscillator. 
Dark green and light green represent telegraphic noise and the corresponding surrogate data, respectively. “•” 
corresponds to fractional Brownian motion with Hurst exponent ranging from 0.02 to 0.98. The black curves 
confine all possible probability distributions. The dashed curve is the half-way point between the upper and 
lower bounds and serves as an approximate boundary between stochastic and chaotic processes. (b) The 
Kolmogorov entropy of an oscillatory hair bundle subject to a sinusoidal drive (“ ”), and transfer entropy from 
stimulus to hair bundle (“•”). As a control (“○”), transfer entropy from hair bundle to stimulus is also plotted as 
a function of the stimulus amplitude. Vertical dashed lines delineate approximate regions that correspond to 
Poincaré maps displaying cloud, ring, and point structures, as illustrated by the schematic diagrams above the 
graph. Noise floors are indicated by horizontal dashed lines. The noise floor on the K-entropy is estimated by 
tracking the motion of a passive hair bundle driven by a 10–25 pN sinusoidal stimulus. The noise floor on the 
transfer entropy is estimated based on bundle oscillations in the absence of a stimulus. Uncertainties in 
K-entropy are estimated by taking the standard deviation of the residuals from the linear fit of Shannon entropy 
with time. Uncertainties in transfer entropy are estimated from a bootstrapping technique that incorporates the 
uncertainties in position measurements.



www.nature.com/scientificreports/

6SCientifiC REPORts |  (2018) 8:3366  | DOI:10.1038/s41598-018-21538-z

were sampled at 1 kHz, resulting in a Nyquist frequency of 500 Hz. Sub-sampling every fourth point reduces the 
Nyquist frequency to 125 Hz, sufficiently above the dominant frequency in the signal (~20 Hz). The sub-sampled 
data set yields statistical features of low-dimensional chaos (Fig. 4a).

Kolmogorov Entropy. Kolmogorov entropy quantifies the level of chaos in the trajectory of a dynami-
cal system40. Given knowledge of the state of a system at a particular time, obtained with some uncertainty, 
Kolmogorov entropy (K-entropy) measures how well one can predict its state at a later time. K-entropy therefore 
provides a measure of how rapidly neighbouring trajectories diverge, and reflects the rate at which the system is 
producing information. Limit cycles produce no information: for a given observation of the state of the system, 
all future states can be predicted with the same uncertainty as the original measurement. In contrast, systems 
exhibiting either low- or high-dimensional chaos constantly produce information. Hence, K-entropy is zero for 
limit cycles, positive for systems with low-dimensional chaos or noise, and infinite for purely stochastic processes.

To calculate the K-entropy, we divide the reconstructed phase space into hypercubes, and select a starting 
hypercube to be one that contains many points of the trajectory. We track the trajectories emerging from these 
points to calculate a time-dependent probability distribution over the hypercubes. The resulting distribution 
yields the Shannon entropy as a function of time; its time-averaged derivative is defined to be the K-entropy40–42. 
An embedding dimension of five was chosen for this analysis; nearly identical results were obtained with four 
or six embedding dimensions. The choice of the number of bins per dimension did not affect the results of this 
analysis. We used two bins per dimension, a natural choice due to the bimodal distribution in position of the 
spontaneously oscillating hair bundle.

We observe that the Kolmogorov entropy associated with active bundle motility is reduced by the application 
of a sinusoidal drive (Fig. 4b). The majority of the reduction in K-entropy occurs during the quasiperiodic tran-
sition from chaos to order, the regime in which the Poincaré maps produce a ring structure. K-entropy plateaus 
near zero, for forcing amplitudes above ~15 pN. We note that a noiseless system would plateau exactly at zero; the 
finite value of the plateau is due to noise inherent in the experimental recording.

Detection by an individual hair cell is quantified by calculating the transfer entropy from the stimulus signal 
to the receiver response43. For systems exhibiting large innate oscillations in the absence of stimulus, we propose 
that transfer entropy is a more appropriate measure of detection than the traditional linear response function, as 
it avoids yielding a spurious detection of zero-amplitude signals. Further, in contrast to measures such as mutual 
information, this measure explicitly identifies the direction of information flow. For a continuous signal, calcula-
tion of transfer entropy requires partitioning the range of the signal and assigning a state to each discrete bin. The 
transfer entropy from process J to process I is defined as

T p i i j
p i i j

p i i
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given that the previous l states of process J were jn
l( ). The summation is performed over the length of the time 

series, as well as over all accessible states of processes I and J. Transfer entropy TJ → I is a measure of how much 
one’s ability to predict the future of process I, given its history, is improved by knowledge of the history of J.

To analyse experimental recordings of hair bundle oscillations, we discretized the signal into two bins, due to 
the bimodal distribution in position of the hair bundle; similar results were obtained when using three or four 
bins. The choice of k and l had little effect on our results, so we selected k = l = 4. The transfer entropy from the 
applied stimulus to the hair bundle rises above zero for signals of ~3 pN. The observed detection threshold is even 
lower when a stimulus is applied at the resonance frequency of the cell (see Supplementary Fig. S5).

Theoretical Model. To capture the chaotic dynamics of an oscillatory hair bundle, we apply a variant of 
a previously proposed model12, developed to account for the complex multi-mode hair bundle oscillations. 
The model was shown to reproduce a number of experimental observations. It captured the sporadic transi-
tions between quiescence and innate oscillation exhibited by hair bundles. Further, it displayed multi-mode 
phase-locking to the stimulus over a wide range of driving frequencies, in agreement with experimental results. 
Finally, it reproduced the observed suppression and recovery of oscillation, following strong mechanical forcing. 
The model consists of three dynamical variables, the minimum dimension capable of supporting a chaotic regime.

The transition between oscillatory and quiescent states is described using the normal form equation of the 
subcritical Hopf bifurcation (Bautin bifurcation)15,

μ ω= − + | | − | | +
dz
dt

z i A z B z f w t( ) cos( ), (9)A d0
2 4

where z(t) describes the dynamic state of the bundle with the real part, x(t), representing the bundle position. fA, 
ωd, and ω0 denote the driving force, driving frequency, and natural frequency, respectively. The fifth-order term 
in z is included to capture the subcritical Hopf bifurcation, which was shown to describe well the complex bundle 
dynamics12. A = B = 10 and ω0 = 1, unless otherwise stated.

The control parameter, μ, is associated with the probability of the system being in the oscillatory or the qui-
escent state. We assume the parameter to be a real-valued dynamic variable, with its rate of change described by
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d
dt

k k x x f( ) , (10)on off A0
μ α= − Θ − +

where kon and koff are rate constants. The Heaviside step function, Θ, serves as an approximation of the Boltzmann 
distribution related to the opening probability of the ion channels8. We introduce here the αfA term to the origi-
nal model, to capture the entrainment of the bundle by a strong stimulus and to reproduce the torus breakdown 
transition from chaos as stimulus amplitude is varied. α = 0.15 unless otherwise stated.

We demonstrate that numerical simulations based on this model reproduce well the characteristic features 
of the experimental results. Sinusoidal stimuli of linearly increasing amplitude elicit a quasiperiodic transition 
from chaos to order via reverse torus breakdown (see Supplementary Fig. S8). This transition is accompanied by 
a reduction in the Kolmogorov entropy similar to our experimental recordings. We note that higher dimensional 
models would certainly capture more details of the experimentally measured hair bundle response. However, 
we aim to find the simplest model that can reproduce the experimental results specific to this study, namely sig-
natures of an underlying chaotic attractor. A simple model has a more tractable parameter space, allowing us to 
isolate the impact of chaos on the response of the system.

We next explore the effects of chaoticity on the sensitivity to a weak stimulus. In numerical simulations, cha-
oticity is most easily quantified by the largest Lyapunov exponent of the system15. In the absence of a stimu-
lus, Lyapunov exponents are calculated by tracking the rate of divergence of neighbouring trajectories in the 
3-dimensional phase space. We vary the parameters of the model, to obtain a broad range of Lyapunov exponents. 
For each set of parameters, we impose a stimulus signal below, above, and at the natural frequency of the oscilla-
tor. For simplicity, we use a square wave stimulus with stochastic variation of the period. We compute the transfer 
entropy from the imposed stimulus to the hair bundle response, for each of the Lyapunov exponents, and present 
the results in a scatter plot. For frequencies at or away from the characteristic frequency of the bundle, the model 
shows enhanced sensitivity to information transfer when poised in the chaotic regime (Fig. 5).

Discussion
The auditory system has provided an experimental testing ground for theoretical work on nonlinear dynamics9,11, 
nonequilibrium thermodynamics44, and condensed matter theory45. The fundamental questions on hearing per-
tain to its sensitivity, frequency selectivity, rapidity of detection, and the role of an active mechanism in shaping 
the response. Models based on dynamic systems theory have successfully described a number of empirical phe-
nomena. However, the theoretical models have mostly focused on stable dynamics, exploring either the limit 
cycle regime, or the quiescent regime in the vicinity of a bifurcation.

Our results provide an experimental demonstration that a low-dimensional chaotic attractor arises in the 
dynamics of active hair bundle motility. Ring-like structures in the Poincaré maps, torus breakdown, pos-
itive Kolmogorov entropy, non-integer correlation dimension, and the location of the time series in the 

Figure 5. Scatter plot of the largest Lyapunov exponent (λ) versus the transfer entropy from a stimulus to hair 
bundle oscillator, obtained from a numerical simulation. The applied stimulus was a square wave with stochastic 
variations of the period. The mean of these periods was set to 
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2 0
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is 30% of its mean. The amplitude was set to fA = 0.3. This numerical value corresponds to forcing amplitude of 
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(0.2–0.7), respectively. “•” represents variations in the cubic parameter, A (10−5 − 0.15), when the system is 
poised in the limit cycle regime. In this regime, the Lyapunov exponent of largest magnitude is calculated 
analytically. As any parameter is varied, all others are held constant ( = . =x k0 4, on0

5
12

, koff
7

12arccos(0 4)
= π

.
, and 

A = 10.) Error bars in transfer entropy are the standard deviation from repeating the calculation on 10 different 
stimulus forms, each containing N = 105 data points. Open circles of all colours correspond to calculations of 
transfer entropy in the reverse direct (bundle to stimulus) and serve as controls.
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complexity-entropy plane are all indicators of low-dimensional chaos, not stochastic processes. Because chaos 
cannot exist in dynamical systems of dimension lower than three, the two-dimensional models extensively used 
in the field are insufficient for capturing the dynamics. We estimate that three to six independent variables are 
needed to correctly characterise the dynamics of the system.

Further, we find that chaos is removed by the application of a signal, with different transitions from chaos to 
order observed when oscillations are entrained by stimuli below, near, or above the characteristic frequency of the 
cell. Hair bundles have thus far been viewed as nonlinear mechanical detectors, and the linear response used to 
characterise their sensitivity. We propose that information theory provides a useful and complementary tool for 
analyzing the response of a hair cell, which can be viewed as a computational device that serves to extract infor-
mation about the external acoustic environment. We hence apply an information theoretic approach to quantify 
the detection of a signal by an individual hair cell. Hair bundles poised in the chaotic regime exhibit measurable 
increases in transfer entropy even at pN levels of stimulus, indicating that chaotic dynamics of innate motility are 
consistent with high sensitivity of detection.

Our theoretical model, which includes a feedback equation for the control parameter of the system, describes 
well the dynamics observed experimentally. When poised in the chaotic regime, the system shows an enhanced 
sensitivity to weak stimulus. We therefore propose that hair cells of the auditory system harness the presence of 
chaos to achieve high sensitivity. We further hypothesize that chaotic dynamics may be a ubiquitous feature of 
nonlinear biological systems, which typically exhibit many degrees of freedom. It is therefore important to under-
stand the impact of chaos on the sensory perception in living systems. Future work entails developing experimen-
tal techniques for modulating the degree of chaos in bundle dynamics, to assess the impact of chaoticity on the 
biological sensitivity of detection.

Methods
Experimental Techniques. Experiments were performed in vitro on hair cells of the amphibian sacculus, an 
organ specializing in low-frequency air- and ground-borne vibrations. Sacculi were excised from the inner ears 
of North American bullfrogs (Rana catesbeiana), and mounted in a two-compartment chamber5. Spontaneously 
oscillating hair bundles were accessed after digestion and removal of the overlying otolithic membrane7. All pro-
tocols for animal care and euthanasia were approved by the UCLA Chancellor’s Animal Research Committee in 
accordance with federal and state regulations. To deliver a stimulus to the hair bundles, we used glass capillaries 
that had been pulled with a micropipette puller. These elastic probes were treated with a charged polymer that 
improves adhesion to the hair bundle. Innate oscillations persisted after the attachment of probes with stiffness 
coefficients of ~100 μN/m. The piezoelectric actuator was controlled with LabVIEW to apply sinusoidal stimula-
tion of varying amplitudes for selected constant frequencies. Hair bundle motion was recorded with a high-speed 
camera at frame rates of 500 Hz or 1 kHz. The records were analysed in MATLAB, using a centre-of-pixel-inten-
sity technique to determine the mean bundle position in each frame. Typical noise floors of this technique, com-
bined with stochastic fluctuations of bundle position in the fluid, were 3–5 nm. Figure (1a) shows representative 
traces of active bundle motion, subject to mechanical forcing.

Data availability. The data supporting the findings of this study are available within the article and its sup-
plementary material file. Raw datasets generated during the current study are available from the corresponding 
author on reasonable request.
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